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Estimating the rate of erosion of a silty sand treated with lignosulfonate

Abstract

This paper describes a theoretical model to capture the rate of erosion of a silty sand based on the
principle of conservation of energy. Erosion is considered to begin when the interparticle bonds between
grains are broken by hydrodynamic stresses exerted on the soil particles. These detached particles are
then suspended and transported by the flow of eroding fluid. It is further assumed that once the particles
are fully suspended and have reached the flow velocity, resettlement does not take place. Stabilization of
soil particles because of lignosulfonate (LS) treatment is represented by the increased strain energy
required to break the interparticle bonds. The equation proposed in this study is based on the shear
stress-strain characteristics, mean flow velocity, mean particle diameter, and the packing arrangement of
particles. The result of the proposed study is presented in the form of erosion rate versus the hydraulic
shear stress. The model is validated with a series of laboratory erosion tests using the Process
Simulation Apparatus for Internal Crack Erosion (PSAICE) for different percentages of LS. The model
results are in good agreement with the experimental observations. DOI:
10.1061/(ASCE)GT.1943-5606.0000766. (C) 2013 American Society of Civil Engineers.
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Estimating the Rate of Erosion of a Silty Sand Treated
with Lignosulfonate

Buddhima Indraratna, F.ASCE'; Rasika Athukorala, S.M.ASCE?; and Jayan Vinod®

Abstract: This paper describes a theoretical model to capture the rate of erosion of a silty sand based on the principle of conservation of energy.
Erosion is considered to begin when the interparticle bonds between grains are broken by hydrodynamic stresses exerted on the soil particles.
These detached particles are then suspended and transported by the flow of eroding fluid. It is further assumed that once the particles are fully
suspended and have reached the flow velocity, resettlement does not take place. Stabilization of soil particles because of lignosulfonate (LS)
treatment is represented by the increased strain energy required to break the interparticle bonds. The equation proposed in this study is based on
the shear stress-strain characteristics, mean flow velocity, mean particle diameter, and the packing arrangement of particles. The result of the
proposed study is presented in the form of erosion rate versus the hydraulic shear stress. The model is validated with a series of laboratory ero-
sion tests using the Process Simulation Apparatus for Internal Crack Erosion (PSAICE) for different percentages of LS. The model results are in
good agreement with the experimental observations. DOI: 10.1061/(ASCE)GT.1943-5606.0000766. © 2013 American Society of Civil

Engineers.

CE Database subject headings: Soil erosion; Silts; Sand (soil type); Chemicals.

Author keywords: Erosion rate; Silty sand; Chemical stabilization; Lignosulfonate.

Introduction

Earth structures such as embankment dams, rail and/or road em-
bankments, canals, and foundations associated with erodible and
dispersive soils are in danger of surface and internal erosion (piping).
Therefore, it is very important to improve their resistance to erosion in
an appropriate and cost-effective manner. Chemical stabilization is an
effective technique for controlling erosion. A great deal of research
has been carried out on the engineering behavior of stabilized erodible
and dispersive soils using traditional admixtures such as lime, cement,
gypsum, slag, alum, and fly ash (Perry 1977; Rosewel 1977; Ryker
1977; Machan et al. 1977; Indraratna et al. 2008a,b; Indraratna et al.
2009; Indraratna et al. 1991; Indraratna 1996; Biggs and Mahony
2004). However, traditional chemical stabilizers are not always
readily acceptable in Australia because of stringent occupational
health and safety issues. They also pose a threat to the environment by
changing the soil pH, which often limits the scope of vegetation and
also affects the quality of the groundwater. Moreover, traditionally
stabilized soil has a pH of 9 (Rollings and Burkes 1999), which often
affects the longevity of steel elements in the ground (e.g., fencing) and
steel frame structures (Biggs and Mahony 2004; Perry 1977). In
addition, other chemical aspects, such as the electrical conductivity
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and the cation exchange capacity of the soil, decreases with increasing
amounts of admixtures and longer curing times (Chen et al. 2009;
Boardman et al. 2001). Moreover, cementitious chemical admixtures
reduce the capacity of soil to hold water and carry nutrients, which
affects its fertility (Kitchen et al. 1996; Jaynes et al. 1995). Excessive
use of traditional admixtures to stabilize soil also affect the yielding
capacity of certain soils (Nalbantoglu and Tuncer 2001). In general,
chemically treated soil becomes more brittle (Sariosseiri and
Muhunthan 2009), which affects the stability of structures, especially
during cyclic and impact loading conditions such as those applied
to high-speed rail and aircraft runways. To overcome these con-
sequences, an alternative soil stabilizer that improves the soil without
harming the environment must be found.

