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Estimating probability of presence of a signal of
interest in multiresolution single- and multiband

image denoising

Aleksandra Pižurica and Wilfried Philips

Abstract

We develop three novel wavelet domain denoising methods for subband-adaptive, spatially-

adaptive and multivalued image denoising. The core of our approach is estimation of the

probability that a given coefficient contains a significant noise-free component, which we call

“signal of interest”. In this respect we analyze cases where the probability of signal presence is

(i) fixed per subband, (ii) conditioned on a local spatial context and (iii) conditioned on infor-

mation from multiple image bands. All the probabilities are estimated assuming generalized

Laplacian prior for noise-free subband data and additive white Gaussian noise. The results

demonstrate that the new subband-adaptive shrinkage function outperforms in terms of mean

squared error Bayesian thresholding approaches. Spatially adaptive version of the proposed

method yields better results than the existing spatially adaptive ones of similar and of higher

complexity. The performance on color and on multispectral images is superior with respect to

recent multiband wavelet thresholding.

Keywords: Image denoising, wavelets, generalized likelihood ratio, color, multispectral images

I. Introduction

In image denoising, where a trade-off between noise suppression and the preservation of

actual image discontinuities must be made, solutions are sought which can “detect” important

image details and accordingly adapt the degree of noise smoothing. In the wavelet transform

domain [1–4], noise reduction results from shrinking the noisy coefficient magnitudes: ideally,

the wavelet coefficients that contain primarily noise should be reduced to negligible values while
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the ones containing a “significant” noise-free component should be reduced less [5]. A common

shrinkage approach is thresholding [5,6], where the coefficients with magnitudes below a certain

threshold are treated as “non significant” and are set to zero, while the remaining, “significant”

ones are kept unmodified (hard-thresholding) or reduced in magnitude (soft-thresholding).

Shrinkage estimators can also result from a Bayesian approach [7–32], which imposes a

prior distribution on noise-free data. Common priors for noise-free subband data include (gen-

eralized) Laplacian [2,7,14,16], double stochastic (Gaussian scale mixture) models [23–25] and

mixtures of two distributions [8–13] where one distribution models the statistics of “signifi-

cant” coefficients and the other one models the statistics of “insignificant” data. Combined

with these marginal priors, Hidden Markov Tree (HMT) [20–22] and Markov Random Field

(MRF) [28–31] models are often employed to incorporate inter- and intra-scale dependencies.

Regardless of the particular prior, Bayesian wavelet domain denoising methods have been

developed along the following two main lines. The first class of methods optimizes the threshold

selection for hard- or soft-thresholding [7–10]. The second class of methods derives shrinkage

functions by minimizing a Bayesian risk, typically under a quadratic cost function (minimum

mean squared error - MMSE estimation [12–15]) or under a delta cost function (maximum

a posteriori - MAP estimation [16]). The above listed methods are subband adaptive: they

are optimized with respect to the marginal subband statistics. The use of bivariate and joint

statistics of wavelet coefficients is addressed in [17, 18], respectively. In practice, spatially

adaptive Bayesian estimators are effective, where a given parameter of the marginal prior is

refined with respect to the local spatial context [19–27].

In this paper we develop three novel Bayesian methods for subband-adaptive, spatially-

adaptive and multivalued image denoising. The core of our approach is estimating the proba-

bility that a given coefficient contains a significant noise-free component, which we call “signal

of interest”. In this respect we analyze cases where the involved probabilities are (i) fixed per

subband, (ii) conditioned on a local spatial context and (iii) conditioned on information from

multiple image bands in case of multivalued images. For actual denoising, we adopt a simple
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shrinkage rule that was also used in [28–32], where empirical wavelet coefficients are multiplied

with the probability of containing a significant noise-free component. Here, the proposed ap-

proach for estimating these probabilities is essentially different: previous methods were relying

on preliminary coefficient classifications yielding binary masks that were combined with MRF

priors [28–31] or used for empirical density estimation followed by fitting of log-likelihood ra-

tios [32]. In contrast to this, our new approach removes the need for preliminary coefficient

classifications and derives all the required probabilities analytically starting from the general-

ized Laplacian marginal prior. Significant advantages of this new approach are that it does not

depend on any preliminary edge detection (classification) steps, it is simpler to implement and

faster while it yields better results than the more complex ones based on MRFs. Moreover, we

extend the new method for multiband images as well.

