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Summary

The problem of estimating the proportion, �✂✁ , of true null hypotheses is important in cases
where a large number of hypothesis tests are performed. In addition to being an interesting
quantity in itself, the estimate of � ✁ can be used as an input to methods for assessing or con-
trolling error rates such as the family wise error rate and the false discovery rate (Benjamini and
Hochberg 1995). On the basis of the observed p-values corresponding to the hypothesis tests,
several estimators of � ✁ are described. Schweder and Spjøtvoll’s (1982) nonparametric estimator
of � ✁ is studied, and different estimators based on estimating the p-value density are developed.
Original contributions in this work include a new estimator of � ✁ based on Grenander’s (1956)
nonparametric maximum likelihood density estimator, a novel application of convex decreasing
density estimation to the problem of estimating �✂✁ , and the use of kernel density estimation with a
choice of smoothing parameter especially tailored to estimate �✄✁ . The estimators are derived un-
der the assumption of independent p-values, and evaluated on simulated data with different degree
of dependence. A discussion of the issue of modelling dependencies, with special emphasis on
DNA microarray data analysis is presented. Finally, the estimators are applied to real data from
DNA microarray experiments.
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1 Introduction

The aim of this work is to develop and present estimators for assessing the proportion of true null
hypotheses, �✄✁ , in a multiple hypothesis setup. We apply our research to DNA microarray data, where
the goal is to estimate the proportion of genes truly (not) differentially expressed.

Placing the Problem into DNA Microarrays

All of the cells in a living organism have basically the same genetic material. So, the main difference
between, say, a liver cell and a brain cell is which genes are expressed, i.e. code for proteins. The
cell’s function is mainly determined by the proteins which it produces. To explain the basics of DNA
microarrays, let us consider the central dogma of genetics. This can be represented by the following
(simplified) diagram: �✂✁☎✄✝✆✟✞✡✠☛✁☞✄✌✆✎✍✑✏✓✒✕✔✗✖✙✘✛✚

✟
where mRNA is short for “messenger RNA”. With DNA microarrays, rather than measuring protein
content directly, one uses the middle product, mRNA. Part of the reason for this is that proteins
are notoriously difficult to measure on a large scale, because of their extremely intricate molecular
structure. Therefore, today, using mRNA is far more tractable. However, it should be noted that using
mRNA or proteins directly is not actually equivalent, and in the future protein arrays might be a more
desired solution.

Using DNA microarrays1 , we can monitor the expression levels of several thousand genes simultane-
ously. It is possible to look at analysing data from DNA microarrays in a modular fashion. This is an
intuitively appealing way of looking at DNA microarray experiments when focusing on one specific
question, but in general one could benefit from a more integrated and coherent view.

In Figure 1 the investigation of a biological question is presented as a series of biological and statistical
tasks.

The investigation starts with posing biological questions or presenting biological hypotheses. The
biologist will together with the statistician then use statistical design of experiments to plan how
microarray experiments should be performed in order to answer the biological questions (e.g. which
tissue samples to be applied to the microarray slide in each two-colour DNA microarray experiment,
which factors to be varied, number of replications needed). The microarray experiments are then
performed by the biologist. The results from microarray experiments are images where the intensity
of the spots in an image is related to the expression of the genes in the corresponding tissue sample
(the abundance of different species of mRNA). Image analysis tools are used to acquire these intensity
measurements. For an review of DNA microarray technology, see e.g. Schulze and Downward (2001).

It is important to assess the quality of data obtained – both on a global and local scale. Global
assessment can to a certain degree be performed with the aid of various plotting techniques. If the
overall quality of the array is satisfactory, the quality of individual spots are assessed based on physical
characteristics of the spot or on agreement with spots from the same gene (or clone). Spots with low
quality can be removed (filtered) or kept in the data set.

There are inherently several sources of systematic and random errors present in a microarray exper-
iment. To reach valid inferential conclusions these must be taken properly into account. Currently,

1In this presentation, “DNA microarray” is used as a collective term for different microarray technologies such as two-
color spotted cDNA microarrays and oligonucleotide arrays.
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...

Scanning and image analysis

Quality control and normalization

Testing Clustering Discrimination

Experimental design

Microarray experiment

Estimation

Biological question

Biological verification and interpretation

Figure 1: A modular view of investigation of a biological question using microarray technology.
The statistical issues are depictured with transparent backgrounds and the biological issues with grey
backgrounds. The figure is inspired by a talk by Professor T. P. Speed.

systematic errors are removed as a separate step (called normalization). Statistical tools are then used
to find differentially expressed genes, class membership, groupings, rules, etc., which are presented
to the biologist for interpretation and verification. These results will then give rise to new and im-
proved biological questions which can be investigated in new microarray experiments or using other
techniques.

Thus, the analysis of DNA microarray data involves many challenging statistical problems. A survey
of statistical issues and their possible solutions is given by Smyth et al. (2003).

Point of Departure

The inspiration behind developing estimators for the proportion of true null hypotheses has been DNA
microarray data. The starting point of this work is after the necessary pre-processing of the DNA
microarray data, and we assume that � hypothesis tests are defined, and that a valid p-value is calcu-
lated for each test. Our work can also be applied to other situation, besides DNA microarrays, where a
large number of hypotheses is tested, e.g. functional magnetic resonance imaging (fMRI) (Turkheimer
et al. 2001) and source detection in astrophysics (Miller et al. 2001).

Outline of Presentation

A brief outline of the present work follows. Section 2 contains a presentation of the multiple hy-
pothesis framework, and the notation and model assumptions used. In Section 3, the main reasons
for the interest in estimating �✂✁ are explained. These reasons include the fact that estimation of � ✁
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is very important for the False Discovery Rate methodology introduced by Benjamini and Hochberg
(1995). In Section 4, several estimation procedures are described, including Schweder and Spjøtvoll’s
(1982) nonparametric estimator, different estimators based on semi- or nonparametric p-value den-
sity estimation, and a parametric estimator. All of the estimators are based on the observed p-values
corresponding to the hypothesis tests. The p-values are assumed to be independent and identically
distributed when the estimation methods are derived. Since this assumption might not hold for ac-
tual real-life data sets, we discuss different ways of modelling dependence in Section 5. To test the
performance of the estimation procedures, a large-scale simulation experiment was carried out, and a
description of the simulation methods and the results is presented in Section 6. The estimators were
tested on simulated data with different dependence structures, including the case of independence.
In Section 7, the estimators are evaluated on data from two DNA microarray studies from Nygaard
et al. (2003) and Hedenfalk et al. (2001), respectively. Finally, in Section 8, conclusions and plans for
further work are presented.
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2 Preliminaries, notation and model assumptions

This section provides a brief review of hypothesis testing, and some necessary notation and model
assumptions.

2.1 Single hypothesis testing

Assume that we are given data from a distribution
�✂✁

depending on a population parameter ✄✆☎✞✝ . A
test of the null hypothesis ✟ ✁ versus the alternative hypothesis ✟✡✠ can then be formulated as

✟ ✁☞☛✌✄✆☎✞✝ ✁ versus ✟✍✠✎☛✏✄✑☎✞✝✒✠ ✟
where ✝ ✁ and ✝✓✠ are subsets of the parameter space ✝ such that ✝ ✁✕✔✖✝✒✠✘✗✙✝ and ✝ ✁✕✚✖✝✒✠✘✗✜✛ .
The test is based on a test statistic (i.e. a function of the data) ✢ by defining a rejection set ✣ . If ✢✤☎✥✣
we reject ✟ ✁ and accept ✟✍✠ , otherwise we accept ✟ ✁ . In this situation we can commit two types of
errors:

Type I error: We reject ✟ ✁ when it is true. This happens when ✄✆☎✞✝ ✁ and ✢✤☎✥✣ .

Type II error: We accept ✟ ✁ when it is false. This happens when ✄✆☎✞✝✑✠ and ✢✧✦☎✥✣ .

The maximal probability of committing a type I error is called the level of significance and is denoted★ . This means that ✩ ✏✫✪ ✢✬☎✞✣✕✭ ✟ ✁ true ☞✯✮ ★ for a test of level ★ . The power function ✰ ✪✲✱ ☞ of a test is
defined as the probability of rejecting the null hypothesis given the true value ✄ of the parameter. For
false ✟ ✁ , ✰ ✪ ✄ ☞✂✗✴✳✯✵✶✩ ✏✫✪

Type II error ☞ . Usually, one would attempt to maximize the power of a test
for a given level ★ . We can base the test on the p-value corresponding to an observed statistic ✢✷✗✹✸ :

p–value
✪ ✸ ☞✺✗ ✘✛✚✼✻✽✿✾❁❀ ❂❄❃❅✾✏❆ ✩ ✏✫✪ ✢❇☎✥✣✕✭ ✟ ✁ true ☞☛✟

where ✣ is the rejection set (Lehmann 1986). If the p-value is less than ★ we reject ✟ ✁ .

2.2 Multiple hypothesis testing framework and model assumptions

In a multiple hypothesis setup, each of � related null hypothesis are tested, i.e. we test

✟ ✁❉❈ versus ✟✍✠❊❈✿❋❍●❍✗❇✳ ✟❏■❏■❏■ ✟ �❑■
We denote the corresponding random p-values ▲✎✠ ✟❏■❏■❏■ ✟▼▲❖◆ , and the observed p-values P❍✠ ✟❏■❏■❏■ ✟❄P◗◆ .

The quantity � ✁ that we want to estimate, is the probability that any given null hypothesis ✟ ✁❉❈ is true.
Genovese and Wasserman (2002) formalize this in the following mixture model: We define random
variables ✟ ✁ ✟❏■❏■❏■ ✟▼✟✑◆ as

✟ ❈ ✗ ❘ ✞✠✟ if ✟ ✁❉❈ is true ✟✳ ✟ otherwise ✟
for ●❙✗ ✳ ✟❏■❏■❏■ ✟ � . We assume that each ✟❚❈❑❯❲❱ ✖ ✏ ✚ ✒✌❳❩❨❬❨✛✘❭✪

� ✁ ☞ (i.e. ✩ ✏✓✒❫❪❖✪ ✟✆❈✖✗ ✞ ☞❴✗ � ✁ and✩ ✏ ✒❫❪❵✪ ✟✑❈❵✗❇✳ ☞✺✗❇✳✎✵ � ✁ ), and that the ✟✆❈ ’s are independent.
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The number of true null hypotheses is then the random variable � ✁ ✗✂✁ ◆❈☎✄❖✠ ✪ ✳ ✵✶✟ ❈ ☞ . Clearly � ✁ is
binomially distributed: � ✁✯❯✷❱ ✘✛✚ ✪ � ✟ � ✁ ☞ . A realized value of � ✁ is denoted � ✁ .
We further assume that the p-values are continuous random variables. Then, the null p-values are
uniformly distributed on ✝ ✞✠✟ ✳✝✆ . This follows almost immediately from the probability unit transfor-
mation: The cumulative distribution function

�✟✞ ✪✡✠ ☞✎❯☞☛
✚ ✘❬✻

✝ ✞✠✟ ✳✝✆ for a continuous random variable✠
. If we for each hypothesis ✟ ✁✍✌❫❋✏✎✖✗ ✳ ✟❏■❏■❏■ ✟ � ✁ , reject ✟ ✁✍✌ when a test statistic

✠
✌ is large (this

situation can always be achieved by applying a suitable transformation to any test statistic), then� ✞✒✑ ✪✡✠ ✌ ☞ ❯✓☛
✚ ✘ ✻

✝ ✞✠✟ ✳✝✆✕✔ ▲✖✌ ✗❇✳ ✵ � ✞✗✑ ✪✡✠ ✌ ☞✂❯✓☛
✚✑✘ ✻

✝ ✞✠✟ ✳✝✆❊■
All the estimation methods in Section 4 are derived under the assumption of independent and identi-
cally distributed p-values. The question of dependence is addressed is Section 5, and the estimators
are tested on simulated data with different dependence structures in Section 6.

2.3 Mixture model and identifiability

The estimation methods are based on the following mixture model for the density ✍ of the p-values:

✍✥✗ � ✁✙✘
✪ ✳ ✵ � ✁ ☞✛✚ ✟

where ✚ is the density of the p-values corresponding to false null hypotheses. This model is a direct
concequence of the assumptions made in Section 2.2.

On the basis of the mixture model, consider the question of identifiability of � ✁ , as illustrated in
Figure 2. In Figure 2, two p-value histograms, from simulated p-values, are shown. The portion of
each histogram corresponding to the null p-values is shaded, and the portion corresponding to the
alternative is transparent. The left histogram shows the situation when � ✁ is identifiable, which in
our situation basically means that the density ✚ of the alternative p-values equals zero when p gets
large. The right histogram illustrates that in the case when many alternative p-values are large, � ✁ will
probably be overestimated. Assuming that ✍ is decreasing, if ✚

✪ ✳ ☞✂✗ ✞ then � ✁ is identifiable.

False null hypotheses
True null hypotheses

False null hypotheses
True null hypotheses

Figure 2: The mixture model and the problem of identifiability.

It is beyond the scope of this work to thoroughly discuss identifiability of � ✁ . See Genovese and
Wasserman (2003, Section 3.1) for a discussion of identifiability of � ✁ and Prakasa Rao (1992, Section
8) for a general introduction to the problem of identifiability in mixture models. When deriving the
estimation methods, we shall assume that �☎✁ is identifiable.



6 Preliminaries, notation and model assumptions

2.4 Multiple testing error rates

In this multiple hypothesis setup we would like to control some adequate error measure ER. We
distinguish between weak and strong control of ER:

Weak control of an error rate ER at level ★ , say, means that �
✠ ✮ ★ for � ✁✯✗ � (all null hypotheses

are true).

Strong control means that we keep �
✠ ✮ ★ for all values of � ✁ simultaneously.

Generally, each test has its own type I and type II error probabilities, and it is not obvious how we
should measure the overall error rate. For each test, there are four possibilities:

1. ✟ ✁ is true and accepted (correct decision)

2. ✟ ✁ is true and rejected (type I error)

3. ✟ ✁ is false and accepted (type II error)

4. ✟ ✁ is false and rejected (correct decision)

Each of the � tests will be of one of the above categories. Let ✁ , ✂ , ✢ and ✄ of the tests be of
categories 1, 2, 3 and 4, respectively, let ☎ ✗✆✁ ✘ ✢ be the number of rejected null hypothesis, and let✝ ✗ � ✵✞☎ be the number of accepted null hypotheses. These are all random variables, of course,
but only ☎ and

✝
can be observed. This situation is displayed in Table 1 below.

Accept Reject Total✟ ✁ true ✁ ✂ � ✁✟ ✁ false ✢ ✄ � ✵ � ✁
Total

✝ ☎ �

Table 1: Outcomes from � hypothesis tests

The traditional error rate to control is the Family Wise Error Rate (FWER). This is defined as ✩ ✏✓✒❫❪❵✪
✂✠✟✳ ☞ , the probability of committing at least one type I error. To control the FWER at level ★ requires

that each individual test is conducted at a lower level. For example, using the familiar Bonferroni
procedure to control the FWER at level ★ , each null hypothesis ✟ ✁❉❈ is rejected when P ❈ ✮ ★ ✦ � .
Demanding strong control of the FWER is a strict criterion, and can result in low power to reject
alternative hypotheses.

Benjamini and Hochberg (1995) introduced a new multiple testing error rate called the false discovery

rate (FDR). The FDR is discussed in Section 3.1.
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3 Why estimate the proportion �✂✁ of true null hypotheses?

The most important reason for wanting to estimate � ✁ is that it is a quantity of independent interest in
many situations. In the case of testing for differential expression in DNA microarrays, the proportion
of differentially expressed genes is ✳✎✵ �✂✁ . Clearly it is important to know whether 5% or 35% of the
genes are differentially expressed, even if we cannot identify these genes.

In addition to this, a reliable estimate of � ✁ is crucial when we want to assess or control the so-called
false discovery rate (FDR), and it is also central in the estimation of Storey’s (2002b) q-values. In
Section 3.1 we review the FDR and its relation to the estimation of � ✁ , and in Section 3.2 we present
Storey’s q-values.

Throughout this section, we use the notation ✄� ✁ for any estimate of � ✁ . Methods for estimating � ✁
will be discussed in Section 4.

3.1 The false discovery rate (FDR)

The false discovery rate (FDR), introduced by Benjamini and Hochberg (1995), is an error rate which
can provide a substantial gain in power in situations where control of the FWER is not necessary. As
an example, when we test thousands of genes for differential expression using DNA microarrays, it
seems unnecessarily restrictive to control the probability of making a single mistake. In most cases,
the DNA microarray experiment would only be a screening to pick out genes for further study, and
then one would prefer to accept a few false discoveries rather than sacrificing the power of the testing
procedure.

In these situations, Benjamini and Hochberg (1995) argue that the interesting quantity is the proportion
of erroneously rejected hypotheses among the rejected ones, i.e. ✂✕✦ ☎ in the notation from Table 1 on
page 6. The FDR is defined as the expectation of this proportion if ☎✆☎ ✞ , and zero if ☎ ✗ ✞ :

FDR ✗ ❘
�
✪

✂ ✦ ☎ ☞ if ☎✆☎ ✞ ✟
✞ if ☎ ✗ ✞❩■

Equivalently, this can be written as

✝ �✂✠ ✗ �
✪

✂ ✦ ☎ ✭ ☎✞☎ ✞ ☞❁✩ ✏✓✒❫❪❍✪ ☎✆☎ ✞ ☞ ■
Storey (2002a) prefers an alternative “false discovery rate” definition, which he terms the positive

false discovery rate (pFDR). The pFDR is defined to be
✍ ✝ �✂✠ ✗ �

✪
✂✕✦ ☎ ✭ ☎✟☎ ✞ ☞ ■

It is called “positive” because it is conditioned on the fact that ☎✠☎ ✞ . The introduction of the pFDR
is motivated by concerns about what happens when ✩ ✏✓✒❫❪❵✪ ☎✡☎ ✞ ☞ is much less than one (in which
case the FDR might be misleading), as well as mathematical tractability. Whether the FDR or pFDR
is the most appropriate error measure is still under dispute; we will not get into that debate here, but
only refer to Storey (2002a, 2002b) for an argument in favor of the pFDR.

The main reason for mentioning the pFDR in this work is that it forms the basis for the q-values
described in Section 3.2.
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3.1.1 Controlling the FDR

Simes (1986) provides a procedure which has weak control of the FWER at level ★ : Given the ordered,
observed p-values P✁� ✠✄✂ ✟❏■❏■❏■ ✟❄P☎� ◆✆✂ , let ✄✝ ✗ ✞✟✞✡✠☞☛ ✝ ☛ P☎�✍✌ ✂ ✮ ★ ✌◆✏✎ . Then, reject all null hypotheses

corresponding to P � ❈✑✂ for ●✂✮ ✄✝ .

Benjamini and Hochberg (1995) showed that this procedure strongly controls the FDR at level � ✁ ★ .
Therefore, if an estimate ✄�✂✁ of � ✁ is available, calculating ✄✒ ✗ ✞✟✞✡✠✓☛ ✒ ☛ ✄� ✁✲P �✕✔ ✂ ✮ ★ ✔◆ ✎ and rejecting
the null hypotheses corresponding to P � ✠✄✂ ✟❏■❏■❏■ ✟❄P �✗✖✔ ✂ provides strong control at approximately level ★ .

If � ✁ is significantly less than one, and ✄�☎✁ is a sufficiently good estimate, then the utilization of ✄� ✁ in
this way leads to an increase in power, while still achieving control at (approximately) level ★ .

Using ✄� ✁ as above in Simes’s (1986) procedure is discussed both by Storey (2002b) and Reiner et al.
(2003), although from somewhat different viewpoints.

3.1.2 Estimating the FDR for a fixed rejection region

Storey (2002a) investigates the estimation of the false discovery rate when the rejection region ✣ is
fixed beforehand. Determining ✣ a priori might seem like putting the cart before the horse, but Storey
(2002b, p. 41) argues that “experts in a particular field (for example, DNA microarrays) run similar
experiments over and over. Often they are able to judge from their experience which statistics are
likely to be significant”. In such situations, fixing ✣ would make sense.

To simplify our discussion here, we follow Storey (2002a) and assume that each test has the same
rejection region ✣ (this should be natural in most cases), and (without loss of generality) that we
base the tests on the observed p-values P ✠ ✟❏■❏■❏■ ✟❄P ◆ . Then, the rejection region ✣ ✗ ✝ ✞✠✟✙✘ ✆ for some✘ ☎ ✝ ✞✠✟ ✳✝✆ , and we reject all null hypotheses corresponding to p-values less than ✘ .

Now, approximately � � ✁ of the observed p-values correspond to the true null hypotheses. Since
these p-values are uniformly distributed, about �✚✘✄� ✁ null p-values are less then ✘ , and therefore
approximately �✚✘✄�✄✁ true null hypotheses will be rejected. The total number of rejected hypotheses
(null or alternative) is simply ☎

✪ ✘ ☞ ✗✜✛ ☛ P ❈ ✮✢✘ ✎ . Since the false discovery rate is the expectation
of the proportion of rejected null hypotheses among all rejected hypotheses, a natural estimate of the
FDR is then ✣

✝ �✂✠ ✪ ✘☎☞✺✗ �✚✘ ✄� ✁✞✟✞✡✠ ✪ ✳ ✟ ☎
✪ ✘☎☞ ☞ ✟ (3.1)

where the “max” in the denominator is needed in case ☎
✪ ✘ ☞✺✗ ✞ (Storey 2002b).

The pFDR can be estimated in a similar way, as suggested by Storey (2002b). Since
✍ ✝ �✂✠ ✗✝ �✂✠ ✦ ✩ ✏✓✒❫❪❖✪ ☎ ☎ ✞ ☞ , an estimate of the FDR divided by an estimate of ✩ ✏ ✒❫❪❵✪ ☎ ☎ ✞ ☞ is an estimate

of the pFDR. Clearly ✩ ✏✓✒❫❪❵✪ ☎ ☎ ✞ ☞ must be greater than ✳ ✵ ✪ ✳ ✵✤✘ ☞ ◆ , since the latter expression is
simply the probability that ☎ ☎ ✞ given that all null hypothesis are true (and all p-values uniformly
distributed). Increasing the number of false null hypotheses would only increase ✩ ✏✓✒❫❪❵✪ ☎ ☎ ✞ ☞ .
Therefore, an estimate of the pFDR is given by

✥✍ ✝ �✂✠✒✪ ✘ ☞✺✗ �✚✘ ✄� ✁✪ ✪ ✳ ✵ ✪ ✳ ✵✦✘ ☞ ◆ ☞ ✞✟✞✡✠✘✪ ✳ ✟ ☎
✪ ✘☎☞ ☞ ✟ (3.2)

Looking at Equations (3.1) and (3.2) makes it clear that the quality of the estimation of both the false
discovery rate and the positive false discovery rate relies heavily on having a good estimator ✄� ✁ at our



3.2 Storey’s q-values 9

disposal. This is one reason for our interest in estimating � ✁ .

3.2 Storey’s q-values

Storey’s (2002b) q-value is an error measure for each observed statistic (or p-value) in terms of the
pFDR. The q-value is defined as

q–value
✪ ✸ ☞ ✗ ✘✛✚✼✻✽✿✾❁❀ ❂❄❃❅✾✏❆ ✍ ✝ �✂✠✒✪ ✣ ☞

for an observed statistic ✢✷✗✹✸ .
To understand this definition, we first take a closer look at the interpretation of the pFDR. Assume that
� tests are performed with the test statistics ✢✂✠ ✟❏■❏■❏■ ✟❉✢ ◆ , each with rejection region ✣ . Then, Storey
(2002b) shows that the pFDR can be written as the following posterior probability:

✍ ✝ �✂✠✒✪ ✣ ☞✂✗✷✩ ✏✓✒❫❪❵✪ ✟ ✗ ✞◗✭ ✢ ☎✥✣ ☞
(where we drop the index ● since ✩ ✏ ✒❫❪❵✪ ✟ ❈ ✗ ✞◗✭ ✢ ❈ ☎✥✣ ☞ are the same for each ● ). This implies that the
q-value can be written as

q–value
✪ ✸ ☞✺✗ ✘✛✚✼✻✽✿✾❁❀ ❂❄❃❅✾✏❆ ✩ ✏✓✒❫❪❵✪ ✟ ✗ ✞◗✭ ✢✤☎✥✣ ☞ (3.3)

for ✢ ✗✹✸ . From the definition of the p-value, the p-value for an observed statistic ✢ ✗✹✸ is

p–value
✪ ✸ ☞ ✗ ✘ ✚✼✻✽✿✾❁❀ ❂❄❃ ✾✌❆ ✩ ✏✓✒❫❪❵✪ ✢❇☎✥✣✕✭ ✟ ✗ ✞ ☞ ■

This nice relation between the p–value and the q–value is the reason for the q–value’s name, as well
as one of the main reasons for its appeal. The expression for the pFDR in Equation (3.3) can be
given a Bayesian interpretation — it is the posterior probability that a null hypothesis is true given
that it is rejected. This means that the q–value of a test statistic can be interpreted as the minimal
posterior probability that the corresponding null hypothesis is true, where the minimum is over all
rejection regions containing the test statistic. So, the q–value provides us with an error measure for
each observed statistic.