A lignin-based chemical known as lignosulfonate (LS), has
shown promise at stabilizing some problematic soils (Puppala and
Hanchanloet 1999; Pengelly et al. 1997; Tingle and Santoni 2003;
Indraratna et al. 2008a,b; Vinod et al. 2010). Indraratna et al. (2008b)
carried out laboratory experiments on dispersive soils treated with LS
using the novel Process Simulation Apparatus for Internal Crack
Erosion (PSAICE). They concluded that LS improves resistance to
erosion, whereas the amount of LS required for silty sand to reach
a given increase in erosion resistance is less than that of cement.
Therefore, the main focus of this study investigates how well LS can
stabilize an erodible soil and develops an analytical model to capture
the erosive behavior of this treated soil. The erosion of treated and
untreated soils is generally examined in terms of its rate and hydraulic
shear stress, to calculate the critical shear stress and coefficient of
erosion. The critical shear stress 7. is defined as the minimum hy-
draulic shear stress required for erosion to commence (Arulanandan
et al. 1975; Sargunan 1976; Shaikh et al. 1988). Fig. 1 shows the
variation of the erosion rate with the applied hydraulic shear stress.
The critical shear stress was calculated by extrapolating the straight
line to the X-axis, and the slope of the line represents the coefficient of
erosion («). The difference between the applied hydraulic shear stress
and critical shear stress is defined as the excess hydraulic shear stress
(Ta - Tc)'
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Only a few researchers attempted to correlate the parameters of
erosion with the shear or tensile strength of soil (Dunn 1959; Lyle
and Smerdon 1965; Kamphuis and Hall 1983; Reddi and Bonala
1997; Hjeldnes and Lavinia 1980). Dunn (1959 ) used a jet of water
to conduct a series of erosion tests on cohesive soils collected from
canal beds and found that the critical shear stress varied linearly with
the vane shear strength. Kamphuis and Hall (1983) used a flume to
conduct a set of erosion experiments on two different soils and
concluded that the critical shear stress of over consolidated clayey
soils changed linearly with the vane shear strength and unconfined
compressive strength. Reddi and Bonala (1997) developed an an-
alytical model for critical shear stress (under seepage erosion) in
terms of true cohesion. Indraratna et al. (2009) developed an ana-
lytical model to simulate the erosion of soil by capturing its tensile
behavior based on the law of conservation of energy. This model
captured the erosion of soil by following two steps: (1) the de-
tachment of particles by the eroding fluid, which resulted in a sus-
pended load; and (2) transportation of a suspended load. However,
to date, a comprehensive theoretical model that correlates erosive
behavior with the most widely used shear strength of chemically
treated soil is not available. Therefore, in this paper, an experi-
mentally validated theoretical model to predict erosion in terms of
the effective shear-strength parameters is described.

Theoretical Development

Mechanism of Particle Detachment for Erosion

The detachment mechanism of individual particles from the soil bed
under applied hydrodynamic forces is important in formulating the
process of erosion. Several studies were conducted to determine the
mechanism of particle detachment, such as rolling or sliding (Hubbe
1985; Sharma et al. 1992; Reddi and Bonala 1997; Briaud et al.
2001; Middleton and Southard 1978). Hubbe (1985) carried out
coaxial shearing tests for uniform colloidal titanium dioxide (TiO,)
spheres to determine the critical mechanism of particle detachment
from rough surfaces and concluded that the mechanism was by
rolling when the hydrodynamic force applied to the sphere exceeded
a critical value. Sharma et al. (1992) conducted centrifuge and flow
experiments for 10-wm particles of glass and 40-pm particles of
polystyrene and concluded that the particles were released from
surfaces by rolling, rather than by sliding or lifting. This concept was
implemented by Reddi and Bonala (1997), who used the rolling
mechanism to correlate the interparticle bond strength with the
hydrodynamic force applied to a particle. Briaud et al. (2001) de-
rived equations for critical shear stress initiating erosion considering
sliding and rolling of particles separately and compared them with

Erosion ratc

7c = Critical shear stress
a = Coefficient of erosion

Te Hydraulic shear stress

Fig. 1. Typical variation of erosion rate with hydraulic shear stress

the Erosion Function Apparatus (EFA) test results. They concluded
that sliding was not the eroding mechanism, or at least, not the only
mechanism. However, EFA was used to study the scour rate under
bridge piers by applying a flow velocity of 0.1-6 m/s, which was
a much higher value to apply in internal crack erosion. A more
relevant application of this rolling mechanism can be found in
Middleton and Southard (1978).

