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ABSTRACT 

An approach for estimating the pose and motion of 
a known moving object in three dimensions from a se- 
quence of monocular images is considered. The princi- 
ple is t o  obtain initial estimates of the pose and motion 
parameters and to update them by using feature loca- 
tion measurements made from subsequent monocular 
ima.ge frames. The ultimate goal is to  use the obtained 
estimates for controlling the movements of a robot arm. 

1. INTRODUCTION 
Machine vision holds great potential for increas- 

ing the autonomity of cargo handling systems, mining 
equipment, robot,ic ma.nipulat,ors, and ot,her moving 
machines. In these applications vision systems must be  
able to  produce accurate real time responses to control 
the movements. 

In our experimental set-up intended for simulating 
this problem area, a camera is attached to a robot arm 
used for vision controlled tracking of a known moving 
object. The  problems of this system, shown in Figure 
1, are similar to  real applications: image acquisition, 
image analysis and the movements do not occur in- 
stantly but add delays to  the control loop. Thus, the 
robot must be controlled on the basis of the computed 
future poses of the object. 
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in predictions and when integrating new observations 
into earlier knowledge. 

Kalman filtering has been shown to be a powerful 
tool in these kinds of problems, e.g., in tracking objects 
from monocular image sequences [1,2,3,5,9] and robot 
navigation [7]. In particular, our approach has been 
greatly influenced by the applications and principles 
presented in [2] and [3]. 

Here, the problem is mapped onto the extended 
Iialman filtering framework. The strategy is to  first 
obtain initial pose and motion estimates by using the 
pose estimation techniques of [6] and [8]. The estimates 
are updated with subsequent feature location measure- 
ments in the ima.ge plane. Simple approa.ches for mod- 
eling the motion and measurement uncertainties and 
for selecting features are considered. 

2. BASIC SOLUTION 
The basic principle is to  perform pose and motion 

estimation simultaneously by using I<alman filtering. 
For this purpose the problem is expressed as system 
(1) and measurement (2) equations. 

The state vector uk consists of the object pose and - - 
motion parameters. @k,k-l is a state transition ma- 
trix that produces the state a t  time step I: from the 
state a t  time step k - 1. The motion modeling uncer- 
tainty a t  each time step is taken into account by an 
a.dditive noise vector, ck, whose covariance matrix is 
wk = E ( e k $ ) .  . ... 

The measurement process is modeled by a non- 
linear function Fk that produces the measurement vec- 
tor vk, or the image plane coordinates of the selected 
fea.tures, from system sta.te I L ~ .  The measurement un- 
certainty is modeled by an additive noise vector uk, 
Vk = E ( v k v T ) .  In practice, the uncertainty estimates 

Figure 1: Experimental system for features are 2-by-2 covariance matrices, because the 
locations are (x,y) coordinate pairs. When n features 

However, the future situations cannot be  estimated are used Vk is a composite 2n-by-2n matrix built from 
perfectly, because the measurements made with image the individual covariance matrices. 
sensors are not infinitely accurate and the object mo- By assuming that both c k  and vk are sequences of 
tion may evolve unpredictably during the control de- Gaussian distributed, independent zero mean random 
lay. These uncertainties need to be taken into account vectors, the extended ~ < ~ l ~ ~ ~  filtering cycle becomes 



Equations (3) and (4) predict the state vector, 
uklk-1, and the estimation covariance matrix, Qklk-l 
that  reflects the uncertainties of this a priori estimate. 
The new measurement is predicted (5). 

The a posteriori state estimate, uklk, of the state 
is produced in (7) by weighting the innovation, (vk - 
vk~k-~) ,  by Kalman gain (6). J F ( ~ L I ; ~ I ; - ~ )  is the Ja- 
cobian of the measurement function F ( ~ L I ; ~ ~ - ~ ) ,  or the 
matrix of first order derivatives of feature location co- 
ordinates in the camera image plane frame with respect 
to  the state variables in the motion estimation frame. 
Finally, the estimation covariance matrix is updated 
by (8) before the cycle starts again from the state pre- 
diction. 

It is useful to  limit the image processing efforts to  
regions where the interesting features are most likely 
to  be found. These uncertainty windows can be ap- 
proximated from the covariance matrix 

3. SYSTEM MODEL 
The tracking errors of the system depend essentially 

on the match between the a priori model of motion 
and the actual object behavior, unless the system con- 
trol delay can be made very short. In practice, image 
acquisition and the mechanical system determine the 
minimum possible control delay. 

