ESTIMATING THE PARAMETERS OF A TRUNCATED
GAMMA DISTRIBUTION!

By Dovaras G. CHAPMAN
Unaversity of Washington

1. Summary. A table is given to simplify the estimation of the parameters
of an incomplete gamma or Type III distribution. A new procedure is also
suggested for estimating the parameters of a truncated gamma distribution.
This method is also applicable to a number of other truncated distributions,
whether the truncation is in the tails or the center of the distribution.

2. Introduction. Several examples have been given recently, employing the
incomplete gamma or Type III distribution in fitting rainfall data; for instance,
see [1, 2]. In an animal population.study [3], it was found that the migration
pattern could be fitted by this type of distribution. Frequently in such migration
studies the data are truncated, that is, observations begin after migration has
commenced or conclude before it has stopped.

The parameters of the gamma distribution are often estimated by the method
of moments in such cases (for example, see [4], pp. 121, 125), despite the fact
that Fisher [5] showed the method to be inefficient. To facilitate solution of the
maximum likelihood equations for estimation of the parameters in the un-
truncated case, a simple table is given.

The estimation of the parameters of a truncated gamma distribution by the
method of moments has been studied by Cohen [6]. Since the integral of the
probability density cannot be expressed in closed form, even the moment
estimates are tedious to obtain; no attempt has been made to evaluate their
variances or to study their efficiencies. After this paper was completed, a new
study of the problem was published by Des Raj [7]. He gives the maximum
likelihood equations for a number of cases of truncated and censored samples,
mainly, however, under the assumption that the third standard moment is
known. These equations can be solved only by iterative methods. In this paper
a new method of estimation of these parameters is introduced which is easier to
apply. The asymptotic variance-covariance matrix of the estimates is de-
termined.

3. Estimation with origin known. The density function of the gamma distri-
bution may be written in the form

b
— Q@  —ex—e),, _ )bl >
f(x) I‘(b) (x C) r=0
= 0, r < c.
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The parameters are frequently transformed so that the distribution is expressed
as a function of the mean, variance, and skewness. Since the corresponding
sample quantities do not efficiently estimate the parameters, such a trans-
formation appears to be misleading.

The maximum likelihood equations, based on a sample of n observations,
have been given by Fisher [5]:

1L b . o
(1) ﬁ£=a—'($“c)— ’
1 9L ')
) ~ 20 =lhe- (b)+ Eln(x.—c)_o
10L b-1+ 1 -
® = R (@) o

Since the parameter ¢ determines the region of positive density, care must
be exercised in obtaining its maximum likelihood estimate. If b > 1, then it is
easy to verify that equation (3) gives the maximum likelihood estimate of c;
if, however, b < 1, this is no longer true. In this case f(x) is monotone decreas-
ing for x = ¢, and z = min; x; is the maximum likelihood estimate of c.

We consider first the case where the origin is known, so that ¢ may be set
equal to zero without loss of generality and equation (3) drops out. Letting

T = % 5-21 In X,
(1) and (2) yield
v _
v(®) =Inbd T0) =Ing — .
. T'() . . .
Since NOR the digamma function, has been tabulated by Gauss [8] and

by Pairman [9], it is easy to construct a table of ¥(b) and solve for b by in-
verse interpolation. A small tabulation of y*(b) is given in Table I; a more
complete tabulation of ¥(b) is available in mimeographed form from the Lab-
oratory of Statistical Research, University of Washington. There v(b) and its
first and second differences are tabulated for b = 0.01(0.01)2, 2(0.02)5, 5(0.1)20,
20(1)100. The table was checked by summing columns in the basm tables and
should be correct to one figure in the fifth decimal.