In this study, the commencement of movement of an average
grain has been formulated, assuming that it will begin to move by
rotating about a pivot provided by contact with other grains. Thus,
the theoretical model considers rolling to be the mechanism by
which particles are detached from the soil bed because of hydro-
dynamic forces. When the hydrodynamic forces placed on chemi-
cally bonded grains exceed a critical value, the interparticle bonds
are broken, and the grains become suspended. These suspended
particles are then transported by the eroding fluid, which completes
the process of erosion. The energy required by the particles to erode
should be equal to the energy dissipated by the excess hydraulic
shear stress during erosion. This energy required by the particles to
erode is the sum of the energy required to break the interparticle
bonds and the energy required to bring the particle into full sus-
pension reaching flow velocity, assuming no resettlement occurs
once the particles are fully suspended.

The erosion model described is based on the energy conservation
principle, and the formulation of the aforementioned components is
explained in the following.

Energy Required to Break the Interparticle Bonds

Figs. 2 and 3 describe the average and actual failure surfaces, and the
applied and resistance forces on a single interparticle bond under
plane shear, respectively. As shown in Fig. 3, F,,; (Newtons) is the
applied normal force, F; (Newtons) is the applied shear force be-
cause of shearing, S; (Newtons) is the mobilized shearing resistance
along the failure surface, N; (Newtons) is the mobilized normal
resistance at the contact point, 6x; (meters) and 8y; (meters) are the
displacements of ith contact along and normal to the average failure
surface, respectively, 8d; (meters) is the displacement along the
failure surface of ith contact, n (per meters squared) is the number of
interparticle bonds in a unit surface area, o/, (Pascals) is the applied
effective normal stress, 7’ (Pascals) is the measured shear resistance,
and d; (meters) is the measured shear displacement.

In the process of plane shear failure, one can consider that two
steps are involved: (1) breaking the interparticle bonds; and (2)
overcoming the frictional resistance. Therefore, the total work done
by the applied normal and shear forces will include the energy re-
quired to break the interparticle bonds and for overcoming the
frictional resistance.

failure surfaces of
each contact

average / —_—

failure surface

Fig. 2. Failure surface of a specimen under plane shearing
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If the energy required for breaking the ith interparticle bond is
taken as Ej; (Joules), then

Fyi6x; — Fyi6y; = 8Ep; + Fibd; (1)

where F; (Newtons) = frictional resistance between the soil grains.
Once the interparticle bond is broken, the particles can be considered
as having no cohesion, and the frictional resistance can be expressed
by eliminating the cohesive term as

Fi = p;(FyicosB + Fysinf) (2)

where u; = coefficient of friction between particles; and S
(degrees) = angle of the reference particle to the vertical with respect
to the contact particle. Substituting Eq. (2) in Eq. (1) and considering
the forces and deformation vectors in Fig. 3, 0E); can be given as

8d,
n

3)

8Ep = [r'(1 — p;tanB) — o'y (tan B + p;)

Replacing the infinitesimal increments by the appropriate differen-
tial increments, and then integrating in the range Ej; from 0 to Ej; and
d, from O to dy, the energy required to break a single interparticle
bond is then given by

dy

Ep = 7d(ds)| (1 — p;tan B) — oy (tan B + w;)dys

1
n

ce—

4)

where dyy (meters) = measured shear displacement at failure along
the average shear surface. The average number of contacts (k') per
particle can now be expressed as

K = nA, (5)

In Eq. (5), A, (meters squared) is the effective area per particle in
the shear surface that can be expressed as gD?, where ¢ is a constant
that depends on the packing arrangement of particles, and D
(meters) is the mean particle diameter. Now the energy required for
one particle of soil to break the interparticle bonds (E,) can be
obtained by multiplying E,; by k" as

dy
E, = gD? J 7'd(dy) | (1 — p;tan B) — o’ (tan B + p;)dys
0
(6)
N, =F,, cos B+ Fsin
S, =—Fysin B+Fgcos
&, = &, tan
— &l
" cosf
szo-_;
n
Fn =1_
n
&I :M:

Fig. 3. Definition of applied forces, resistant forces, and deformations
of two particles at contact point i under plane shearing

Bishop (1954) developed a correlation between ¢ and u based on
shear box testing conducted on granular materials, and proposed

no= %Sin(l) (™)

where ¢ (degrees) = angle of the internal friction of soil. Then, after
converting the shear displacement into shear strain, Eq. (6) leads to

