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Schizophrenia is a complex disorder caused by both genetic 
and environmental factors. Using 9,087 affected individuals, 
12,171 controls and 915,354 imputed SNPs from the 
Schizophrenia Psychiatric Genome-Wide Association Study 
(GWAS) Consortium (PGC-SCZ), we estimate that 23%  
(s.e. = 1%) of variation in liability to schizophrenia is  
captured by SNPs. We show that a substantial proportion of 
this variation must be the result of common causal variants, 
that the variance explained by each chromosome is linearly 
related to its length (r = 0.89, P = 2.6 × 10−8), that the genetic 
basis of schizophrenia is the same in males and females, and 
that a disproportionate proportion of variation is attributable 
to a set of 2,725 genes expressed in the central nervous system 
(CNS; P = 7.6 × 10−8). These results are consistent with a 
polygenic genetic architecture and imply more individual  
SNP associations will be detected for this disease as sample 
size increases.

Schizophrenia is a severe mental disorder with lifetime risk of ~1% 
and heritability of ~0.7–0.8 (refs. 1–3). Of complex genetic diseases, 
schizophrenia has perhaps been the subject of the most specula-
tion and debate relating to its genetic architecture4,5, and the rela-
tive importance of common causal variants remains controversial6,7. 
GWAS of schizophrenia have discovered associated variants8–10 that 
together explain only a small fraction of heritability11. Here, we have 

applied new methods12,13 for estimation of the variation explained by 
genome-wide genotypes to PGC-SCZ data14. In these methods, the 
variance estimate is derived from the average genome-wide similarity 
between all pairs of individuals determined using all SNPs. Genetic 
variation is estimated when case-case pairs and control-control pairs 
are on average more similar across the genome than case-control 
pairs. We used data  only from cases and controls that are ‘unrelated’ 
in the classical sense and calculated the variance explained by auto-
somal SNPs. We partitioned15 this genomic variation by chromosome, 
sex, functional annotation and minor allele frequency (MAF).

RESULTS
Genomic variation captured by common SNPs
The PGC-SCZ includes data from the International Schizophrenia 
Consortium (ISC)8, the Molecular Genetics of Schizophrenia 
Collaboration (MGS)9 and other samples (together referred to 
as Other) (Supplementary Table 1). Using a linear mixed model  
(see Online Methods), we estimated the proportion of variance in 
liability to schizophrenia explained by SNPs (h2) in each of these 
three independent data subsets (Table 1). We use the notation  
h2 because the estimates represent a lower bound of narrow-sense 
heritability that results from the fact that only variation due to 
association with the SNPs can be estimated. Preliminary analyses 
were conducted using nonimputed genotypes of the ISC and MGS 
subsets (Supplementary Table 2). The individual estimates of  
h2 for the ISC and MGS subsets and for other samples from the  
PGC-SCZ were each greater than the estimate from the total com-
bined PGC-SCZ sample of h2 = 23% (s.e. = 1%) (Table 1). We 
investigated this result by conducting bivariate analyses in which 
we considered cases and controls from one subset to be trait 1 and 
those from a different subset to be trait 2 (Table 2). The two inde-
pendent subsets were related through the coefficients of genome-
wide similarity calculated from SNPs between individuals (Online 
Methods, Eq. (3)). The estimated correlation coefficients based 
on SNP genome-wide similarities were <1, consistent with several 
explanations. Subsets might be more homogeneous—both pheno-
typically, for example, because of similar and consistent diagnos-
tic criteria, and genetically, because linkage disequilibrium (LD) 
between causal variants and analyzed SNPs might be higher within 
than between subsets. Alternatively, subtle artifacts could generate 
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nonrandom differences in allele frequency between sets of cases 
and sets of controls from the same study. However, our preliminary 
analyses using genotyped SNPs for the ISC and MGS subsets and 
extreme quality control filtering (Supplementary Table 2) sug-
gest that this was unlikely to be a major contributor. Furthermore,  
the correlations between data sets from the bivariate analyses were 
high (~0.8), indicating that the same genetic signals can explain 
variance in schizophrenia liability in different case-control sam-
ples. As these samples were collected independently with genotyp-
ing conducted at different laboratories, it is difficult to envision 
artifacts that could generate such high correlations. Hence, we con-
clude that the PGC-SCZ estimate of h2 represents the lower bound 
of variance in liability that would be explained by common SNPs in 
a large phenotypically and genetically homogeneous sample with no  
genotyping artifacts.

