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Abstract

The two most popular censoring schemes are type-I and type-II censoring schemes.

Hybrid censoring scheme is a mixture of type-I and type-II censoring schemes. In

this paper we mainly consider the analysis of hybrid censored data when the lifetime

distribution of the individual item is a two-parameter generalized exponential distri-

bution. It is observed that the maximum likelihood estimators can not be obtained

in closed form. We propose to use the EM algorithm to compute the maximum likeli-

hood estimators. We obtain the observed Fisher information matrix using the missing

information principle and it can be used for constructing the asymptomatic confidence

intervals. We also obtain the Bayes estimates of the unknown parameters under the

assumption of independent gamma priors using the importance sampling procedure.

One data set has been analyzed for illustrative purposes.
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1 Introduction

The two most common censoring schemes are termed as type-I and type-II censoring schemes.

Briefly, they can be described as follows; consider n items under observation in a particular
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experiment. In the conventional type-I censoring scheme, the experiment continues up to a

pre-specified time T . On the other hand the conventional type-II censoring scheme requires

the experiment to continue until a pre-specified number of failures R ≤ n occur. A mixture of

type-I and type-II censoring schemes is known as the hybrid censoring scheme and it can be

described as follows. Suppose n identical units are put to test under the same environmental

conditions and the lifetime of each unit is independent and identically distributed (i.i.d.)

random variables. The test is terminated when a pre-chosen number R, out of n items have

failed or a pre-determined time T , on test has been reached.

Therefore, under this censoring scheme we have one of the following two types of obser-

vations;

Case I: {y1:n < . . . < yR:n < T}

Case II: {y1:n < . . . < yd:n < T}, if 0 ≤ d < R and yd:n < T < yd+1:n,

here y1:n < y2:n < . . . denote the observed failure times of the experimental units. A

schematic representation of the hybrid censoring scheme is provided in Figure 1.

1st. Failure             2nd Failure                                                     Rth Failure (Experiment stops)

1st Failure                                2nd Failure                          dth Failure         Experiment stops

 0          y                         y                                                                       y                    T

 0          y                                            y                                             y                          T

1:n                      2:n                                                                    R:n

1:n                                         2:n                                          d:n

Case I

Case II

Figure 1: A schematic diagram for the hybrid censoring scheme.

Epstein [8] first introduced the hybrid censoring and it has been used in reliability ac-

ceptance test in MIL-STD-781C [19]. Epstein [8] analyzed the data under the assumption

of exponential lifetimes of the experimental units. Epstein [8] also proposed a two-sided

confidence intervals of the mean lifetime without any formal proof. Some modifications of

Epstein’s proposition were suggested by Fairbanks et al. [9]. Chen and Bhattacharya [2]
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provided the exact confidence interval of the exponential parameter based on the exact con-

ditional maximum likelihood estimate (MLE) obtained by inverting the conditional moment

generating function (MGF). Some simplifications of the the exact distribution have been

suggested by Childs et al. [4]. Draper and Guttman [5] provided the Bayesian estimates

and the highest posterior density (HPD) credible interval based on the gamma prior. Gupta

and Kundu [10] compared different methods using Monte Carlo simulations. For some of

the related references, the readers are referred to Ebrahimi [6, 7], Jeong, Park and Yum [14],

Kundu [15], Banerjee and Kundu [1] and the references cited therein.

In this paper we consider the analysis of the hybrid censored lifetime data when the

lifetime of each experimental unit follows a two-parameter generalized exponential (GE)

distribution. The two-parameter GE was originally proposed by Gupta and Kundu [11]

and it has received considerable attention in the recent years because of its flexibility and

wide scale applicability. See for example, the review article by Gupta and Kundu [13] on

recent development of the GE distribution. Two-parameter GE distribution with the shape

parameter α > 0 and scale parameter λ > 0 has the probability density function (PDF) for

x > 0 as;

fGE(x;α, λ) = αλe−λx
(
1− e−λx

)α−1
. (1)

From now on a two-parameter GE distribution with the PDF (1) will be denoted by GE(α, λ)

and the corresponding CDF will be denoted by FGE(x;α, λ).