When the camera sensor is mounted in the hand of 
a robot manipulator, the key questions in forming the 
object motion model are 

1. Whether the state vector should be represented 
in a moving coordinate frame or a global station- 
ary world coordinate system (relative or absolute 
object motion). 

2. What motion parameters should be included in 
the state vector. 

3.1 Coordinate system 
If the target object is not capable of significant 

accelerations, its motion in a fixed world coordinate 
frame can be modeled as constant rotation and trans- 
lation. Because the measurements are done in the 
camera frame, this approach requires knowledge of the 
robot joint angles at  the time of capturing each im- 
age. However, the controllers of robot manipulators do 

not generally support obtaining the angles of different 
joints simultaneously during motion. 

A practical compromise is to  model the motion in 
a relatively slow moving coordinate frame, in which 
the angle and translation parameters of the camera are 
simple and fast to  determine. A suitable origin for such 
a coordina.te system could be a t  the wrist joint of the 
robot. 

3.2 Motion parameters 

If the state vector is represented in a moving co- 
ordinate system, modeling the expected relative accel- 
erations as system noise may result in impractically 
high uncertainties. The uncertainties can be reduced 
by including the accelerations in the state vector and 
modeling the possible small changes of acceleration as 
noise. Unfortunately, this approach is computationally 
costly and may result in a slower sampling rate that in 
turn increases the motion uncertainties. 

We have considered two simple techniques that  limit 
the drawbacks of higher dimensionality or higher noise 
level to  the periods of significant accelerations: 

1. Variable dimension state vector. If the estimation 
errors grow rapidly, the acceleration components 
are added to the state vector. The switch-back 
to the constant velocity model is performed when 
the acceleration approaches zero or the errors go 
below a given threshold. 

2. Variable system noise. A constant velocity mo- 
tion model is used, but when the estimation er- 
rors grow the system noise model components at-  
tributed t,o motion are infla.ted. When the errors 
decrease the noise component is returned to the 
normal quiescent level. 

Mapping these techniques onto the system equation 
is straightforward. For simplicity, we have assumed 
that each motion component is independent and the 
trajectory of the object in the used coordinate system 
is straight. Then the state transition matrix over one 
time increment for the constant velocity and constant 
acceleration motion models is 

where @,, ..., @, are 
0 0 1  

tively. The corresponding system state vectors are 

t = ( r ( k )  i ( k )  y(k) . . . ~ ( k )  +(k) )T and 

uk = ( r ( k )  i ( k )  ?(k) . . . +(k) i ( k )  ) I .  

The nondeterministic changes of motion have been 
assumed to be independent for each motion compo- 
nent. 



4. S T A R T - U P  

Before the Kalman filtering process can be started 
the initial s ta te  vector, uolo, and estimation covariance 
matrix, Qolol need to be  obtained. 

By assuming that  the velocities of the object are 
constant, the first pose and motion estimate can be 
obtained by using the method presented in [S] for the 
two first image frames. By denoting these with indices 
'-1' and '0' the state estimate becomes 

where T is the sampling interval between frames. 
The  covariance matrix of the pose and motion esti- 

mate error can be estimated using the general expres- 
sion 

$0 = E ( ( u o  - Co)(uo - ~ 0 ) ~ )  

where 

and qk = ( a ( k )  . . . q,(k) is the pose mea- 
surement noise that  is assumed Gaussian, zero mean, 
and independent for each frame. 

Because the pose estimation algorithm [S] has solved 
for the correspondences between the features in the im- 
age and the object model, the pose uk can be obtained 
by the inverse of the mea.surement function 

By using the pose determination function Gk(*) the 
covariances of the pose parameters, Vu(uk) = E(qkq;), 
can be approximated with 

where JG(vk) is the Jacobian of Gk(vk) or its matrix 
of first partial derivatives, and VV(vk) is the covari- 
ance matrix for feature measurements. Equation (9) 
is straightforward to solve numerically by computing 
JG(vk) from the Jacobian of measurement function, be- 
cause 

1 
G;(G;~(x)) = 

(Gil) '(x) 
or equivalently 

where matrix pseudoinversion (+) is used, because 
JF(uk) is not necessarily a square matrix. 