Partitioning of genomic variation by chromosome
Cryptic population stratification has been proposed to be a confound-
ing factor in GWAS7. A consequence of population stratification is 
that segments of ancestry-specific chromosomes segregate together 
in the population. In this situation, variance attributed to causal vari-
ants on one chromosome can be predicted by SNPs from segments 
derived from the same ancestral population on other chromosomes. To 
investigate whether population stratification could have contributed to  
our results (beyond the ancestry principal-component scores included 
as covariates in the analyses), we performed two kinds of analyses: one 
in which the similarity matrix for each chromosome was fitted sepa-
rately (22 analyses estimating one additive genetic variance component  
per analysis) and a second joint analysis in which the 22 similarity  
matrices were fitted simultaneously (estimating 22 additive genetic 
variance components in a single analysis) (Online Methods). Finding 
higher total variance explained by the 22 individually estimated vari-
ances compared to the 22 simultaneously estimated variances would 
provide evidence of stratification. The total variance explained was 
determined to be 26% for chromosomes fitted separately compared to 
a total of 23% when chromosomes were fitted together, thus showing 
little evidence of population stratification (Fig. 1a). The estimates of 
variance explained by each chromosome were 
linearly related to the length of the chromo-
some (correlation r = 0.89, P = 2.6 × 10−8), 
consistent with a highly polygenic model, and 
the length correlation is very similar to results 
for human height12.

Genomic variation by sex
Sex differences have been described for 
almost all features of schizophrenia (preva-
lence, incidence, age of onset, clinical presen-
tation, course and response to treatment)16. 

To determine whether the variance in liability captured by SNPs on 
autosomes differs between the sexes, we undertook a bivariate analysis 
considering male cases and controls as one trait and female cases and 
controls as the second trait. The two independent subsets were related 
through the coefficients of similarity calculated from SNPs (Online 
Methods, Eq. (3)). The correlation in liabilities captured by SNPs 
between the sexes was very high (0.89, s.e. = 0.06, not significantly 
different from 1) (Table 2), implying that the majority of additive 
genetic variance is shared between the sexes. We also investigated 
variance explained by genotyped SNPs on the X chromosome for the 
ISC and MGS data sets, and we conclude that the variance explained 
by the X chromosome is consistent with the expected value given its 
length (Supplementary Table 3).

Partitioning of genomic variation by functional annotation
To assess whether functional annotation of SNPs is associated with 
the variance they explain, we partitioned the variance explained by 
SNPs into three components by creating similarity matrices of SNPs 
in genes expressed in the central nervous system (CNS+), those found 
in other genes and those not localized to genes (Online Methods). The 
CNS+ genes included four previously identified subsets17 comprising 
genes expressed in the brain (specifically, genes with differential CNS 
expression) and those with neuronal activity, roles in learning and 
synapse function. We found that the variance attributable to the CNS+ 
genes was significantly greater than the proportion of the genome that 
they represent (31%, s.e. = 2%, versus 20% of the genome represented; 
P = 7.6 × 10−8) (Fig. 1b and Supplementary Table 4).

Partitioning of genomic variation by SNP MAF 
It has been argued that the low proportion of variance explained by 
previous GWAS of schizophrenia suggests that common variants 
are not important to the etiology of the disease6,7,18. To evaluate this 
hypothesis, we undertook an analysis in which we partitioned the 
variance captured by SNPs into five components defined by MAF 
(Online Methods). For close relatives (who were excluded from our 
analyses), estimated similarities based on SNPs with different MAFs 
would be comparable. However, very distant relatives have inherited 
chromosome segments from distant common ancestors. If a SNP is 
more recent than the common ancestor, then the relationship between 
these individuals would not be reflected by the SNP, and SNPs with 
low MAF tend to be more recent than SNPs with high MAF. The vari-
ance explained by SNPs with MAF of <0.1 was 2% (s.e. = 1%) from 
a joint analysis of all five MAF bins in the total PGC-SCZ data set 
(Fig. 1c and Supplementary Table 5). This low contribution to the 
total variance explained is likely to partly reflect under-representation  
of SNPs with low MAF in the analysis (minimum MAF = 0.01) rela-
tive to those in the genome. The other four MAF bins each explain 
approximately equal proportions of the variance (~5%, s.e. = 1%). 
Analyses of the PGC-SCZ subsets were consistent with these results 