The aim of this paper is two fold. First we consider the point and interval estimates of

the unknown parameters based on the frequentist approach. It is observed that the MLEs

of the unknown parameters can not be obtained in closed form. We propose to use the

EM algorithm similarly as in Ng et al. [20], to compute the MLEs. Using the missing

information principle we calculate the observed Fisher information matrix, which can be

used for constructing the asymptotic confidence intervals of the unknown parameters. The
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second aim of this paper is to consider the Bayesian inference for the unknown parameters

when the data are hybrid censored. The Bayes estimates can not be obtained in closed form.

Using the importance sampling procedure we obtain the Bayes estimates and also the HPD

credible intervals under the assumptions of independent gamma priors of both the shape and

scale parameters. We have used one data set for illustrative purpose.

Rest of the paper is organized as follows. In section 2, we provide the EM algorithm.

The Fisher information matrix is provided in section 3. Bayesian inferences are presented in

section 4. Analysis of one data set and discussions appear in section 5.

2 EM Algorithm

Based on the observed data, ignoring the additive constant, the log-likelihood function for

Case I and Case II can be written as

L(α, λ|data) = d lnα+d lnλ−λ
d∑

i=1

yi:n+(α−1)
d∑

i=1

ln
(
1− e−λyi:n

)
+(n−d) ln

(
1−

(
1− e−λc

)α)
.

(2)

Note that for Case I, d = R and c = yR:n, and for Case II, 0 ≤ d ≤ R − 1 and c = T .

When d = 0, L(α, λ|data) = n ln
(
1−

(
1− e−λc

)α)
, which can be made arbitrary small by

choosing λ → 0, for any fixed α. It implies that the MLEs of α and λ do not exist when

d = 0. So for computing the MLEs, it is assumed that d > 0.

Note that the explicit solutions of the two normal equations can not be obtained. We

propose to use the EM algorithm to compute the MLEs of the unknown parameters, treating

it as a missing value problem. Let us denote the observed and the censored data by Y =

(Y1:n, . . . , Yd:n) and Z = (Z1, . . . , Zn−d) respectively. Here for a given d, Z1, . . . , Zn−d are not

observable. The censored data vector Z can be thought of as missing data. The combination

of W = (Y, Z) forms the complete data set. If we denote the log-likelihood function of the
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uncensored data set by Lc(W ;α, λ) then ignoring the additive constant;

Lc(W ;α, λ) = n lnα + n lnλ− λ(
d∑

i=1

yi:n +
n−d∑

i=1

zi)

+(α− 1)

(
d∑

i=1

ln
(
1− e−λyi:n

)
+

n−d∑

i=1

ln
(
1− e−λzi

))
. (3)

For the ‘E’-step of the EM algorithm, one needs to compute the pseudo log-likelihood function

as Ls(α, λ|data) = E(Lc(W ;α, λ)|Y ). Therefore,

Ls(α, λ|data) = n lnα + n lnλ− λ
d∑

i=1

yi:n + (α− 1)
d∑

i=1

ln
(
1− e−λyi:n

)

−λ
n−d∑

i=1

E(Zi|Zi > c) + (α− 1)
n−d∑

i=1

E
(
ln
(
1− e−λZi

)
|Zi > c

)
(4)

For further development we need the following results. The proofs can be obtained

similarly as in Ng et al. [20].

Result 1: Given Y1:n = y1:n, . . ., YR:n = yR:n, the conditional PDF of Zj, for j = 1, . . . , n−R

is

fZ|Y (zj|Y1:n = y1:n, . . . , YR:n = yR:n) =
fGE(zj;α, λ)

1− FGE(yR:n;α, λ)
; zj > yR:n (5)

and Zj and Zk for j 6= k are conditionally independent.