Yy
_ yho ’ 2
E, = gD 100 de(y) (1 3smq,’)tanB)
0
—-d, (tanﬁ + %sindﬁ’)yf (8)

where /o (meters) = initial height of the specimen that undergoes
direct shear; vy (percent) = shear strain; and vy, (percent) = shear
strain at failure. The term joy’ 7d(7y) in Eq. (8) is the strain energy per
unit volume because of shearing (area under the shear stress-strain
curve) up to the failure shown in Fig. 4, obtained from shear box tests
under a given effective normal stress (o7,). The erosion tests were
conducted without any effective normal stress on the soil surface,
which ensured real-field conditions. Therefore, it is important to
calculate E;, also for the condition of zero effective normal stress.
For this purpose, the strain energy per unit volume up to peak
strength for o7, = 0 can be predicted from the experimental results,
whereas the normal stress term in Eq. (8) is set to zero. Therefore

h
Ep = quﬁ JT/d(Y)
0 (¢'4=0)

(1 —%sind)' tanB)

©)

The preceding term will be affected by chemical treatment, and it is
postulated that the shaded area under the curve (Fig. 4) will be in-
creased. Subsequently, the energy required by a single grain of soil to
break the interparticle bonds after stabilization can be expressed by

" h
E, = qDZWOO J 7d(y)
0 (0/n= 0)

l—zsinq,’)'* tan 8
(-3 )

(10)

Shear Stress (7)
1

Yr

frdy

77

A\

SN

pooay

7 Shear strain (¥)

N

Fig. 4. Strain energy per unit volume because of shearing up to failure
under o7,
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Energy Required to Bring the Particles into Suspension

The energy required for a particle to become suspended is formu-
lated by considering its movement as two distinct processes. First, it
will roll on the contact particle until contact is lost, and then it will lift
while moving with the fluid flow until it attains the same velocity as
the fluid flow.

Energy Required for a Particle to Roll on the Contact Particle
As illustrated in Fig. 5, a particle located at an angle of 6 (degrees)
from the vertical plane through the axis of crack is considered to be the
reference particle. The velocities and the forces acting on the reference
particle in the X-X plane (Fig. 5) along the crack are shown in Fig. 6.
Because of the moment around the contact point developed by the
drag force (Fp) (Newtons), lift force (F;) (Newtons), and the weight
component of the grain normal to the soil bed (Ws cos 0) (Newtons),
the particle is forced to roll on the surface of the contact particle
beneath it with an angular velocity of w,, (radians per second) around
its center (O'). Nr (Newtons) and Fr (Newtons) are the normal and
friction forces, respectively, acting at the contact point, i (degrees) is
the angle by which the reference particle has rolled, and m (kilograms)
is the mass of the soil grain. The linear velocities of the particle in
the tangential and radial directions can be written as V, (meters per
second) and V, (meters per second ), respectively. Because the radius
of the rolling path is assumed to be constant, V, = 0; hence, accel-
eration in the radial direction (meters per seconds squared) is a, = 0.
Considering the equations of motion in radial and tangential direc-
tions, and for angular motion, V; can be obtained as

vZ = 2L ARyl + sing — sin(6 — )]
+ (Wscos — Fr)[cos B — cos(B — )]} (11)
Atthe instant when ¢ = i,,,. ., the moving particle leaves the contact

surface of the other particle, and Ng = 0. Therefore, solving the
equation of motion for the radial direction gives the value of ¢y, as

b =t (SR IZ L (12)

From the principles of work and energy, assuming there is no kinetic
energy at ¢y = 0, the work done (WDg) (Joules) in rolling the
particle on the contact particle is given by

reference

/W

Fig. 5. The position of the reference particle inside the crack

1
WDk = 5 (thz + Ing) (13)

where I (kilograms per square meters) = moment of inertia of
the soil grain about its center of gravity. In the preceding, the values
of V; and w), should be at ¢y = i, , and hence, Eq. (13) yields

WDg = (14)

7 2
70Vl w=g

Energy Required for a Particle to be Suspended

After completing the process of rolling as previously described, the
soil particle will be suspended in the water flow and will attain the
same flow velocity. The work done by fluid flow on the particle to
bring it into suspension is formulated in this section. The forces and
velocities acting on the soil grain are presented in Fig. 7. When the
soil particle has attained its full suspension state, it is assumed that
it obtains the same flow velocity (Vy) (meters per second). Con-
sequently, the drag force becomes zero. Also, the vertical velocity
will be zero if the particle is assumed to move along with lateral
flow, and the lift force will balance the submerged weight of the
particle. For the convenience of formulation, it is assumed that the
magnitude of the drag force will change linearly from Fppy) to 0,
and also the lift force will vary linearly from Fnqx) to Wy coso,
when the particle transfers from the soil bed to a state of suspension.
To formulate the work done in this process, applying the equations
of motion S, (meters) and S, (meters), the distances traveled by
the particle in parallel and normal directions to the soil bed, re-
spectively, can be found as