Table 1 Estimated proportion of variance in liability to 
schizophrenia captured by SNPs
Data set Cases Controls h2 (s.e.)

ISC 3,220 3,445 0.27 (0.02)

MGS 2,571 2,419 0.31 (0.03)

Other 3,296 6,307 0.27 (0.02)

ISC and MGS 5,791 5,864 0.25 (0.01)

PGC-SCZ 9,087 12,171 0.23 (0.01)

Estimates are based on 915,354 imputed SNPs. h2, estimate of proportion of variance 
in liability to schizophrenia explained by SNPs. The three independent subsets ISC, 
MGS and Other together comprise the total PGC-SCZ sample.

Table 2 Bivariate analyses of PGC-SCZ subsets

Subset 1/subset 2 Cases (subset 1/2) Controls (subset 1/2)
Subset 1
h2 (s.e.)

Subset 2
h2 (s.e.) r (s.e.)

ISC/MGS 3,220/2,571 3,445/2,419 0.26 (0.02) 0.29 (0.03) 0.84 (0.09)

ISC/Other 3,220/3,296 3,445/6,307 0.26 (0.02) 0.27 (0.02) 0.89 (0.07)

MGS/Other 2,571/3,296 2,419/6,307 0.30 (0.03) 0.26 (0.02) 0.79 (0.08)

ISC and MGS/Other 5,791/3,296 5,864/6,307 0.24 (0.01) 0.26 (0.02) 0.87 (0.06)

Male/female 6,031/3,056 5,884/6,287 0.24 (0.01) 0.25 (0.02) 0.89 (0.06)

Estimates are based on 915,354 imputed SNPs. h2, estimate of proportion of variance in liability to schizophrenia 
explained by SNPs; r, correlation of liabilities explained by SNPs between subsets 1 and 2. The three independent 
subsets ISC, MGS and Other together comprise the total PGC-SCZ sample.
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(Supplementary Table 5). Given the known 
relationship between allele frequency and 
LD19, it is highly unlikely that the estimates of 
h2 reported here are explained predominantly 
by rare causal variants20. We performed sim-
ulations conditional on PGC-SCZ data and 
confirmed that a rare-variants-only model could not explain our 
results. For example, in an analysis of PGC-SCZ data using only SNPs 
with MAF of >0.4, we found that 11% (s.e. = 1%) of the variance in lia-
bility was explained, which is nearly half of the variance explained by 
all SNPs. However, in simulations that attributed 50% of variation in 
liability to SNPs with MAF of <0.1, SNPs with MAF of >0.4 explained 
only 5% (s.e. = 0.3%) of the variance, which is only 10% of the vari-
ation captured by all SNPs (Fig. 1c,d and Supplementary Tables 5 
and 6). Furthermore, our simulation strategy was a best-case scenario 
that favored the rare-variants-only model, as our simulation extended 
the definition of ‘rare’ variants to those with MAF = 0.1, generating 
higher LD between the common genotyped SNPs and causal vari-
ants than would be expected under a more typical definition of rare 
variants (MAF < 0.01). Our results are consistent with analyses of the 
ISC data8,20. In the Supplementary Note, we compare our methods to 
the risk-profiling ones used by the ISC and the efficient mixed model 
association expedited (EMMAX) method21.

DISCUSSION
We draw four noteworthy conclusions from our results. First, using 
direct queries of the genome, we quantified the lower limit of the genetic 
contribution to schizophrenia: approximately one-quarter of the vari-
ance in liability is directly explained by common variants represented 
across the current generation of GWAS arrays8 (Table 1), and this 
variance is shared between the sexes (Table 2). Second, we provide evi-
dence that causal risk variants must include common variants (Fig. 1d).  
Third, we show that the variance explained by chromosomes is lin-
early related to the length of the chromosome (Fig. 1b), consistent 
with a highly polygenic model (many risk loci). Fourth, we find that 
the CNS+ gene set explains significantly (P = 7.6 × 10−8) more vari-
ation than expected for the proportion of the genome it represents.  