Result 2: Given d and Y1:n = y1:n, . . ., Yd:n = yd:n < T , the conditional PDF of Zj, for

j = 1, . . . , n− d is

fZ|Y (zj|Y1:n = y1:n, . . . , Yd:n = yd:n < T ) =
fGE(zj;α, λ)

1− FGE(T ;α, λ)
; zj > T (6)

and Zj and Zk for j 6= k are conditionally independent.

Note that we can write;

A(c, α, λ) = E(Zj|Zj > c) =
αλ

1− FGE(c;α, λ)
×
∫ ∞

c
xe−λx

(
1− e−λx

)α−1
dx

= −
α

λ(1− FGE(c;α, λ))
u(λc, α), (7)
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where

u(a, α) =
∫ e−a

0
(1− z)α−1 ln zdz.

B(c, α, λ) = E(ln(1− e−λZj)|Zj > c)

=
αλ

1− F (c;α, λ)
×
∫ ∞

c
e−λx

(
1− e−λx

)α−1
ln
(
1− e−λx

)α−1
dx

=
1

α(1− F (c;α, λ))

∫ 1

(1−e−cλ)
α
ln ydy

=
1

α(1− F (c;α, λ))

[(
1− e−cλ

)α (
1− α ln(1− e−cλ)

)
− 1

]
. (8)

Now the ‘M’-step involves the maximization of the pseudo log-likelihood function (4) . There-

fore, if at the k-th stage the estimate of (α, λ) is (α(k), λ(k)), then (α(k+1), λ(k+1)) can be

obtained by maximizing

g(α, λ) = n lnα + n lnλ− λ
d∑

i=1

yi:n + (α− 1)
d∑

i=1

ln(1− e−λyi:n)

−λ(n− d)A(c, α(k), λ(k)) + (α− 1)(n− d)B(c, α(k), λ(k)). (9)

The maximization of (9) can be performed by using similar technique as of Gupta and Kundu

[12]. First find λ(k+1) by solving a fixed point type equation as

h(λ) = λ. (10)

The function h(λ) is defined as follows;

h(λ) =

[
1

n

d∑

i=1

yi:n +
n− d

n
A−

1

n
(α̂(λ)− 1)

d∑

i=1

yi:ne
−λyi:n

1− e−λyi:n

]−1

,

where

A = A(c, α(k), λ(k)), B = B(c, α(k), λ(k)), and α̂(λ) = −
n

∑d
i=1 ln(1− e−λyi:n) + (n− d)B

.

Once λ(k+1) is obtained, α(k+1) is obtained as α(k+1) = α̂(λ(k+1)).

6



3 Fisher Information Matrices

In this section we present the observed Fisher information matrix obtained using the miss-

ing value principles of Louis [18]. The observed Fisher information matrix can be used to

construct the asymptotic confidence intervals. The idea of missing information principle is

as follows;

Observed information = Complete information−Missing information. (11)

Let us use the following notation; θ = (α, λ), Y = the observed vector, W = the complete

data, IW (θ) = the complete information, IY (θ) = the observed information, IW |Y = the

missing information. Then (11) can be expressed as

IY (θ) = IW (θ)− IW |Y (θ). (12)

The complete information IW (θ) is given by

IW (θ) = −E

[
∂2Lc(W ; θ)

∂θ2

]
.

The Fisher information matrix of the censored observations can be written as

IW |Y (θ) = −(n− d) EZ|Y

[
∂2 ln fZ(z|Y, θ)

∂θ2

]
.

So we obtain the observed information as

IY (θ) = IW (θ)− IW |Y (θ),

and naturally, the asymptotic variance covariance matrix of θ̂ can be obtained by inverting

IY (θ̂).