_ m 2 _ 2
Splmw) = (Vf Vi(0) ) (15)

where V) (meters per second) = velocity of the grain in the parallel
direction at S, =0 and

m
(Wscos 0 = Fr(max)

Sn(max) = )Vn(0)2 (]6)

where V), (o) (meters per second) = velocity of the grain in the normal
direction at S,, = 0. The work done (WDjs) (Joules) in bringing the
particle into suspension is given by

Fr

F»

WsCos@

(a) (b)

Fig. 6. (a) Velocities and (b) forces acting on the reference particle
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<l

Water Flow

Spmay)

Shmax)

Wscosb

A

Fig. 7. Forces and velocities acting on the particles at the beginning and end of the suspension process

_m 2 _ 2 _ 2
wDs = 2 [VE = Vi = Vi) (17)

V)p(0) and Vo) can be related to the tangential velocity (V;) of the particle
at ¢ = ¢, and can be substituted into Eq. (17) to obtain WDy as

wos =3} - W} 09

The total energy (E) required for a single stabilized particle of soil to
be eroded is

E; = E; + WDg + WDy (19)

Formulating the Rate of Erosion

Fig. 8 shows the change in the radius of the crack of a specimen
subjected to erosion test by dr, at a time interval of dr. It is assumed
here that the radius of the crack changes linearly over time and that
erosion is uniform over the surface of the crack. Using weight-
volume relationships, the number of particles (N) in a unit volume
can be expressed by

6pg
N=—-"*%— 20
Gsp,, D3 (20)

where p,; (kilograms per cubic meter) = dry density of the soil; G; =
specific gravity of soil; and p,, (kilograms per cubic meter) = density
of water. If the energy required to erode a single particle at an angle 6
is denoted by Ej [Eq. (19)], then the total energy (Ey,) (Joule) re-
quired to erode an infinitesimally small volume (dv) of soil at an
angle of 6 (as shown in Fig. 8) is given by

6p4
—— r;dOdrl 21
Gyp,, D 3 " ( )

where r; (meters) = radius of the crack at time ¢ (seconds); and
[ (meters) = length of the crack.

Eg = E; X

Fig. 8. Change in crack radius of test specimen caused by erosion

From Eq. (21), the total energy (E7) required for erosion in time
dt can be calculated by

12pd *
ET = W It drtlJEedG (22)
0

The energy dissipated by excess hydraulic shear stress (AE') during
erosion over time dt was given by Muttuvel (2008) as

AE = o(tq — 1) V2wl dt (23)

where w = efficiency factor used to capture the energy loss because of
heat and noise; 7, (Pascals) = hydraulic shear stress applied; and 7.
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(Pascals) = critical shear stress that commences erosion. According
to the conservation of energy, the energy dissipated by excess hy-
draulic shear stress during erosion should be equal to the energy taken
by the particles for erosion. Therefore, from Egs. (22) and (23)

dry _ mD3Gsp,,

o X (tq —7c) V¢ (24)

- T
6py | E; df
0

The rate of erosion (&) (kilograms per square meters per second),
that is, the amount of soil eroded in unit time over a unit surface area,
can now be written by multiplying dr,/dt by dry density as

2n3
f = T2 TPy D Gip,, X o(tg —7c) V¢ (25)

o
6 [ E;de
0

The denominator term in Eq. (25) can be obtained by substituting
for Ej from Eq. (19) and integrating, at ¢ = i, as

T Y

JE; d6 = quzl% J 7d(y) (1 - %sind)’*tan 3)

0 0 (03,=0)
+ %ﬂ'sz + ? Fp x Jarctan <WS#Z’_FL> do
+ 7Fp(B + sinB) — wFy cos B (26)

The drag and lift forces acting on a soil particle are from the re-
sultant of both pressure and friction from the fluid flow. When
considering water flow over a compacted bed of flat soil, the par-
ticles are not fully exposed to the flow because of other surrounding
particles. Therefore, the water flow would mainly influence the top
surface of the particles, where the bed of soil is considered to be
a flat surface. The drag force caused by a parallel flow of fluid over
a flat surface is totally derived from frictional drag, because the
pressure drag is zero. This force caused by friction over a unit
surface is the applied wall shear stress 7,, and the total drag force
Fp on the particle can be written as gD*1,. Substituting for Fp and
rearranging Eq. (26) gives

