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Abstract 

The von Mises stress is often used as the metric for evaluating 

design margins, particularly for structures made of ductile 

materials. For deterministic loads. both static and dynamic, the 
calculation of von Mises stress is straightforward, as is the 

resulting calculation of reliability. For loads modeled as random 

processes, the task is different; the response to such loads is itself 

a random process and its properties must be determined in terms 

of those of both the loads and the system. This has been done in 

the past by Monte Carlo sampling of numerical realizations that 

reproduce the second order statistics of the problem. Here, we 

present a method that provides analytic expressions for the 

probability distributions of von Mises stress which can be 
evaluated efficiently and with good precision numerically. 

Further, this new approach has the important advantage of 

providing the asymptotic properties of the probability 

distribution. 

Introduction 

The primary purpose of finite element stress analysis is to 

estimate the reliability of engineering designs. In structural 

applications, the von Mses stress due to a given load is often 

used as the metric for evaluating design margins. For 

deterministic loads, both static and dynamic, the calculation of 

von Mises stress is straightforward, e.g. Shigley. 1972. For loads 

modeled as random processes, the task is different; the response 

to such loads is itself a random process and its properties must be 

determined in terms of those of both the loads and the system. 

There are many ways to analyze such systems (see for example 

Lin, 1967, Soong, 1993 or Jazwinski, 1970). In a previous paper 
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FF;T of imposed load sampled over period T 

cross-spectral density matrix of imposed loads 
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stress vector at location x and time t 
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C covariance matrix defined in equation 12 

D2 diagonal intrinsic covariance matrix defined in 
equation 13 

N rankof D 

E ( { D } ,  Y) N dimensional ellipse about origin whose semi 
axes are the diagonals of D 

Vu(  {D}, Y ,  a) collection of N dimensional boxes that contain 

the ellipse f ({  D}, Y )  , indexed by parameter a . 

VL( { D}, Y ,  a) collection of N dimensional bones that are 

contained in the ellipse E ( {  D}, Y )  , indexed by 

parameter a .  
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(Scplman et 4 1998). a computationally efficient method of 

estimating the RVS value of von Mi= stress for the case of 

input force of Gaussian distribution with zero mean was 

presented. 

The reliability calculations for a structure of ductile material 

require a linear model for the structure and a statistical 

specification of the input forces. In principle, from the linear 

model one can deduce all required transfer functions. Input 

forces are specified by their auto spectral densities. In the case of 

multiple force inputs, the forces may be specified by a cross 
spectral density matrix. It is demonstrated here how that 

information can be used to calculate the probability distriiutions 

for the von M i s s  stress at different locations on the body. An 

integral formulation is presented for cumulative probabilities and 

a method for approximating those integrals is also presented. 

These results may be compared to a sampling of many 

realizations of random input and corresponding output quantities 

(see for example Chen and Harichandran, 1998). This Monte 

Carlo simulation requires computation of long series of values of 

von Mises stress and determination of probability distributions 

from histograms of that data. This method was used to check and 

compare results generated by the core method of this paper. One 

notes that there are two serious deficiencies of this sampling 

based approach: 

The method is computationally expensive especially when 

output is required at a great many response locations in a 

large model. 

The asymptotic properties of the distribution can only be 

determined with extremely large sample sizes. It is these 

asymptotic properties that are important in reliability esti- 

mation. 

Problem Formulation 

Where the applied random load involves either forces applied 
at several locations or forces applied at one location but in more 

than one direction, the loads are usually represented by the cross 

spectral density matrix: (Bendat and Pienol, 1986), 
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where F(o, T) is the finite Fourier transform of the vector of 

force components sampled over at period T ;  denotes the 

matrix transpose: (s, denotes the complex conjugate; and E[*] is 

the operator of mathematical expectation. In the case of a single 

scalar input force. this reduces to the aufo spectral density. The 

above assumes that the loads constitute stationary, continuous 

processes. 

The stress at the point in question can be assembled from the 

contributions of each mode: 

n 

where qn is the n* modal coordinate and o n ( x )  is the stress 

vector at l o c ~ i o n  .r associated with that mode, comprised of the 

six non-redundant terms for the mess tensor. In what follows, we 

use the vector q(r)  = {q,,(r)} of modal coordinates. 