It might be instructive to phrase this in terms of the case where the test statistics are p-values. Given
the observed ordered p-values P � ✠✄✂ ✟❏■❏■❏■ ✟❄P � ◆✆✂ , the naturally occuring rejection regions ✣ are of the
form ✝ ✞✠✟❄P �✍✌ ✂ ✆ , where

✝
is the number of null hypotheses that are rejected (

✝
is a realization of ☎ from

Table 1). So, for each p-value ▲ � ❈✑✂ ✗❙P � ❈✑✂ , the corresponding q–value is

q–value
✪ ✘ ☞✺✗ ✘✛✚✼✻✽✁�❫❀ �✄✂✆☎✞✝✠✟☛✡❄❆ ✍ ✝ �✂✠✓✪ ✘ ☞☛✟ (3.4)

where
✍ ✝ �✂✠✓✪ ✘☎☞ denotes

✍ ✝ �✂✠✒✪ ✝ ✞✠✟✙✘ ✆ ☞ .
The q-values can be estimated from the p-values, using the estimator

✥✍ ✝ �✂✠✒✪ ✘☎☞ from (3.2) for the
pFDR. Considering the expression (3.4) for the q–value, a natural estimator ✄☞

✪ P❖❈ ☞ is given by

✄☞
✪ P◗❈ ☞ ✗ ✞ ✘✛✚

�✄✂✆☎ ✟
✥✍ ✝ �☞✠ ✪ ✘☎☞✂✗ ✞ ✘ ✚

�✄✂✆☎ ✟
�✚✘ ✄� ✁✪ ✪ ✳ ✵ ✪ ✳ ✵✦✘☎☞ ◆ ☞ ☞ ✞✟✞✡✠ ✪ ✳ ✟ ☎

✪ ✘☎☞ ☞ ✟ (3.5)

where ☎
✪ ✘ ☞✺✗ ✛ ☛ P ✌ ✮ ✘ ✎ .

Clearly it is important to have a good estimate ✄�☎✁ to estimate the q–values, and this is also part of our
motivation for estimating �✂✁ .
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4 Estimators of �✂✁

In this section, some known estimators of �☎✁ are described, and new estimators are developed.

A brief outline of this section: In Section 4.1, Schweder and Spjøtvoll’s (1982) estimator � � ✁
✪ ✆ ☞ is

presented, along with Storey’s (2002b) suggestions for the choice of the tuning parameter
✆

, as well as
some other considerations regarding this estimator. In Sections 4.2, 4.3 and 4.4 we describe different
estimators based on semi- or nonparametric estimation of the p-value density, and in Section 4.5, a
parametric estimator of �✂✁ is presented.

4.1 Schweder and Spjøtvoll’s estimator of ✁ ✁

Schweder and Spjøtvoll (1982) suggest an estimator � � ✁
✪ ✆ ☞ which is based on the following reasoning.

Let
✝ ✪ ✆ ☞❚✗ ✛ ☛ P ✌ ☎ ✆ ✎ , the number of p-values greater than some value

✆
. Since the p-values

associated with the false null hypotheses should be small, a large majority of the p-values in the
interval ✝ ✆ ✟ ✳✝✆ should be corresponding to the true null hypothesis, and thus Unif[0,1]-distributed.
This implies that the expected value of

✝ ✪ ✆ ☞ should be approximately equal to the product of � � ✁
and the length of the interval ✝ ✆ ✟ ✳✝✆ , that is,

�
✪ ✝ ✪ ✆ ☞ ☞✄✂ � � ✁

✪ ✳ ✵ ✆ ☞ ■
Therefore,

� � ✁
✪ ✆ ☞✺✗ ✝ ✪ ✆ ☞

�

✪ ✳ ✵ ✆ ☞ ✗ ✛ ☛ P ✌ ☎ ✆ ✎
�

✪ ✳ ✵ ✆ ☞
is a reasonable estimator for �✂✁ for a given

✆
.

Schweder and Spjøtvoll (1982) plotted the ordered values ☞ � ❈✑✂ ✗✧✳ ✵✡P � ❈✑✂ , sorted in ascending order,
versus their rank. An example of such a plot, based on simulated p-values, is shown in Figure 3. The
p-values corresponding to the true null hypotheses should fall approximately on a straight line in the
left portion of this plot, since they are uniformly distributed. In Figure 3, this straight line is simply
fitted by eye, and the estimate of �✂✁ is found as the height at the right end of the line. Note that this
can be seen as a way of choosing

✆
. Methods for choosing

✆
will be discussed later in this section. A

method directly based on Schweder and Spjøtvoll’s (1982) plot is described in Section 4.1.5.

4.1.1 Expectation, variance and mean square error

Expressions for the expectation, variance and mean square error of Schweder and Spjøtvoll’s (1982)
estimator � �✄✁

✪ ✆ ☞ for a given
✆

are derived in this section. These expressions shed some light on the
properties of the estimator, and will be useful for the discussion in the subsequent sections.

Let the cumulative distribution function corresponding to the density ✚ of the alternative p-values be✟ . Furthermore, we let � ✁ denote the random number of true null hypothesis, and let � ✁ be any
realized value of � ✁ . We define random functions ✁

✪✲✱
☞ and ✢ ✪✲✱ ☞ by ✁

✪ ✆ ☞✘✗ ✛ ☛
null P ✌ ☎ ✆ ✎ and✢ ✪ ✆ ☞✑✗ ✛ ☛

alternative P ✌ ☎ ✆ ✎ (this notation is in accordance with Table 1 on page 6), such that✝ ✪ ✆ ☞ ✗ ✁
✪ ✆ ☞✕✘❙✢ ✪ ✆ ☞ . The derivation of expectation and variance are based on the observation that

� ✁✯❯✷❱ ✘✛✚ ✪
� ✟ � ✁ ☞

✁
✪ ✆ ☞❏✭ � ✁ ❯✷❱ ✘✛✚ ✪

� ✁ ✟ ✳ ✵ ✆ ☞☛✟✢ ✪ ✆ ☞❏✭ � ✁ ❯✷❱ ✘✛✚ ✪
� ✵ � ✁ ✟ ✳ ✵ ✟ ✪ ✆ ☞ ☞☛✟
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Figure 3: Schweder and Spjøtvoll’s p-value plot

and the well-known result that

�
✪✡✠
☞✺✗ �

✪
�
✪✡✠ ✭ � ☞ ☞☛✟

✁
✞ ✏ ✪✡✠

☞✺✗ �
✪

✁
✞ ✏ ✪✡✠ ✭ � ☞ ☞✕✘ ✁

✞ ✏ ✪
�
✪✡✠ ✭ � ☞ ☞

for any random variables
✠

and
�

(Casella and Berger 1990).

We first consider the expectation of � �✂✁
✪ ✆ ☞ :

�
✪

� � ✁
✪ ✆ ☞ ☞✺✗ �

✪
✁
✪ ✆ ☞ ☞ ✘ �

✪ ✢ ✪ ✆ ☞ ☞
�

✪ ✳ ✵ ✆ ☞
✗ �

✪
�
✪

✁
✪ ✆ ☞❏✭ � ✁ ☞ ☞✕✘ �

✪
�
✪ ✢ ✪ ✆ ☞❏✭ � ✁ ☞ ☞

�

✪ ✳ ✵ ✆ ☞
✗ �

✪ ✪ ✳ ✵ ✆ ☞✛� ✁ ☞✕✘ �
✪ ✪ ✳✯✵ ✟ ✪ ✆ ☞ ☞ ✪ � ✵ � ✁ ☞ ☞

�

✪ ✳✯✵ ✆ ☞
✗ ✪ ✳ ✵ ✆ ☞ � � ✁ ✘

✪ ✳ ✵✶✟ ✪ ✆ ☞ ☞ �

✪ ✳ ✵ � ✁ ☞
�

✪ ✳✎✵ ✆ ☞
✗ � ✁ ✘ ✳✎✵ ✟ ✪ ✆ ☞✳✯✵ ✆ ✪ ✳ ✵ � ✁ ☞ ■ (4.1)

Notice that �
✪

� �✄✁
✪ ✆ ☞ ☞ ✟✌� ✁ , a point we will return to shortly.
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The variance can be calculated similarly:

✁
✞ ✏ ✪

� � ✁
✪ ✆ ☞ ☞✺✗ ✁

✞ ✏ ✪
✁
✪ ✆ ☞ ☞ ✘ ✁

✞ ✏ ✪ ✢ ✪ ✆ ☞ ☞
�✁� ✪ ✳ ✵ ✆ ☞✂�

✗ �
✪

✁
✞ ✏ ✪

✁✑✭ � ✁ ☞ ☞✕✘ ✁
✞ ✏ ✪

�
✪

✁✑✭ � ✁ ☞ ☞✕✘ �
✪

✁
✞ ✏ ✪ ✢ ✭ � ✁ ☞ ☞✕✘ ✁

✞ ✏ ✪
�
✪ ✢ ✭ � ✁ ☞ ☞

� � ✪ ✳ ✵ ✆ ☞ �
✗ ✆ ✪ ✳ ✵ ✆ ☞ � � ✁ ✘

✪ ✳ ✵ ✆ ☞ � � � ✁
✪ ✳✯✵ � ✁ ☞✗✘ ✟ ✪ ✆ ☞ ✪ ✳ ✵ ✟ ✪ ✆ ☞ ☞ �

✪ ✳ ✵ � ✁ ☞
� � ✪ ✳ ✵ ✆ ☞ �

✘
✪ ✳ ✵✶✟ ✪ ✆ ☞ ☞ � � � ✁

✪ ✳ ✵ � ✁ ☞
�✁� ✪ ✳✯✵ ✆ ☞✂�

✗ ✆ � ✁
�

✪ ✳ ✵ ✆ ☞ ✘
✟ ✪ ✆ ☞ ✪ ✳ ✵ ✟ ✪ ✆ ☞ ☞ ✪ ✳ ✵ � ✁ ☞

✪ ✳ ✘ ✪ ✳ ✵❑✟ ✪ ✆ ☞ ☞ � ✁ ☞
�

✪ ✳✯✵ ✆ ☞✂� ✘ � ✁
✪ ✳ ✵ � ✁ ☞

�
■ (4.2)

The mean square error (MSE) is defined as✄✆☎ �
✪

� � ✁
✪ ✆ ☞ ☞✺✗ � ✝

✪
� � ✁
✪ ✆ ☞ ✵ � ✁ ☞ � ✆❊■ (4.3)

It is easy to show (see e.g. Casella and Berger (1990)) that✄✝☎ �
✪

� � ✁
✪ ✆ ☞ ☞ ✗ ✁

✞ ✏❅✪
� � ✁
✪ ✆ ☞ ☞✕✘ ✝ ❱ ✘✑✞✟✞❅✪

� � ✁
✪ ✆ ☞ ☞✏✆ � ✟ (4.4)

so the mean square error combines the error resulting from bias and variance. Given the expression
for the expectation and variance in Equations (4.1) and (4.2), the MSE of � � ✁

✪ ✆ ☞ is therefore given by✄✆☎ �
✪

� � ✁
✪ ✆ ☞ ☞✺✗ ✆ � ✁

�

✪ ✳✯✵ ✆ ☞ ✘
✟ ✪ ✆ ☞ ✪ ✳✯✵ ✟ ✪ ✆ ☞ ☞ ✪ ✳✯✵ � ✁ ☞

✪ ✳ ✘ ✪ ✳ ✵ ✟ ✪ ✆ ☞ ☞ � ✁ ☞
�

✪ ✳ ✵ ✆ ☞✂� ✘ � ✁
✪ ✳✯✵ � ✁ ☞

�

✘
✠ ✳✎✵ ✟ ✪ ✆ ☞✳ ✵ ✆

✪ ✳ ✵ � ✁ ☞✂✡ � ■ (4.5)

4.1.2 Choice of
✆

To use Schweder and Spjøtvoll’s (1982) estimator we need to choose a value for the ’tuning parameter’✆
. From the expression for the variance of � � ✁

✪ ✆ ☞ in Equation (4.2), it is easily seen that choosing a
small value for

✆
will give a small variance. However, for

✆
small, many of the non-null (nonuniformly

distributed) p-values will be included in
✝ ✪ ✆ ☞ , and this will give a larger bias. We see that there is

a trade-off between bias and variance when choosing
✆

. Therefore, we aim to find the
✆

which
minimizes

✄✝☎ �
✪

� � ✁
✪ ✆ ☞ ☞ .

The true MSE is unknown, so we need to find an estimate

✣✄✆☎ �
✪ ✆ ☞ . Storey (2002b) suggests estimat-

ing
✄✝☎ �

✪
� � ✁
✪ ✆ ☞ ☞ for fixed

✆
using bootstrapping, which is a computer-based resampling technique.

Taking (4.3) as the starting point, the bootstrap estimator of
✄✝☎ �

✪
� � ✁
✪ ✆ ☞ ☞ is

✣✄✝☎ �
✪ ✆ ☞✺✗ ✳☛ ☞✌ ✍ ✄❖✠✏✎ � �✒✑ ✍✁ ✪ ✆ ☞ ✵ � �

☎
✁✔✓ � ✟

where � �
☎
✁
✪ ✆ ☞ is a plug-in estimator of �✂✁ (see Section 4.1.3 for how this is chosen by Storey), and

� � ✑ ✍✁ ✪ ✆ ☞☛✟✖✕✯✗✬✳ ✟❏■❏■❏■ ✟ ☛ are bootstrap versions of � �✄✁
✪ ✆ ☞ , obtained as follows: For a given

✆
, we draw

☛
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with-replacement samples of � p-values each from the original p-values, and for each such sample
we calculate � � ✑ ✍✁ ✪ ✆ ☞ from the resampled p-values.

Given � �
☎
✁ , the bootstrap estimate of the MSE is then

✣✄✝☎ �
✪ ✆ ☞✺✗ ✳☛ ☞✌ ✍ ✄❖✠✏✎ � �✒✑ ✍✁ ✪ ✆ ☞ ✵ � �

☎
✁✔✓ � ■

Now, to estimate the MSE-optimal
✆

, we choose a range � of values for
✆

(e.g. � ✗ ☛
✞✠✟ ✞ ■ ✞✂✁ ✟❏■❏■❏■ ✟ ✞ ■☎✄✆✁ ✎ ),

and the choice ✄✆ is simply the
✆ ☎✝� which minimizes

✣✄✝☎ �
✪ ✆ ☞ .

4.1.3 Choice of plug-in estimator of �☎✁

How should we choose the plug-in estimator � �
☎
✁ ? Storey (2002b) suggests choosing

� �
☎
✁ ✗ ✞ ✘✛✚

✞✠✟ ❃☛✡ ✝ � � ✁
✪ ✆✌☞ ☞✏✆❊■

This is motivated by the following observations. From Equation (4.1) in Section 4.1.1 we know that
for any given

✆
, �

✪
� � ✁

✪ ✆ ☞ ☞ ✟ � ✁ . This immediately implies that
✞ ✘✛✚

✞ ✟ ❃✍✡ ✝ �
✪

� � ✁
✪ ✆ ☞ ☞ ☞✏✆ ✟ � ✁ , and it is

obviously also the case that �
✪

� �✂✁
✪ ✆ ☞ ☞ ✟

✞ ✘✛✚
✞ ✟ ❃✍✡ ✝ �

✪
� � ✁

✪ ✆ ☞ ☞ ☞✏✆ for and
✆ ☎✎� . All of this means that,

for any
✆ ☎✏� , we have

�
✪

� � ✁
✪ ✆ ☞ ☞ ✟

✞✡✘✛✚

✞ ✟ ❃✍✡ ✝ �
✪

� � ✁
✪ ✆✌☞ ☞ ☞✏✆ ✟ � ✁ ■

From this inequality, Storey (2002b) immediately concludes that
✞✡✘✛✚

✞ ✟ ❃✍✡ ✝ � � ✁
✪ ✆ ☞ ☞✏✆ is the natural plug-

in estimator. At first sight, the inequality looks quite convincing. The plug-in estimator seems to be
“sandwiched” between the true �✂✁ and the expectation of its estimator � �✂✁

✪ ✆ ☞ . However, the interesting
quantity here is the expectation of the plug-in estimator, �

✪ ✞ ✘✛✚
✞ ✟ ❃✍✡ ✝ � � ✁

✪ ✆ ☞ ☞✏✆ ☞ , not
✞ ✘✛✚

✞ ✟ ❃✍✡ ✝ �
✪

� � ✁
✪ ✆ ☞ ☞ ☞✏✆ .

Therefore, in order to conclude that Storey’s (2002b) choice of plug-in estimator is reasonable, we
would rather want to have

�
✪

� � ✁
✪ ✆ ☞ ☞ ✟ �

✠ ✞ ✘ ✚
✞ ✟ ❃✍✡ ✝ � � ✁

✪ ✆ ☞ ☞✏✆ ✡ ✟ � ✁ ✟

which is does not hold in general. All we can say is that �
✪

� � ✁
✪ ✆ ☞ ☞ ✟ �

✪ ✞ ✘✛✚
✞✠✟ ❃✍✡ ✝ � � ✁

✪ ✆ ☞ ☞✏✆ ☞ and
�
✪

� � ✁
✪ ✆ ☞ ☞ ✟ � ✁ for any

✆ ☎✝� , so it could might as well be the case that

�
✪

� � ✁
✪ ✆ ☞ ☞ ✟ � ✁ ✟ �

✠ ✞ ✘ ✚
✞ ✟ ❃✍✡ ✝ � � ✁

✪ ✆ ☞ ☞✏✆ ✡ ■
In the latter situation, the plug-in estimator would tend to underestimate � ✁ . Simulations have shown
that this is often the case in practice (data not included).

From these observations we conclude that Storey (2002b) provides insufficient justification for his
choice of plug-in estimator, which does not necessarily mean that it is a poor choice. We will use
Storey’s plug-in estimator in what follows.

4.1.4 Bootstrap-algorithm for choosing optimal
✆

Now that we have decided on the plug-in estimator

� �
☎
✁ ✗ ✞ ✘✛✚

✞ ✟ ❃☛✡ ✝ � � ✁
✪ ✆ ☞ ☞✏✆ ✟
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we can formally specify the algorithm for choosing the value ✄✆ of
✆

, which is given in pseudocode as
Algorithm 1 below.

Algorithm 1 Storey’s algorithm for optimal choice of
✆

for all
✆ ☎✝� do

for ✕ ✗❇✳ to
☛

do

draw P ✑ ✍✠ ✟❏■❏■❏■ ✟❄P ✑ ✍◆ with replacement from the � p-values
� � ✑ ✍✁ ✪ ✆ ☞✁� ✛ ☛ P ✑ ✍✌ ☛❏P ✑ ✍✌ ☎

✆ ✎ ✦✠✝ �

✪ ✳ ✵ ✆ ☞✏✆
end for✣✄✝☎ �

✪ ✆ ☞✁� ✠☞ ☞✁✍ ✄❖✠ ✂ � � ✑ ✍✁ ✪ ✆ ☞ ✵ ✞ ✘ ✚
✞ ✟ ❃☛✡ ✝ � � ✁

✪ ✆ ☞ ☞✏✆☎✄ �
end for

✄✆ � ✞ ✏✝✆ ✞ ✘ ✚
✞ ❃✍✡ ✣✄✝☎ �

✪ ✆ ☞
The overall estimate of �✂✁ is then

� � ✁✯✗ � � ✁
✪

✄✆ ☞ ■
4.1.5 An alternative choice of

✆

Turkheimer et al. (2001) suggest an alternative way to choose
✆

. Their approach is based on Schweder
and Spjøtvoll’s (1982) p-value plot, described in the beginning of this section, and illustrated in Fig-
ure 3.

Turkheimer et al. (2001) observe that there should exist a break-point in the plot at the point where
the p-values are from the alternative hypotheses, as they as expected to be decidedly non-uniform.
Turkheimer et al.’s (2001) method chooses

✆
to be at this break-point. In practice, this is done by

testing smaller and smaller sets of p-values for independence, where the largest p-value is left out in
each iteration if the hypothesis of independence is rejected. Then,

✆
is chosen to be the largest p-value

in the first such set which is not rejected by this uniformity test. We refer to the paper by Turkheimer
et al. (2001) for further details2.

4.1.6 Smoothing of Schweder and Spjøtvoll’s estimator over
✆

The Schweder and Spjøtvoll’s (1982) estimator, can be plotted as a function of
✆

, as shown in Fig-
ure 4. Storey and Tibshirani (2003) present another procedure for estimating � ✁ based on Schweder
and Spjøtvoll’s (1982) estimator. Storey and Tibshirani (2003) proceed as follows: First � � ✁

✪ ✆ ☞ are
calculated over a (fine) grid of

✆
— in the article the range

☛
✞✠✟ ✞ ■ ✞✼✳ ✟ ✞ ■ ✞✟✞ ✟❏■❏■❏■ ✟ ✞ ■☎✄✆✁ ✎ is used as an ex-

ample. Then, a weighted natural cubic spline ✠ , with 3 degrees of freedom, is fitted to the
✪ ✆ ✟ � � ✁

✪ ✆ ☞ ☞ ☞ ,
where the weight ✳ ✵ ✆

is used for each
✆

. Finally, � ✁ is estimated by � �✄✁ ✗✡✠ ✪ ✳ ☞ . (In the R code
provided by Storey and Tibshirani (2003) � �☎✁✯✗☛✠ ✪ ✞ ■☎✄✆✁ ☞ .)
We find this procedure to be somewhat ad hoc. In particular, the choice of grid and smoothing method
seems quite arbitrary. In addition, the smoothing of � � ✁

✪ ✆ ☞ over a range of
✆

is essentially equivalent
to using estimates of the p-value density as the basis for estimation for � ✁ . This can be seen by the
following considerations. Let ✄� be the empirical distribution of the observed p-values,

�
the true

2Matlab code for estimation of ☞✟✌ with this method is freely available at http://www.irsl.org/ ✍ fet/pplot/pplot.html
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Figure 4: Schweder and Spjøtvoll’s estimator as a function of
✆

. (Data generated with true value
� ✁ =0.8)

(unknown) cumulative distribution function and ✍ the density of the p-values. Note that � � ✁
✪ ✆ ☞ can be

written as

� � ✁
✪ ✆ ☞✺✗ ✳✯✵ ✄� ✪ ✆ ☞✳ ✵ ✆ ■

Therefore, we can view � �✄✁
✪ ✆ ☞ as a plug-in estimator for the quantity �☎✁

✪ ✆ ☞ , defined by

� ✁
✪ ✆ ☞✺✗ ✳✯✵ � ✪ ✆ ☞✳ ✵ ✆ ■

A Taylor expansion of
� ✪ P✂☞ about the point

✆
gives� ✪ P☎☞ ✗ � ✪ ✆ ☞✕✘ ✪ P ✵ ✆ ☞ ✍
✪ ✆ ☞✕✘ ✳✞ ✪ P ✵ ✆ ☞ � ✍ ☞ ✪ ✆ ☞✕✘ ✱❏✱❏✱ ■

Inserting P ✗✬✳ we obtain

✳✯✗ � ✪ ✳ ☞✂✗ � ✪ ✆ ☞ ✘ ✪ ✳ ✵ ✆ ☞ ✍
✪ ✆ ☞✗✘ ✳✞ ✪ ✳ ✵ ✆ ☞ � ✍ ☞ ✪ ✆ ☞✕✘ ✱❏✱❏✱ ✟

which implies that

� ✁
✪ ✆ ☞✺✗ ✍

✪ ✆ ☞✗✘ ✳✞ ✪ ✳ ✵ ✆ ☞ ✍ ☞ ✪ ✆ ☞ ✘ ✱❏✱❏✱ ■
This means that smoothing over � � ✁

✪ ✆ ☞ near
✆ ✗ ✳ is asymptotically related to density estimation of ✍

in the setting of estimating �✂✁ — the two approaches are strongly related.