By making a simplifying assumption that  the stan- 
dard deviation of the feature location error is 1 pixel, 
V,(vk) becomes an identity matrix and the pose pa- 
rameter covariance matrix can be approximated by 

Vu(7~k) = = ( J;(uk)J~(uk))+ 

(10) 
where the pseudoinversion reduces to  the conventional 
ma.trix inverse when J;(uk)JF(uk) is non-singular. 

Then the covariance matrix of the initial pose and 
motion error becomes 

K x ( o ) / ~  . . (K,(O) + Vz4-1))/T2 
$0 = . . 

. . 
K , ( o ) / ~  . . (V,,(O) -t V,,(-~)) /T~ 

This is used as Qolo in start-up. 

5. S E L E C T I O N  O F  F E A T U R E S  

The images of real world objects often provide nu- 
merous features whose correspondences with the model 
can be recovered. In practice, it is useful to  select only 
a few of the features for updating the pose and motion 
estimates. Here, three methods for selecting subsets of 
correspondences are considered. 

5.1 Minimiza t ion  of es t imat ion  covariances 

The optimal subset of correspondences minimizes 
the uncertainty of the object pose and motion estimate. 
Thus, the most straightforward selection algorithm is 
t o  use equations (4) ,  (6) and (8) for selecting the set 
that minimizes the a posteriori estimation covariance 
matrix Qklk. 

In most cases, this approach is not feasible because 
of its combinatorial computational complexity. Conse- 
quently, it is most interesting as  a reference. 

5.2 Condi t ion ing  of m e a s u r e m e n t  e q u a t i o n s  

To perform a good state estimate update, well con- 
ditioned, stable measurement equations are needed 
that minimize the sensitivity of the system state  es- 
timate to  the errors in measurements. In [3] a Gauss- 
Markov estimator based technique is presented for this 
purpose. The selection of a correspondence set of size n 
is based on maximizing the respective properly scaled 
and weighted determinant of J;,,. The point set in 
use is updated one correspondence a t  a time by using 
a gradient search technique, so the computational cost 
grows linearly with the number of available points. 

A method proposed in [4] produces almost identical 
results. The principle is to  select a set that minimizes 
the condition of the Jacobian 

However, this method is expensive because of the 
needed ma.trix inversion and the combinatorial com- 
plexity of the selection task. 



The computational cost can be made negligible by 
table look-up because the visible features a t  each pose 
can be predicted off-line by using the object model. 
However, the risk of failing to  find all the expected 
features complicates this approach. 

5.3 Random selection 
The previous method tends to  select the same points 

from frame t o  frame, if the object pose does not change 
enough to stimulate modifications. This may cause 
problems, if the selected sets are small, e.g., 1-2 points. 

A solution is to  force some random variations on the 
selected point sets. However, this is close to  choosing 
the correspondences a t  random in the first place. In 
practice, it may be necessary to  make the selection of 
certain important feature points more probable than of 
the others. 

6. EXPERIMENTS 
For comparing the different solutions, we have used 

simulated test runs in which the object approaches 
the camera. Table 1 shows "snapshotsn of the object 
pose in the camera centered coordinate frame during a 
rather simple test run. The times tl-to : t2-tl : t3-t2 
spent in each part of run relate as 2:1:2. 

Table 1: Object poses a t  the points of motion changes. 

In the beginning of the run, the z distance from the 
camera to  the object is l m  and reduces a t  a constant 
speed. Between t l  and t2 the motions of the object are 
accelerated and the run terminates a t  the 2 distance of 
0.25m from the camera a t  time t3. 

The real time length of the test run is assumed to be 
10 seconds, so the rotat,ional and translational acceler- 
ations during [tl, tz] are approximately 3.5deg/sz and 
12.5mm/s2, respectively, and zero at  all other times. 
The number of image frames in the test run is 75, cor- 
responding t o  133ms sampling intervals. 

The test object used is an irregular polyhedron with 
11 facets and 12 vertices that  have been used as fea- 
ture points. On average, nine feature points have been 
available from each image frame. The size of the test 
object is about 0.15 * 0.15 * 0. 15m3. The focal length 
of the camera is 10mm. 

6.1. Motion models 
Table 2 shows the prediction errors when constant 

velocity, constant acceleration, variable noise and vari- 
able dimension motion models have been used. The 
error values correspond to the mean pixel distance on 
the image plane b e t w ~ e n  predicted and actual projec- 
tions of feature points. The feature points were selected 
using the minimum estimation covariance method. 