Taken together, our results provide guidance for the future of genetic 
studies in schizophrenia. Some have argued6,7,18 that common variants 
have only a small role in the etiology of schizophrenia and that the GWAS 
approach for schizophrenia has been misconceived. Our results refute 
these claims by showing that at least one-quarter of variation in liability  
to schizophrenia is explained by SNPs and that common causal vari-
ants must be responsible for most of this signal. Therefore, larger 
sample sizes are likely to achieve the statistical power needed to detect 
additional effects (in addition to those detected to date) with genome-
wide significance. Recently, a GWAS for height17, considered as a 
model complex trait, identified 180 robustly associated loci in a total 
sample size of 180,000 individuals, and the identified variants were 
concentrated in pathways biologically associated with growth. Samples 
of ~50,000 schizophrenia cases and 50,000 controls are needed to 
afford the same power to detect variants that explain an equivalent 
proportion of phenotypic variance, thereby allowing increased insight 
into biological pathways as was achieved in the height study11,12,22. 
Our results suggest that GWAS of larger case-control samples will 
deliver meaningful results for schizophrenia.

In conclusion, we estimate that about one-quarter of variation 
in liability to schizophrenia, or approximately one-third of genetic 
variation in liability, is captured by considering all genotyped and 
imputed SNPs simultaneously. The remaining missing heritability 
most likely reflects imperfect LD between causal variants and the 
genotyped and imputed SNPs. The current generation of genotyping 
chips may explain only ~70% of the total variance attributable to 
 common SNPs (MAF > 0.1) and may explain less of variance attribut-
able to uncommon and rare variants (Supplementary Fig. 1). From 
the analyses we have performed, we cannot estimate a distribution 
of the allele frequency of causal variants, but the most likely cause 
of low LD between causal variants and SNPs is that many causal  
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Figure 1 Genomic partitioning of schizophrenia. 
(a) By chromosome. Estimated proportion of the 
variance in liability to schizophrenia captured by 
SNPs on individual chromosomes from a joint 
analysis of all chromosomes simultaneously or 
separate analyses for each chromosome. The sum 
of the h2 value is 0.23 for the joint analysis and 
0.26 for the separate analyses. (b) By annotation. 
The total variance explained by SNPs (h2) found in 
CNS+ genes and other genes and by those not in 
genes totals 0.23. Of this, a proportion (0.31) is 
attributed to SNPs in CNS+ genes, which is greater 
than expected by chance (P = 7.6 × 10−8), given 
that the CNS+ genes cover 0.20 of the length of the 
genome (Mb) and represent 0.21 of the SNP count 
(N SNPs). Error bars, 95% confidence intervals of 
the estimates. (c) By MAF bin from analyses fitting 
MAF bins jointly or separately. Error bars, 95% 
confidence intervals. (d) By MAF bins compared 
to simulation under a rare-variants-only model. 
The variance explained by SNPs in each MAF bin 
(when MAF bins were fitted in separate analyses) 
as a proportion of the variance explained by all 
SNPs. Error bars, 95% confidence intervals. For 
the simulations (right) calculated using the s.d. 
across simulation replicates.
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variants have low MAFs. Nevertheless, from the results presented, 
we can conclude that common causal variants in LD with genotyped 
and imputed SNPs must contribute to genetic variation for liability 
to schizophrenia in the population. Hence, causal risk variants for 
schizophrenia range across the entire allelic frequency spectrum.

METhODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METhODS
Data and quality control analysis. The 17 PGC-SCZ case-control sample 
cohorts (8 ISC, 1 MGS and 8 other subsets) and the common quality control  
steps applied to genotypes and to individual samples before imputation 
have previously been described in detail14 and are briefly summarized in 
Supplementary Table 1. Imputation of autosomal SNPs used the Utah resi-
dents of Northern and Western European ancestry (CEU) and Toscani in Italia 
(TSI) HapMap 3 populations as a reference panel14. The total imputed sample 
included 22,279 individuals. Some individuals were excluded to ensure that all 
cases and controls were completely unrelated in the classical sense: no genome-
wide similarities of >0.05 (equivalent to approximately second-cousin related-
ness; see Eq. (3)) were permitted. We calculated the MAF and imputation R2 
(ratio of observed to expected variance) for each SNP in each of the 17 sample 
cohorts and retained only the SNPs with MAF >0.01 and R2 >0.6 in all cohorts, 
a total of 915,354. Preliminary analyses were conducted using only genotyped 
SNPs from the ISC and MGS subsets (see Supplementary Table 2).

Linear mixed model for estimation of variance of case-control status 
explained by all SNPs. For this model, we used the methods previously pre-
sented13. Briefly, we estimated the variance in case-control status explained 
by all SNPs using a linear mixed model 

y g e= + +Xβ

where y is a vector of schizophrenia case (= 1) or control (= 0) status (the 
‘observed scale’), β is a vector for fixed effects of the overall mean (intercept), 
sex, sample cohort and 20 ancestry principal components (see Supplementary 
Fig. 2), g is a vector of random additive genetic effects based on aggregate 
SNP information, e is a vector of random error effects and X is an incidence 
matrix for the fixed effects that relates these effects to individuals. The variance 
structure of phenotypic observations was calculated by 

V A Ig e= +s s2 2

where s g
2  is additive genetic variance captured by the SNPs, se

2 is error vari-
ance, A is the realized relationship matrix estimated from SNP data and I is 
an identity matrix. The realized relationship for each pair of individuals was 
calculated as the sum of the products of SNP coefficients between two indi-
viduals scaled by SNP heterozygosity12 with 

A
L

x p x p

p q
i jij

il l jl l

l ll

L
=

− ⋅ −
≠

=
∑1 2 2

21

( ) ( )
( )

A
L

x p x p

p qii
il l ij l

l ll

L
= +

− + +

=
∑1 1 1 2 2

2

2 2

1

( )

where xil = 0, 1 or 2 according to whether individual i has genotype bb, Bb 
or BB at locus l (alleles are arbitrarily called b or B), p (q) is allele frequency 
of B (b) and 2p is the mean of xl. We used imputation best-guess genotypes. 
Adaptation of Eq. (3) for use with dosage scores produced similar results but 
was computationally slower. These realized relationships are scaled to be both 
positive and negative; therefore, for clarity, we have used the term ‘similarity’  
rather than ‘relationship’23. All variances were on the observed scale and were 
estimated using restricted maximum likelihood (REML)24–26. They were trans-
formed to the liability scale assuming a disease prevalence of 1% (ref. 13), thus 
generating estimates for h2.

Similarly, the bivariate analyses implemented a bivariate extension of Eq. (1)

y g e
y g e
1 1 1 1 1

2 2 2 2 2

= + +
= + +
X Z
X Z

β
β
1

2

where the vectors and matrices follow the definitions from Eq. (1) for each 
of the two subsets denoted by the subscripts. The Z incidence matrices relate 
observations with the vectors of random additive genetic effects. If n1 and 
n2 are the total number of cases and controls in subsets 1 and 2, respectively, 

(1)(1)

(2)(2)

(3)(3)

(4)(4)

then y1 and e1 have length n1, y2 and e2 have length n2, and g1 and g2 have 
length n1+ n2. The variance-covariance matrix of phenotypic observations 
across the two traits is

V
Z AZ I Z AZ

Z AZ Z AZ I

g e g

g g e
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′ + ′

′ ′ +







1 1
2 2

2 1

1 2 2 2
2 2

1 1 12

12 2 2
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where s g12  is the additive genetic covariance captured by SNPs between the 
two traits. Individuals contributing to the two traits were unrelated, such 
that the covariance between environmental effects was assumed to be zero.  
The genetic correlation coefficient r was calculated with 

r g g g= s s s12 1 2/( )

where terms are defined as above.