In Sections 4.2, 4.3 and 4.4 we present several estimators of � ✁ which are based on estimation of
p-value density. We feel that this formulation is more natural and intuitively pleasing, since it is based
on making interpretable restrictions on the p-value density. For these reasons, we have chosen not to
further discuss Storey and Tibshirani’s (2003) smoothing-procedure.
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4.2 Two estimators of ✁ ✁ based on decreasing density estimation

In this section, we present two estimators of �☎✁ based on the non-parametric maximum likelihood
decreasing density estimate of the p-values. This density estimator is known as the Grenander esti-
mator (Grenander 1956). The idea of using the Grenander estimator for estimation of � ✁ was also
mentioned by Genovese and Wasserman (2003).

4.2.1 The Grenander estimator of the p-value density

Consider the problem of finding an estimate ✄✍ ☎✁� ✟ of the density ✍ of the p-values, where � is the
set of decreasing density functions on ✂☎✄ , the positive real numbers. (Note that the p-values are all in
✂✆✄ ). Let P � ✠✄✂ ✮ ■❏■❏■◗✮✖P☎� ◆✆✂ be the ordered observed p-values from the � hypothesis tests. We choose

✄✍ to be the nonparametric maximum likelihood estimator (NPMLE) of ✍ . This is defined as

✄✍✍✗ ✞ ✏✝✆ ✞✟✞✡✠
✝ ❃✟✞ ◆✠

❈ ✄❖✠☛✡
✪ P � ❈ ✂ ☞ ■ (4.6)

Intuitively, this means that we choose the decreasing density function which “maximizes the probabil-
ity” of the observed sample. The solution ✄✍ is known as the Grenander estimator (Grenander 1956).
There is a simple expression for the values of ✄✍ ❈ ✗ ✄✍

✪ P � ❈✑✂ ☞ ❋ ● ✗ ✳ ✟❏■❏■❏■ ✟ � ✟ in terms of minima and
maxima (Robertson et al. 1988):

✄✍ ❈ ✗ ✞ ✘✛✚

✔✌☞ ❈✎✍ ✠ ✞✟✞✡✠
✌ ✂ ❈ ✄� ✪ P �✕✌ ✂ ☞ ✵ ✄� ✪ P �✍✔ ✂ ☞P �✍✌ ✂ ✵ P �✕✔ ✂ ✟ (4.7)

where ✄� is the empirical cumulative distribution function of the p-values. Determining only ✄✍ ✠ ✟❏■❏■❏■ ✟ ✄✍ ◆
is sufficient, because ✄✍ is constant on each interval

✪ P � ❈✑✂ ✟❄P � ❈ ✄ ✠✄✂ ✆ . If it was not, we could replace ✄✍
on
✪ P � ❈ ✂ ✟❄P � ❈ ✄ ✠✄✂ ✆ with the mean ✏✍

✪ P � ❈ ✄ ✠✄✂ ☞ of ✄✍ over the interval (a constant). Since ✄✍ is decreasing,

✏✍
✪ P � ❈ ✄ ✠✄✂ ☞ ☎ ✄✍

✪ P � ❈ ✄ ✠✄✂ ☞ , and then (4.6) implies that ✏✍ gives a higher likelihood than ✄✍ . But then ✄✍
cannot be the NPMLE, which is a contradiction (cf. Robertson et al. (1988)).

Equation (4.7) means that the Grenander estimate is the (left-hand) slope of the least concave majorant
(LCM) of the empirical cumulative distribution function of the p-values3.

4.2.2 Estimating �✄✁ by the minimum of the Grenander estimator

Suppose that we have calculated the Grenander estimate ✄✍ of Section 4.2.1 for a sample of p-values
from the density ✍ . Considering the mixture model ✍✥✗ � ✁ ✘

✪ ✳ ✵ � ✁ ☞✛✚ , the estimator

✄�✒✑✁ ✗ ✄✍
✪ ✳ ☞

immediately suggests itself.

Note that to compute ✄�✓✑✁ ✗ ✄✍
✪ ✳ ☞✺✗ ✄✍ ◆ , we actually only need to calculate

✄✍ ◆✷✗ ✞ ✘✛✚

✔✌☞ ◆✔✍ ✠ ✄� ✪ P � ◆✆✂ ☞ ✵ ✄� ✪ P �✕✔ ✂ ☞P☎� ◆✆✂ ✵ P☎�✍✔ ✂ ✗ ✞✡✘✛✚

✔✌☞ ◆✕✍ ✠ ✳ ✵ ✒ ✦ �P☎� ◆ ✂ ✵ P☎�✕✔ ✂ ✟ (4.8)

3The LCM of a given function ✖✘✗✚✙✜✛ at each point ✙ is defi ned as the infi mum at each point ✙ of the values at ✙ of all
concave functions whose graphs lie entirely above ✖ (Robertson et al. 1988). Informally, this means that the LCM is the
smallest concave function above ✖ .
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by the definition of ✄� , which limits the computational effort considerably. However, in this study we
will still make use of the complete density estimate. This is because we want to examine the density
estimates for simulated p-values, and also because we will consider another estimator of � ✁ based on

✄✍ in Section 4.2.3, namely ✄� ✔✁ .
Note that the estimator ✄� ✑✁ is very similar to Storey’s (2002b) plug-in estimator � �

☎
✁ , described in Sec-

tion 4.1.3:

� �
☎
✁ ✗ ✞ ✘✛✚

✞ ❃☛✡ ✄� ✪ ✳ ☞ ✵ ✄� ✪ ✆ ☞✳✎✵ ✆ ✗ ✞ ✘✛✚

✞ ❃☛✡ ✳ ✵ ✄� ✪ ✆ ☞✳✯✵ ✆ ✟
where � is a grid over ✝ ✞✠✟ ✳ ☞ . The only differences between ✄� ✑✁ and � �

☎
✁ is that P � ◆ ✂ is replaced by 1 in

the denominator, and the fact that the minimum is taken over the grid � for � �
☎
✁ and over all observed

p-values for ✄� ✑✁ . Clearly, P � ◆✆✂ ✂❇✳ in most cases.

Simply computing ✄✍ by direct use of Equation (4.7) is computationally inefficient. We have chosen
to make use of the fact that NPMLE density estimation can be considered a special case of antitonic

regression, which implies that ✄✍ can be calculated more efficiently using an algorithm known as
the Pool Adjacent Violators Algorithm (PAVA). We omit the description of these implementational
matters, interested readers are referred to the book by Robertson et al. (1988).

4.2.3 Estimating � ✁ at the longest constant interval in the Grenander estimator

Given the ordered p-values P❖✠ ✟❏■❏■❏■ ✟❄P � ◆ ✂ we can now find the decreasing density estimate ✄✍
✪ P✂☞ and

compute the estimator
✄�✒✑✁ ✗ ✄✍

✪ ✳ ☞
described in Section 4.2.2. However, this does not work well in practice.

The problem is illustrated in Figure 5, where the Grenander estimates are plotted for the two real
DNA microarray data sets which will be analyzed in Section 7. In both cases it is seen that the
density estimates “flatten out” when P increases, and then suddenly drop down to a significantly
smaller value for P close to 1. This “drop-down”-effect was also seen in the simulation experiment
described in Section 6. It is intuitively reasonable that this should happen for a density estimate which
is constrained to be decreasing.

For the reasons explained above, it does not seem like a good idea to estimate � ✁ by ✄� ✑✁ ✗ ✄✍
✪ ✳ ☞ ■ If we

still want to base our estimator on ✄✍ , how should we proceed? First, as noted in the Section 4.2.1, recall
that ✄✍ is constant over each interval

✪ P � ❈✑✂ ✟❄P � ❈ ✄ ✠✄✂ ✆ , and of course also could be constant over longer
intervals

✪ P✁� ✟❄P
✍
✆ ✟ ✂☎✄ ✕ . Let ✆ ✠ ✟❏■❏■❏■ ✟✝✆ ✌ denote the indices of the “change points”, i.e. P �✟✞✡✠ ✂ ✟❏■❏■❏■ ✟❄P☎�☛✞✌☞ ✂

is the set of p-values P � ❈✑✂ for which P � ❈✑✂ ☎❑P � ❈ ✄ ✠✄✂ .
As Figure 5 would suggest, the typical ✄✍ seems to be constant over increasingly long intervals, and
the sizes of the jumps between the constant level decrease. Then, for some P close to 1 there is a
relatively big jump, and ✄✍ is constant over one or more very short interval(s). Also, according to our
mixture model ✍ ✗ � ✁ ✘

✪ ✳ ✵ � ✁ ☞✛✚ (where ✚ is the density of the alternative p-values), the density
should eventually settle close to the constant level � ✁ . These observations suggest a new estimator for
� ✁ , based on the NPMLE decreasing density estimate ✄✍ . The idea of this estimator, denoted ✄� ✔✁ , is to
choose the value of ✄✍

✪✲✱
☞ in the region where ✄✍❴✮✴✳ for which ✄✍ is constant over the longest interval✪ P �☛✞✎✍☛✏ ✠ ✂ ✟❄P �☛✞✎✍ ✂ ✆ . This “longest-length interval” estimator should be valid asymptotically, because then

the p-value density will be nearly constant for large P . The simulation experiment carried out in
Section 6 shows that ✄� ✔✁ is a great improvement over ✄�✓✑✁ .
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Figure 5: Grenander NPMLE decreasing density estimates for the p-values from Hedenfalk et
al. (2001) and Nygaard et al. (2003).
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Formally, the estimator ✄� ✔✁ is defined as follows:

✄� ✔✁ ✗ ✄✍ ✌ ❋ where ✎ ✗ ✞ ✏✝✆ ✞✟✞✡✠✽ ✞✎✍ ❀ ✖� ✝✂✁
✍

✡ ☞ ✠ ❆
☛ P �✟✞✌✍ ✂ ✵ P �✟✞✎✍☛✏ ✠ ✂ ✎ ✟

where we let P �✟✞ ✌ ✂ ✗ ✞ for ease of notation.

4.3 Estimating ✁ ✁ using convex decreasing density estimation

In this section we use a density estimate ✄✍☎✄ ✪ P✂☞ of the p-values, restricted to be convex and decreas-
ing on ✝ ✞✠✟ ✳✝✆ , to estimate �✄✁ . The motivation for the convexity assumption is the ’drop-down’-effect
(underestimation of the density near P ✗❇✳ ) discussed earlier.

In this section, we will first establish a new mixture representation for ✍ . Using this mixture represen-
tation, we are able to characterize the maximum likehood estimate for ✍ . This characterization is then
the basis for an iterative algorithm to calculate an approximate maximum likelihood estimate, which
we use as the ✄✍ ✄ for calculating ✄� ✄✁ .
We want to estimate ✍ under the assumption that it is convex and decreasing on ✝ ✞✠✟ ✳✝✆ ( ✍ vanishes
outside this interval). For this assumption to hold, it is clearly necessary and sufficient that ✚ is
convex and decreasing on (the convex set) ✝ ✞✠✟ ✳✝✆ — since ✆✞✝❇✳ is a convex function and ✍ is a convex
combination of ✆ and ✚ .

The strategy we will follow is to estimate ✍ by a certain finite mixture of the uniform density on ✝ ✞✠✟ ✳✝✆
and a collection of densities ✍ ✁ , where ✄ ☎ ✞ . Groeneboom et al.’s (2002) proof that any convex
decreasing density on ✝ ✞✠✟☛✡ ☞ has a mixture representation is presented in Section 4.3.1. A novel
extension of their result, described in Section 4.3.2, allows us to find a mixture representation for
p-value density ✍ . This extension is needed because ✍ is convex only on ✝ ✞✠✟ ✳✝✆ , not on ✝ ✞✠✟☛✡ ☞ . Based
on the mixture representation, we establish necessary and sufficient conditions for an estimate ✄✍ to be
the maximum likehood estimate of ✍ in Section 4.3.3. This characterization is used in Section 4.3.4
to specify an algorithm for computation of an approximate maximum likelihood estimate, which we
use as our convex decreasing p-value density estimate ✄✍ ✄ .
The final estimate is then

✄� ✄✁ ✗ ✄✍ ✄ ✪ ✳ ☞ ■
4.3.1 Mixture representation for convex decreasing densities on ✝ ✞✠✟☛✡ ☞

In Groeneboom et al. (2002) it is shown that any convex decreasing density ✠ on ✝ ✞✠✟☛✡ ☞ can be written
as a continuous mixture

✠ ✪✠✟ ☞✺✗ ✡☞☛
✁ ✍ ✁ ✪✠✟ ☞ ✘✍✌ ✪ ✄ ☞✏✎❩✄ ✟ (4.9)

where ✘✏✌ is a probability density on ✝ ✞✠✟☛✡ ☞ and

✍ ✁ ✪✠✟ ☞✺✗ ✞ ✪ ✄✘✵ ✟
☞✄ � ✑ � ✁✓✒ ✁ ✂ ✪✠✟ ☞☛✟ ✄ ☎ ✞ ■ (4.10)

Here ✑✕✔ is the indicator function on the set ✖ , i.e. ✑✗✔
✪✠✟
☞✘✗ ✳ if

✟ ☎✘✖ and equals zero otherwise.
Notice that each density ✍ ✁ is a very simple triangular density, as illustrated in Figure 6.
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Figure 6: The mixing density ✍ ✁ ✪✠✟ ☞ for different ✄ .

Using the class of mixing densities ✘ defined by

✘ ✌ ✪ ✄ ☞ ✗ ✳✞ ✄ � ✠ ☞ ☞ ✪ ✄ ☞ (4.11)

we see that

✡ ☛
✁ ✍ ✁ ✪✠✟ ☞ ✘✏✌ ✪ ✄ ☞✏✎❩✄ ✗ ✡ ☛

�

✞ ✪ ✄✘✵ ✟
☞✄ � ✘✍✌ ✪ ✄ ☞✏✎❩✄

✗ ✡ ☛
�

✪ ✄ ✵ ✟
☞ ✠ ☞ ☞ ✪ ✄ ☞✏✎❩✄

✗ ✡ ☛
�

✄ ✠ ☞ ☞ ✪ ✄ ☞✏✎❩✄ ✵ ✟ ✡ ☛
�

✠ ☞ ☞ ✪ ✄ ☞✏✎❩✄ (by partial integration)

✗ ✄ ✠ ☞ ✪ ✄ ☞❏✭ ☛� ✵ ✡ ☛
�

✠ ☞ ✪ ✄ ☞✏✎❩✄ ✵ ✟ ✠ ☞ ✪ ✄ ☞❏✭ ☛�
✗ ✪

✞✘✵ ✟ ✠ ☞ ✪✠✟ ☞ ☞ ✵ ✪
✞ ✵ ✠ ✪✠✟ ☞ ☞ ✵ ✪

✞✘✵ ✟ ✠ ☞ ✪✠✟ ☞ ☞✗ ✠ ✪✠✟ ☞☛✟ (4.12)

which establishes Groeneboom et al.’s (2002) result.

Note that the condition that ✠ is convex is necessary, since otherwise ✘ ✌ could be negative (and hence
not a density). The demand that ✠ be decreasing is used in the evalution of the integrals in the previous
calculation.
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4.3.2 Mixture representation for convex decreasing p-value densities

We want to find a mixture representation for ✍ , the density of the p-values, but ✍ is only convex on
the interval ✝ ✞✠✟ ✳✝✆ and not on ✝ ✞✠✟☛✡ ☞ . Therefore, the result of Groeneboom et al.’s (2002) described in
Section 4.3.1 does not apply. In this subsection we demonstrate an extension of their result, which
allows us to find a mixture representation for ✍ .

For simplicity, we start by finding a mixture representation for ✚ , the density of the alternative p-
values. We will assume that ✚ is twice differentiable and that ✚

✪ ✳ ☞✂✗ ✞ . The support of ✚ is ✝ ✞✠✟ ✳✝✆ , and
✚ ☞ ✪✠✟ ☞ ✮ ✞ and ✚ ☞ ☞ ✪✠✟ ☞ ✟ ✞ for all

✟ ☎ ✝ ✞✠✟ ✳✝✆ . We claim that ✚ can be written as a continuous mixture of
✍ ✁ on ✝ ✞✠✟ ✳✝✆ with respect to the mixing density ✘✁�✑✗ ✠� ✄ � ✚ ☞ ☞ ✪ ✄ ☞ (of the class (4.11)) plus a point mass
on the density ✍ ✠ ✪✠✟ ☞✺✗ ✞ ✪ ✳ ✵ ✟

☞ :

✚
✪✠✟
☞✺✗ ✡ ✠

✁ ✍ ✁ ✪✠✟ ☞ ✘✂� ✪ ✄ ☞✏✎◗✄ ✘ ✞ ✪ ✳✯✵ ✟
☞ ✂ ✟ where ✂ ✗❇✳ ✵ ✡ ✠

✁ ✘✂� ✪ ✄ ☞✏✎❩✄✼■ (4.13)

To prove this, we examine Equation (4.13) term by term.

We first evaluate the first term in Equation (4.13) (recall that ✚
✪ ✳ ☞✂✗ ✞ ):

✡ ✠
✁ ✍ ✁ ✪✠✟ ☞ ✘✂� ✪ ✄ ☞✏✎❩✄ ✗ ✡ ✠

�

✞ ✪ ✄✘✵ ✟
☞✄ � ✳✞ ✄ � ✚ ☞ ☞ ✪ ✄ ☞✏✎❩✄

✗ ✡ ✠
�

✄ ✚ ☞ ☞ ✪ ✄ ☞✏✎❩✄ ✵ ✟ ✡ ✠
�

✚ ☞ ☞ ✪ ✄ ☞☛✟ ✎❩✄
✗ ✄ ✚ ☞ ✪ ✄ ☞❏✭ ✠� ✵ ✡ ✠

�

✚ ☞ ✪ ✄ ☞✏✎◗✄ ✵ ✟❍✪
✚ ☞ ✪ ✳ ☞✺✵ ✚ ☞ ✪✠✟ ☞ ☞ (by partial integration)

✗✂✚ ☞ ✪ ✳ ☞ ✵ ✟
✚ ☞ ✪✠✟ ☞ ✵ ✚

✪ ✳ ☞✕✘ ✚
✪✠✟
☞ ✵ ✟

✚ ☞ ✪ ✳ ☞✕✘ ✟
✚ ☞ ✪✠✟ ☞✗✂✚

✪✠✟
☞ ✘

✪ ✳ ✵ ✟
☞✛✚ ☞ ✪ ✳ ☞ ■ (4.14)

Considering the second term in (4.13), we see that✡ ✠
✁ ✘✂� ✪ ✄ ☞✏✎❩✄ ✗ ✡ ✠

✁
✳✞ ✄ � ✚ ☞ ☞ ✪ ✄ ☞✏✎❩✄

✗ ✳✞ ✄ � ✚ ☞ ✪ ✄ ☞❏✭ ✠✁ ✵ ✡ ✠
✁ ✄ ✚ ☞ ✪ ✄ ☞✏✎◗✄ (by partial integration)

✗ ✳✞ ✚ ☞ ✪ ✳ ☞ ✵ ✡ ✠
✁ ✄ ✚ ☞ ✪ ✄ ☞✏✎❩✄

✗ ✳✞ ✚ ☞ ✪ ✳ ☞ ✵ ✠ ✄ ✚ ✪ ✄ ☞❏✭ ✠✁ ✵ ✡ ✠
✁ ✚

✪ ✄ ☞✏✎❩✄ ✡ (by partial integration)

✗ ✳✞ ✚ ☞ ✪ ✳ ☞✕✘✷✳ ■ (4.15)

From (4.15) it immediately follows that ✘✁� is a density if and only if ✚ ☞ ✪ ✳ ☞ ✗ ✞ . There is obviously
no reason that ✚ ☞ ✪ ✳ ☞ has to be zero — and, intuitively, the reason to introduce the point mass in (4.13)
is to allow that ✚ ☞ ✪ ✳ ☞ ✄ ✞ . The weight ✂ in Equation (4.13) can now be found explicitely;

✂ ✗❇✳✎✵ ✡ ✠
✁ ✘✄� ✪ ✄ ☞✏✎❩✄ ✗❇✵ ✳✞ ✚ ☞ ✪ ✳ ☞ ■ (4.16)
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Insertion of (4.14) and (4.16) into the right side of the mixture representation in Equation (4.13) gives✡ ✠
✁ ✍ ✁ ✪✠✟ ☞ ✘✄� ✪ ✄ ☞✏✎❩✄ ✘ ✞ ✪ ✳ ✵ ✟

☞ ✂ ✗ ✚
✪✠✟
☞ ✘
✪ ✳✯✵ ✟

☞✛✚ ☞ ✪ ✳ ☞ ✘ ✞ ✪ ✳ ✵ ✟
☞
✠ ✵ ✳✞ ✚ ☞ ✪ ✳ ☞ ✡

✗ ✚
✪✠✟
☞☛✟

and the mixture representation for ✚ is established.

Since the density ✍ of the p-values is a mixture of the convex function ✆ ✝ ✳ and ✚ , this immediately
implies that ✍ also has a mixture representation: For notational simplicity, we write ✍ ✁

✪✠✟
☞ ✝ ✆ . Then

✍
✪✠✟
☞ ✗ ✡ ☛

✁ ✍ ✁ ✪✠✟ ☞✏✎✁� ✪ ✄ ☞
✝ � ✁ ✍ ✁

✪✠✟
☞✗✘
✪ ✳ ✵ � ✁ ☞ ✠ ✡ ✠✁ ✍ ✁ ✪✠✟ ☞ ✘✂� ✪ ✄ ☞✏✎❩✄ ✘ ✍ ✠ ✪✠✟ ☞ ✠ ✳ ✵ ✡ ✠

✁ ✘✄� ✪ ✄ ☞✏✎❩✄ ✡✏✡ ✟ (4.17)

which is the desired mixture representation.

4.3.3 Characterization of the maximum likelihood estimate of ✍

Before we consider maximum likelihood estimation of ✍ , we need to review some terminology and
basic results regarding the minimization of a convex functional defined on a convex set of functions.
The maximum likelihood estimate will later be defined as the minimizer of a certain convex functional,
and these more general results are the basis for our estimation procedure. The following results and
definitions are taken from Groeneboom et al. (2002).

Let ✂ be a convex set of functions, and ✄ a convex functional defined on ✂ . Consider the optimization
problem

minimize ✄
✪

✡
☞ for

✡
☎☎✂ ✟ (4.18)

where we assume that the minimizer exists and is unique.

For each
✡
☎✆✂ we define the directional derivative of

✡
with respect to ✄ as follows. Let ✝ be a

function such that
✡
✘✟✞✠✝✤☎✡✂ for some number ✞ ☎ ✞ . The directional derivative in the direction ✝

is then ☛ ☞ ✪ ✝ ❋
✡
☞✕✗ ❨✛✘✛✞✌✎✍ ✁ ✄

✪
✡
✘✏✞✠✝ ☞ ✵✑✄ ✪

✡
☞

✞ ■
One possible way of choosing ✝ is letting ✝❴✗✓✒ ✵

✡
for some ✒ ☎☎✂ .