The main novelties and contributions of this paper are: (1) A novel subband-adaptive

shrinkage function, which shrinks each coefficient according to probability that it presents

a signal of interest. We show that for natural images this estimator outperforms in terms

of MSE any classical soft-thresholding rule with a uniform threshold per subband. (2) We

develop a spatially adaptive version of the proposed method. The results demonstrate that

the new method outperforms spatially adaptive thresholding with context modelling as well

as MMSE approaches that employ much more complex HMTs and related methods based on

MRFs. (3) We extend the proposed method for multivalued data. The results on color and on

multispectral images demonstrate a significant improvement with respect to recent multiband

wavelet thresholding approaches.

The paper is organized as follows. In Section II, we develop a new subband adaptive

shrinkage function for natural images. In Section III, we extend it first to a spatially adaptive

method and further on for denoising multivalued images. Section IV concludes the paper.
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II. Subband adaptive Bayesian wavelet shrinkage

We assume the input image is contaminated with additive white Gaussian noise of zero

mean and variance σ2. An orthogonal wavelet transformation [1–4] of the noisy input yields

an equivalent additive white noise model in each wavelet subband1

yi = βi + εi, i = 1, ..., n, (1)

where βi are noise-free wavelet coefficients, εi are independent identically distributed (i.i.d.)

normal random variables εi ∼ N(0, σ2) and n is the number of coefficients in a subband. A

widely used generalized Laplacian (also called generalized Gaussian) prior for the noise-free

subband data [2, 7, 14,16] is

f(β) =
λν

2Γ( 1
ν
)
exp(−λ|β|ν), (2)

where Γ(x) =
∫ ∞

0
tx−1e−tdt is the Gamma function, λ > 0 is the scale parameter and ν is the

shape parameter, which is for natural images typically ν ∈ [0, 1]. The variance σ2
β and the

kurtosis κβ of the noise-free histogram are σ2
β =

Γ( 3
ν
)

λ2Γ( 1
ν
)

and κβ =
Γ( 1

ν
)Γ( 5

ν
)

Γ2( 3
ν
)

, respectively [14].

Let us define a “signal of interest” as a noise-free coefficient component that exceeds a

specific threshold T and formulate the following two hypotheses: H0: “signal of interest is

absent” and H1: “signal of interest is present” (in a given coefficient) precisely as:

H0 : |β| ≤ T and H1 : |β| > T. (3)

We consider a simple estimator where each wavelet coefficient is multiplied with the probability

that it contains a signal of interest, given its observed value

β̂ = P (H1|y)y =
µη

1 + µη
y, (4)

where µ = P (H1)/P (H0) and η = f(y|H1)/f(y|H0) and the product µη is called generalized

likelihood ratio [33]. In the remainder, we call the above shrinkage rule ProbShrink. Fig. 1(a)

shows an example of the conditional densities of noise-free coefficients f(β|H0) and f(β|H1) and

1 As it is common in the related literature, for compactness we omit here the indices that denote the scale and the
orientation and we denote the spatial position with a single index, like in a raster scanning.
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(a) (b) (c)

Fig. 1. (a) An illustration of the probability density functions of noise-free coefficients: f(β) (dotted), f(β|H0)
(solid) and f(β|H1) (dashed). (b) The resulting conditional densities of noisy coefficients f(y|H0) (solid) and
f(y|H1) (dashed). (c) ProbShrink rule β̂ = P (H1|y)y, where P (H1) is a parameter.