4. Estimation in the truncated case with known origin. The density function
is now written
4) fx) = K¢ ™™ 0<z=T
= 0 elsewhere,
where

K( __ [T ——az b—1
a,b) = A dz.
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TABLE 1
b = v '(a), where y(b) = Inb — I"(b)/T(b) may be used to estimate
the parameter b in the density
fz) = [&/T®)]e 2" ;ie,b=vy"[InZ — Inzx]

Third Decimal of a

0 1 2 3 4 5 6 7 8 9

0.01 50.17 | 45.63 | 41.84 | 38.63 | 35.88 | 33.51 | 31.42 | 29.59 | 27.94 | 26.49
0.02 25.17 | 23.98 |122.90 | 21.91 | 21.00 | 20.17 | 19.40 | 18.68 | 18.02 | 17.41
0.03 16.83 | 16.29 | 15.79 | 15.32 | 14.87 | 14.45 | 14.05 | 13.68 | 13.32 | 12.99
0.04 12.66 | 12.36 | 12.07 | 11.79 | 11.53 | 11.28 | 11.03 | 10.80 | 10.58 | 10.37
0.05 10.16 | 9.97 | 9.78| 9.60 | 9.42| 9.25| 9.09 | 8.94| 8.78 | 8.64

0.06 850 8.36| 8.23| 810 7.98| 7.86| 7.74| 7.63| 7.52| 7.41
0.07 731} 7.20| 7.11| 7.01| 6.92| 6.83| 6.74| 6.66 | 6.57 | 6.49
0.08 6.41| 6.3¢]| 6.26| 6.19| 6.11 | 6.04 | 598 | 591 | 584 | 578
0.09 572 | 5.66| 560| 554 | 548 | 5.42| 537 | 532 | 5.26 | 5.21

Second and Third Decimals of a

00 10 20 30 40 50 60 70 80 90
05 15 25 35 45 55 65 75 85 95
0.1 5.16 | 4.71| 4.33 | 4.01 | 3.73 | 3.49| 3.28| 3.10| 2.93 | 2.79
4.92 4.51 4.16 3.86 3.61 3.38 3.19 3.01 2.86 2.72
0.2 2.65 2.54 2.43 2.33 2.24 2.15 2.07 2.00 1.94 1.87
2.59 2.48 2.38 2.28 2.19 2.11 2.04 1.97 1.90 1.84
0.3 1.82 1.76 1.71 1.66 1.62 1.57 1.53 1.50 1.46 1.43
1.79 1.74 1.69 1.64 1.60 1.55 1.52 1.48 1.44 1.41
0.4 1.39 1.36 1.33 1.30 1.28 1.25 1.23 1.20 1.18 1.16
1.38 1.35 1.32 1.29 1.26 1.24 1.22 1.19 1.17 1.15
Second Decimal of a
e
0 1 2 3 4 5 6 7 8 9
0.5 1.14 1.12 1.10 1.08 1.06 1.04 1.03 1.01 0.996| 0.981
0.6 0.966| 0.952| 0.938 0.925 0.912] 0.900; 0.887 0.876/ 0.864| 0.853
0.7 0.842| 0.832] 0.822] 0.812] 0.802] 0.792| 0.783] 0.774] 0.765| 0.757
0.8 0.748| 0.740, 0.732] 0.725 0.717[ 0.710] 0.702] 0.695 0.688 0.682
0.9 0.675| 0.670, 0.662| 0.656] 0.650, 0.644] 0.638 0.632| 0.627| 0.621
1.0

~ 0.616

The maximum likelihood functions now involve derivatives of K with respect
to a and b, respectively; a double-entry table would be necessary to obtain the
maximum likelihood estimates of ¢ and b, and even this would involve double
inverse interpolation.

In lieu of this, another method of estimation is proposed. Let the n observa-
tions be grouped by classes (§; — hs, &+ ki) ¢ = 1,2, -+ - 1), where &, — hy =
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0,6 +h =T, 6+ hi = &4 — hiya,t = 1,2, --- r — 1. Denote by »; the
number of observations falling in class 7, i.e., between §; — h; and & + h;.
Define

Eith
pi = K™ _/; e de = K¢ 57 (2h)

i—hs
6))
—
qi n
Now
Inp; —mpy =altin — &) + G — 1) In £ +In hs
(6) Eiv1 hiya

i=1,2-r—1

to the degree of approximation indicated by (5).