Equipped with the operator

☛ ☞ we can characterize the solution of the minimization problem (4.18):

✄
✡
✗ ✞ ✏ ✆✂✞✡✘✛✚

✝ ❃✕✔ ✄
✪

✡
☞ if and only if

☛ ☞ ✪ ✒ ✵ ✄
✡
❋ ✄

✡
☞ ✟ ✞ ❋✗✖✘✒✞☎☎✂ ■ (4.19)

This equivalence is not difficult to show. To prove necessity ( ✔ ), let ✄
✡

be the minimum of ✄ over ✂
and ✒ be a function in the set ✂ . Note that for any ✞✂☎✌✞ ,

✄
✪
✄

✡
✘✟✞
✪
✒ ✵ ✄

✡
☞ ☞ ✵✙✄ ✪ ✄

✡
☞

✞ ✟ ✞ ■
Taking the limit as ✞✛✚ ✞ on both sides of the inequality we get that

☛ ☞ ✪ ✒✖✵ ✄
✡
❋ ✄

✡
☞ ✟ ✞ . To show

sufficiency ( ✜ ), let ✒ be an arbitrary function in ✂ . By assumption

☛ ☞ ✪ ✒✡✵✠✄
✡
❋ ✄

✡
☞ ✟ ✞ . Define the
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function � by �
✪
✞☛☞✘✗ ✄

✪ ✪ ✳✘✵✏✞ ☞ ✄✍ ✘ ✞✠✒✂☞✘✗ ✄
✪
✄

✡
✘ ✞
✪
✒✞✵✞✄

✡
☞ ☞ . Clearly � is convex, because it is the

composition of the functions
✪ ✳❖✵ ✞ ☞ ✄

✡
✘☎✞✠✒ (which is convex because it is a convex combination of the

convex functions ✄
✡

and ✒ ) and ✄ (which is also convex). By convexity of � , �
✪ ✳ ☞ ✵✁� ✪ ✞ ☞ ✟✂� ☞ ✪ ✞ ✘ ☞

where �
☞ ✪ ✞ ✘ ☞ is the right-hand derivative of � . By the definitions of � and

☛ ☞ , ✄
✪
✒✂☞ ✵ ✄

✪
✄

✡
☞✡✗

�
✪ ✳ ☞ ✵✄� ✪ ✞ ☞ and �

☞ ✪ ✞ ✘ ☞ ✗ ☛ ☞ ✪ ✒ ✵ ✄
✡
❋ ✄

✡
☞ ✟ ✞ . This implies that ✄

✪
✒☎☞ ✵✙✄ ✪ ✄

✡
☞ ✟ ✞ . Since ✒❑☎ ✂ was

arbitrary, it follows that ✄
✡

is the minimizer over ✂ .

If the functional ✄ has the linearity property that for any probability measure � and any mixture
✒
✪✠✟
☞✺✗ ☎

✡
✁ ✪✠✟ ☞ ✎✁� ✪ ✄ ☞ (where

✡
✁ ☎☎✂ for all ✄ ✟ ✞ ) and any

✡
☎☎✂

☛ ☞ ✪ ✒ ✵
✡
❋

✡
☞✺✗ ✡☞☛

✁

☛ ☞ ✪
✡
✁ ✵

✡
❋

✡
☞✏✎✁� ✪ ✄ ☞☛✟ (4.20)

then it follows from the equivalence (4.19) that

✄
✡
✗ ✞ ✏✝✆ ✞ ✘ ✚

✝ ❃✕✔ ✄
✪

✡
☞ if and only if

☛ ☞ ✪
✡
✁ ✵ ✄

✡
❋ ✄

✡
☞ ✟ ✞ ❋✗✖ ✄ ✟ ✞ ■ (4.21)

So, the (rather strict) condition in (4.19); that

☛ ☞ ✪ ✒✍✵✆✄
✡
❋ ✄

✡
☞ ✟ ✞ for all ✒❙☎ ✂ , can be relaxed to the

condition that

☛ ☞ ✪
✡
✁ ✵ ✄

✡
❋ ✄

✡
☞ for all ✄ ✟ ✞ in this case.

This concludes the general convex optimization results that are needed. We now consider maximum
likelihood estimation of some density function ✆ ☎☎✂ . Assume that we are given a sample

✟ ✠ ✟❏■❏■❏■ ✟ ✟ ◆
from ✆ . The maximum likelihood estimate ✄✆ is defined as the solution of the minimization func-
tion (4.18), where

✄
✪
✆✠☞✺✗✬✵ ✌ ☞ ❨ ✒ ✆

✆
✪✠✟ ❈ ☞☛✟ (4.22)

and ✁ ☞
denotes the sum over all ● such that ✆

✪✠✟ ❈ ☞ ☎ ✞ . Note that ✄ is a negative loglikelihood, so
minimizing it makes sense. Also, ✄

✪
✆✠☞ is a convex functional of ✆ , since the sum of logarithms is

concave.

For the ”maximum likelihood functional” ✄
✪
✆✠☞ ✗ ✵ ✁ ☞ ❨✛✒ ✆

✆
✪✠✟ ❈ ☞ there is a simple expression for☛ ☞ ✪ ✝ ❋✝✆✠☞ :

☛ ☞ ✪ ✝ ❋✝✆✠☞✕✗ ❨✛✘✛✞✌✎✍ ✁ ✵ ✁ ☞ ❨ ✒ ✆ ✪
✆
✪✠✟ ❈ ☞✗✘✏✞✠✝

✪✠✟ ❈ ☞ ☞ ✵ ✪ ✵ ✁ ☞ ❨ ✒ ✆
✆
✪✠✟ ❈ ☞ ☞

✞
✗❇✵ ✌ ☞ ❨✛✘✛✞

✌ ✍ ✁
❨ ✒ ✆ ✪ ✳ ✘✏✞

✪
✝
✪✠✟ ❈ ☞ ✦✞✆ ✪✠✟ ❈ ☞ ☞ ☞
✞

✗❇✵ ✌ ☞ ❨✛✘✛✞
✌ ✍ ✁ ✝

✪✠✟ ❈ ☞ ✦✞✆ ✪✠✟ ❈ ☞✳ ✘✏✞
✪
✝
✪✠✟ ❈ ☞ ✦✞✆ ✪✠✟ ❈ ☞ ☞ (by L’Hopital’s rule)

✗❇✵ ✌ ☞ ✝
✪✠✟ ❈ ☞
✆
✪✠✟ ❈ ☞ ■ (4.23)
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The linearity property (4.20) holds for ✄
✪
✆✠☞✂✗❇✵ ✁ ☞ ❨ ✒ ✆

✆
✪✠✟ ❈ ☞ . This is seen by noting that in this case

☛ ☞ ✪ ✒ ✵ ✆◗❋✝✆ ☞✂✗❇✵ ✌ ☞ ✒
✪✠✟ ❈ ☞❍✵ ✆

✪✠✟ ❈ ☞
✆
✪✠✟ ❈ ☞

✗❇✵ ✌ ☞ ☎ ☛
✁
✪
✆
✁ ✪✠✟ ❈ ☞❍✵ ✆

✪✠✟ ❈ ☞ ☞✏✎✁� ✪ ✄ ☞
✆
✪✠✟ ❈ ☞

✗ ✡ ☛
✁

✠ ✵ ✌ ☞ ✆
✁ ✪✠✟ ❈ ☞❍✵ ✆

✪✠✟ ❈ ☞
✆
✪✠✟ ❈ ☞ ✡ ✎✁� ✪ ✄ ☞

✗ ✡ ☛
✁

☛ ☞ ✪ ✆ ✁ ✵ ✆◗❋✝✆✠☞✏✎ � ✪ ✄ ☞ ■
Given the observed p-values P❍✠ ✟❏■❏■❏■ ✟❄P◗◆ , our aim is to find an estimate ✄✍✹☎ ✂ of the density of the
p-values. In Section 4.3.2 we proved that ✍ can be represented by a mixture;

✍
✪✠✟
☞ ✗ ✡ ✠

✁ ✍ ✁ ✪✠✟ ☞✏✎✁� ✪ ✄ ☞☛✟ (4.24)

where the mixing density is

✍ ✁ ✪✠✟ ☞✺✗ ❘
✑ ✁ ✁✓✒ ✠✄✂ ✪✠✟ ☞ if ✄✒✗ ✞✠✟� � ✁ ✍ � ✂✁✆☎ ✑ � ✁✓✒ ✁ ✂ ✪✠✟ ☞ if ✄✆☎ ✪ ✞✠✟ ✳✝✆✿■

This means that we can use the linearity property (4.20) of ✄ , which again implies that the equivalence
in (4.21) holds. For the mixture representation we have for ✍ , equivalence (4.21) then implies that ✄✍
is the maximum likelihood estimate if and only if☛ ☞ ✪ ✍ ✁ ✵ ✄✍❍❋ ✄✍✂☞ ✟ ✞ for all ✄✑☎ ✝ ✞✠✟ ✳✝✆❊■ (4.25)

Using the expression for

☛ ☞ from (4.23), we see that

☛ ☞ ✪ ✍ ✁ ✵ ✄✍❍❋ ✄✍✂☞✂✗ ✌ ☞ ✄✍
✪ P◗❈ ☞ ✵ ✍ ✁ ✪ P ❈ ☞

✄✍
✪ P ❈ ☞ ❋ ✄✑☎ ✝ ✞✠✟ ✳✝✆❊■

Let

✄✄✓✗ ✞ ✏✝✆ ✞ ✘✛✚✁ ❃✝✁ ✁✓✒ ✠✄✂
☛ ☞ ✪ ✍ ✁ ✵ ✄✍❖❋ ✄✍ ☞✺✗ ✞ ✏✝✆ ✞ ✘✛✚✁ ❃✝✁ ✁✓✒ ✠✄✂ ✌ ☞ ✄✍

✪ P◗❈ ☞ ✵ ✍ ✁ ✪ P◗❈ ☞
✄✍
✪ P◗❈ ☞ ■ (4.26)

Then ✄✍ is the likelihood estimate of ✍ if and only if☛ ☞ ✪ ✍ ✖✁ ✵ ✄✍❵❋ ✄✍ ☞ ✟✌✞ (4.27)

or equivalently ✌ ☞ ✄✍
✪ P ❈ ☞❍✵ ✍ ✖✁ ✪ P◗❈ ☞

✄✍
✪ P◗❈ ☞ ✟ ✞ ■ (4.28)
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4.3.4 An algorithm for calculating an approximate MLE of ✍

From Equation (4.28) in Section 4.3.3, we now have a characterization of the maximum likelihood
estimate ✄✍ in terms of the observed p-values. This result provides the basis for calculation of an ap-

proximate maximum likelihood estimate ✄✍ ✄ . Since our only reason for estimating ✍ is that it provides
a way to estimate �✄✁ , a good approximation should be sufficient for our purposes.

The algorithm we present for estimation of ✍ was proposed by Fedorov (1972) and Wynn (1970)
(in a completely different context). This procedure works as follows: We first specify a convex and
decreasing initial value ✄✍ ✁ (e.g. ✄✍ ✁ ✗ ✑ ✝ ✞✠✟ ✳✝✆ ). Then for ✎ ✗ ✞✠✟ ✳ ✟ ✞ ✟❏■❏■❏■ , given the current iterate ✄✍ ✌ , we
determine ✄✄ (where ✄✍ ✌ replaces ✄✍ in Equation (4.26)). If

☛ ☞ ✪ ✍ ✖✁ ✵ ✄✍ ✌ ❋ ✄✍ ✌ ☞ ✟ ✞ , then the current iterate
✄✍ ✌ is optimal by (4.27) and we are done. Otherwise, the next iterate is

✄✍ ✌ ✄ ✠✺✗ ✪ ✳✯✵ ✄� ☞ ✄✍ ✌ ✘✞✄� ✍ ✖✁ ✟ (4.29)

where

✄� ✗ ✞ ✏✝✆ ✞ ✘ ✚
✁ ❃ ✁ ✁✓✒ ✠✄✂ ✄

✪ ✪ ✳✯✵ � ☞ ✄✍ ✌ ✘ � ✍ ✖✁ ☞✺✗ ✞ ✏ ✆✂✞✡✘✛✚
✁ ❃ ✁ ✁✓✒ ✠✄✂ ✎ ✵ ✌ ☞ ❨ ✒ ✆ ✪ ✪ ✳ ✵ � ☞ ✄✍ ✌ ✪ P ❈ ☞✕✘ � ✍ ✖✁ ✪ P ❈ ☞ ☞ ✓ ■ (4.30)

This procedure is an analogue to the ”steepest descent”-algorithms used for optimizing functions on
the Euclidian ✂ -space ✂ ✄ . In each step, the next iterate is the optimal convex combination of the
current iterate and the mixing density, ✄✍ ✁ , corresponding to the most negative directional derivative
(which is ”the best direction”).

In practice, we calculate an approximate ✄✄ by finding the ✄✷☎ ☎ which minimizes ✁ ☞ ✪ ✪ ✍ ✁ ✪ P ❈ ☞✯✵
✄✍ ✌
✪ P◗❈ ☞ ☞ ✦ ✄✍ ✌ ✪ P ❈ ☞ ☞ where

☎
is a grid over ✝ ✞✠✟ ✳ ☞ , e.g.

☎ ✗ ☛
✞✠✟ ✞ ■ ✞✼✳ ✟ ✞ ■ ✞✟✞ ✟❏■❏■❏■ ✟❏■☎✄✆✄ ✎ . This reduces the

problem of calculating ✄✄ to finding the minimal element in a vector. Since the function �
✪
� ☞❑✗

✄
✪ ✪ ✳✯✵ � ☞ ✄✍ ✌ ✘ � ✍ ✖✁ ☞ is convex, ✄� can be found by a bisection search. Note that

�
☞ ✪ � ☞✺✗❇✵ ✌ ☞ ✎✎ �

❨ ✒ ✆ ✪ ✪ ✳ ✵ � ☞ ✄✍ ✌ ✪ P ❈ ☞✗✘ � ✍ ✖✁ ✪ P ❈ ☞ ☞✺✗ ✌ ☞ ✄✍ ✌
✪ P ❈ ☞ ✵ ✍ ✖✁ ✪ P◗❈ ☞✪ ✳ ✵ � ☞ ✄✍ ✌ ✪ P◗❈ ☞✕✘ � ✍ ✖✁ ✪ P ❈ ☞ ■

Since � is convex, we know that if �
☞ ✪ ✞ ☞ ✟ ✞ then ✄� ✗ ✞ . If this is not the case, then a proposed

value � ✑ is too small if �
☞ ✪ � ✑ ☞ ✄ ✞ and too large if �

☞ ✪ � ✑ ☞ ☎✌✞ , so we can use a bisection search in the
obvious way.

The iteration is run until

☛ ☞ ✪ ✍ ✖✁ ✵ ✄✍ ✌ ❋ ✄✍ ✌ ☞ ☎ ✵✝✆ where ✆ is a positive accuracy parameter. In addition,
we recommend to specify a maximal number

✝
of ✍ ✁ (for ✄ ☎ ✞ ) that one is willing to include in the

mixture.

Let ✄✍ be the last ✄✍ ✌ which is calculated before the iteration terminates. Our estimate of � ✁ is then

✄� ✄✁ ✗ ✄✍ ✪ ✳ ☞ ■
The entire estimation procedure is formally specified as Algorithm 2 below.

4.4 Estimating ✁ ✁ using kernel density estimation

In this section we will describe an estimator based on a kernel density estimate of the p-value density
✍
✪ P✂☞ . As for the other density estimation based estimators (except ✄� ✔✁ ), the basic approach here is

using the value at P ✗✬✳ of an estimate of ✍ as an estimator of � ✁ .
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Algorithm 2 Calculation of an approximate MLE of ✍ (Fedorov/Wynn)P ✠ ✟❏■❏■❏■ ✟❄P◗◆ ☛ observed p-values☎ ☛ grid covering ✝ ✞✠✟ ✳✝✆ (e.g.
☛
✞✠✟ ✞ ■ ✞✼✳ ✟ ✞ ■ ✞✟✞ ✟❏■❏■❏■ ✟ ✳ ✎ )✝ ☛ maximal number of ✍ ✁ where ✄ ☎ ✞ to include in the mixture

✆ ✟✁� ☎ ✞✆☛ accuracy parameters
✄✍ � ✑ ✁ ✁✓✒ ✠✄✂✄✄ � ✞ ✏✝✆ ✞ ✘✛✚ ✁ ❃✄✂ ✁ ☞ ✪ ✄✍ ✪ P ❈ ☞ ✵ ✍ ✁ ✪ P ❈ ☞ ☞ ✦ ✄✍ ✪ P ❈ ☞
✎ � ✞
while ✎❚✮ ✝

and ✁ ☞ ✪ ✄✍ ✪ P ❈ ☞❍✵ ✍ ✖✁ ✪ P ❈ ☞ ☞ ✦ ✄✍ ✪ P ❈ ☞ ☞ ✮ ✵ ✆ [i.e.

☛ ☞ ✪ ✍ ✖✁ ✵ ✄✍ ✌ ❋ ✄✍ ✌ ☞✕✮ ✵✝✆ ] do

if ✁ ☞ ✪ ✄✍ ✪ P◗❈ ☞ ✵ ✍ ✖✁ ✪ P◗❈ ☞ ☞ ✦ ✄✍ ✪ P◗❈ ☞ ✟ ✞ [i.e. �
☞ ✪ ✞ ☞ ✟ ✞ ] then

✄� � ✞
else✒ � ✞ ❋ ✒ � ✳

while ✒ ✵ ✒
☎☎� do

✄� � ✪ ✒ ✘ ✒✂☞ ✦ ✞
if ✁ ☞ ✪ ✄✍ ✪ P◗❈ ☞ ✵ ✍ ✖✁ ✪ P◗❈ ☞ ☞ ✦ ✪ ✪ ✳ ✵ ✄� ☞ ✄✍ ✪ P◗❈ ☞✕✘✞✄� ✍ ✖✁ ✪ P◗❈ ☞ ☞ ✄ ✞ [i.e. �

☞ ✪
✄� ☞ ✄ ✞ ] then✒ � ✄�

else

✒ � ✄�
end if

end while

end if

if ✄✄ ☎ ✞ and ✄� ☎ ✞ then

✎ � ✎ ✘✷✳
end if
✄✍ � ✪ ✳ ✵ ✄� ☞ ✄✍ ✘✠✄� ✍ ✖✁
✄✄ � ✞ ✏✝✆ ✞ ✘✛✚ ✁ ❃✄✂ ✁ ☞ ✪ ✄✍ ✪ P ❈ ☞ ✵ ✍ ✁ ✪ P◗❈ ☞ ☞ ✦ ✄✍ ✪ P◗❈ ☞

end while
✄✍ ✄ � ✄✍
✄� ✄✁ � ✄✍☎✄ ✪ ✳ ☞
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The kernel method for density estimation is presented in e.g. Silverman (1986). Formally, it can be
described as follows: Let � be a function satisfying

✡ ☛
✍ ☛ �

✪ ✸ ☞✏✎✼✸ ✗✬✳ ■
� is called a kernel function. (A symmetric probability density is a common choice for � .) Given
independent, identically distributed observation

✟ ✠ ✟❏■❏■❏■ ✟ ✟ ✄ from a density ✠ , the kernel estimator with
kernel � and smoothing parameter ✎ is then defined by

✄✠ ✪✠✟ ☞✺✗ ✳
✂☎✎

✄✌
❈☎✄❖✠ �

✠ ✟ ✵ ✟ ❈
✎ ✡ ■ (4.31)

It turns out that the choice of kernel � is not really critical to the performance of the kernel estimator
(see Silverman (1986, Section 3.3.2)). We will use the standard normal density as the kernel. This is
a conventional (and convenient) choice, and is known to work well.

The choice of smoothing parameter ✎ is very important for the performance of the estimation. In
many situations ✎ is determined subjectively, but for our purpose that will not do. We describe two
ways of choosing ✎ automatically. In Section 4.4.1 we present a standard “rule of thumb” described
by Silverman (1986), and in Section 4.4.2 a new method especially tailored for our particular situation
is developed. The latter method is based on some of the ideas of the former, and therefore we need to
consider both.

After describing the two different choices for ✎ , we consider the estimation of � ✁ is Section 4.4.3.

4.4.1 A standard choice of the smoothing parameter ✎

The development in this section is based on the book by Silverman (1986). However, we will make
more restrictive assumptions to simplify the presentation. We assume that the kernel � is a symmetric
probability density with zero mean and unit variance, and that the unknown density ✠ is sufficiently
smooth.

Assume that we have an iid sample
✟ ✠ ✟❏■❏■❏■ ✟ ✟ ✄ from ✠ , and that we construct a kernel density estimate

✄✠ with smoothing parameter ✎ and kernel � , as in Equation (4.31).

The main idea is to choose ✎ such that it minimizes the distance between ✄✠ and ✠ . As a first step
towards a workable definition of “distance”, we consider the mean and variance of ✄✠ at a given point✟

. It follows easily from the definition (4.31) that

�
✪

✄✠ ✪✠✟ ☞ ☞✂✗ ✳
✂☎✎

✄✌
❈ ✄❖✠ �

✠
�

✠ ✟ ✵ ✟ ❈
✎ ✡ ✡

✗ ✡ ☛
✍ ☛ ✳

✎ �
✠ ✟ ✵❑✸

✎ ✡ ✠ ✪ ✸ ☞✏✎❩✸☛✟ (4.32)
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and

✁
✞ ✏❅✪

✄✠ ✪✠✟ ☞ ☞✂✗ ✳✪
✂☎✎ ☞ � ✄✌

❈ ✄❖✠ ✁
✞ ✏

�
✠ ✟ ✵ ✟ ❈

✎ ✡
✗ ✳✪

✂☎✎ ☞ � ✄✌
❈ ✄❖✠

�✁�
�
✠

�
✠ ✟ ✵ ✟ ❈

✎ ✡ ✡ �✄✂ ✵ ✠ �
✠

�
✠ ✟ ✵ ✟ ❈

✎ ✡ ✡ ✡ �✄✂
✗ ✳

✂

� ✡ ☛
✍ ☛ ✳
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The bias of ✄✠ ✪✠✟ ☞ is

❱ ✘✑✞✟✞✫✪
✄✠ ✪✠✟ ☞ ☞✂✗ ✡ ☛

✍ ☛ ✳
✎ �

✠ ✟ ✵ ✸
✎ ✡ ✠ ✪ ✸ ☞✏✎✼✸ ✵ ✠ ✪✠✟ ☞ ■ (4.34)

At the fixed point
✟

, the mean square error (MSE) of ✄✠ ✪✠✟ ☞ is

✄✆☎ �
✪

✄✠ ✪✠✟ ☞ ☞✺✗ �
✪

✄✠ ✪✠✟ ☞ ✵ ✠ ✪✠✟ ☞ ☞ � ✗✷❱ ✘✑✞✟✞ � ✪ ✄✠ ✪✠✟ ☞ ☞ ✘ ✁
✞ ✏ ✪

✄✠ ✪✠✟ ☞ ☞
(Casella and Berger 1990). A common measure of the accuracy of the estimate ✄✠ at all points

✟
simultaneously is the mean integrated square error (MISE), which is defined as

✄✝✆ ☎ �
✪

✄✠ ☞✺✗ �
✠ ✡ ☛

✍ ☛
✪

✄✠ ✪✠✟ ☞ ✵ ✠ ✪✠✟ ☞ ☞ � ✎ ✟ ✡
✗ ✡ ☛

✍ ☛ �
✪

✄✠ ✪✠✟ ☞ ✵ ✠ ✪✠✟ ☞ ☞ � ✎ ✟
✗ ✡ ☛

✍ ☛ ✄✝☎ �
✪

✄✠ ✪✠✟ ☞ ☞✏✎ ✟
✗ ✡ ☛

✍ ☛ ❱ ✘✑✞✟✞ � ✪ ✄✠ ✪✠✟ ☞ ☞✏✎ ✟ ✘ ✡ ☛
✍ ☛ ✁

✞ ✏ ✪
✄✠ ✪✠✟ ☞ ☞✏✎ ✟ (4.35)

(Silverman 1986).