The square of the von Mises stress can be expressed as a 
quadratic operator on the stress vector 

Eq 3 
2 T 

p ( I ,  x) = ots x )  A o(1, x) 

where 

A =  Eq4 

To obtain the probability distribution of von Mises stress we 

begin with the c o m h c e  matrix of modal coordinates 

Sqq = E[q(r )q ( t )  1, which may be obtained directly from 

SFF(W) and the modal response of the structure (Soong and 

T 

Grigoriu. 1993). 

We use the standard methods to decompose Sqq and to map 

the modal coordinates into uncorrelated variables. Observing that 

Sqq is symmetric and positive semidefinite, its singular value 

decomposition is (Strang 1988). 

sqq = Q X ' Q ~  Eq5 

where X is a diagonal matrix whose dimension is the rank of 

Sqq and Q is a rectangular matrix having the property that 

Q'Q = I is the identity whose dimension is the rank of Sqq . 
(Here we retain only the nonzero terms of the diagonal matrix 

and the corresponding columns of the rotation matrix. For a 

symmetric, positive semi-definite matrix eigen analysis and 

singular value decomposition are the same.) Defining 

we find that components of B are independent, identically 

distributed (IID) Gaussian processes, each with unit variance. 

We define another set of random variables by 

q' = Q X p  = QQTq.  

A little algebra shows that 

E [ ( q  - 4 x 4  - q*)rl = 0 Eq 9 

from which we conclude that 
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q = q' = Q X P  Eq 10 

This indirect derivation is necessary because Q is generally a 

rectangular, non-invertible matrix. In our new coordinates, p ,  
the square of the von Mises stress is 

EIP21 = pf 
r 

We see that Df is the contribution of the #' random process to 

E [ p 2 ]  and the rank of D is the number of independent random 

processes taking place at that location. For convenience, we refer 

F E [ p  1 pj&fS- 

p 2  = pTcp 

where 

Eq 12 We now calculate the probabiIity of the von Mises stress being 

less than some value Y: 
n n  

and K = QX. Matrix C is square having dimensionality equal 

to the rank of Sqq but possibly much lower rank. Note that the 

rank of C is the minimum of the rank of A, the rank of Sqq and the 

dimensionality of the stress vectors. Because the rank of A is five, 

the rank of C can be at most five. 

We exploit the symmetry and the positive semi-definiteness of 

C in doing its singular value decomposition: 

Es 13 
7 T  

C = RD-R 

where the matrix D is diagonal and has dimension equal to the 

rank of C and R is a rectangular matrix having propeny that 

RTR = I is the identity matrix whose dimension is the rank of 

C .The von Mises stress is now 

m< Y) = I n P , ( Y , q p Y ,  
E({D), Y) 

where E({D},  Y) is the N-dimensional ellipsoid containing 

points p associated with von Mises stress less than Y: 

Eq 19 

Eq20 
T 2  

E ( { D } ,  Y) = {y:(y D p) I Y} 

and N is the rank of D . The integral of Equation 19 is difficult 

to evaluate. 

Quadrature by Boxes 

We discuss here how to achieve upper and lower bounds for 

the inte-gal in Equation 19. This discussion then leads to 

reasonably good approximations for that integral. 

p2 = B ' R D ~ R ~ ~  We first note that the integral of np,(y,)dy, over an N 

dimensional box, B ,  having faces normal to each of the 

coordinates yr , can be calculated analytically: 

This suggests yet another change of variables: 

y = RTp Eq 15 

It is easily shown that the elements of p are IID, Gaussian 

processes with unit variance. The advantages of the above 

transformation are first that it reduces the number of random 

variables of this problem to the rank of C (at most five) and 

second that it aligns the random variables in the directions of the 

axes of the ellipsoids of constant von Mises stress. 

2 T 2  2 7  
p = y D y = C y n D i  Eq 16 where yr,max and y ,  define the boundaries of B and 

n 

The mean square of the von Mises stress is 
Eq 22 

is the cumulative distribution function for a standard normal 

distribution fl'irschinp et al, 1995). 

We next consider volumes V L ( { D } .  Y,a) and 

Vu(  { D},  Y ,  a )  each of which is a union of N dimensional 

boxes selected so that 

= j .  
Eq 17 

m 

Noting that j;p,(y,)&, = 1 ,the above becomes I' 
4 

The parameter a is an indicator of the level of refinement so that 



V L ( { W .  Y, a), V u ( { D ) .  Y, a) 3 E({Dl, Y) 8s a + 0 .  