Note that IW (θ) and IW |Y (θ) are both of the order 2 × 2. We present all the elements

of both the matrices. The elements of the matrix IW (θ) for complete data set are already
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available in Gupta and Kundu [12]. We report it here for completeness purpose. If the

(i, j)-th element of the matrix IW (θ) is denoted by aij(α, λ), they they are as follows;

a11 =
n

α2
.

a22 =
n

λ2
+
nα(α− 1)

λ2

∫ ∞

0
x2e−2x

(
1− e−x

)α−3
dx.

a12 = a21 = −
nα

λ

∫ ∞

0
xe−2x

(
1− e−x

)α−2
dx.

Now we present IW |Y (θ). If

IW |Y (θ) = (n− d)



b11(c;α, λ) b12(c;α, λ)

b21(c;α, λ) b22(c;α, λ)


 ,

then

b11(c;α, λ) =
1

α2
−
[
ln
(
1− e−λc

)]2
(
1− e−λc

)α

(1− (1− e−λc)α)
2 ,

b22(c;α, λ) =
1

λ2
+ (α− 1)h1(c;α, λ)−

αc2e−λc
(
1− e−cλ

)α−2 (
αe−cλ − 1 + (1− e−cλ)α

)

(1− (1− e−cλ)α)
2 ,

b12(c;α, λ) = −h2(c;α, λ) +
ce−cλ

(
1− e−cλ

)α−1 (
1 + α ln(1− e−cλ)− (1− e−cλ)α

)

(1− (1− e−cλ)α)
2

= b21(c;α, λ),

where

h1(c;α, λ) =
1

λ2 (1− (1− e−cλ)α)
×
∫ 1

(1−e−cλ)α

(
ln(1− u1/α)

)2
(1− u1/α)u−2/αdu,

h2(c;α, λ) =
1

λ (1− (1− e−cλ)α)
×
∫ 1

(1−e−cλ)α

(
− ln(1− u1/α)

)
(1− u1/α)u−1/αdu.

4 Bayes Estimates

In this section we consider the Bayes estimates of the unknown parameters. Unfortunately,

when both the parameters are unknown then there does not exist any natural conjugate
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priors. In this paper similarly as in Raqab and Madi [21] or Kundu and Gupta [16], it is

assumed that α and λ have the following independent gamma priors;

π1(α) ∝ αa1−1e−b1α, α > 0, (13)

π2(λ) ∝ λa2−1e−b2λ, λ > 0. (14)

Here all the hyper parameters a1, b1, a2, b2 are assumed to be known and non-negative.

Based on the observed sample {y1:n, . . . , yd:n}, from the hybrid censoring scheme the

likelihood function becomes;

l(data|α, λ) ∝ αdλde−λ
∑d

i=1
yi:ne(α−1)

∑d

i=1
ln(1−e−λyi:n )e(n−d) ln(1−(1−e−λc)α). (15)

The joint posterior density function of α and λ can be written as

π(α, λ|data) =
l(data|α, λ)π1(α)π2(λ)∫∞

0

∫∞
0 l(data|α, λ)π1(α)π2(λ)dαdλ

.

∝ αa1+d−1e−α(b1−
∑d

i=1
ln(1−e−λyi:n )) λa2+d−1e−λ(b2+

∑d

i=1
yi:n) ×

e−
∑d

i=1
ln(1−e−λyi:n )+(n−d) ln(1−(1−e−λc)α)) (16)

Therefore, the Bayes estimate of any function of α and λ, say θ(α, λ) under the squared

error loss function is;

θ̂B = Eα,λ|data(θ(α, λ)) =

∫∞
0

∫∞
0 θ(α, λ)l(data|α, λ)π1(α)π2(λ)dαdλ∫∞
0

∫∞
0 l(data|α, λ)π1(α)π2(λ)dαdλ

. (17)

It is not possible to compute (17) analytically in this case. We will provide a simple impor-

tance sampling procedure to compute the point estimate of any function of α and λ, similarly

as in Raqab and Madi [21]. Using the idea of Chen and Shao [3] we obtain its HPD credible

interval also.