Fig. 1(b) illustrates the corresponding conditional densities of the noisy coefficients, f(y|H0)

and f(y|H1) which result from the following convolutions

f(y|H0) =

∫ ∞

−∞
φ(y − β; σ)f(β|H0)dβ , f(y|H1) =

∫ ∞

−∞
φ(y − β; σ)f(β|H1)dβ (5)

where φ(y; σ) is the zero mean Gaussian density with the standard deviation σ. Fig. 1(c)

shows the resulting ProbShrink rule (4), where P (H1) (i.e., the prior ratio µ) is left as a free

parameter. Next we address the specification of this parameter in a given subband.

A. Adapting the prior probabilities to the subband statistics

The first novelty of the proposed subband adaptive shrinkage method is the way we esti-

mate the prior probability of signal presence P (H1). In related approaches it has been usually

assumed P (H1) = P (H0) = 0.5 (e.g., [15, 28–31]) or P (H1) was estimated empirically as a

given fraction of the observed noisy coefficients [12,32]. Here we derive the probability P (H1)

from the prior model for the noise-free coefficients in a given subband. In particular, for the

model (3), we propose to estimate P (H1) as

P (H1) =

∫ ∞

−∞
f(β|H1)dβ = 1 −

∫ T

−T

f(β)dβ. (6)

Next we develop this expression for the generalized Laplacian prior and analyze the performance

of the resulting ProbShrink rule (4).
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B. ProbShrink rule for the generalized Laplacian prior

Under the assumed prior (2), the conditional densities of noise-free coefficients are

f(β|H0) =




B0 exp(−λ|β|ν), if |β| ≤ T

0, if |β| > T,
(7)

and

f(β|H1) =




0, if |β| ≤ T ,

B1 exp(−λ|β|ν), if |β| > T,
(8)

with the normalization constants (see Appendix):

B0 =
λν

2Γ( 1
ν
)Γinc

(
(λT )ν , 1

ν

) and B1 =
λν

2Γ( 1
ν
)
[
1 − Γinc

(
(λT )ν , 1

ν

)] (9)

where Γinc(x, a) = 1
Γ(a)

∫ x

0
ta−1e−tdt is the incomplete gamma function. From (6) we have that

(see also Appendix): P (H1) = 1 − Γinc

(
(λT )ν , 1

ν

)
and thus

µ =
P (H1)

P (H0)
=

1 − Γinc

(
(λT )ν , 1

ν

)

Γinc

(
(λT )ν , 1

ν

) . (10)

For the Laplacian prior (ν = 1) the above expression reduces to µ = P (H1)/P (H0) =

exp(−λT )/[1 − exp(−λT )]. Together with the likelihood ratio η = f(y|H1)/f(y|H0), which

is calculated using (5), this completes the specification of the subband adaptive estimator (4).

C. Experimental performance evaluation

The threshold that specifies the notion of the signal of interest is the only parameter of

the proposed shrinkage rule which is not estimated directly from the observed images. It is

reasonable to relate this threshold to the noise standard deviation choosing T = σ like in

related approaches [30, 31], where this choice was motivated by oracle thresholding [4]. Our

experiments on different natural images confirm that this choice yields the best mean squared

error performance of the proposed estimator (see Fig. 2).

Table I compares the peak signal to noise ratio2 (PSNR) performance of the proposed

ProbShrink rule with T = σ and BayesShrink soft-thresholding of [7]. The latter is Bayesian

2 PSNR is defined as PSNR = 10 log10(2552/MSE), where MSE is the mean squared error.
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Fig. 2. Resulting PSNR[dB] values for the subband adaptive ProbShrink estimator as a function of the
threshold T . From left to right the noise standard deviation is σ = 10, σ = 15 and σ = 20.

TABLE I
PSNR[dB] results of the proposed ProbShrink rule compared to MSE-optimum

soft-thresholding BayesShrink under the generalized Laplacian prior for sym8 wavelet.