Gspww\/f(T,, — T’f)

i Yr
JE;;de - qD2l% J 7d(y) (1 - %simﬁ/*tan B)
0 0 (04,=0)
213
7D G‘ypw 2
+ 12 Vf

o
3 _
4 4D’ [ arctan | LG8 = DpwgmD 0 1o
7 69T,

0

+ W(B + sinﬁ) — xmcos 3 (27)
where g (meters per seconds squared) = gravitational acceleration;
and x = ratio of lift force to drag force. The integration term in

Eq. (27) can be solved using the trapezium rule (James 2010). For
this purpose, it can be taken as the area under the curve

f(6) = arctan {M cosf —x
697,

in the region from 6 = 0 to 6 = 7. To simplify Eq. (27), the term B
is introduced, where

B = [ £(6)do (28)
0

For further simplification of Eq. (27), the term A* is introduced, where

Yr
* ﬂ /
A= JTd(y) (29)
0 ((r,::(])

Eq. (27) can now be rewritten as

w
JEedG = 7T2D3{7T—D [A (1 _§SIH¢/ tan,B)] + ;2“’ sz

+ ;1;“2 [B + m(BsinB) — xm cos ﬁ}} (30)

Finally, substituting Eq. (30) into Eq. (25), the rate of erosion (£)" for
the treated soil can be written as

C

@ =

Gsp,,

q * _g . 1%
6{5 {A (1 3s1n(15 tanB)} +

(31)

qTa
Tar?

sz + [B + 7(BsinP) —x'n'cos,B}}

Eq. (31) can also be written in the form of the linear relationship between the excess hydraulic shear stress and erosion rate as (Arulanandan et al.

1975; Sargunan 1976)

@ = a'(ra— 1) (32)

where the coefficient of erosion a*, of the treated soil then becomes

*

GsprVf

a =

q * 7% . 1%
6{7T_D {A (1 3smq§ tanﬁ)] +

2

qTa (33)
T2

[B + (B sinB) — xm cos ,8]}
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Experimental Investigation

Shear Tests

Type of Soil and Stabilizer Used

A series of standard direct-shear tests were conducted to obtain the
stress-strain behavior of chemically treated and untreated erodible
silty sand (SM). The soil used for this study was collected from
Wombeyan caves in New South Wales, Australia and classified as SM

according to the Unified Soil Classification System (USCS). The soil
is nonplastic, with a liquid limit of 22.5% and a specific gravity of
2.67. The particle size distribution of this soil is shown in Fig. 9.
According to the standard Proctor compaction test, the silty sand has
amaximum dry density (MDD) of 1,838 kg/m®, which corresponds to
the optimum moisture content (OMC) of 11.6%. From the standard
pinhole tests (Australian Standards 1997), this silty sand is classified
as a highly erodible soil (D1). The percent dispersion (PD) calculated
from the percent dispersion test (Australian Standards 2008) is 44%.
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Fig. 11. Effect of LS treatment on the shear behavior under 15 kPa of
normal stress

Lignosulfonate (LS) is a by-product of paper and timber industry,
and it was used as the chemical stabilizer. Karol (2003) described it
as a dark brown inflammable liquid that smells like vanilla. Com-
pared with other traditional and nontraditional chemical admixtures,
LS is cheaper, environmentally friendly, nonhazardous, and does not
appreciably change the pH level of the soil after treatment (Muttuvel
2008).

Procedure and Test Plan

Treated soil specimens for shear tests were prepared using three
dosages (0.2, 0.6, and 1.2%) of LS by dry soil weight. The required
amount of stabilizer was first added with an additional amount of
water needed to achieve the optimum moisture content before
mixing with the soil. The sample was then statically compacted to
95% MDD using a specially made mold. Ninety-five percent MDD
was selected for this study because the recommended field com-
paction level for most practical applications is 95-100% MDD. The
compacted specimens were wrapped in moisture proof bags and
cured for 7 days, and then saturated with eroding fluid (water) inside
the sample container of the direct-shear box for 24 h. The normal
stresses selected were 5, 10, 15, and 22 kPa. These relatively low
normal stresses represent typical erosion at shallow depths. Each
specimen was then subjected to drained direct-shear testing under
a constant shearing rate of 0.05 mm/min.