Genome partitioning linear mixed model. We partitioned the variance 
explained by the SNPs in several ways using the linear model

y g e= + +

= +

=

=

∑

∑

X

V A I

t
t

n

t
t

n
g t e

β
1

1

2 2s s

where n is the number of subsets from any nonoverlapping partitioning of SNPs, 
with n = 22 for the joint analysis by chromosome, n = 5 for the analysis by MAF 
bin and n = 3 for the analysis of SNPs by gene annotation in which SNPs were 
classed as being present in CNS+ genes (2,725 genes representing 547 Mb) or 
other genes (14,804 genes representing 1,069 Mb) or as not being localized to 
genes. Gene boundaries were set 50 kb up- and downstream from the 5′ and  
3′ UTRs of each gene, respectively, and the CNS+ genes included the four previ-
ously identified subsets17 (one comprised genes expressed preferentially in the 
brain compared to other tissues, and the other three comprised genes annotated to 
be involved in neuronal activity, learning and synapses). We included these analy-
ses because they showed how the variance explained by SNPs can be partitioned, 
but they are limited by the current state of the functional annotation of genes.

Under genomic partitioning, each pair of individuals is expected to have 
different estimates of similarity for each SNP set. For example, when we parti-
tioned SNPs by MAF, genome-wide similarities between all pairs of individuals 
were calculated using only SNPs allocated to a given MAF bin.

Model comparisons. We used the likelihood ratio test statistic (LR) to evaluate 
the improved fit of the model for a given variance component term. For exam-
ple, LR = –2ln (likelihood of the reduced model/likelihood of the full model), 
where the reduced model excluded the variance component tested. Each com-
parison excluded a single variance component such that the LR was distributed 
as a 50:50 mixture of a χ2 distribution with 1 degree of freedom and point mass of 
zero27. LRs of 2.7, 5.4, 9.5, 13.8, 18 and 32 equated to P values of 0.05, 0.01, 0.001,  
1 × 10−4, 1 × 10−5 and 1 × 10−6, respectively. We did not report LR values because 
in all cases the LR was so high that the estimates of h2 had small standard error, 
with all showing a difference from zero that was highly significant.

Simulation. To evaluate the hypothesis that common variants have only a 
small role in the etiology of schizophrenia, we used a simulation based on 
the PGC-SCZ imputed genotypes to quantify whether the variance explained 
when fitting common SNPs simultaneously could be attributed to only rare 
causal variants. We calculated the realized relationship matrix between indi-
viduals on the basis of less common SNPs of MAF of <0.1, and we used this 
matrix to simulate quantitative genetic values. Genetic values were generated 
from a multivariate normal distribution by multiplying random normal vari-
ables by the Cholesky decomposition of this similarity matrix. Quantitative 
phenotypes were the genetic values added to random error terms drawn 
from a normal distribution scale such that genetic values explained either 
25%, 50% or 80% of the phenotypic variance. We analyzed the simulated 
data with three models: (i) five separate analyses, with each analysis fitting a 
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 similarity matrix generated with SNPs from one of the five MAF bins, (ii) a 
single joint analysis fitting five similarity matrices simultaneously for each 
of the five MAF bins and (iii) a single joint analysis fitting four similarity 
matrices separately for the four MAF bins with MAF of >0.1. We repeated the 
simulations but instead associated all variance in liability to SNPs across the 
entire MAF spectrum. Results were averaged across ten replicates.

24. Gilmour, A.R., Gogel, B.J., Cullis, B.R. & Thompson, R. ASReml User Guide  
Release 2.0 (VSN International, Hemel Hempstead, UK, 2006).

25. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide 
complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

26. Lee, S.H. & Van der Werf, J.H.J. An efficient variance component approach 
implementing an average information REML suitable for combined LD and linkage 
mapping with a general complex pedigree. Genet. Sel. Evol. 38, 25–43 (2006).

27. Self, S.G. & Liang, K.Y. Asymptotic properties of maximum-likelihood estimators 
and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82, 
605–610 (1987).

23. Powell, J.E., Visscher, P.M. & Goddard, M.E. Reconciling the analysis of IBD and 
IBS in complex trait studies. Nat. Rev. Genet. 11, 800–805 (2010).
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