These contained and containing volumes are illustrated for a 

problem of two processes (N = 2 ) in Figure 1. 

I 
Figure 1. A collection of boxes entirely contained in 

the ellipsoid, is an admissible VL( { D}, Y, a) 

Expressing each of these volumes in terms of its component 

boxes: 

k Eq 27 

Recalling Equation 23 and observing that the integrand is 

positive, we have upper and lower bounds for P ( p  < Y) : 

c p B L , ( { D ) .  Y,a) < P ( P < Y )  - = J JJPro$JJdYr 
k E ( { D ) .  Y) 

C‘fJ,J{DJ. Y.0 )  ’ ~ P E u . t ( ( D I .  Y.a) + P ( p < Y )  Eq29 
k k 

as a 3 - and that convergence is assessed by the difference of 

the upper and lower bound quadrature. 

The mathematics discussed above has been implemented in a 

simple recursive C language procedure which is listed in the 

Appendix. 

Numerical Comparison 

To evaluate the algorithm, we consider a case for which two 

independent random processes contribute equally to the von 

Mises stress, D, = D, = 1. This occurs on a surface with 

independent x and y components of normal stress and no shear. 

The resulting probability density can be computed analytically 

and is found to be a Rayleigh distribution. Figure 2 compares the 

Rayleigh distribution with approximate results obtained using the 

algorithm above. 

0 1 2 3 4 5 6  
von Mises Stress/ pmfs 

Figure 2. Comparison of exact ([I - exp(-Y2/2)] ) 

cumulative distribution function for D ,  = D, = 1 

and numerical quadrature. Quadrature generates 
upper and lower bounds which almost overly the 
analytic curve. 
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Figure 2. Comparison of exact ([I - exp(-Y2/2)] ) 

cumulative distribution function for D ,  = D, = 1 

and numerical quadrature. Quadrature generates 
upper and lower bounds which almost overly the 
analytic curve. 

The numerical quadrature used here employed 128’ boxes in 

the calculation of the lower bound and 129’ in the calculation of 

the upper bound. The error is shown in F igre  3. The maximum 

error in this case was ~ . O X I O - ~  and occurred near the RMS 

value of von hlises stress. In the quadrature employed, the 

magnitude of the upper-bound error was almost exactly the 

magnitude of the lower-bound error. Also interesting is the 

comparison of the magnitude of the error and the function I-P, 

the difference between the cumulative probability and 1.0. It is 

seen that the error stays substantially below 1 -P. indicating 

that the quadrature remains accurate even out 10 high values of 

von hlises stress. We also note that 
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Figure 3. The quadrature error and 1 - P for the 

cumulative distribution function for D, = D, = 1. 

Summary 

The authors have derived and presented an expression for the 

cumulative probability distribution for the von Mises stress 

resulting from random loadings that are Gaussian and of zero 

mean. This is an important result for reliability of smctures 

subject to such loads. 

Additionally, a convenient set of expressions were derived for 

upper and lower bounds to the cumulative probability. 

Finally, it should be noted that the derivation of the cumulative 

probability integral and of the approximations for it could also be 

applied to any other quadratic function of the load. 
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Appendix: Code Fragment for Recursive 
Calculation of Lower-Bound Quadrature 

/ /  recursive routine to calculate a lower 
/ /  bound for the integral 
double root2 = sqrt(2.0); 
double slabL (double *D, int generation, 

{ 

double remin, double *xi, 
int Inner) 

double ymax=sqrt (remiin) /D[generation] ; 
if(generation==4) 

return(erf(ymax/root2)); 
if (D[generation+l] < D[O] ‘0.01) 

return(erf(ymax/root2)1; 
double sum=O; 
double yl, y2; 
yl = 0; 
int i; 
/ /  in the following, it is assumed that 
//xi[Innerl < 1; 
for (i=O; i<Inner; i++) { 

yl = xi[il *pax ;  
y2 = xi[i+ll*ymax; 
double remain2 = renain- 

(y2*D[generationJ) 
*(y2*D[generation]); 

sum += (erf (y2/root2) - 
erf (yl/root2) ) 

slabL( D, generation+l, 
remain2, xi, Inner) ; 

1 
return (sum) ; 

1 