We now choose the value ✎ which minimizes an approximation to the integrated mean square error.
By a Taylor series expansion,

✠ ✪✠✟ ✵ ✎ ✸ ☞ ✂ ✍
✪✠✟
☞ ✵ ✎ ✸ ✍ ☞ ✪✠✟ ☞✕✘ ✳✞ ✎ � ✸ � ✍ ☞ ☞ ✪✠✟ ☞ ■ (4.36)
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Using Equation (4.36) we obtain an approximation to the integrated squared bias:

✡ ☛
✍ ☛ ❱ ✘ ✞✟✞ � ✪ ✄✠ ✪✠✟ ☞ ☞✏✎ ✟ ✗ ✡ ☛

✍ ☛
✠ ✡ ☛

✍ ☛ ✳
✎ �

✠ ✟ ✵✖✸
✎ ✡ ✠ ✪ ✸ ☞✏✎✼✸ ✵ ✠ ✪✠✟ ☞ ✡ � ✎ ✟

(by Equation 4.34)
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✍ ☛

✠ ✡ ☛
✍ ☛ �
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✪ ✠ ✪✠✟ ✵ ✎ ✒✂☞ ✵ ✠ ✪✠✟ ☞ ☞✏✎ ✒ ✡ � ✎ ✟

(by the substitution ✸✺✗ ✟ ✵ ✎ ✒ and the fact that � is a density)

✂

✡ ☛
✍ ☛

✠ ✵ ✎ ✍ ☞ ✪✠✟ ☞ ✡ ☛
✍ ☛ ✒ �

✪
✒✂☞✏✎✁✒ ✘ ✳✞ ✎ � ✠ ☞ ☞ ✪✠✟ ☞ ✡ ☛

✍ ☛ ✒ � �
✪
✒✂☞✏✎✁✒ ✡ � ✎ ✟

(by the Taylor approximation in (4.36))

✗ ✡ ☛
✍ ☛

✠ ✳✞ ✎ � ✠ ☞ ☞ ✪✠✟ ☞ ✡ � ✎ ✟
(by the assumptions on � )
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�☎✎

✁ ✡ ☛
✍ ☛ ✠ ☞ ☞ ✪✠✟ ☞ � ✎ ✟ ■ (4.37)

A similar calculation, again using the Taylor approximation in (4.36), yields

✡ ☛
✍ ☛ ✁

✞ ✏❅✪
✄✠ ✪✠✟ ☞ ☞✏✎ ✟ ✗ ✡ ☛
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✠ ✟ ✵❑✸

✎ ✡ � ✠ ✪ ✸ ☞✏✎✼✸ ✵ ✳
✂ � � ✪ ✄✍ ✪✠✟ ☞ ☞ ✂ ✎ ✟

(by Equations (4.32) and (4.33))
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✍ ☛ ✂ ✍ ✠ ✎ ✍ ✠ ✠ ✪✠✟ ☞ ✡ ☛

✍ ☛ �
✪
✒✂☞ � ✎✁✒ ✎ ✟

(by the Taylor approximation and the substitution ✸✂✗ ✟ ✵ ✎ ✒ )

✗ ✂ ✍ ✠ ✎ ✍ ✠ ✡ ☛
✍ ☛ �

✪
✒✂☞ � ✎✁✒❖■ (4.38)

Now, inserting Equations (4.37) and (4.38) into the expression (4.35) for the MISE, we obtain the
approximation ✄✝✆ ☎ �

✪
✄✠ ☞✄✂ ✳

� ✎
✁ ✡ ☛

✍ ☛ ✠ ☞ ☞ ✪✠✟ ☞ � ✎ ✟ ✘ ✂ ✍ ✠ ✎ ✍ ✠ ✡ ☛
✍ ☛ �

✪ ✸ ☞ � ✎✼✸ ■ (4.39)

To find the ✄✎ which minimizes the approximation for the MISE, we simply differentiate and set the
result equal to zero;
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✂ ✡ ☛
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✍ ☛ �

✪ ✸ ☞ � ✎✼✸ ✗ ✞✠✟

which implies that
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✍ ☛ �

✪ ✸ ☞ � ✎✼✸ ✡ ✠☎✄✝✆ ✠ ✡ ☛
✍ ☛ ✠ ☞ ☞ ✪✠✟ ☞ � ✎ ✟ ✡ ✍ ✠☎✄✝✆

✂ ✍ ✠☎✄✝✆ ■ (4.40)

It is easily checked that the second derivative is positive at the point ✄✎ , so ✄✎ is the minimizer of the
approximation for the MISE.
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The expression (4.40) for ✄✎ depends on the density ✠ , which of course is unknown. Silverman (1986,
Section 3.4.2) suggests to use a refence family of distribution, specifically, the familty of normal
densities with variance � � , to replace ✠ in Equation (4.40). If the true density ✠ is near normal, this
approach should work well. Using this reference family,✡ ☛

✍ ☛ ✠ ☞ ☞ ✪✠✟ ☞ � ✎ ✟ ✗ ✁
✂ � ✍ ✠☎✄ � � ✍ ✆ ■ (4.41)

Using a standard normal density as the kernel � , we similarly obtain✡ ☛
✍ ☛ �

✪ ✸ ☞ � ✎✼✸ ✗ ✪ � � ☞ ✍ ✠☎✄ � ■ (4.42)

(We omit the details of the evaluation of these integrals.) Inserting (4.41) and (4.42) into the expression
for ✄✎ in Equation 4.40, we obtain

✄✎ ✗ ✪ � � ☞ ✍ ✠☎✄ ✠ ✁ ✪ ✁ ✂ � ✍ ✠☎✄ � ☞ ✍ ✠☎✄✝✆ � ✂ ✍ ✠☎✄✝✆
✗ ✠ �

✁ ✡ ✠☎✄✝✆ � ✂ ✍ ✠☎✄✝✆
✂❇✳ ■ ✞☎✄✆� ✂ ✍ ✠☎✄✝✆ ■ (4.43)

Accordingly, we can choose the smoothing parameter by using the sample standard deviation ✝ as an
estimate for � , and inserting this estimate into (4.43). However, Silverman (1986) recommends to use
a more robust measure of variability, namely the interquartile range ☎ , which is defined by

☎ ✗ ✟
✞ ✟ ✆ ✵ ✟

✞ � ✆ ✟
where

✟
✞ � ✆ and

✟
✞ ✟ ✆ are the observed 25% and 75% quantiles of the data, respectively. If the data

are really normally distributed with variance � , then ☎ ✂ ✳ ■ ✁ � ✝ or equivalently ✝ ✂ ✞ ■✡✠ ✁ ☎ . Then,
replacing � by ✞ ■✡✠ ✁ ☎ in Equation (4.43) gives

✄✎❙✗ ✞ ■✡✠ ✄ ☎ ✂ ✍ ✠☎✄✝✆ ■
An even more robust estimate of spread is available by using

✖ ✗ ✞ ✘ ✚ ✪
✝ ✟ ☎ ✦❁✳ ■ ✁ � ☞

instead of � in Equation (4.43). In addition to this, we should also consider the robustness to devia-
tions from normality in ✠ . It turns out (Silverman 1986, p. 47–48) that the robustness in this respect
can be improved by reducing the factor 1.06 in Equation (4.43). For this reason, Silverman (1986)
recommends choosing the smoothing parameter

✄✎✺✠✕✗ ✞ ■☎✄ ✖✝✂ ✍ ✠☎✄✝✆ ■ (4.44)

This choice has become a standard reference. For example, it is the default choice of smoothing
parameter of the density estimation routines in the software packages R and S-Plus.

We will use ✄✎✂✠ as the first of our two choices of ✎ . The following section deals with the second choice.
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4.4.2 An alternative choice of ✎

In this section a new way of choosing ✎ is presented. This method is especially taylored for the
problem of estimating the p-value density ✍ at the point P✍✗❇✳ .
Assume that we have observed � p-values P ✠ ✟❏■❏■❏■ ✟❄P ◆ from the density ✍ and want to make a kernel
density estimate ✄✍ . The choice ✄✎ ✠ from Section 4.4.1 is the minimizer of the approximate mean
integrated square error (MISE) of Equation (4.35) (a global error measure). The minimizer depends
on the second derivative of ✍ , and therefore we replace ✍ by a reference density, namely a normal
density with variance � , in Equation (4.40).

In our opinion there are two potential drawbacks associated with using this approach when the goal is
to estimate � ✁ by estimating ✍ . The first is that the global error measure (MISE) is basically irrelevant
— we only need the estimate to be accurate at the value P ✗❇✳ . The second is that the p-value density
✍ is certainly non-normal, indeed ✍ is neither unimodal nor positive on the whole real line.

Let us first consider the second objection. A more realistic, but still very simple reference family of
densities is the ❱ ✖ ✔ ✞ ✪✁�

✟ ✳ ☞ -family. The ❱ ✖ ✔ ✞ ✪✁�
✟ ✳ ☞ -density ✕ ✪ P✂☞ is given by✕ ✪ P ✭ � ☞✺✗ � P ✄ ✍ ✠ ❋ ✞✆✮✖P✞✮ ✳ ✟ � ☎ ✞ ■

One major advantage of using this family is that the maximum likelihood estimator ✄
�

of
�

is available
in closed form: The loglikelihood is given by

✒ ✪✁� ☞✺✗ ◆✌
❈ ✄❖✠

❨ ✒ ✆ ✂ � P ✄ ✍ ✠❈ ✄ ✗ �

❨ ✒ ✆✂�
✘
✪✁� ✵ ✳ ☞ ◆✌ ❈ ✄❖✠

❨✛✒ ✆ P◗❈✲■
The likelihood equation is then

✄ ✒
✄ � ✗ � � ✘

◆✌
❈ ✄❖✠

❨ ✒ ✆ P ❈ ✗ ✞✠✟

and

✄
� ✗ ✵ �

✁ ◆❈ ✄❖✠ ❨ ✒ ✆ P ❈ (4.45)

is the maximum likelihood estimate of
�
.

Now, instead of minimizing the approximate MISE of ✄✍ , we minimize an approximation for the mean
square error at the point P✍✗❇✳ . It follows immediately from the calculations in Section 4.4.1 (simply
by dropping the integration over

✟
) that✄✝☎ �

✪
✄✍
✪ ✳ ☞ ☞ ✂

✳
�☎✎

✁
✍ ☞ ☞ ✪ ✳ ☞ � ✘ �

✍ ✠ ✎ ✍ ✠ ✍ ✪ ✳ ☞ ✡☞☛✍ ☛ �
✪ ✸ ☞ � ✎❩✸☛✟ (4.46)

and that the ✎ which minimizes this is given by

✄✎❙✗ ✠ ✡ ☛
✍ ☛ �

✪ ✸ ☞ � ✎✼✸✂✡ ✠☎✄✝✆ ✍ ☞ ☞ ✪ ✳ ☞ ✍ � ✄✝✆ ✍ ✪ ✳ ☞ ✠☎✄✝✆ �
✍ ✠☎✄✝✆ ■ (4.47)

For the ❱ ✖ ✔ ✞◗✪✁�
✟ ✳ ☞ -density we have ✕ ✪ ✳✏✭ � ☞✕✗ �

and ✕ ☞ ☞ ✪ ✳✏✭ � ☞✂✗ �❫✪✁� ✵❑✳ ☞ ✪✁� ✵ ✞ ☞ . Therefore, by replacing
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✍ in Equation (4.47) with the ❱ ✖ ✔ ✞ ✪✁�
✟ ✳ ☞ -density, the minimizing ✄✎ would be given by

✄✎❙✗ ✠ ✡ ☛
✍ ☛ �

✪ ✸ ☞ � ✎✼✸ ✡ ✠☎✄✝✆ ✕ ☞ ☞ ✪ ✳✏✭ � ☞ ✍ � ✄✝✆ ✍ ✪ ✳✏✭ � ☞ ✠☎✄✝✆ �
✍ ✠☎✄✝✆

✗ ✪ � � ☞ ✍ ✠☎✄ ✠ ✁ ✪✁�❫✪✁� ✵ ✳ ☞ ✪✁� ✵ ✞ ☞ ☞ ✍ � ✄✝✆ ✄
� ✠☎✄✝✆

�
✍ ✠☎✄✝✆

✗ ✪ � � ☞ ✍ ✠☎✄ ✠ ✁ � ✍ ✠☎✄✝✆ ✪ ✪✁� ✵ ✳ ☞ ✪✁� ✵ ✞ ☞ ☞ ✍ � ✄✝✆ �
✍ ✠☎✄✝✆ (4.48)

if
�

was known.

It is a well known result that maximum likelihood estimators are invariant under functional transfor-
mations (Casella and Berger 1990). Therefore, we may simply plug the MLE ✄

�
from Equation (4.45)

into (4.48) to obtain
✄✎ � ✗ ✪ � � ☞ ✍ ✠☎✄ ✠ ✁ ✄

� ✍ ✠☎✄✝✆ ✪ ✪ ✄
� ✵ ✳ ☞ ✪ ✄

� ✵ ✞ ☞ ☞ ✍ � ✄✝✆ �
✍ ✠☎✄✝✆ ✟

which then is the proposed choice of ✎ .

4.4.3 P-value reflection and estimation of � ✁

To estimate �✄✁ , we need to estimate a density ✍
✪ P✂☞ with bounded support ([0,1]) at the boundary P ✗✬✳ .

As is well known, the bounded domain will lead to underestimation near P ✗ ✳ (Silverman 1986).
This is due to the fact that ✄✍ ✌ is a density defined on the whole real line. Since this density will be
positive also for P ☎ ✳ , and obviously still has to integrate to one, this leads to deflation of the ✄✍ ✌ nearP ✗❇✳ . In our case, a simple way to avoid this problem is to mirror the p-values around the point P ✗❇✳ .
This means that we augment the observed p-values P ✠ ✟❏■❏■❏■ ✟❄P◗◆ with the values ✞✺✵ P❖✠ ✟❏■❏■❏■ ✟ ✞✺✵ P◗◆ and
construct a kernel density estimate ✄✍ ✑✌ based on these ✞ � p-values. This density estimate is defined
on [0,2], and therefore the boundary effect should be negligable at P✥✗❇✳ . The density estimate based
on the original p-values is then

✄✍ ✌ ✪ P☎☞ ✗ ✞ ✄✍ ✑✌ ✪ P✂☞ for ✞ ✄ P✞✮ ✳ ✟
and zero otherwise. We can use either of the smoothing parameters ✄✎✯✠ or ✄✎ � when calculating this
kernel density estimate.

Our estimate of �✄✁ is given by
✄� ✌✁ ✗ ✄✍ ✌ ✪ ✳ ☞ ■

4.5 Parametric estimation of ✁ ✁ using a Beta mixture model

The estimators described in Sections 4.1, 4.2, 4.3 and 4.4 are all based on a nonparametric estimates
of the p-value density. In this section, we try the parametric approach due to Heller and Qin (2003).
This is based on our usual mixture model for the density ✍ of the p-values:

✍✍✗ � ✁ ✆ ✘
✪ ✳ ✵ � ✁ ☞✛✚ ✗ � ✁ ✘

✪ ✳ ✵ � ✁ ☞✛✚ ■
Heller and Qin (2003) assume that ✚ , the density of the alternative p-values, is a member of the❱ ✖ ✔ ✞ ✪✁�

✟▼✄ ☞ family, with ✞ ✄
� ✮ ✳ and ✄✑✮ ✳ , i.e.

✚
✪ P✂☞✺✗ �❫✪✁�

✟▼✄ ☞ P✄✂ ✍ ✠ ✪ ✳ ✵ P✂☞ ✁ ✍ ✠ ❋ ✞ ✄
� ✮ ✳ ✟◗✄ ✟ ✳ ✟ ✞ ✄ P✞✮ ✳ ✟
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where the normalizing constant
�❫✪✁�

✟▼✄ ☞❑✗ ✣ ✪✁� ✘❇✄ ☞ ✦ ✪ ✣ ✪✁� ☞ ✘❇✣ ✪ ✄ ☞ ☞ where ✣ denotes the gamma
function.

It is easy to show that ✚
✪ P✂☞ is decreasing and convex:

✄ ✚✄ P ✗ �❫✪✁�
✟▼✄ ☞ P ✂ ✍ � ✪ ✳ ✵ P✂☞ ✁ ✍ � ✪ ✪✁� ✵ ✳ ☞ ✪ ✳✯✵ P✂☞ ✵ ✪ ✄✘✵ ✳ ☞ P✂☞ ✮ ✞

since
� ✵❴✳ ✮ ✞ and ✄☞✵ ✳ ✟ ✞ . Note that ✚

✪ P☎☞ is strictly decreasing unless
� ✗✷✄✒✗✬✳ , i.e. ✚

✪ P✂☞ is the
uniform density. Also,

✄ � ✚✄ P � ✗ �❫✪✁�
✟▼✄ ☞ P ✂ ✍ ✂ ✪ ✳ ✵✯P☎☞ ✁ ✍ ✂ ✪ ✪✁� ✵ ✞ ☞ ✪✁� ✵ ✳ ☞ ✪ ✳ ✵ P✂☞ � ✵ ✞ ✪✁� ✵ ✳ ☞ ✪ ✄❖✵ ✳ ☞ P ✪ ✳ ✵ P✂☞ ✘ ✪ ✄❍✵ ✞ ☞ ✪ ✄❖✵ ✳ ☞ P � ☞ ✟ ✞

since
✪✁� ✵ ✞ ☞ ✪✁� ✵ ✳ ☞ ✟ ✞ ,

✪ ✄✘✵ ✞ ☞ ✪ ✄✘✵ ✳ ☞ ✟ ✞ and
✪✁� ✵ ✳ ☞ ✪ ✄✘✵ ✳ ☞ ✮ ✞ , so ✚

✪ P☎☞ is convex.

The density ✍ of the p-values is represented by the following mixture model:

✍
✪ P✂☞ ✗ � ✁ ✘

✪ ✳ ✵ � ✁ ☞
�❫✪✁�

✟▼✄ ☞ P✄✂ ✍ ✠ ✪ ✳ ✵✍P✂☞ ✁ ✍ ✠ ❋ ✞ ✄
� ✮ ✳ ✟◗✄ ✟ ✳ ✟ ✞ ✄ P✞✮ ✳ ✟ (4.49)

and since ✚ is decreasing and convex, it follows immediately that ✍ is also decreasing and convex.

We now need to estimate the parameters � ✁ ✟
�

and ✄ . This can be done on the basis of the loglikelihood

✒ ✪ � ✁ ✟ � ✟▼✄ ☞✂✗ ◆✌
❈ ✄❖✠
❨ ✒ ✆ ☛

� ✁ ✘
✪ ✳ ✵ � ✁ ☞

�❫✪✁�
✟▼✄ ☞ P ✂ ✍ ✠❈ ✪ ✳✯✵ P ❈ ☞ ✁ ✍ ✠ ✎ (4.50)

The maximum likelihood estimates of the parameters are the � ✑✁ ✟ � ✑ and ✄ ✑ for which

✒ ✪ � ✑✁ ✟ � ✑ ✟▼✄ ✑ ☞ ✟ ✒ ✪ � ✁ ✟ � ✟▼✄ ☞ for all ✞✑✮ � ✁ ✮ ✳ ✟ ✞ ✄
� ✮ ✳ ✟◗✄ ✟ ✳ ■

The values of � ✑✁ ✟ � ✑ and ✄ ✑ are calculated numerically. The final estimate of � ✁ is then given by

✄�✁�✁ ✗ � ✑✁ ■
The task of maximizing the loglikelihood is alleviated by the observation that

✒ ✪ � ✁ ✟ � ✟▼✄ ☞ , regarded as
a function of �✄✁ for fixed

✪✁�
✟▼✄ ☞ , is concave: Letting ✠ ❈ ✗ �❫✪✁�

✟▼✄ ☞ P ✂ ✍ ✠❈ ✪ ✳ ✵ P◗❈ ☞ ✁ ✍ ✠ ,
✄ ✒

✄ � ✁ ✗
◆✌
❈ ✄❖✠ ✳ ✵ ✠❫❈

� ✁✟✘
✪ ✳ ✵ � ✁ ☞ ✠❫❈

and ✄ � ✒
✄ � ✁ � ✗ ◆✌

❈☎✄❖✠ ✵ ✪ ✳ ✵ ✠❫❈ ☞ �✪
� ✁ ✘

✪ ✳ ✵ � ✁ ☞ ✠❫❈ ☞✂� ✮ ✞✠✟

since each term of the last sum is nonpositive. This implies that it is easy to maximize
✒

with respect
to � ✁ for fixed

✪✁�
✟▼✄ ☞ : We first check if

✄ ✒ ✦ ✄ � ✁ ✭ ✂ ✌ ✄✂✁ ✄ ✞ or
✄ ✒ ✦ ✄ � ✁ ✭ ✂ ✌ ✄❖✠ ☎ ✞ , which would mean

that the maximum is at �✄✁❴✗ ✞ and � ✁ ✗❲✳ , respectively (since
✒

would then be monotonically
decreasing/increasing). If neither is the case, then

✒
is unimodal as a function of � ✁ , so a bisection

search can be used to find the maximizing �☎✁ .
Now, with � ✁ fixed at the value found by bisection, any good constrained optimizition algorithm can
be used to find the maximizing

✪✁�
✟▼✄ ☞ .
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There were some problems with the convergence of the algorithm for calculation of ✄� �✁ in our im-
plementation. Also, we feel that the parametric assumptions might be to strong to be reasonable for
analysis of real-life data sets. For these reasons, the estimator ✄� �✁ is not further considered in this
work. In particular, ✄� �✁ is not included in the simulation experiment in Section 6 and the application
to data from DNA microarrays in Section 7
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5 Dependence

All of the estimation methods considered in Section 4 are based on the assumption of independent p-
values. This assumption might not hold for some applications, such as for example DNA microarrays.
However, through simulation experiments using dependent data presented in Section 6 we aim to show
that the estimators are relatively robust to the assumption of independence and work well also for p-
values with different dependence structures. We feel that the actual performance of the estimators is
more important than absolute rigour in their derivation.

5.1 Modelling dependencies in DNA microarray data

Ideally, for a DNA microarray dataset, we would want to model the specific dependence structure
inherent in the particular selection of genes included in the experiment. We have considered different
possible ways of modelling dependencies in microarray data. One idea is to apply the theory of
copulae. A copula is a function which links identically distributed marginals to their multivariate
joint distribution. It is seen that the dependence structure is inherent in the copula. Unfortunately, we
were not able to apply this theory. It seems like the problem of estimating � ✁ is too high-dimensional;
the applications of copulae known to us concerns problems in only a few dimensions, not thousands
as for DNA microarray data. An excellent introduction to the theory and applications of copulae is
given by Nelson (1999).

Another possibility would be to specify a graphical model of the dependencies. This could be based
on a priori knowledge of signalling pathways and functional relationships in the particular genetical
material under study. One type of graphical model which might prove useful in this context is the so-
called vines introduced by Bedford and Cooke (2002). Vines, which are a generalization of the more
familiar Bayesian belief nets, can be used to model conditional dependencies. One could imagine
specifying a vine for each functional group within the genes studied, and somehow use this formaliza-
tion to obtain more accurate estimates of �☎✁ . However, it is far from obvious how this should be done
in practice, and to our knowledge, vines have not yet been applied to the analysis of DNA microarray
data.

5.2 Schweder and Spjøtvoll’s analysis of dependence

The problem of dependence when estimating �☎✁ is discussed as far back as in the paper by Schweder
and Spjøtvoll (1982). Their treatment is in the context of testing for independence in ✞✁� ✞ subtables
of contingency tables, as well as the problem of testing for non-zero values in correlation matrices.
However, the dimensionality of their examples is much less than in the situations that interest us here
— the largest number of hypothesis tests they consider is � ✗❇✳ ✁ ✄ . Schweder and Spjøtvoll’s (1982)
analysis of dependence is only used to assess the variance of their estimator of � ✁ .

5.3 Positive regression dependence

Benjamini and Yekutieli (2001) show that Simes’s (1986) step-up procedure controls the FDR if the
test statistics are so-called positive regression dependent, which the authors view as a sufficiently
general assuptions to cover many situations. For further details and the definition of positive regression
dependence we refer to Benjamini and Yekutieli’s (2001) article.
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5.4 “General” and “clumpy” dependence

Storey (2002b) describes two kinds of dependence which he calls “clumpy dependence”4 and “general
dependence”. “General dependence” means that all of the p-values (or, equivalently, test statistics)
are mutually dependent to some extent.