Standard deviation of noise

Estimator 10 15 20 25

BARBARA

noisy image 28.12 24.59 22.09 20.17

BayesShrink 31.24 28.86 27.32 26.20

ProbShrink 31.62 29.17 27.54 26.32

BOAT

noisy image 28.15 24.62 22.10 20.17

BayesShrink 32.01 29.98 28.55 27.54

ProbShrink 32.23 30.13 28.70 27.69

COUPLE

noisy image 28.15 24.60 22.11 20.18

BayesShrink 31.70 29.46 28.08 27.09

ProbShrink 31.82 29.60 28.24 27.24

LENA

noisy image 28.13 24.60 22.12 20.16

BayesShrink 33.47 31.53 30.26 29.30

ProbShrink 33.80 31.82 30.49 29.51

soft-thresholding with the threshold σ2/σβ, which is for natural images (i.e., for the gener-

alized Laplacian prior) optimal in terms of mean squared error. The results demonstrate

that ProbShrink rule outperforms BayesShrink on all tested images. Since BayesShrink is

soft-thresholding with the MSE optimum threshold, we can deduce that ProbShrink (at least

on the tested images) outperforms soft thresholding with any threshold that is constant per

subband. We believe that this is an important argument in favor of the new shrinkage rule,
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(a) (b)

Fig. 3. (a) An illustration of the proposed denoising method, where pdf denotes the probability density function
and where LSAI denotes the local spatial activity indicator. (b) The resulting shrinkage rule is a family of
characteristics, which correspond to different values of LSAI.

especially because it is of similar complexity to Bayesian thresholding.

III. Spatially adaptive Bayesian shrinkage

The shrinkage approach analyzed so far was subband-adaptive: if two noisy coefficients

from the same subband were of equal magnitudes than they were shrunk by the same amount

no matter their spatial position and no matter their local surrounding. Now we adapt the

estimator to the local spatial context in the image using a local spatial activity indicator (LSAI)

zl for each spatial position l as follows:

β̂l = P (H1|yl, zl)yl =
ηlξlµ

1 + ηlξlµ
yl, (11)

where

ηl =
f(yl|H1)

f(yl|H0)
, ξl =

f(zl|H1)

f(zl|H0)
and µ =

P (H1)

P (H0)
. (12)

The characteristic parts of the method are illustrated in Fig. 3, where the generalized likelihood

ratio denotes the product ηlξlµ. The proposed method has a nice heuristic explanation: each

coefficient is shrunk according to how probable it is that it presents useful information, based

on its value (via ηl), based on a measurement from the local surrounding (via ξl) and based on

the global statistical properties of the coefficients in a given subband (via µ).
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Note that even though the general form of the estimator (11) is the same as in our previous

work [32], there is a great difference between the new, here proposed approach and that of [32].

In the first place, the approach of [32] assumes no particular prior on noise-free data and

no particular noise distribution. Instead, it uses interscale products for heuristic preliminary

coefficient classification (mask determination) and involves empirical density estimation using

detected masks and piece-wise linear fitting of the empirical log-likelihood ratios. None of these

steps is required in the new method: we do not need any binary masks here, nor empirical

density estimation or fitting procedures. All the required probabilities and probability density

functions are now expressed analytically, starting from the generalized Laplacian prior.

We define LSAI as the locally averaged magnitude of the coefficients in a relatively small

square window δ(l) of a fixed size N , within the same subband:

zl =
1

N

∑
k∈δ(l)

ωk, (13)

where ωl denotes the coefficient magnitude ωl = |yl|. For practical reasons, we simplify the

statistical characterization of zl considerably assuming that all the coefficients within the small

window are equally distributed and conditionally independent3 (given H0 or H1). Under these

assumptions, f(Nzl|H0,1) equals N convolutions of f(ωl|H0,1) with itself, where the densities

of coefficient magnitudes are f(ωl|H0,1) = 2f(yl|H0,1) for ωl ≥ 0 and f(ωl|H0,1) = 0 for ωl < 0.