Erosion Tests

The experiments to measure the erosion rate of soil treated with LS
at different hydraulic gradients were conducted using the PSAICE

30
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©
o
=
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@
@
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5 O 06%LS
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0 L 1 n 1 n 1 " 1 n 1 "
0 5 10 15 20 25 30

Effective normal stress (kPa)

Fig. 12. Failure envelopes of LS-treated and -untreated silty sand

Table 1. Peak Friction Angle, Secant Shear Modulus, and Maximum
Dilation Angle for Untreated and Treated Silty Sand in Direct Shear Tests

Secant shear Maximum

modulus (kPa) at

Peak friction

Amount angle (deg) at dilation angle

of LS (%) linear region 2.5% shear strain (deg) (o, < 5 kPa)
0 38.00 173.96-429.60 5.09
0.2 38.46 203.13-433.22 6.92
0.6 39.28 258.32-440.46 8.70
1.2 41.51 214.45-467.52 9.98

designed and built at the University of Wollongong. A schematic
diagram of the apparatus (Fig. 10) shows the soil specimen with a 10-
mm-diameter coaxial hole (i.e., simulated crack). This equipment
consists of a storage tank with a capacity of 1 m? to supply eroding
fluid and an adjustable head tank to provide the required hydraulic
gradient (maximum 40). The pressure transducers connected to the
sample container measure the pressure difference across the crack.
To monitor the effluent turbidity continuously, an inline process
turbidity meter is connected to downstream of the sample. This
measured turbidity can be converted into erosion rate using the
relationship between soil concentration (kilogram per cubic meter)
and turbidity (nephelometric turbidity units [NTU]) developed by
Indraratna et al. (2008b). The effluent is collected to a specially
designed electronic balance to measure the continuous flow rate
through the crack. The testing procedure and the calculations are
described in detail elsewhere by Indraratna et al. (2008b).

Results and Discussion

Stress-Strain Behavior

The observed stress-strain behavior of LS-treated and -untreated
specimens under 5 kPa of effective normal stress is illustrated in
Fig. 11. The peak strength and initial stiffness increased moderately
with the percentage of LS, and with stabilization, the volumetric
response became less compressive in the early stages of shearing and
more expansive thereafter. The maximum angle of dilation that
occurred around the peak strength increased with LS treatment. The
peak strength envelopes shown in Fig. 12 and the data presented in
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Table 1 provided further analysis of the shear behavior of untreated
silty sand and silty sand treated with LS. The peak friction angle at
the linear region of failure envelopes increased slightly from 38° for
untreated soil to 41.5° for soil treated with 1.2% LS. The secant shear
modulus values were calculated at 2.5% shear strain, because that
was the maximum shear strain within which all the stress-strain
curves were linear. Because of LS treatment, the shear modulus of
specimens under 5 kPa rose from 174 to 214.45 kPa and from 429.60
to 467.52 kPa under 22-kPa effective normal stresses. In addition,
the maximum angle of dilation of specimens of treated soil under
5 kPa of effective normal stress rose from 5.09 to 9.98°, attributed
to LS treatment.

Model Parameters

To validate Eq. (31) and calculate the rate of erosion of LS stabilized
soil, the strain energy per unit volume (i.e., area under the stress-
strain curve) up to peak stress under zero effective normal stress
should be used. For this purpose, the corresponding areas under the
stress-strain curves were calculated and plotted against the effective
normal stress (Fig. 13). It was evident that the strain energy per unit
volume increased as a result of LS treatment of all the normal stresses
considered here. Then, the strain energy per unit volume at zero
effective normal stress values was predicted from Fig. 13 through
best-fit lines drawn for the laboratory data for untreated, and 0.2, 0.6,
and 1.2% LS-treated soil, and the corresponding values of A*
[Eq. (29)] were calculated and given in Table 2. The input data used
to find the model parameters are summarized in Table 3. The values
of ¢*' were from the shear test results, and a* was determined from
the results of the erosion tests given earlier by Indraratna et al.
(2008b) as the slopes of erosion plots. Itis clear from Table 3 that the
values of A* and internal friction angle (¢*') at zero normal stress
increased, whereas the coefficient of soil erosion (a*) decreased
because of LS treatment.

By rearranging Eq. (33), the efficiency factor (w) can be sim-
plified to

Table 2. Strain Energy per Unit Volume up to Peak at Zero Effective
Normal Stress for Silty Sand Treated with LS

Amount of LS (%) ! 7 dyl,. _o(Iim?) A* (J/m?)
0 16.605 4.151
0.2 17.850 4.463
0.6 19.789 4.947
12 24.389 6.097

Table 3. Experimental Data Used in Parameter Calculations

Indraratna et al. (2008b)

Present Study

LS A* ™ ot T
(%) (J/m3) (deg) (s/m) (Pa)
0 4.151 58.35 0.2296 0.745
0.2 4.463 59.74 0.0147 11.150
0.4 4.754* — — 25.891
0.6 4.947 62.32 0.0033 34.516
1.2 6.097 64.64 — —

*Values obtained from Eq. (38).