In the setting of DNA microarray data analysis, Storey (2002b) suggests that what he calls “clumpy
dependence” is a more likely form of dependence. “Clumpy dependence” means that the p-values
are dependent within groups, and that the p-values in any particular group are independent of all
the p-values in the other groups. Considering p-values from DNA microarray experiments, Storey
(2002b) mentions two reasons why this dependence structure is plausible. The first reason is a part
of the biological reality, namely the fact that genes interact in (rather small) functional groups which
are called pathways. This so-called co-regulation of genes results in dependent test statistics (and
dependent p-values). The second reason is more of a technical issue concerning the microarray ex-
perimental situation, namely the occurence of cross-hybridization — which is what happens when
two non-complementary strands of DNA hybridize in a microarray. This might occur when the genes
have a similar molecular structure, which does not happen by chance, but when there is some real
relationship between the genes. Therefore, also in this case the dependence should be confined within
groups.

The clumpy dependence is emulated by splitting the data into
�

groups, generating ◆ ✁ ✁✓✪
✞✠✟ � ✄ ✔✄✂ ◆ ☎ ☞ -

distributed random variables (where � is the number of hypothesis tests), and then adding the ● th
such varible to the ● th observation in each group. General dependence is generated similarly, by
setting

� ✗❇✳ . See Section 6 for details.???

5.5 Pairwise correlations

Dependencies among observations (observed log-ratios of gene expression in two-color DNA mi-
croarray experiments, transformed gene expressions in one colour experiments) or p-values, might be
described by pairwise correlations.

Let us assume that observed values come from a multivariate Gaussian distribution with variance-
covariance matrix ☎ . This gives us the possibility to flexibly describe a large number of correlation
structures. We will here focus on grouped correlations.

To describe data with dependence structure similar to Storey’s (2002b) “clumpy” dependence, let the
variance-covariance matrix ☎ be block diagonal, i.e. complete correlations within the gene group and
independence between the gene groups. 5

Correlated observations can be among other things be caused by co-regulated genes, spatial effects
on the microarray slide and cross-hybridization. Some of these effects might be removed by proper
preprocessing of the data. In theory the observation of one gene can be negatively correlated with
the observation of another gene (when the first gene is up-regulated this causes the second gene to be
down-regulated). With negative correlations, care must be taken to assure that the specified variance-
covariance matrix is positive definite.

4In Storey (2002b), several results (such as the asymptotic behaviour of his estimators) are proved under the assumption
of “weak dependence”, of which “clumpy dependence” is a special case.

5As a generalization of the clumpy dependence we could let the strength of the correlations be different for each gene
group (i.e. some groups with low correlation, some with moderate correlations and some with high correlations).
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If the dependence is due to co-regulation of genes (e.g. from gene pathways), the group size of the
genes could be in the order of tens to thousands. We believe that the strength of the correlations are
low to moderate. In the simulations experiment of Section 6 group sizes of 50 and 100, and low (0.25),
moderate (0.5) and high (0.75) correlations have been explored.
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6 Simulation experiment

To investigate the properties of the estimators described in Section 4, we have carried out a simulation
experiment. The generation of simulated data and the calculation of the estimates were both done in
the language R, Ihaka and Gentleman (1996).

6.1 Testing scenario

A total of � ✗ ✁ ✞ ✞ ✞ features (e.g. log intensity ratios for each gene in the case of DNA microarrays)
were simulated for each of � ✗ ✳ ✞ inviduals (e.g. pasients, tissue samples, etc.). Let these random
variables be

✠ ❈ ✌✌❋ ●☞✗ ✳ ✟❏■❏■❏■ ✟ � ✟✙✎✖✗ ✳ ✟❏■❏■❏■ ✟✁� , and the corresponding realizations
✟ ❈ ✌ . We assume

that each ✂ ✌ ❯ ✁ ✪☎✄
✟ ☎ ☞ . For each ● ✗❇✳ ✟❏■❏■❏■ ✟ � we test

✟ ✁❉❈❍☛ � ❈ ✗ ✞ versus ✟✍✠❊❈❖☛ � ❈✝✆✗ ✞ ■
For each ● , a two-sided p-value P ❈ is then calculated on the basis of a one-sample t-test:

P◗❈ ✗ ✞ ✱ ✩ ✏✓✒❫❪ ✎ ✢✟✞ ✍ ✠ ✟
✠✠✠☛✡✟ ❈ ✦✌☞ ✝✫❈❊✦✍� ✠✠✠ ✓ ✟ (6.1)

where ✡✟ ❈ ✗ ✁ ✞✌✝✄❖✠ ✟ ❈ ✌❅✦✍� and ✝✫❈ ✗ ✁ ✞✌✝✄❖✠ ✪✠✟ ❈ ✌✯✵ ✡✟ ❈ ☞ � ✦ ✪ �✞✵✹✳ ☞ are the sample mean and variance, re-
spectively, and ✢✎✞ ✍ ✠ is a t-distributed random variable with �✕✵✒✳ degrees of freedom. (See e.g. Casella
and Berger (1990) for details on the one-sample t-test.)

6.2 Generation of simulated data

For the generation of simulated data four different choices of � ✁ were considered, namely 0.5, 0.8,
0.9 and 0.95. For each � ✁ , we first drew the number of true null hypotheses � ✁ from the appropriate
binomial distribution, i.e. � ✁✎❯ ❱ ✘ ✚ ✪

� ✟ � ✁ ☞ .
Secondly, a vector of expected values,

✄ ✗ ✪
� ✠ ✟❏■ ■ ■ ✟ � ◆ ☞ , was constructed. The expected values for

the true null hypotheses were set to 0, � ✠ ✗ � � ✗ ✱❏✱❏✱ ✗ � ◆ ✌ ✗ ✞ . Then the expected values for the
false null hypotheses, �❵◆ ✌ ✄ ✠ ✟❏■ ■ ■ ✟ � ◆ , were drawn from the symmetric bi-triangular density ✏ ✪✲✱ ✭ ✂ ✟✖✕ ☞
given by

✏ ✪☎✑ ✭ ✂ ✟✖✕ ☞ ✗
✒✓✓✓✓✓✓✓✔ ✓✓✓✓✓✓✓✕

✖ ✄

✍
�
✍

✍ � ✂ �
✍

✍ ✠✄✂ if ✵ ✕ ✮ ✑
✄ ✵ ✳ ✟✖ ✄ ��

✍
✍ � ✂ � � ✍ ✠✄✂ if ✵✘✳ ✮ ✑ ✮ ✵ ✂ ✟✖ ✄ ��
✍

✍ � ✂ � ✠ ✍ � ✂ if ✂ ✮ ✑
✄ ✳ ✟✖ ✄

✍
�
✍

✍ � ✂ � ✠ ✍
✍
✂ if ✳✘✮ ✑ ✮ ✕ ✟

✞ otherwise ✟
where ✂ ✄ ✳ ✄ ✕ . The values ✂ ✗ ❨ ✒ ✆ � ✪ ✳ ■ ✞ ☞ and ✕✓✗ ❨✛✒ ✆ � ✪ ✄ ☞ were chosen. This particular choice
of ✂ and ✕ is motivated by the case of DNA microarray data, where the measurements are often

❨ ✒ ✆ � -
transformed spot intensities; these values for ✂ and ✕ seem reasonable in this situation. The graph of
the density ✏ is shown in Figure 7. Samples from ✏ were generated in two steps: In the first step

✑
was determined to be positive or negative, each with probability ✠� . Then, in the second step, inversion
sampling was used to draw from the part of the (appropiately rescaled) density ✏ where

✑
☎ ✞ or✑

✄ ✞ , respectively. It is straightforward to calculate the cumulative distribution function ✗ of this
density, and by the probability unit transform ✗ ✍ ✠ ✪ ✒☎☞ is a sample from ✏ if ✒ ❯✓☛ ✚ ✘ ✻

✝ ✞✠✟ ✳✝✆ .
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Figure 7: Density of
✑

Thirdly, a block diagonal covariance matrix, ☎ , was constructed. The variance of the logratio data for
each gene were set to 1. Genes were separated into groups of size ✆ (values 50 and 100 selected). Cor-
relations betweens the groups of genes were set to 0 (independence between groups), and correlations
within groups were set to � . Values �❚✗ ☛

✞✠✟ ✞ ■ ✞✆✁ ✟ ✞ ■☎✁ ✟ ✞ ■✡✠ ✁ ✎ where explored in separate experiments.
See Figure 8 for a sketch of the covariance matrix with group size 100.

The 5000-dimensional vectors, ✂ ✌ , ✎✒✗❇✳ ✟❏■ ■ ■ ✟ ✳ ✞ were then drawn independently from the multivariate
Gaussian distribution ✁

✪☎✄
✟ ☎ ☞ , and finally p-values were calculated using Equation (6.1).

For each �✄✁ ☎ ☛
✞ ■☎✁ ✟ ✞ ■ ✂ ✟ ✞ ■☎✄ ✟ ✞ ■☎✄✂✁ ✎ , group sizes ✆ ☎ ☛

✁ ✞✠✟ ✳ ✞ ✞ ✎ , and correlations � ☎ ☛
✞✠✟ ✞ ■ ✞✆✁ ✟ ✞ ■☎✁ ✟ ✞ ■✡✠ ✁ ✎ ,

a total of ✁ ✗ ✳ ✞ ✞ ✞ sets of p-values were calculated. Then, each of the estimation procedures pre-
sented in Section 4 was applied to each set of p-values. Note that this simulation experiment is on
a quite large scale. We needed to generate

�
� ✞ �

✁ ✘ � ✗ ✞ ✂
different ✁ ✞ ✞ ✞ �❴✳ ✞ ✞ ✞ matrices of

p-values. Generation of data and evaluation of all estimation procedures took approximately 16 hrs
for each of the 28 situations, giving a total time of compuation of 19 days (on a PC running FreeBSD
4.8-RELEASE, CPU: Intel(R) Pentium(R) 4 CPU 2.40GHz).
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Figure 8: Sketch of the covariance matrix with group size 100 for the simulation experiment.The black
squares denotes the non-null entries.
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Convex density estimator
Grenander estimator
’Longest−length’−estimator
Schweder/Spjotvoll w/Storey bootstrap
Kernel estimator, tailored
Kernel estimator, Silverman’s

Figure 9: Plotting symbols for figures.
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6.3 Results of simulation study

The results from the simulation study is a set of estimates of � ✁ , ✄� � ✠✄✂✁ ✟❏■❏■❏■ ✟ ✄� �✁� ✂✁ , for each � ✁ ☎☛
✞ ■☎✁ ✟ ✞ ■ ✂ ✟ ✞ ■☎✄ ✟ ✞ ■☎✄✆✁ ✎ , group sizes ✆✹☎ ☛

✁ ✞✠✟ ✳ ✞ ✞ ✎ , and correlations �✹☎ ☛
✞✠✟ ✞ ■ ✞✆✁ ✟ ✞ ■☎✁ ✟ ✞ ■✡✠ ✁ ✎ for each

of the following estimators:

✂ “Convex”: the estimator ✄� ✄✁ described in Section 4.3.

✂ “Grenander”: the estimator ✄� ✑✁ from Section 4.2.2.

✂ “Longest-length”: the estimator ✄� ✔✁ was introduced in Section 4.2.3.

✂ “Kernel, tailored” is the kernel density estimation based method using the choice of smoothing
parameter developed in Section 4.4.2. Estimated values are given as the minimum of the value
provided by the density estimation and 1.

✂ “Kernel, Silverman” uses the Silverman’s rule of thumb, explained in Section 4.4.1. Estimated
values are given as the minimum of the value provided by the density estimation and 1.

✂ “SchSpjSto” denotes Schweder and Spjøtvoll’s (1982) estimator � � ✁
✪ ✆ ☞ with Storey’s (2002b)

choice of tuning parameter
✆

, described in Section 4.1.

For each estimator and each of the 28 sets of ✁ ✗✜✳ ✞ ✞ ✞ p-values, the minimum, maximum, first and
third quartiles, median, bias, standard deviation and root mean square error (RMSE) are reported. The
RMSE combines the errors from bias and variance in a natural way. Given the empirical standard
deviation ✝ and the empirical bias ✕ ✗ ✁ �✄ ✄❖✠ ✄� � ✄ ✂✁ ✦ ✁ ✵ � ✁ of an estimator ✄�✄✁ , the RMSE is given by

✠ ✄✆☎ �
✪

✄� ✁ ☞✺✗ ☞ ✝ � ✘ ✕ � ■
In Table 2 the summary statistics for �☎✁ ✗ ✞ ■☎✄ are presented, and in Tables 4-6 results for �☎✁ equal
to 0.5, 0.8, and 0.95 are found. The summary statistics are also visualized in plots. Separate plots are
produced for the two group sizes and each value of � ✁ as functions of the correlation. Plots of bias
are found in Figure 10, and of RMSE in Figure 11. The remaining plots (median, 1st quantile, 3rd
quantile and standard deviation) are found in Figures 21-24 in Appendix A.

Density estimates of the estimates based on independent data is found in Figures 12. For � ✁✑✗ ✞ ■☎✄
density estimates for correlated data are displayed in Figures 13 for group size 50 and in Figure 14
for group size 100. Corresponding density estimates for correlated data for the other values of � ✁ , are
given in Figures 25-30 in Appendix A. Plotting symbols for all figures are given in the figure cation
of each figure and are shown in Figure 9.

Comparison of the simulated estimates on a case-by-case basis may also reveal patterns and interesting
features. Since all of the estimation methods were tried on the same 1000 data sets of p-values for
each � ✁ and each dependence structure, it makes sense to the ● th simulated value from each estimator
against the ● th simulated value from each of the other estimators, for ● ✗✴✳ ✟❏■❏■❏■ ✟ ✳ ✞ ✞ ✞ . This is shown
in Figure 15 for the case of independence with �☎✁✯✗ ✞ ■☎✄ .
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Indep.: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.8405 0.8901 0.8998 0.8984 0.9087 0.9266 0.0137 0.0138

Grenander 0.1273 0.4948 0.6644 0.6322 0.791 0.9196 0.1856 0.3258
’Longest-length’ 0.85 0.8985 0.909 0.9095 0.9195 0.9751 0.018 0.0204
Kernel, tailored 0.8403 0.8913 0.905 0.9049 0.9185 0.9613 0.0194 0.02

Kernel, Silverman 0.8017 0.881 0.9038 0.9043 0.9284 1 0.0324 0.0326
’SchSpjSto’ 0.68 0.86 0.8868 0.8767 0.9022 0.9262 0.0344 0.0416

Group 50 Corr 0.25: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.816 0.8842 0.9 0.8971 0.9128 0.9435 0.0207 0.0209

Grenander 0.1531 0.4852 0.64 0.6202 0.7704 0.9435 0.1883 0.3372
’Longest-length’ 0.8295 0.897 0.9103 0.9093 0.923 0.99 0.0217 0.0236
Kernel, tailored 0.8278 0.8863 0.9041 0.9043 0.9212 0.9876 0.026 0.0264

Kernel, Silverman 0.8071 0.878 0.904 0.9038 0.9283 1 0.0366 0.0368
’SchSpjSto’ 0.73 0.8554 0.8835 0.8767 0.9046 0.9433 0.0361 0.0429

Group 50 Corr 0.50: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.7603 0.8717 0.897 0.8919 0.9184 0.9501 0.0335 0.0344

Grenander 0.1362 0.4838 0.6548 0.6268 0.7862 0.9412 0.1933 0.3347
’Longest-length’ 0.7667 0.8876 0.9103 0.905 0.9273 0.9866 0.0305 0.031
Kernel, tailored 0.776 0.8761 0.9027 0.9037 0.9327 1 0.0422 0.0424

Kernel, Silverman 0.7501 0.8688 0.9024 0.9027 0.9375 1 0.0509 0.0509
’SchSpjSto’ 0.6971 0.8436 0.8794 0.873 0.9111 0.9498 0.0473 0.0545

Group 50 Corr 0.75: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.6569 0.8506 0.8918 0.8802 0.9204 0.9537 0.051 0.0547

Grenander 0.1241 0.4803 0.6326 0.6178 0.7794 0.9484 0.1968 0.344
’Longest-length’ 0.7224 0.8771 0.9086 0.9001 0.9311 0.9997 0.0447 0.0447
Kernel, tailored 0.6966 0.8558 0.9009 0.8996 0.9459 1 0.0628 0.0628

Kernel, Silverman 0.6558 0.8467 0.8966 0.8965 0.953 1 0.0707 0.0707
’SchSpjSto’ 0.585 0.8249 0.876 0.863 0.9136 0.9545 0.0618 0.072

Group 100 Corr 0.25: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.7855 0.8838 0.9002 0.8969 0.9154 0.9459 0.0246 0.0248

Grenander 0.157 0.4941 0.6357 0.6201 0.7718 0.9266 0.1853 0.3356
’Longest-length’ 0.8074 0.8946 0.9126 0.9087 0.9251 0.9845 0.0237 0.0252
Kernel, tailored 0.7992 0.8858 0.906 0.9053 0.926 0.9966 0.0302 0.0307

Kernel, Silverman 0.7655 0.8772 0.9039 0.9039 0.929 1 0.0392 0.0394
’SchSpjSto’ 0.7067 0.854 0.8845 0.8761 0.906 0.9466 0.0397 0.0463

Group 100 Corr 0.50: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.7222 0.8637 0.898 0.8891 0.9232 0.9518 0.0423 0.0437

Grenander 0.1048 0.4918 0.6643 0.6297 0.7862 0.9405 0.1917 0.3314
’Longest-length’ 0.7405 0.8807 0.9112 0.9028 0.9298 0.9936 0.0368 0.0369
Kernel, tailored 0.7418 0.8694 0.9042 0.9044 0.9441 1 0.052 0.0521

Kernel, Silverman 0.7175 0.8622 0.9038 0.9026 0.9462 1 0.059 0.0591
’SchSpjSto’ 0.664 0.8371 0.8809 0.8718 0.9182 0.9507 0.0539 0.0609

Group 100 Corr 0.75: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.6442 0.8392 0.8908 0.8742 0.9262 0.9573 0.0649 0.0699

Grenander 0.1286 0.4806 0.6476 0.6274 0.7867 0.9517 0.1941 0.3347
’Longest-length’ 0.6405 0.8627 0.9081 0.8924 0.9339 0.9984 0.0586 0.0591
Kernel, tailored 0.6784 0.8453 0.9062 0.899 0.9672 1 0.078 0.078

Kernel, Silverman 0.6585 0.8381 0.9068 0.8963 0.975 1 0.0851 0.0852
’SchSpjSto’ 0.604 0.8086 0.8759 0.8583 0.9192 0.9579 0.0732 0.0842

Table 2: Summary statistics for set of estimates, ✄� ✁ , for � ✁ ✗ ✞ ■☎✄ .
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Figure 10: Bias, ✕ ✗ ✁ �✄ ✄❖✠ ✄� � ✄ ✂✁ ✦ ✁ ✵ � ✁ of each estimator ✄�✄✁ in data sets of ✁ =1000, as a function
of correlation for group sizes 50 and 100 and values of � ✁ ☎ ☛

✞ ■☎✁ ✟ ✞ ■ ✂ ✟ ✞ ■☎✄ ✟ ✞ ■☎✄✂✁ ✎ for five of the six
methods considere (the Grenander estimator is excluded from the plot due to high negative bias).
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Figure 11: Root mean square error (RMSE), in data sets of ✁ =1000, as a function of correlation
for group sizes 50 and 100 and values of �☎✁ ☎ ☛

✞ ■☎✁ ✟ ✞ ■ ✂ ✟ ✞ ■☎✄ ✟ ✞ ■☎✄✂✁ ✎ for for five of the six methods
considere (the Grenander estimator is excluded from the plot due to high RMSE).
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Figure 12: Density estimates of ✄�☎✁ for independent data and �✂✁ ✗ ☛
✞ ■☎✁ ✟ ✞ ■ ✂ ✟ ✞ ■☎✄ ✟ ✞ ■☎✄✆✁ ✎ .“Convex” is

solid, “Grenander” is dashed, “Longest-length” is dotted, “SchSpjSto” is dotdash “Kernel, tailord” is
longdash and “Kernel, Silverman” is twodash (plotting symbols are shown in Figure 9).
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Figure 13: Density estimates of ✄�✂✁ for group size 50 for �✄✁ =0.9. “Convex” is solid, “Grenander” is
dashed, “Longest-length” is dotted, “SchSpjSto” is dotdash “Kernel, tailord” is longdash and “Kernel,
Silverman” is twodash (plotting symbols are shown in Figure 9).
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Figure 14: Density estimates of ✄�☎✁ for group size 100 for �✂✁ =0.9. “Convex” is solid, “Grenander” is
dashed, “Longest-length” is dotted, “SchSpjSto” is dotdash “Kernel, tailord” is longdash and “Kernel,
Silverman” is twodash (plotting symbols are shown in Figure 9).
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6.4 Interpretation of the results

The generation of simulated data has resulted in 28 000 sets of 5000 p-values (1000 sets of 5000
p-values each for the 28 situations studied). Looking at a selection of these histograms we have
attempted a crude division into three groups. For all situations considered (as a function of the value
of the p-values) the histogram of p-values first decreases as the number of false null hypothesese
decreases. The position of the end of this phase is dependent on the distribution of the false p-values.
The second phase of the histogram can be described as constant, increasing or decreasing, and can be
overlapping the first phase.

Constant This is the typical situation for independent data, and for many of the data sets for depen-
dent data. See the second row of Figure 16.

Increasing After the fist decreasing phase, the histogram increases. See the first row of Figure 16.

Decreasing The histogram is decreasing for the whole interval. See the third row of Figure 16.

In our simulation experiment, the existence of the “increasing” and “decreasing” groups are not due
to � ✁ being unidentiafiable, but an effect introduced by the correlation between p-values.

From the histograms in Figure 16 we see that the form of the histograms are governed by the distri-
bution of the true null hypothesis (since the situation in these plots are for � ✁ =0.95, but in general we
often come across the situation where the number of true null hypotheses are much higher than the
number of false null hypotheses). Let us look at histograms for the data from the true null hypotheses
generated in our simulations experiment for � ✁ =0.95. In Figure 17 we have randomly chosen 16 data
sets of p-values from the true null hypotheses. First we look at the case of independent data. In the
upper (4 � 4) plots data are generated under independence. We see that these histograms do not show
any clear increasing or decreasing trend. Then we look at dependent data; the lower (4 � 4) plots of
Figure 17 are based on dependent data with group size 100 and correlation 0.75. We see that some of
these histograms show a clear decreasing or increasing trend.

All estimators of �✄✁ presented in Section ?? are developed under the assumption of independence
between p-values, but different restrictions have in addition been made for the estimators (e.g. de-
creasing, convex distribution of p-values). Still, many of the estimators are found to perform good
both on independent and on dependent data. Let us first look at results for independent data and then
for dependent data.

Independent data

First we look at the mean over the 1000 data sets for each value of � ✁ . The Grenander estimator
always has the lowest value of the mean, followed by the Schweder and Spjøtvoll estimator with
Storey’s bootstrap routine (’SchSpjSto’), the ’Convex’ estimator, the two kernel estimators and finally
the ’Longest-length’ estimator. The same ranking is valid for the 1st quantile and the median. For
the 3rd quantile the ranking is the same, exept for � ✁✥✗ ✞ ■☎✄ and 0.95, where the ’Longest-length’
estimator is below the kernel estimators.

For � ✁ ✗ ✞ ■☎✁ the ’SchSpjSto’-estimator has the smallest bias (relative to the mean), for � ✁✯✗ ✞ ■ ✂
and

0.9 the ’Convex’-estimator has the smallest bias, and for � ✁ ✗ ✞ ■☎✄✆✁ the two kernel estimators have the
smallest bias. The “Convex” estimator clearly has the smallest standard deviation and RMSE of the
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Figure 16: Typical examples of histograms of p-values. In the first row the histograms are “increas-
ing”, in the second row the histograms are “constant”, and in the third row the histograms are “de-
creasing”. The shaded areas reflects the portion of true null hypotheses and the transparent areas the
portion of false null hypotheses. All examples are taken from the situation where � ✁ =0.95, group size
is 100 and correlation is 0.75.
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Figure 17: Randomly selected histograms of p-values from true null hypotheses for � ✁ =0.95. Upper
(4 � 4) plots shows independent data and lower (4 � 4) plots dependent data with group size 100 and
correlation 0.75.
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estimators over all values of � ✁ . For the ’Convex’ estimator the RMSE is decreasing with increasing
values of � ✁ , i.e. RMSE equal to 0.0248, 0.0162,0.0138 and 0.0128 for � ✁ =(0.5,0.8,0.90.95). Also,
it is interesting to note that the RMSEs of this estimator as well as ’Longest-length’ and the tailored
kernel method decrease with increasing �☎✁ . By contrast, the RMSEs of the other estimators are seen
to increase with increasing �✂✁ .
Let us now consider the Grenander estimator and the ‘Longest-length’-estimator. Obviously the
Grenander estimator is a terrible choice (it could scarcely be called an estimator at all). However,
the ‘Longest-length’-idea salvages most of the damage and performs quite well. It overestimates � ✁
on average for all values of �✂✁ under independence.