The resulting spatially adaptive estimator (11) yields a significant improvement with respect

to the subband-adaptive estimator (4) as it is illustrated in Fig. 4. In all cases, the window size

3x3 was used, which was experimentally found optimal. Fig. 5 demonstrates that the visual

improvement resulting from the spatial adaptation of the estimator is also evident.

A. Results in the orthogonal wavelet representation

Fig. 6 shows the results of the proposed method in comparison with several representative

denoising methods using the orthogonal transform: the bivariate shrinkage of [17], the locally

adaptive Wiener method of [23], the Hidden Markov Tree (HMT) approach of [20] and the

3 Such assumptions were earlier used, e.g., in [23,26]
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(a) (b) (c)

Fig. 4. Performance of the proposed ProbShrink method without spatial adaptation (subband adaptive shrink-
age) and with spatial adaptation on three test images: (a) Barbara, (b) Boat and (c) Lena.

(a) (b) (c) (d)

Fig. 5. Visual performance of different versions of the proposed ProbShrink method. (a) Noisy Barbara image,
σ = 20, PSNR=22.09dB. (b) Subband adaptive shrinkage in the orthogonal transform, PSNR=27.54dB. (c)
Spatially adaptive shrinkage in the orthogonal transform PSNR=28.4dB. (d) Spatially adaptive shrinkage in
the non-decimated transform PSNR=29.53dB.

soft thresholding of [6]. Our algorithm was implemented with five decomposition levels, using

symmlet with eight vanishing moments [1] and the fixed window size 3x3. The results demon-

strate that the proposed method yields the results that are among the best available ones with

the orthogonal wavelet transform and that it outperforms some of the much more complex

recent methods that use Hidden Markov Trees.

B. Results in the redundant wavelet representation

We also implemented the proposed method with a non-decimated wavelet representation

using the algorithm à trous [4]. In Fig. 7, the results are plotted in comparison with seven
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Fig. 6. Performance of the proposed spatially adaptive shrinkage and several recent methods using orthogonal
wavelet transform: [6] (Donoho, 1995), [20] (Crouse, 1998), [23] (Mihcak, 1999) and [17] (Sendur, 2002).

Fig. 7. Results of several recent methods, which use redundant wavelet representation with three orientations:
[28] (Malfait, 1997), [19] (Chang, 1998), [21] (Romberg, 1999), [27] (Li, 2000), [22] (Fan, 2001), [25] (Portilla,
2001) and [31] (Pizurica, 2002). Dashed lines show the best available results, obtained with 8-orientation
steerable pyramid in [26].

recently published methods, which also use overcomplete wavelet transforms with three ori-

entations per scale: spatially adaptive thresholding of [19], locally adaptive Wiener filtering

of [27], MMSE estimation with a Gaussian scale mixture prior of [25], MMSE estimators with

two different HMT models [21, 22] and two wavelet shrinkage methods based on MRF pri-

ors [28, 31]. Dashed lines in these diagrams show the best published results so far that were

obtained with an 8-orientation redundant steerable pyramid in [26]. The results are plotted

for three test images: 512x512 Lena and Barbara and 256x256 Peppers. We experimented
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Fig. 8. Left: (a) noise-free part of the Peppers image, (b) noisy image, σ = 37.5, (c) the result of the MRF-
based wavelet domain method of [31] and (d) the result of the new method. Right: noise-free part of the
Couple image, (b) noisy image, σ = 15, (c) the result of the spatially adaptive Matlab’s Wiener filter in the
image domain and (d) the result of the new method.

only with two types of orthogonal wavelets: Daubechies wavelets and symmlets [1, 4]. Among

these, on the Barbara image the best results were obtained using the symmlet with eight van-

ishing moments, while for Lena and Peppers images the best results were obtained using the

Daubechies wavelet with two vanishing moments. In all cases, we used four decomposition

levels and the square window size 7x7, which was experimentally found optimal.