The form of equation (6) suggests estimating a and b by a least-squares
procedure, with ¢; replacing p; . This can be justified as an approximate pro-
cedure by the following results. To terms of order 1/n,

= _1l-—=p

) E(lng) = In p; o pr
. )2 — ll;p,

(8) E(n ¢; — In p;) n

©) B [(m z%) (ln z%)] - - }L —

These results can be obtained by expanding In(q; / p:) = In(1 + (q: — ps) / p:)
in a Taylor series (assuming that Pr(g; = 0) and Pr(q; > 2p;) may be neglected

for large n).
To show that the higher-order terms of the series expansion may be neglected,

the following results are needed:

s 1
E(g—p™*" =0 (,7;:5),

Elg—p* =0 <1%>

These may be proven by induction, making use of the recurrence formula
for the central moments of the binomial (and hence also of the multinomial)
distribution. This recurrence formula is

< du,
Kepr = Pq <nsus_1 + #),

@
%

—t
-

where p, is the sth central moment.
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Moreover, the limiting distribution of the In g; is easily obtained from the
following lemma:

Lemma. Let {X{™} (6 = 1,2, ---, 1) be a sequence of random variables and
ui, 0t = 1,2, .-+, r) be constants such that the joint distribution of

™ _ .
yg")=(£*_;._“*)\/;, G=1,2---,7

lends to the limiting distribution F(yy, ya, ---, y») a8 n — o, and let f(x) be
of class C° in the neighborhood of (uy , pz, - - - , py) With

_ (%)
t‘l B (Ei)z_p; ;é 0.

Then Z{” = /nlf(X{™) — f(u)l / (0:+t) G = 1,2, -+, 7) have the same joint
limiting distribution.

This is a consequence of the general theorems on stochastic limit relationships
proved by Mann and Wald [10] (see their Theorems 3 and 5; however, a trivial
modification is required, since our f(z) is a function of a single real variable,
whereas their corresponding g(z) is a function of a vector-valued random vari-
able).

Finally, writing

(10) Yye=Ingi — In qipx =12 ---,r—1),
it follows that the y; are asymptotically multinormal with means
'] h.'
el — &)+ B -1 In £ 4+ In >
Ei+l hi—&-l

and moment matrix

L(E41) L(2) o .

n \p1 23 n \P2

_1<1) £<l+1) _£<1> 0

n \p: n \P2 D3 n\ps

L L) LE4D) o
n \ps n\p3 D4

0 0 S ()
\ n pr—l pr,

Least-squares estimators of a and b are found by minimizing the quadratic

form
ly — E@)m™'ly — E@y)],

where the vector y' = (y1, ¥2, **+ ¥r1).

In view of the asymptotic distribution of the y;, these estimates are asymp-
totically efficient relative to the y; . What information is lost in using the varia-
bles y; rather than the original observations z;? If the original observations




TRUNCATED GAMMA DISTRIBUTION 503

were ungrouped, a slight loss of information would be caused by grouping to
form the variables »; . Since the In ¢; are monotone functions of the »;, no in-
formation is lost in this transformation. The y; are linear combinations of the
In ¢; ; some further information is lost here in exchange for elimination of the
factor K~ from the estimation process.

Since the true values of the p; are not known, it is necessary to replace the
p; in 9N by their estimates, the ¢; . Introducing the notation

(11) W; = Yi — In h,' + In hi+1 ,
(12) Ui = i — &,
(13) V; = In E'i — In 554_1 .

the equations for a and &’ = b — 1 are

(14) a (2 2 mituu) + 0/ (0 2 miwiv) = 25 20 miww;,
1 2 1 J % J

(15) a2 ,Z miuiv;) + o' (0 20 mitviv) = 20 20 mivw;,
£} L] J 1 J

m4’ denoting the elements of M5* (9" with p’s replaced by ¢’s).
The solutions of these are

(16) = 2 V) ') — (/9™ (v w),

@17 b = = (M ) (VIe'w) — (u'IMeTv) (w'aryw)],

[ >

where
A = (WG W)(VIG'Y) — (WIG'v):,
and the covariance matrix of (a, b’) is
% ('ang'v) —% (u'ang’v)
(18) i
-1 (W'my'v) 1 (u'angu) .
A A
The estimates ¢ and b’ are found by direct simple routine calculations ex-

cept for the determination of 9M5* from 9, . This may be a tedious process
unless r is small. However, if all p; are equal to 1/r, then