The standard deviation of system noise used with 
the constant velocity and acceleration models was set 
a t  5% of the maximum accelerations of the test run. 
This resulted in near minimum overall prediction er- 
rors. 

With the variable noise model, the system noise was 
either 5% or 100% of the maximum accelerations. In 
addition, the system noise of the variable dimension 
model was changed from the normal 5% to 100% for 
three sample times after each dimensionality increase. 
The model changes were made when the pose estima- 
tion frame equivalent of the prediction error reached 
2.5mm. 

It is clear that the improvements in prediction error 
become progressively smaller when more feature points 
are added. 

Table 2: Prediction errors with different motion models. 

1.99 

1.42 
1.29 1.65 1.25 1.23 

The constant acceleration model produces the 
largest errors, making it the least attractive approach 
with this test run. This is explained by the observabil- 
ity problem, because from 2 to 12 measured coordinate 
values (1 to 6 feature points) are used to estimate 18 
state variables. The observability is significantly bet- 
ter for the 12 state variable constant velocity model 
as is demonstrated by the smaller errors of the other 
solutions that use this model most of the time. 

The errors of variable noise and variable dimension 
models are very close to each other and slightly bet- 
ter than for the plain constant velocity method. The 
main difference is that the variable dimension method 
adapts faster to  the velocity changes. This is demon- 
strated in Figure 2, where the thinnest and medium 
thick line represent the variable noise and variable di- 
mension methods, respectively. The thickest line shows 
the error limit for changing the motion model. 

frame 

Figure 2: The prediction errors of variable noise and 
variable dimension methods. Three feature points are 
selected per frame. 



The plots start a t  frame 2, because the first two are 
used for start-up. The acceleration period starts and 
ends a t  frames 29 and 44. After frame 36, where the 
rnotion models are modified, the error of the variable 
dimension method does not drop immediately, because 
two morr observations are needed to determine the ac- 
celeration components in the state vector. The error 
of the variable noise scheme reduces more slowly. 

With our test runs, higher dimensionality models 
did not result in any significant benefits over the vari- 
able noise method. In addition, continuous modifica- 
tion of the system noise level based on the prediction 
error, was not found to be  noticeably better than the 
simple two level scheme. 

6.2 Feature selection 
The feature selection methods have been compared 

by using them with the variable system noise model 
based implementation. The  resulting prediction errors 
are shown in Table 3. 

The first column presents the errors that correspond 
to the minimum uncertainty criterion, rnin(llQklk-lll). 
These are the best achieved in our experiments. The 
condition of the Jacobian of the measurement function, 
cond(JF) ,  gives slightly poorer results. In addition, 
when only one feature point was selected, it resulted in 
losing track of the object. 

Random selection performs surprisingly well with 
our test object. When compared to the minimum un- 
certainty method, the penalty is almost negligible with 
one feature point selections. 

Table 3: Prediction errors with different feature point 
selection methods. 

points I min(llQklk-lll) 1 c o n d ( J ~ )  I random 
1 I 1.99 1 2.05 

7. SUMMARY 
Our goal has been to select methods for estimat- 

ing the relative pose and motion of a known object 
from sequences of image frames captured by a camera 
mounted on a robot arm. For this purpose, Kalman 
filtering is used to incorporate new measurements into 
existing estimates. However, careful modeling of object 
behavior and measurement uncertainties is needed. 

The object motion is modeletl relative to  a moving 
coordinate frame, whosr location cannot be accurately 
measured, resulting in increasrd uncertainties from un- 
predictrd object behavior. These can be reduced by 
using higher frame rates, and in our experiments this 
has been the most rewarding direction of development. 

Using fewer features cuts the comprrtational delays, 
both at  image analysis, and I<alman filtering. Most 
of the computations nrrdetl for selection can be per- 
formed off-line, so the cost of this task is insignificant. 

With the test object, even selecting the feature points 
a t  random works well. 

The constant velocity motion model, with a sim- 
ple two level variablc noise scheme, is a computation- 
ally attractive solution and has produced good rrsults 
in our exprriments. When only a few fraturrs are 
used, the prediction errors with the same framr rate 
are smaller than with a more complrx variable dimcn- 
sion method. The differences would b r  larger if  the 
actual computational delays were taken into account 

In practice, it is useful to  look for an optimum be- 
tween the number of features, the quality of mot~on  
model, and the sampling rate that  results in the lowest 
prediction errors. 
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