The results in Fig. 7 demonstrate that the new method outperforms more complex related

ones that are based on HMT priors [21] and on MRF priors [28, 31]. Visual improvement is

illustrated in Fig. 8. The new, non-recursive method is much faster as compared to our previous

MRF-based method from [31]. On a Pentium IV processor with 1.8GHz the new method takes

14s to process 512x512 image; the processing time of the MRF based method [31] is three times

as long with the same processor. Here proposed method is also less complex as compared to the

sophisticated MMSE approach of [25], while yielding a similar MSE performance (in [25], the

reported processing time for a 512x512 image was 12.8 min on a Pentium III processor with 900

MHz). Fig. 7 also shows that in comparison with the approaches of similar complexity [19,27],

the new method yields a significant improvement.
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Fig. 9. Parts of the noise-free, noisy (σ=25, PSNR=20.17dB) and the denoised (PSNR=30.73dB) image.

Fig. 10. PSNR results on color images in comparison with the method of [34] (Scheunders, 2004).

C. Extensions to multivalued data

The proposed denoising approach leads to efficient low-complexity noise filters for multi-

valued data like color images, multispectral and hyperspectral data or multimodal magnetic

resonance images. In all these cases different image bands are correlated: an image disconti-

nuity from one band is likely to occur in at least some of the remaining bands. The simplest

approach to extend our method for multivalued images is to include the interband correlation

in the definition of the local spatial activity indicator. Let ωi
l,s denote the noisy coefficient mag-

nitude in the image band i, wavelet subband s and spatial position l. A possible multiband

extension of the LSAI from (13) is:

zb
l,s =

1

NB

B∑
i=1

∑
k∈δ(l)

ωi
k,s (14)
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TABLE II
PSNR[dB] results for color 512x512 images.

Standard deviation of noise

Image 10 15 20 25

Baboon 30.15 27.73 26.23 25.09

Lena 34.52 32.83 31.62 30.73

Peppers 33.54 32.05 31.05 30.26

Fig. 11. Left to right: parts of a noise-free band of the Landsat image from [34], noisy image (σ = 35, PSNR =
17.24dB) result of [34] (PSNR=21.16dB) and the result of the proposed method (PSNR=22.42dB).

where B is the number of image bands. With this definition of the LSAI the probability

of signal presence is conditioned on the spatial context as well as on information from other

image bands. Based on experiments with standard color and with high-resolution multispectral

Landsat images, we found that best results are obtained when the neighborhood δ(l) is reduced

to a single pixel, i.e., when LSAI includes only the coefficients at the same spatial position from

different image bands: zb
l,s = 1

B

∑B
i=1 ωi

l,s. Its conditional densities are estimated by convolving

the corresponding densities of the coefficient magnitudes.4

4 Actually, we assume that the wavelet coefficients at the same positions in different image bands are distributed either
according to the presence of a signal, i.e., as f(y|H1), or according to the absence of a signal, i.e., as f(y|H0), and that
they are conditionally independent given that either H0 or H1 is true.
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For color images, visual results are illustrated in Fig. 9 and the PSNR results are tabulated

in Table II. As the reference method, we use the recent multiband wavelet thresholding of [34]

that we implemented with the same wavelet transform as our method. Fig. 10 compares

the performance of the two methods on color images and Fig. 11 illustrates the results on a

multispectral Landsat image from [34]. Our results demonstrate a superior performance of

the new method on all tested color and multispectral images. Its effectiveness results from

adapting the wavelet shrinkage to both the interband correlations and to the local statistics

in each image band. In other words, the estimated probabilities of signal presence are in each

image band different even though they are dependant on information from other bands as well

as on the measurements from the given band. We believe that further improvements may

result from developing a vector based approach, which is currently under investigation.