(r—1 r—2 r—3 ... 3 2 1

r—2 2r—2 20r—38) - 6 4 2

1 r—3 20r—38) 3(¢r—38) --- 9 6 3

Lowi= | : I : :
n 3 6 9 3r—3) 2r—3) r—3
2 4 6 20 —3) 20r—2) r—2
! 2 3 (r—3) r—2 r—1

This is easily verified by direct multiplication.
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It was pointed out that if 91U were known, least-squares estimates would be
in some sense best among estimates which are functions of the y;. What does
the substitution of 91" for 9" do to the estimates? Denoting by m.;, mi;
representative elements of 91, 9o, it is known that mi; converges in proba-
bility to mi; as n — . Since d, b’ are continuous functions of m?;, the re-
sults of Mann and Wald cited above [10] are sufficient to conclude that ("),
b'(9m5™") have the same limiting distribution as 4(91™"), & (9m™"). Consequently,
to terms of 1/n the variance-covariance matrix is given by (18). This result is,
of course, closely related to similar ones in modified minimum x* estimation;
e.g., see Neyman [11].

For these asymptotic results to hold rigorously, it is necessary not only for
n — o, but also for max;<i<- h; — 0 (so that (5) holds exactly), whch in turn
implies » — . Furthermore, for the multinormality of the ¢; we need
maxi<icr ks — 0, r — o in such a way that minj<i<, np; — .

However, these considerations leave open the question of determining » and
the £&; in any practical situation. While some studies have been made of the
optimum allocation in linear regression problems (e.g., Elfving [12]), these
refer to situations where the observations are independent. Moreover, our
choice of the £; is limited by the requirement that the classes should not be so
broad that (5) is seriously invalidated. Since 91" is quite simple if the g; are
all equal to 1/r, it seems to be reasonable to choose the £; so that this is so.
The device is analogous to that suggested by Gumbel [13] and by Mann and
Wald [14] in applying the x* “goodness of fit” test.

The fact that 9 involves reciprocals of the np; makes it seem desirable that
no ng; should fall below 10. This will set an upper bound for r, namely, r =
n/10. The lower bound should be determined so that (5) is a reasonable approxi-
mation, though more usually it will be determined by considerations of the
labor involved in calculating (16), (17), and (18).

Of course, it will often happen that the data will be grouped to begin with,
so that the statistician is not free to choose the §; or 7. It should be noted that
in any case simpler but less efficient estimates can be obtained by utilizing
only the odd (or even) wys. The odd w/s are mutually independent among
themselves and consequently 91, and 95" reduce to diagonal matrices.

5. Estimation with unknown origin. If the parameter ¢, the origin, is unknown,
then the estimation problem is more difficult Wwhether or not the distribution is
truncated. Iterative methods are of course possible in solving (1) (2) and (3)
with the aid of Table I, i.e., for the untruncated case. In the truncated case
this method is too tedious to have much practical value.

If, in the truncated case, there is available supplementary information so
that the restriction 0 < ¢ « £ may be utilized, then a procedure similar to
that outlined above may be followed. In this case

— L = JPPR _ & —c¢ h;
(19 I pi = I pos = alfsa — £) + (6 = Dn i1 — ¢ +lo hip

G=1,2---r—1)
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again to the degree of approximation indicated by (5). With the restriction
noted above, it is adequate to write

&

i+1

Inp; —Inpis = altipn — &) + 0 — 1) hlg

(20)
11 hs

+ - l)c<a;—g>+lnhi+l.

Defining y; , w; as above, least-squares estimates of a, b, and ¢ may be found
in a procedure exactly analogous to that of Section 4.

6. Conclusion. The method used to estimate the parameters ¢ and b in
Section 4 may also be applied if the sample is drawn from a doubly truncated
gamma, distribution; from a singly or doubly truncated normal distribution;
or from a beta distribution with known range, either truncated or not. Methods
of obtaining the maximum likelihood estimates of the parameters of a truncated
normal distribution are, of course, well known, and extensive tabulations have
been made to facilitate the determination of such solutions (e.g., compare
particularly Hald [15]).

The method outlined above would also be useful in estimating the parameters
of the normal curve where there are systematic gaps in the observations. This
may occur particularly in time distributions—an example may be found in
[16]. For distributions with finite but unknown range, however, the method
does not appear to be satisfactory.
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