Schweder and Spjøtvoll’s estimator with the Storey bootstrap routine � � ✁
✪

✄✆ ☞ has little bias in the case
� ✁✯✗ ✞ ■☎✁ , but the variance is quite high. Storey (2002b) claims that � � ✁

✪
✄✆ ☞ is a conservative estimator,

which means that is should overestimate � ✁ on average. Our results show the contrary: � ✁ is clearly
on the average underestimated for �☎✁✎✗ ✞ ■ ✂ ✟ ✞ ■☎✄ and 0.95.

Considering the two kernel density estimate-based estimation methods, the “especially tailored” es-
timator seems to be clearly superior to the estimator using Silverman’s (1986) rule of thumb. The
variance is uniformly smaller, although the bias is slightly larger for the “tailored” estimator. How-
ever, the reduction of variance is so large that this should be a small price too pay. It also appears that
the improvement of the “tailored” estimator over Silverman’s estimator increases with � ✁ . For large
values of � ✁ , i.e. � ✁✓✗ ✞ ■☎✄✆✁ , the kernel estimators have the undesired property of a large build-up of
values at 1.0 (due to 1 being an upper limit).

If we use the RMSE as a measure of the quality of estimation, the ’Convex’ estimate based method
is clearly best for independent data. This estimation method has the lowest RMSE for all the situa-
tions we considered. The only drawback with this estimator is that is seen to slightly underestimate
� ✁ when � ✁✥✗ ✞ ■☎✄✆✁ , e.g. mean of 0.9461, whereas the ’Longest-length’ and the kernel estimators
gives a slight overestimation. In applications underestimation would be considered more serious than
overestimation.

Finally, we make some observations based on the comparison between the simulated ✄� ✁ from the
different estimation methods depicted in Figure 15. As we might expect, the two kernel density
estimation based methods are seen to be strongly linearly correlated. The “tailored” kernel method
also seems to be related to the ’Convex’ estimator. In addition, we see that the for ’Convex’ estimator
a subset of the estimated values are linearly dependent to the ’Longest-length’ estimator and the
’SchSpjSto’ estimator. A subset of the estimates from the ’SchSpjSto’ estimator is again correlated to
the estimates from the other methods, except the Grenander estimator.

Dependent data

The general observations when introducing increased degree of grouped correlation into the data are
as follows. The 1st quantile and the mean clearly decreases. The median of the data also decreases,
but to a smaller extent. The 3rd quantile of the data, the standard deviation and the RMSE clearly
increases. Increased group size has similar effect as increased correlation. Looking at the density
estimates, the skewness of the distribution of the estimates increases with increased dependence.

Looking at the density plots, we see that the degree of skewness of the estimators increases with
increasing value of �✄✁ .
For all cases investigated, the ’Convex’ and/or the ’Longest-length’ estimator performs the best wrt.
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RMSE. For moderately dependent data the ’Convex’ estimator gives the lowest RMSE, but for mod-
erate to high dependency the ’Longest-length’ estimator outperforms the ’Convex’ estimator. This
change is dependent on the value of � ✁ . For moderate � ✁ ( � ✁ ✗ ✞ ■☎✁ ), the ’Convex’ estimator is better
than the ’Longest-length’ estimator (wrt. RMSE) for all values of group size and correlation inves-
tigated. Here the ’Longest-length’ estimator has the largest bias (after the Grenander estimator) and
is found to substantially overestimate �☎✁ . For larger values of �✄✁ , the bias of the ’Longest-length’
estimator is smaller, and for �✂✁ ✗ ✞ ■ ✂ the ’Convex’ estimator and the ’Longest-length’ estimator has
approximate the same RMSE for � ✗ ✞ ■☎✁ and �❚✗ ✞ ■✡✠ ✁ . For � ✁ ✗ ✞ ■☎✄ and 0.95 the ’Longest-length’
estimator outperformes the ’Convex’ estimator for correlations equal to and above � ✗ ✞ ■ ✞✆✁ .

We have looked more closely at the case of � ✁ ✗ ✞ ■☎✄✆✁ , group size 100 and correlation � ✗ ✞ ■✡✠ ✁ ,
to try to find reasons why the ’Longest-length’ estimator performs better than the ’Convex’ estima-
tor. We have pin-pointed a typical situation in the case of decreasing p-value histograms, where the
’Longest-length’ estimator finds a plateau and thus gives a higher estimate than the ’Convex’ estima-
tor. Examples of this are found in Figure 18.
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Figure 18: Cases where the ’Convex’ estimator underestimates � ✁ , while the ’Longest-length’ estima-
tor gives a better estimate. Cases are taken from � ✁ ✗ ✞ ■☎✄✆✁ , group size 100 and correlation �❚✗ ✞ ■✡✠ ✁
The solid line is at �✄✁☞✗ ✞ ■☎✄✆✁ , the dashed line is the ’Longest-length’ estimator and the dotted line is
the ’Convex’ estimator.
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7 Application to DNA microarray data

In this section the estimators are evaluated on real data sets two from DNA microarray experiments.
Both data sets are from studies where each of � genes were tested for differential expression. The
estimates were calculated using the same R code as was used in the simulation experiment described
in Section 6

7.1 Description of data set

The first data set we consider is from Nygaard et al. (2003). The objective of this study was to
investigate the impact of mRNA amplificationon gene expression ratios. mRNA amplification is a
technique which is useful in cases where insufficient mRNA to perform a DNA microarray experiment
is available. The main contribution of Nygaard et al.’s (2003) paper was an analysis of variance
(ANOVA) model to investigate the sources of variation when using mRNA amplification. To verify
the results found by the ANOVA model, the data was split in two groups by testing each gene for
differential expression using a two-sample t-test (i.e. this was not done to find differences between
groups for each gene). The authors emphasize that a two sample t-test is not an optimal choice of
method for this small data set, which consists of two groups of 4 and 8 individuals, respectively. We
will nevertheless use the p-values from the two-sample t-tests for estimating � ✁ . � ✗ � ✁ ✁ ✳ tests were
performed.

The second data set is from Hedenfalk et al. (2001). This is a study regarding breast cancer, where
one objective was to discover differentially expressed genes in tumors with a mutated BRCA1 gene
and the BRCA2 gene, respectively. Gene expression levels were measured for 7 individuals (tumors)
with the BRCA1 mutation and 8 individuls with the BRCA2 mutation. The p-values used here are
calculated in Storey and Tibshirani (2003), on the basis of permutation tests. � ✗ ✁ ✳ ✠ ✞ tests were
performed.

7.2 Estimates of ✁ ✁

The estimates of �✄✁ for each of the data sets described in Section 7.1 and each estimator is shown in
Table 3. Here, � � ✁

✪
✄✆ ☞ is Schweder and Spjøtvoll’s (1982) estimator with Storey’s (2002b) bootstrap

choice of
✆

from Section 4.1, ✄� ✑✁ is the “Grenander” estimator from Section 4.2.2, ✄� ✔✁ is “longest”
from Section 4.2.3, ✄� ✄✁ is the estimator based on convex decreasing density estimation developed in
Section 4.3, and ✄� ✌ ✠✁ and ✄� ✌ �✁ are the kernel density estimate based estimators from Section 4.4, with
Silverman’s (1986) and the especially tailored choice of smoothing parameter, respectively.

Dataset / estimator � �✄✁
✪

✄✆ ☞ ✄�✒✑✁ ✄� ✔✁ ✄� ✄✁ ✄� ✌ ✠✁ ✄� ✌ �✁
Nygaard et al. (2003) 0.5864 0.3260 0.6789 0.6077 0.6100 0.6164

Hedenfalk et al. (2001) 0.6719 0.4892 0.6717 0.6753 0.6900 0.6899

Table 3: Estimates of �✄✁

A dotchart of the estimates for each data set in shown in Figure 19. We see that ✄� ✑✁ is much smaller
than the other estimators for both data sets, as was the case in the simulation experiment. For the
data from Nygaard et al. (2003), ✄� ✔✁ is quite large, � �✄✁

✪
✄✆ ☞ is rather small. The other three estimates are

not very different. For the data from Hedenfalk et al. (2001), we see that the kernel based estimates
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are almost exactly the same, and have a larger value than ✄� ✔✁ , ✄� ✄✁ and � � ✁
✪

✄✆ ☞ , which in turn are almost
equal.

In Figure 20, Grenander’s (1956) nonparametric maximum likelihood density estimate and the convex
decreasing density estimate is shown for each set of p-values.

Grenander estimator

Schweder/Spjøtvoll/Storey’s estimator

Convex decreasing density estimator

Kernel, Silverman’s

Kernel density estimator, taylored

Longest−length estimator

0.35 0.40 0.45 0.50 0.55 0.60 0.65

Data from Nygaard et al. (2003)

π̂0

Grenander estimator

Longest−length estimator

Schweder/Spjøtvoll/Storey’s estimator

Convex decreasing density estimator

Kernel density estimator, taylored

Kernel, Silverman’s

0.50 0.55 0.60 0.65

Data from Hedenfalk et al. (2001)

π̂0

Figure 19: Dotcharts of estimated �☎✁ for each data set.

7.3 Accuracy of the estimates

In addition to the point estimates shown in Table 3, we would obviously also like to say something
about the accuracy of the estimates.

For the estimates of � ✁ based on the data from Hedenfalk et al. (2001), empirical confidence intervals
could be estimated using bootstrapping, in the following way: Assume that the individuals (tumors,
pasients) on which we measure gene expression are mutually independent. (Within each pasient, the
measurements are not assumed to be independent.) For each bootstrap replication ● ✗ ✳ ✟❏■❏■❏■ ✟ ☛

,
we form two groups: One with 7 individuals drawn with replacement from the BRCA1 group, and
the other with 8 individuals drawn with replacement from the BRCA2 group. Then, for each ● , we
calculate an estimate ✄� � ❈ ✂✁ on the basis of the p-values from permutation tests using the bootstrap-

sampled groups. Let ✄�✄✁✓✒ � be the empirical ★ -quantile of the bootstrap-sampled ✄� � ❈✑✂✁ ✟ ● ✗ ✳ ✟❏■❏■❏■ ✟ ☛
.

Then, a ✳☞✵ ✞ ★ bootstrap percentile interval is given by
✪

✄� ✁✓✒ � ✟ ✄� ✁✓✒ ✠ ✍✁� ☞ (Efron and Tibshirani 1993).
Note that this procedure is very computationally expensive, due to its two-level structure: For each
bootstrap replication, a large number of permuation replications are needed to calculate the p-values.
For this reason, bootstrap confidence intervals are not calculated in this work.
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Figure 20: Grenander density estimate and convex decreasing density estimate for each data set.
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In principle, bootstrap percentile intervals could be calculated for the Nygaard et al. (2003) data in
the same way as described above for the Hedenfalk et al. (2001) data. To do so, an investigation into
the choice of method for calculating the p-values would be needed. Therefore, we have chosen not to
calculate bootstrap confidence intervals for the Nygaard et al. (2003) data.

Thus, we must refer the reader to the simulation experiment in Section 6 for an assessment of the bias
and variance of the estimators.
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8 Conclusions and further work

The new contributions of this work includes the estimator ✄� ✄✁ based on convex decreasing density
estimation developed in Section 4.3, the estimator ✄� ✔✁ (“longest”) from Section 4.2.3, and kernel den-
sity estimation with the smoothing parameter specifically chosen for estimation of � ✁ , developed in
Section 4.4.2

Considering the results of the simulation experiments in Section 6, the new estimation procedures
appear to work well. Particularly the ’Convex’ estimator ✄� ✄✁ and the ’Longest-length’ estimator ✄� ✔✁
performs very well, and seems to be clearly better than Schweder and Spjøtvoll’s (1982) estimator
with Storey’s (2002b) bootstrap choice of

✆
, which is probably the most used of the previously known

estimation methods. This is true both for the situation with independent data and for all degrees of
grouped dependence and values of �☎✁ studied in our simulation experiment. For moderate degree
of dependence, the ’Convex’ estimator is found to perform the best, but for a substantial degree of
dependence the ’Longest-length’ estimator performes the best. Our belief when considering DNA
microarray data, is that the degree of correlation is small to moderate, and thus we find the ’Convex’
estimator to be the best choice.

The estimators based on kernel density estimation provide a very fast and simple method for es-
timating � ✁ . The especially tailored choice of smoothing parameter seems more appropriate than
Silverman’s (1986) rule of thumb when estimating � ✁ .
There are still some open issues regarding estimation of � ✁ and its application to DNA microarrays.
In particular, more work should be done on modelling dependence among the hypothesis tests. This
should be done both in general terms and specifically for DNA microarrays. In the latter case, a
thorough knowledge of biological sources of dependence, such as pathways in the genome, seems
necessary. Specific questions include; does microarray data exhibit correlation within groups and
independence between groups, how large are the groups, and how high are the correlations? Further
attempts should also be made to design a large set of simulation experiments that are relevant to the
application of DNA microarrays.

More work is also needed on addressing how bias and variability should be estimated when applying
the estimators to data from DNA microarray experiments.

In the introduction we emphasized that our starting point was a set of p-values, and we assumed
that the p-values were “correctly” calculated. The question of which method that should be used for
calculating these p-values remains unanswered.
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A Additional tables and plots from the simulation experiment

Additional tables and plots from the simulation experiment described in Section 6 are found here.

In particular,

✂ Tables 4, 5, and 6 show summary statistics for the simulation experiment with � ✁ equal to 0.5,
0.8 and 0.95, respectively.

✂ Figures 21 through 24 show the first quantile, median, third quantile and standard deviation
(in data sets of ✁ =1000) as functions of correlation for group sizes 50 and 100 and values of

� ✁ ☎ ☛
✞ ■☎✁ ✟ ✞ ■ ✂ ✟ ✞ ■☎✄ ✟ ✞ ■☎✄✆✁ ✎ for the six methods considered.

✂ Figures 25 through and 30 show density estimates of the estimated � ✁ for the different estima-
tors, for group sizes 50 and 100, for correlations � ☎ ☛

✞ ■ ✞✆✁ ✟ ✞ ■☎✁ ✟ ✞ ■✡✠ ✁ ✎ , and for � ✁ equal to 0.5,
0.8 and 0.95.
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Indep.: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.4606 0.5083 0.5202 0.5189 0.5299 0.5635 0.0161 0.0248

Grenander 0.0624 0.2845 0.3791 0.366 0.4564 0.5537 0.1076 0.1719
’Longest-length’ 0.4737 0.5209 0.534 0.5356 0.5496 0.6441 0.0227 0.0422
Kernel, tailored 0.461 0.5113 0.5242 0.5242 0.5376 0.5859 0.0192 0.031

Kernel, Silverman 0.4547 0.5089 0.5239 0.5236 0.5383 0.5914 0.0222 0.0324
’SchSpjSto’ 0.4 0.4883 0.509 0.5031 0.5239 0.5633 0.0292 0.0293

Group 50 Corr 0.25: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.4367 0.5045 0.5202 0.5182 0.5342 0.5744 0.0215 0.0282

Grenander 0.0778 0.2904 0.3801 0.3662 0.4592 0.5552 0.1095 0.1729
’Longest-length’ 0.4502 0.5183 0.5343 0.5349 0.5505 0.6587 0.0267 0.044
Kernel, tailored 0.4499 0.5072 0.5248 0.5236 0.5403 0.5909 0.0235 0.0333

Kernel, Silverman 0.4456 0.5049 0.5255 0.5231 0.541 0.6016 0.0261 0.0349
’SchSpjSto’ 0.3875 0.4844 0.5078 0.5036 0.5264 0.5657 0.0303 0.0305

Group 50 Corr 0.50: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.4123 0.4975 0.5203 0.5185 0.5405 0.5999 0.0318 0.0368

Grenander 0.0556 0.272 0.3734 0.3621 0.4562 0.5741 0.1146 0.1793
’Longest-length’ 0.4266 0.5146 0.5353 0.5345 0.5557 0.7144 0.0325 0.0474
Kernel, tailored 0.4204 0.5019 0.5249 0.5248 0.5484 0.6372 0.034 0.0421

Kernel, Silverman 0.4089 0.4997 0.5239 0.5241 0.5491 0.6456 0.0364 0.0437
’SchSpjSto’ 0.34 0.4779 0.5076 0.5037 0.5326 0.5956 0.0395 0.0397

Group 50 Corr 0.75: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.3686 0.4823 0.5198 0.5139 0.5483 0.6252 0.0464 0.0485

Grenander 0.0662 0.2661 0.3673 0.354 0.4422 0.6075 0.1141 0.1853
’Longest-length’ 0.3679 0.5055 0.5378 0.5342 0.5655 0.7054 0.0448 0.0563
Kernel, tailored 0.3784 0.4865 0.5244 0.5238 0.5603 0.712 0.0516 0.0569

Kernel, Silverman 0.3723 0.4845 0.5234 0.5228 0.5612 0.7239 0.0542 0.0588
’SchSpjSto’ 0.3433 0.464 0.5033 0.4988 0.5385 0.6093 0.0527 0.0527

Group 100 Corr 0.25: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.4169 0.5031 0.5204 0.518 0.5349 0.5757 0.0241 0.0301

Grenander 0.0673 0.2877 0.3866 0.3682 0.4597 0.5627 0.1087 0.1709
’Longest-length’ 0.4335 0.5156 0.5349 0.5347 0.5532 0.629 0.0291 0.0453
Kernel, tailored 0.4267 0.5068 0.5247 0.5237 0.5418 0.6078 0.0259 0.0351

Kernel, Silverman 0.4178 0.5044 0.5233 0.5231 0.5423 0.6164 0.0282 0.0364
’SchSpjSto’ 0.3625 0.4845 0.5067 0.5035 0.5259 0.5739 0.0326 0.0327

Group 100 Corr 0.50: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.3677 0.4908 0.5194 0.5162 0.5449 0.6105 0.0409 0.0439

Grenander 0.06 0.2808 0.3708 0.3605 0.4486 0.5877 0.1135 0.1799
’Longest-length’ 0.4005 0.5104 0.537 0.5335 0.5603 0.6857 0.0391 0.0515
Kernel, tailored 0.3766 0.4949 0.5233 0.5233 0.5515 0.6635 0.0441 0.0499

Kernel, Silverman 0.3703 0.4927 0.5228 0.5229 0.553 0.6747 0.0464 0.0517
’SchSpjSto’ 0.3286 0.4732 0.5053 0.5023 0.5376 0.6079 0.0483 0.0483

Group 100 Corr 0.75: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.2567 0.4699 0.5172 0.5088 0.5555 0.632 0.062 0.0626

Grenander 0.0708 0.2767 0.3688 0.3633 0.4515 0.6219 0.1184 0.1808
’Longest-length’ 0.2669 0.4954 0.5379 0.5311 0.5714 0.8949 0.0593 0.0669
Kernel, tailored 0.2717 0.4751 0.5238 0.5231 0.5696 0.7941 0.0704 0.0741

Kernel, Silverman 0.263 0.4719 0.522 0.5224 0.5712 0.8201 0.0733 0.0767
’SchSpjSto’ 0.2537 0.4509 0.5031 0.4966 0.5467 0.633 0.0662 0.0662

Table 4: Summary statistics for set of estimates, ✄� ✁ for � ✁✯✗ ✞ ■☎✁ .
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Indep.: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.7333 0.7953 0.8066 0.8041 0.8152 0.8405 0.0157 0.0162

Grenander 0.1105 0.4429 0.5882 0.5637 0.7124 0.8355 0.1717 0.2921
’Longest-length’ 0.7377 0.8056 0.817 0.8177 0.8292 0.9315 0.0201 0.0268
Kernel, tailored 0.7319 0.7964 0.8094 0.8096 0.8237 0.8716 0.0208 0.0229

Kernel, Silverman 0.7129 0.7899 0.81 0.809 0.8278 0.8995 0.0286 0.0299
’SchSpjSto’ 0.628 0.7694 0.7921 0.7845 0.8076 0.8395 0.0326 0.0361

Group 50 Corr 0.25: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.7223 0.7906 0.8071 0.8039 0.8195 0.8528 0.0217 0.022

Grenander 0.0906 0.4415 0.5861 0.5618 0.7054 0.8454 0.1696 0.2924
’Longest-length’ 0.7345 0.8014 0.8174 0.8165 0.8319 0.9226 0.0236 0.0288
Kernel, tailored 0.721 0.7918 0.8119 0.8105 0.8296 0.9017 0.0267 0.0287

Kernel, Silverman 0.7054 0.7857 0.8096 0.8094 0.8342 0.9128 0.0342 0.0355
’SchSpjSto’ 0.6286 0.7618 0.7896 0.7828 0.8113 0.8508 0.0379 0.0416

Group 50 Corr 0.50: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.6498 0.7795 0.8063 0.8015 0.8291 0.8691 0.0351 0.0351

Grenander 0.0985 0.4489 0.5816 0.565 0.7057 0.8505 0.1683 0.2891
’Longest-length’ 0.6764 0.7971 0.8221 0.8165 0.8384 0.9288 0.0317 0.0358
Kernel, tailored 0.6667 0.7806 0.8118 0.8109 0.8411 0.9551 0.0417 0.0431

Kernel, Silverman 0.6428 0.7782 0.8105 0.811 0.8451 0.9802 0.0479 0.0492
’SchSpjSto’ 0.6067 0.7544 0.79 0.7835 0.8215 0.8703 0.0467 0.0495

Group 50 Corr 0.75: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.5724 0.7639 0.8036 0.794 0.8338 0.8798 0.0514 0.0518

Grenander 0.1016 0.4359 0.5835 0.5626 0.7006 0.8647 0.1712 0.2928
’Longest-length’ 0.6079 0.785 0.8221 0.8135 0.8462 0.9634 0.0495 0.0513
Kernel, tailored 0.6059 0.7686 0.8123 0.812 0.8586 1 0.0645 0.0656

Kernel, Silverman 0.5807 0.7636 0.8115 0.8123 0.8601 1 0.0711 0.0721
’SchSpjSto’ 0.5433 0.741 0.7857 0.7779 0.8261 0.8793 0.0599 0.0638

Group 100 Corr 0.25: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.7065 0.7857 0.8064 0.8023 0.8219 0.858 0.0267 0.0268

Grenander 0.1077 0.4295 0.5764 0.5545 0.6976 0.8444 0.1701 0.2987
’Longest-length’ 0.6913 0.7999 0.8198 0.8171 0.8351 0.9031 0.0275 0.0323
Kernel, tailored 0.7084 0.7879 0.8091 0.8088 0.8305 0.9005 0.0313 0.0325

Kernel, Silverman 0.6672 0.7825 0.8071 0.8075 0.8333 0.9285 0.0375 0.0382
’SchSpjSto’ 0.6 0.7578 0.7873 0.7813 0.8117 0.8569 0.0404 0.0445

Group 100 Corr 0.50: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.6428 0.7698 0.805 0.7982 0.8345 0.8722 0.0446 0.0446

Grenander 0.1155 0.4485 0.5809 0.5664 0.6974 0.8632 0.1668 0.287
’Longest-length’ 0.6067 0.7891 0.8211 0.8133 0.8445 0.934 0.0418 0.0438
Kernel, tailored 0.6447 0.7737 0.8092 0.8096 0.8451 0.9607 0.0526 0.0535

Kernel, Silverman 0.6317 0.7708 0.808 0.8092 0.8474 0.9914 0.0576 0.0583
’SchSpjSto’ 0.568 0.746 0.7849 0.7815 0.8245 0.8734 0.0526 0.0558

Group 100 Corr 0.75: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.5008 0.741 0.8029 0.7838 0.8387 0.8875 0.0705 0.0724