Note that the joint posterior density function of α and λ (16) can be written as

π(α, λ|data) ∝ gλ(a
∗
2, b

∗
2)× gα|λ(a

∗
1, b

∗
1)× g3(α, λ), (18)
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where gα|λ(a
∗
1, b

∗
1) is a gamma density function with the shape and scale parameter as a

∗
1 =

a1 + d and b∗1 = b1 −
∑d

i=1 ln(1 − e−λyi:n) respectively. Similarly, gλ(a
∗
2, b

∗
2) is a gamma

density function with the shape and scale parameter as a∗2 = a2 + d and b∗2 = b2 +
∑d

i=1 yi:n

respectively. Moreover,

g3(α, λ) =
1

(
b1 −

∑d
i=1 ln(1− e−λyi:n)

)a1+d e
(n−d) ln(1−(1−e−λc)α)−

∑d

i=1
ln(1−e−λyi:n ),

is a function of α and λ. The PDF of a gamma density function with the shape and scale

parameters as a and b respectively is

f(x; a, b) =
ba

Γ(a)
xa−1e−bx; x > 0, (19)

and it will be denoted by gamma(a, b).

Similarly as in Raqab and Madi [21], it is quite easy to obtain a simulation consistent

estimator of θ̂B using the importance sampling scheme as follows;

• Step 1: Generate λ1 from gλ(a
∗
2, b

∗
2) ∼ gamma(a2 + d, b2 +

d∑

i=1

yi:n)

• Step 2: Generate α1 from gα|λ(a
∗
1, b

∗
1) ∼ gamma(a1 + d, b1 −

d∑

i=1

ln(1− e−λ1yi:n))

• Step 3: Repeat Step 1 and Step 2, N times and obtain (α1, λ1), . . . , (αN , λN).

• Step 4: The Bayes estimate of θ under squared error loss function can be approximated

θ̂B ≈
1
N

∑N
i=1 θ(αi, λi)g3(αi, λi)
1
N

∑N
i=1 g3(αi, λi)

.

Now we obtain the credible interval of θ. Let us denote π(θ|data) and Π(θ|data) as the

posterior density function and posterior distribution function of θ respectively. Also let θ(β)

be the β-th quantile of θ, i.e.

θ(β) = inf{θ : Π(θ|data) ≥ β),
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where 0 < β < 1. Observe that for a given θ∗,

Π(θ∗|data) = E (1θ≤θ∗ |data) ,

where 1θ≤θ∗ is the indicator function. Then a simulation consistent estimator of Π(θ
∗|data)

can be obtained as

Π(θ∗|data) =
1
N

∑N
i=1 1θ≤θ∗g3(αi, λi)

1
N

∑N
i=1 g3(αi, λi)

. (20)

Let {θ(i)} be the ordered value of {θi}, and denote

wi =
g3(α(i), λ(i))∑N
i=1 g3(α(i), λ(i))

for i = 1 . . . , N . Then we have

Π(θ∗|data) =





0 if θ∗ < θ(1)∑i
j=1 wj if θ(i) ≤ θ∗ < θ(i+1)

1 if θ∗ ≥ θ(n)

(21)

Therefore, θ(β) can be approximated by

θ̂(β) =
{
θ(1) if β = 0
θ(i) if

∑i−1
j=1 wj < β ≤

∑i
j=1 wj.

(22)

To obtain a 100(1-β)% HPD credible interval for θ, let Rj =
(
θ̂( j

N
), θ̂(

j+(1−β)N
N

)
)
for

j = 1, . . . , [βN ], here [a] denotes the largest integer less than or equal to a. Then choose Rj∗

among all the Rj’s such that it has the smallest width.