D. Implementation details

In the proposed method, the parameters λ and ν of the generalized Laplacian prior for

noise-free data are estimated from the noisy histogram in each subband, like in [7, 14]. The

results in this paper were obtained assuming that the noise standard deviation σ was known

(as it is usual for reporting the results in case of artificially added noise). In practice the noise

standard deviation is usually not known in advance, but its reliable estimate can be obtained

as the median absolute deviation of the coefficients in the highest frequency subband divided

by 0.6745 [6]. Matlab implementations of the proposed method for greyscale and for color

images are available at http://telin.UGent.be/ ∼sanja.

IV. Conclusion

We developed a new wavelet domain denoising method based on probability that a given

coefficient represents a significant noise-free component, which we call “signal of interest”.

First we developed a novel subband-adaptive wavelet shrinkage function, which on natural im-

ages yields a better MSE performance than Bayesian soft-thresholding with the MSE-optimum

threshold. The proposed spatially adaptive denoising method yields superior results as com-
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pared to some much more complex recent approaches based on HMT and MRF models. These

results motivate strongly further development of the presented concept. Also, improvements

are expected by implementing the proposed method with a transform of a better orientation

selectivity, like complex wavelets [35], steerable pyramids [26] or curvelets [36].

We also demonstrated that the proposed method can be easily extended to deal with

multivalued images simply by defining the local spatial activity indicator as a function of the

coefficients from multiple image bands. Our initial experiments on color and on multispectral

Landsat images already showed a significant improvement over multiband wavelet thresholding.
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V. Appendix

For the generalized Laplacian prior f(β) = λν
2Γ( 1

ν
)
exp(−|λβ|ν), we have

∫ T

−T

f(β)dβ =
λν

2Γ( 1
ν
)

∫ T

−T

exp(−|λβ|ν)dβ =
λν

Γ( 1
ν
)

∫ T

0

exp(−(λβ)ν)dβ. (15)

By introducing the change of variables t = (λβ)ν it follows that dβ = 1
λν

t
1
ν
−1 dt and thus

∫ T

−T

f(β)dβ =
1

Γ
(

1
ν

)
∫ (λT )ν

0

t
1
ν
−1e−tdt = Γinc

(
(λT )ν ,

1

ν

)
,

where Γinc(x, a) = 1
Γ(a)

∫ x

0
ta−1e−tdt is the incomplete gamma function. From (6), we have

µ =
P (H1)

P (H0)
=

1 − ∫ T

−T
f(β)dβ∫ T

−T
f(β)dβ

=
1 − Γinc

(
(λT )ν , 1

ν

)

Γinc

(
(λT )ν , 1

ν

) , (16)

as it was given in (10). For the conditional densities f(β|H0) and f(β|H1) of noise-free coeffi-

cients from (7) and (8), the normalization constants B0 and B1 are

B0 =
(∫ T

−T

exp(−|λβ|ν)dβ
)−1

=
(2Γ( 1

ν
)

λν

∫ T

−T

f(β)dβ
)−1

=
λν

2Γ( 1
ν
)Γinc

(
(λT )ν , 1

ν

) (17)
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and

B1 =
(
2

∫ ∞

T

exp(−|λβ|ν)dβ
)−1

=
λν

2Γ( 1
ν
)

(
2

∫ ∞

T

f(β)dβ
)−1

=
λν

2Γ( 1
ν
)

(
1 −

∫ T

−T

f(β)dβ
)−1

(18)

=
λν

2Γ( 1
ν
)
[
1 − Γinc

(
(λT )ν , 1

ν

)] .

References

[1] I. Daubechies, Ten Lectures on Wavelets, Philadelphia: SIAM, 1992.

[2] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,”

IEEE Trans. Pattern Anal. and Machine Intel., vol. 11, no. 7, pp. 674–693, 1989.
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