Grenander 0.1129 0.4173 0.5674 0.5547 0.6927 0.8856 0.177 0.3025
’Longest-length’ 0.5614 0.7743 0.8227 0.8115 0.8561 0.9981 0.0643 0.0653
Kernel, tailored 0.5306 0.7476 0.8103 0.809 0.8678 1 0.0881 0.0885

Kernel, Silverman 0.5125 0.7415 0.8085 0.8074 0.8723 1 0.0946 0.0949
’SchSpjSto’ 0.4743 0.7161 0.7775 0.7665 0.8303 0.8874 0.0777 0.0846

Table 5: Summary statistics for set of estimates, ✄� ✁ for � ✁✯✗ ✞ ■ ✂
.
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Indep.: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.8918 0.9392 0.9481 0.9461 0.9548 0.9731 0.0121 0.0128

Grenander 0.144 0.5027 0.6932 0.6599 0.8367 0.9618 0.2039 0.3546
’Longest-length’ 0.8778 0.9458 0.9544 0.9541 0.963 0.9957 0.0152 0.0157
Kernel, tailored 0.9034 0.942 0.9528 0.953 0.9646 1 0.0162 0.0165

Kernel, Silverman 0.8538 0.9326 0.9519 0.9523 0.9741 1 0.0296 0.0297
’SchSpjSto’ 0.772 0.91 0.9349 0.9257 0.9487 0.9705 0.0314 0.0397

Group 50 Corr 0.25: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.8597 0.9333 0.9489 0.9444 0.9589 0.9793 0.0192 0.02

Grenander 0.1373 0.5035 0.6807 0.6547 0.8179 0.9665 0.1951 0.3539
’Longest-length’ 0.8847 0.9438 0.9563 0.9539 0.9664 0.9988 0.0184 0.0188
Kernel, tailored 0.8732 0.9363 0.9536 0.9521 0.9679 1 0.0224 0.0225

Kernel, Silverman 0.8339 0.9275 0.9517 0.9504 0.9774 1 0.034 0.034
’SchSpjSto’ 0.77 0.904 0.9326 0.9232 0.9515 0.9765 0.0364 0.0452

Group 50 Corr 0.50: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.8031 0.9247 0.9478 0.9393 0.9625 0.9794 0.0301 0.032

Grenander 0.1372 0.5106 0.6733 0.6601 0.823 0.9758 0.1952 0.3495
’Longest-length’ 0.8167 0.9355 0.9552 0.9485 0.9676 0.9988 0.0267 0.0268
Kernel, tailored 0.8144 0.9289 0.9531 0.9505 0.9763 1 0.0347 0.0347

Kernel, Silverman 0.7761 0.9183 0.9526 0.9483 0.9867 1 0.0428 0.0428
’SchSpjSto’ 0.728 0.8928 0.9278 0.9201 0.957 0.9802 0.0435 0.0528

Group 50 Corr 0.75: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.6796 0.9061 0.9446 0.9288 0.9644 0.9869 0.047 0.0516

Grenander 0.1368 0.5074 0.6869 0.659 0.8236 0.985 0.2072 0.3572
’Longest-length’ 0.7205 0.9209 0.9532 0.94 0.9692 0.9987 0.042 0.0432
Kernel, tailored 0.404 0.9126 0.9546 0.9445 0.992 1 0.0551 0.0554

Kernel, Silverman 0.6787 0.9021 0.9536 0.9417 1 1 0.0596 0.0602
’SchSpjSto’ 0.592 0.8765 0.9299 0.9117 0.9598 0.9879 0.0597 0.0709

Group 100 Corr 0.25: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.8253 0.9317 0.9493 0.9438 0.9612 0.9789 0.0225 0.0234

Grenander 0.1247 0.5223 0.7004 0.6643 0.8338 0.9691 0.1983 0.3478
’Longest-length’ 0.8402 0.942 0.9569 0.9528 0.967 0.9993 0.0204 0.0206
Kernel, tailored 0.8448 0.9362 0.9542 0.9529 0.9725 1 0.0264 0.0266

Kernel, Silverman 0.8108 0.9262 0.9519 0.9499 0.9789 1 0.0362 0.0362
’SchSpjSto’ 0.74 0.9004 0.9299 0.9229 0.954 0.9804 0.0386 0.0472

Group 100 Corr 0.50: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.7634 0.917 0.9471 0.9359 0.9655 0.988 0.0385 0.041

Grenander 0.1247 0.5204 0.6815 0.6625 0.8255 0.979 0.1981 0.3492
’Longest-length’ 0.771 0.9283 0.9567 0.9453 0.9704 0.9981 0.0347 0.035
Kernel, tailored 0.7986 0.9232 0.9548 0.9496 0.9877 1 0.0434 0.0434

Kernel, Silverman 0.7548 0.9116 0.9529 0.9458 0.997 1 0.0501 0.0502
’SchSpjSto’ 0.73 0.8867 0.9307 0.9186 0.962 0.9876 0.0507 0.0597

Group 100 Corr 0.75: Min. 1st Qu. Med. Mean 3rd Qu. Max. St.Dev. RMSE
Convex 0.6733 0.8913 0.9421 0.9205 0.9664 0.9948 0.0611 0.0679

Grenander 0.1324 0.5118 0.6836 0.6606 0.835 0.984 0.2101 0.3576
’Longest-length’ 0.6684 0.9103 0.9503 0.9343 0.9719 0.9999 0.0511 0.0535
Kernel, tailored 0.7095 0.9014 0.9564 0.939 1 1 0.0646 0.0656

Kernel, Silverman 0.6801 0.8895 0.9593 0.934 1 1 0.0735 0.0752
’SchSpjSto’ 0.6367 0.8667 0.9262 0.9045 0.962 0.9954 0.0711 0.0844

Table 6: Summary statistics for set of estimates, ✄� ✁ for � ✁ ✗ ✞ ■☎✄✆✁ .
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Figure 21: First quantile (in data sets of ✁ =1000) as a function of correlation for group sizes 50 and
100 and values of �✄✁ ☎ ☛

✞ ■☎✁ ✟ ✞ ■ ✂ ✟ ✞ ■☎✄ ✟ ✞ ■☎✄✂✁ ✎ for five of the six methods considered (the Grenander
estimator is excluded from the plot).
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Figure 22: Median (in data sets of ✁ =1000) as a function of correlation for group sizes 50 and 100 and
values of � ✁☞☎ ☛

✞ ■☎✁ ✟ ✞ ■ ✂ ✟ ✞ ■☎✄ ✟ ✞ ■☎✄ ✁ ✎ for five of the six methods considered (the Grenander estimator is
excluded from the plot).



68 Additional tables and plots from the simulation experiment

0.0 0.2 0.4 0.6

0.
53

0.
54

0.
55

0.
56

3rd Quantile , group size 50 0.5

Correlation

Convex density estimator
’Longest−length’−estimator
’SchSpjSto’ estimator
Kernel estimator, tailored
Kernel estimator, Silverman’s

0.0 0.2 0.4 0.6

0.
53

0.
54

0.
55

0.
56

0.
57

3rd Quantile , group size 100 0.5

Correlation

Convex density estimator
’Longest−length’−estimator
’SchSpjSto’ estimator
Kernel estimator, tailored
Kernel estimator, Silverman’s

0.0 0.2 0.4 0.6

0.
81

0.
82

0.
83

0.
84

0.
85

0.
86

3rd Quantile , group size 50 0.8

Correlation

Convex density estimator
’Longest−length’−estimator
’SchSpjSto’ estimator
Kernel estimator, tailored
Kernel estimator, Silverman’s

0.0 0.2 0.4 0.6

0.
81

0.
82

0.
83

0.
84

0.
85

0.
86

0.
87

3rd Quantile , group size 100 0.8

Correlation

Convex density estimator
’Longest−length’−estimator
’SchSpjSto’ estimator
Kernel estimator, tailored
Kernel estimator, Silverman’s

0.0 0.2 0.4 0.6

0.
91

0.
92

0.
93

0.
94

0.
95

3rd Quantile , group size 50 0.9

Correlation

Convex density estimator
’Longest−length’−estimator
’SchSpjSto’ estimator
Kernel estimator, tailored
Kernel estimator, Silverman’s

0.0 0.2 0.4 0.6

0.
90

0.
92

0.
94

0.
96

3rd Quantile , group size 100 0.9

Correlation

Convex density estimator
’Longest−length’−estimator
’SchSpjSto’ estimator
Kernel estimator, tailored
Kernel estimator, Silverman’s

0.0 0.2 0.4 0.6

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

3rd Quantile , group size 50 0.95

Correlation

Convex density estimator
’Longest−length’−estimator
’SchSpjSto’ estimator
Kernel estimator, tailored
Kernel estimator, Silverman’s

0.0 0.2 0.4 0.6

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

3rd Quantile , group size 100 0.95

Correlation

Convex density estimator
’Longest−length’−estimator
’SchSpjSto’ estimator
Kernel estimator, tailored
Kernel estimator, Silverman’s

Figure 23: Third quantile (in data sets of ✁ =1000) as a function of correlation for group sizes 50 and
100 and values of �✄✁ ☎ ☛

✞ ■☎✁ ✟ ✞ ■ ✂ ✟ ✞ ■☎✄ ✟ ✞ ■☎✄✂✁ ✎ for five of the six methods considered (the Grenander
estimator is excluded from the plot).
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Figure 24: Standard deviation (in data sets of ✁ =1000) as a function of correlation for group sizes 50
and 100 and values of �✄✁ ☎ ☛

✞ ■☎✁ ✟ ✞ ■ ✂ ✟ ✞ ■☎✄ ✟ ✞ ■☎✄✆✁ ✎ for five of the six methods considered (the Grenander
estimator is excluded from the plot).
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Figure 25: Density estimates of ✄�✂✁ for group size 50 for �✄✁ =0.5. “Convex” is solid, “Grenander” is
dashed, “Longest-length” is dotted, “SchSpjSto” is dotdash “Kernel, tailord” is longdash and “Kernel,
Silverman” is twodash (plotting symbols are shown in Figure 9).
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Figure 26: Density estimates of ✄�☎✁ for group size 100 for �✂✁ =0.5. “Convex” is solid, “Grenander” is
dashed, “Longest-length” is dotted, “SchSpjSto” is dotdash “Kernel, tailord” is longdash and “Kernel,
Silverman” is twodash (plotting symbols are shown in Figure 9).
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Figure 27: Density estimates of ✄�✂✁ for group size 50 for �✄✁ =0.8. “Convex” is solid, “Grenander” is
dashed, “Longest-length” is dotted, “SchSpjSto” is dotdash “Kernel, tailord” is longdash and “Kernel,
Silverman” is twodash (plotting symbols are shown in Figure 9).
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Figure 28: Density estimates of ✄�☎✁ for group size 100 for �✂✁ =0.8. “Convex” is solid, “Grenander” is
dashed, “Longest-length” is dotted, “SchSpjSto” is dotdash “Kernel, tailord” is longdash and “Kernel,
Silverman” is twodash (plotting symbols are shown in Figure 9).
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Figure 29: Density estimates of ✄�☎✁ for group size 50 for �✂✁ =0.95. “Convex” is solid, “Grenander” is
dashed, “Longest-length” is dotted, “SchSpjSto” is dotdash “Kernel, tailord” is longdash and “Kernel,
Silverman” is twodash (plotting symbols are shown in Figure 9).
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Figure 30: Density estimates of ✄�☎✁ for group size 100 for �✂✁ =0.95. “Convex” is solid, “Grenander” is
dashed, “Longest-length” is dotted, “SchSpjSto” is dotdash “Kernel, tailord” is longdash and “Kernel,
Silverman” is twodash (plotting symbols are shown in Figure 9).
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B R source code

Here all R source code for calculating the estimators of � ✁ is listed. All code is written by Egil
Ferkingstad, except

✂ the code for the PAVA algorithm (the function pava), written by R. F. Raubertas, and

✂ the code for calculating Storey’s estimate, written by John D. Storey
(available at http://www.stat.berkeley.edu/ ❯ storey/).

#===================================================================================
# Estimation methods for pi0:
#
# grenest(p): Grenander estimate at p=1
# longest(p): Grenander estimate and the ’longest-length’ idea
# convest(p): Convex decreasing density estimation
# kernest.sm(p): Kernel density estimation with Silverman’s choice of h
# kernest.my(p): Kernel density estimation with the alternative choice of h
# storeyest(p): Schweder & Spjøtvoll’s est. with Storey’s bootstrap choice of lambda
#
# All the function take a vector with the observed p-values as input,
# and return the estimate of pi0.
#===================================================================================

########################################
# CONVEX DECREASING DENSITY ESTIMATION #
########################################

convest <- function(p)
# Estimates pi0 using a convex decreasing density estimate
# Input: Observed p-values
# Returns: An estimate of pi0

{
delta <- .00001
k <- 200
ny <- 1e-6
p <- sort(p)
m <- length(p)
p.c <- ceiling(100*p)/100
p.f <- floor(100*p)/100
t.grid <- (1:100)/100
x.grid <- (0:100)/100
t.grid.mat <- matrix(t.grid,ncol=1)
f.hat <- rep(1,101) #f.hat at the x-grid
f.hat.p <- rep(1,m) #f.hat at the p-values
theta.hat <- 0.01*which.max(
apply(t.grid.mat,1,function(theta) sum((2*(theta-p)*(p<theta)/theta^2))))
# f.theta.hat at the x-grid
f.theta.hat <- 2*(theta.hat-x.grid)*(x.grid<theta.hat)/theta.hat^2
# f.theta.hat at the p-vales
f.theta.hat.p <- 2*(theta.hat-p)*(p<theta.hat)/theta.hat^2
i<-1
j<-0
z<-1
thetas <- numeric()
for(j in 1:k) {
if (sum((f.hat.p-f.theta.hat.p)/f.hat.p)>0) eps <- 0

else
{

l <- 0
u <- 1
while (abs(u-l)>ny)
{

eps <- (l+u)/2
if (sum(((f.hat.p-f.theta.hat.p)/
((1-eps)*f.hat.p+eps*f.theta.hat.p))[f.hat.p>0])<0) l <- eps

else u <- eps
}

}
#if (theta.hat>0 & eps>0) j<-j+1
f.hat <- (1-eps)*f.hat + eps*f.theta.hat
pi.0.hat <- f.hat[101]
d <- -sum((f.theta.hat.p-f.hat.p)/f.hat.p)
f.hat.p <- 100*(f.hat[100*p.f+1]-f.hat[100*p.c+1])*(p.c-p)+f.hat[100*p.c+1]
theta.hat <- 0.01*which.max(apply(t.grid.mat,1,function(theta)

sum((2*(theta-p)*(p<theta)/theta^2)/f.hat.p)))
f.theta.hat <- 2*(theta.hat-x.grid)*(x.grid<theta.hat)/theta.hat^2
f.theta.hat.p <- 2*(theta.hat-p)*(p<theta.hat)/theta.hat^2
if (sum(f.theta.hat.p/f.hat.p)<sum(1/f.hat.p))

{
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theta.hat <- 0
f.theta.hat <- rep(1,101)
f.theta.hat.p <- rep(1,m)

}
if (sum(thetas==theta.hat)==0)

{
thetas[i] <- theta.hat
thetas <- sort(thetas)
i <- i + 1

}
z <- z+1
}
pi.0.hat <- f.hat[101]
pi.0.hat

}

#############################
# KERNEL DENSITY ESTIMATION #
#############################

kernest.sm <- function(p)
# Estimation of pi0 using kernel density estimation
# with Silverman’s choice of smoothing parameter
# Input: Vector of observed p-values
# Returns: An estimate of pi0

{
m <- length(p)
n <- 2*m
pa <- p
pa[(m+1):n] <- 2-p
h <- 0.9*min(sd(pa),(quantile(pa,.75)-quantile(pa,.25))/1.34)*n^(-1/5)
dens <- n^-1*h^-1*(2*pi)^-(1/2)*sum(exp(-(1/2)*((1-pa)/h)^2))
pi.0.hat <- 2*dens
#cat("pi.0.hat:",pi.0.hat,"\th:",h,"\n")
pi.0.hat

}

kernest.my <- function(p)
# Estimation of pi0 using kernel density estimation
# with Ferkingstad’s choice of smoothing parameter
# Input: Vector of observed p-values
# Returns: An estimate of pi0
{

m <- length(p)
n <- 2*m
pa <- p
pa[(m+1):n] <- 2-p
c.hat <- -m/sum(log(p[p>0])) # the maximum likelihood estimate of c
h <- (4*pi)^(-1/10)*(c.hat*(c.hat-1)*(c.hat-2))^-(2/5)*n^(-1/5)*c.hat^(1/5)
dens <- n^-1*h^-1*(2*pi)^-(1/2)*sum(exp(-(1/2)*((1-pa)/h)^2))
pi.0.hat <- 2*dens
#cat("pi.0.hat:",pi.0.hat,"\tc.hat:",c.hat,"\th:",h,"\n")
pi.0.hat

}

###########################################################
# DECREASING (GRENANDER) DENSITY ESTIMATES (WITH LONGEST) #
###########################################################

grenlongest <- function(p)
# Input: Vector of observed p-values
# Returns: Vector with grenest as first element and longest as second argument
{

p <- sort(p)
pi.0.hats <- numeric()
npmle <- grenander(p)
n <- length(npmle)
pi.0.hats[1] <- min(npmle[n],1)
pi.0.hats[2] <- findlong.e(npmle,p)
pi.0.hats

}

grenest <- function(p)
# Grenander estimate
# Input: Vector of observed p-values
# Returns: An estimate of pi0

{
npmle <- grenander(p)
n <- length(npmle)
pi.0.hat <- npmle[n]
pi.0.hat

}

longest <- function(p)
# ’Longest-length estimate
# Input: Vector of observed p-values
# Returns: An estimate of pi0

{
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npmle <- grenander(p)
pi.0.hat <- findlong.e(npmle,p)
pi.0.hat

}

grenander <- function(p)
# Compute the nonparametric maximum likehood decreasing density estimate f.gren
# of the p-values. Uses the function pava.R
# Input: Vector of observed p-values
# Returns: Vector with NPMLE decreasing density estimate

{
p <- sort(p)
y <- w <- npmle <- numeric()
y <- 1/(length(p)*c(p[1],diff(p)))
w <- c(p[1],diff(p))
npmle <- pava(y,w)
npmle

}

pava <- function(x, wt=rep(1,length(x)))
# Compute the antitonic regression of numeric vector ’x’, with
# weights ’wt’, with respect to simple order. The pool-adjacent-
# violators algorithm is used. Returns a vector of the same length
# as ’x’ containing the regression.

# 02 Sep 1994 / R.F. Raubertas

# Modified by Egil Ferkingstad (changed from isotonic to antitonic regression)

{
n <- length(x)
if (n <= 1) return (x)
if (any(is.na(x)) || any(is.na(wt))) {

stop ("Missing values in ’x’ or ’wt’ not allowed")
}
x[x==Inf] <- 10^100
lvlsets <- (1:n)
repeat {
viol <- (as.vector(diff(x)) > 0) # Find adjacent violators
if (!(any(viol))) break

i <- min( (1:(n-1))[viol]) # Pool first pair of violators

lvl1 <- lvlsets[i]
lvl2 <- lvlsets[i+1]
ilvl <- (lvlsets == lvl1 | lvlsets == lvl2)
x[ilvl] <- sum(x[ilvl]*wt[ilvl]) / sum(wt[ilvl])
lvlsets[ilvl] <- lvl1

}
x

}

findlong.e <- function(x,p)
{

pi.0.hat <- 2
n <- length(x)
p <- sort(p)
nlto <- sum(x<=1)
if (nlto<=1) pi.0.hat<-1
else
{

x <- x[(n-nlto):n]
p <- p[(n-nlto):n]
ix <- 1:(length(x)-1)
ch.pt <- unique(c(ix[diff(x)!=0],max(ix)))
diffs <- diff(p[ch.pt+1])
ch.idx <- which.max.last(diffs)
long.idx <- ch.pt[ch.idx]
pi.0.hat <- x[long.idx+1]

}
pi.0.hat

}

which.max.last <- function(x)
{

y <- seq(length(x))[x == max(x)]
if(length(y) > 1)

max(y)
else y

}

#######################################
# SCWEDER/SPJØTVOLL/STOREY ESTIMATION #
#######################################

storeyest <- function(p)
{

qvalue(p,lam.meth="bootstrap")$pi0
}
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# CODE WRITTEN BY JOHN D. STOREY, AVAILABLE AT:
# http://www.stat.berkeley.edu/~storey/

qvalue <- function(p, alpha=NULL, lam=NULL, lam.meth="smoother", robust=F) {
#This is a function for estimating the q-values for a given set of p-values. The
#methodology mainly comes from:
#Storey JD. (2002) A direct approach to false discovery rates.
#Journal of the Royal Statistical Society, Series B, 64: 479-498.
#See http://www.stat.berkeley.edu/~storey/ for more info.
#This function was written by John D. Storey. Copyright 2002 by John D. Storey.
#All rights are reserved and no responsibility is assumed for mistakes
#in or caused by
#the program.
#
#Input
#=============================================================================
#p: a vector of p-values (only necessary input)
#alpha: a level at which to control the FDR (optional)
#lam: the value of the tuning parameter to estimate pi0 (optional)
#lam.method: either "smoother" or "bootstrap"; the method for automatically
# choosing tuning parameter lam if it is not specified
#robust: an indicator of whether it is desired to make the estimate more robust
# for small p-values (optional)
#
#Output
#=============================================================================
#remarks: tells the user what options were used, and gives any relevant warnings
#pi0: an estimate of the proportion of null p-values
#qvalues: a vector of the estimated q-values (the main quantity of interest)
#pvalues: a vector of the original p-values
#significant: if alpha is specified, and indicator of
# whether the q-value fell below alpha
# (taking all such q-values to be significant controls FDR at level alpha)

#This is just some pre-processing
if(min(p)<0 || max(p)>1) {
print("ERROR: p-values not in valid range"); return(0)
}
m <- length(p)

#These next few functions are the various ways to estimate pi0
if(!is.null(lam)) {

pi0 <- mean(p>lam)/(1-lam)
pi0 <- min(pi0,1)
remark <- "The user prespecified lam in the calculation of pi0."

}
else{

lam <- seq(0,0.95,0.01)
pi0 <- rep(0,length(lam))
for(i in 1:length(lam)) {

pi0[i] <- mean(p>lam[i])/(1-lam[i])
}
if(lam.meth=="smoother") {

remark <- "A smoothing method was used in the calculation of pi0."
library(modreg)
spi0 <- smooth.spline(lam,pi0,df=3,w=(1-lam))
pi0 <- predict.smooth.spline(spi0,x=0.95)$y
pi0 <- min(pi0,1)

}
if(lam.meth=="bootstrap") {

remark <- "A bootstrap method was used in the calculation of pi0."
minpi0 <- min(pi0)
mse <- rep(0,length(lam))
pi0.boot <- rep(0,length(lam))
for(i in 1:100) {

p.boot <- sample(p,size=m,replace=T)
for(i in 1:length(lam)) {

pi0.boot[i] <- mean(p.boot>lam[i])/(1-lam[i])
}
mse <- mse + (pi0.boot-minpi0)^2

}
pi0 <- min(pi0[mse==min(mse)])
pi0 <- min(pi0,1)

}
}
if(pi0 <= 0) {
print("ERROR: Check that you have valid p-values. The estimated pi0 < 0."); return(0)
}

#The q-values are actually calculated here
u <- order(p)
v <- rank(p)
qvalue <- pi0*m*p/v
if(robust) {

qvalue <- pi0*m*p/(v*(1-(1-p)^m))
remark <- c(remark, "The robust version of the q-value was

calculated. See Storey JD (2002) JRSS-B 64: 479-498.")
}
qvalue[u[m]] <- min(qvalue[u[m]],1)
for(i in (m-1):1) {
qvalue[u[i]] <- min(qvalue[u[i]],qvalue[u[i+1]],1)
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}
#Here the results are returned

if(!is.null(alpha)) {
return(remarks=remark, pi0=pi0, qvalues=qvalue,

significant=(qvalue <= alpha), pvalues=p)
}
else {

return(remarks=remark, pi0=pi0, qvalues=qvalue, pvalues=p)
}

}