5 Data Analysis and Discussions

In this section we perform the following data analysis for illustrative purpose. The data

set is from Lawless [17] ( page 228). The data given here arose in tests on endurance of

deep groove ball bearings. The data are the numbers of million revolution before failure

for each of the 23 ball bearings in the life test and they are: 17.88, 28.92, 33.00, 41.52,
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42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64,

105.12, 105.84, 127.92, 128.04 and 173.40. It has been analyzed by several authors. It has

been observed by Gupta and Kundu [12] that the two-parameter GE distribution can be

used quite effectively to analyze this data set.

We have created two artificially hybrid censored data sets from the above uncensored data

set, using the following censoring schemes: Scheme 1: R = 20, T = 100 and Scheme 2: R =

15, T = 75. In both the cases we have estimated the unknown parameters using the MLEs and

the Bayes estimates. For computing the MLEs we have used the EM algorithm as described

in Section 2 and also computed the 95% confidence intervals using the observed Fisher

information matrix as provided in Section 3. For computing the Bayes estimates we have

mainly considered the squared error loss function in both the cases. For comparison purposes

(with the MLEs), we have mainly assumed the non-informative priors i.e. a1 = b1 = a2 = b2

= 0.0. The Bayes estimates in all the cases are obtained by using importance samples of size

N = 10,000.

For Scheme 1, the MLEs of α and λ are 4.9892 and 0.0311 respectively. The corresponding

95% confidence intervals are (2.4767, 7.5018) and (0.0159, 0.0461) respectively. Similarly, the

Bayes estimates of α and λ are 4.2083 and 0.0281 respectively and the corresponding 95%

HPD credible intervals are (2.1642, 7.1195) and (0.0185, 0.0390). Interestingly, in both the

cases the asymptotic confidence intervals are slightly larger than the HPD credible intervals

obtained by using the non-informative priors. Although it appears that the MLEs and Bayes

estimates are quite different but if we consider the corresponding estimated distribution

functions they match quite well, see Figure 2.

For Scheme 2, the MLEs of α and λ are 7.1503 and 0.0393, the corresponding Bayes

estimates are 5.3981 and 0.0330 respectively. The 95% asymptotic confidence intervals and

credible intervals for α and λ are (3.6674, 10.6332), (0.0214, 0.0571) and (2.6403, 8.4319),
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Figure 2: The fitted distribution functions based on MLEs and Bayes estimators for Scheme
1.

(0.0219, 0.0458) respectively. We have plotted the fitted distribution functions based on

MLEs and Bayes estimators. It is clear from the picture that the distance between the

two distribution functions is more for Scheme 2 than Scheme 1. Although the MLEs and

Bayes estimates under the assumption of non-informative priors are close to each other when

the censoring is small, but when the censoring proportion is large then they can be quite

different.

MLE Bayes
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Figure 3: The fitted distribution functions based on MLEs and Bayes estimators for Scheme
2.

Now we want to see the effect of the hyper parameters on the Bayes estimates and also on

HPD credible intervals. We have taken the following informative priors a1 = 3.0, b1 = 1.0, a2

= 0.01 and b2 = 1.0. Based on the above hyper parameters, for Scheme 1, the Bayes estimates

of α and λ are 4.0339 and 0.0276 respectively. The corresponding 95% HPD credible intervals

for α and λ are (2.1758, 6.6247) and (0.0184, 0.0367) respectively. Similarly for Scheme 2,
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the Bayes estimates of α and λ are 4.7286 and 0.0313 and the corresponding 95% HPD

credible intervals are (2.4441, 8.2670) and (0.0207, 0.0483) respectively. Therefore, it is clear

that the Bayes estimates are quite robust, they do not depend on the hyper parameters very

much. Although it may be observed that the length of the HPD credible intervals based on

informative priors are slightly smaller than the corresponding length of the HPD credible

intervals based on non-informative priors, as expected. Therefore, the prior information

should be used if they are available.

Finally we should mention that our method can be used for other censoring plans also,

for example type-I, type-II, Type-II hybrid (see for example Childs et al. [4] or progressive

censoring plans. More work is needed in these directions.
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