_ 6" [ g 4 (1 ~2sin " an )| Gipy 2
- 4 Tp*(1-2sin gt
¢ GspwVf{WD sind tanB )|+ =Rm Vs

(34)

while neglecting the term g7, /772[B + (8 sin 8) — xmcos 8] as a
result of its insignificant numerical value. The efficiency factor for
different flow velocities was calculated by substituting the param-
eters of treated and untreated soil given in Table 3. A normalized plot
of the efficiency factor in terms of A* and 77, is illustrated in Fig. 14
for both LS-treated and -untreated soil. A relationship for the ef-
ficiency factor was obtained from the best-fit line of Fig. 14 for LS-
treated and -untreated silty sand as
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w=—r (35) = bA"—c (36)
af
where b and ¢ = empirical constants with values of 42.7 and 177,
where A and 7 = empirical constants with values of 9.5 and 0.8, respectively.
respectively. To determine suitable values for g and 3, the packing arrange-
Furthermore, from Fig. 15, a linear relationship was established ment of soil grains in compacted soil specimens should be identified.
for critical shear stress initiating erosion in terms of A* For this purpose, six possible systematic assemblages of spheres, as
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described by Gray (1968), were considered. Because the porosity
of a compacted soil specimen should be smaller, only the particle
arrangements that corresponded to low porosities were taken into
account and shown in Fig. 16. The calculated values of g and 8 for
the packing structures are also shown in Fig. 16. The specimens of
silty sand used for both the direct-shear and erosion tests were
prepared to achieve the same dry density (95% MDD), whereas the
porosity of those specimens was calculated to be 29%. Therefore,
the arrangement number 5 shown in Fig. 16 was identified as the
closest possible packing structure for the specimens in this study.

Packing number 3) )
Porosity (%) 26.0 30.2 26.0
q 1 0.866 0.866
S(deg) 45 30 3525

Fig. 16. Packing arrangements of spherical particles with lower
porosities and their properties

Table 4. Independent Set of Data Used to Validate the Proposed Erosion
Model

Present study Indraratna et al. (2008b)

LS A ¢ o T
(%) Am’) (deg) (s/m) (Pa)
0.1 4.271° 59.18° 0.0361 5.414
0.4 — 60.75° 0.0064 —

“Values obtained from Eq. (38).
"Values obtained from Eq. 37).

0.4

Consequently the values chose for ¢ and B were 0.866 and 30°,
respectively.

Model Validation

In addition to the relationships obtained for w and 7 as previously
described, a relationship between ¢ and percentage of LS (with
R? > 0.97) was obtained from shear test results of untreated and 0.2,
0.6, and 1.2% LS-treated soil as

d)/* = b](LS) + (37)

where b; and ¢; = empirical constants with values of 5.23 and 58.66,
respectively; and LS = amount of LS as a percentage of dry soil weight.
Another linear correlation between percentage of LS and A* was
obtained through a best-fit line to the shear test results of untreated
and 0.2, 0.6, and 1.2% LS-treated specimens (with R> >0.98) as

A" = bz(LS) + (38)

where b, and ¢, = empirical constants with values of 1.61 and 4.112,
respectively.

Together with ¢ and B, these expressions explored for w
[Eq. 35)], 7} [Eq. (36)], ¢ [Eq. (37)], and A* [Eq. (38)] were
substituted in Eq. (31) to predict the erosion rate of LS-treated
(0.1,0.2,0.4, and 0.6% LS) and untreated silty sand. The independent
set of data used to validate the proposed erosion model is shown in
Table 4. The model predicted rates of erosion for untreated and
treated silty sand were plotted against the applied hydraulic shear
stress and compared with laboratory-observed erosion rates (Fig. 17);
0.1 and 0.4% LS-treated predictions were completely independent
because these experimental results did not use parameter calculations
(Table 4). Fig. 18 shows a comparison between the erosion parameters
of untreated and treated soil obtained experimentally and predicted by
the proposed model. It is evident from both Figs. 17 and 18 that the

o Untreated
& 01%LS
[ Indraratna et al. (2008b)< A 0.2% LS
o 04%LS
031 & * 0.6%LS
0 P e Back Predictions
e B Independent Predictions
5 |
° 0.2
©
c | O
.0
(2}
o )
w 0.1
@
0.0 L
0

Hydraulic shear stress (Pa)

Fig. 17. Experimental and model predicted erosion rates with applied hydraulic shear stress for silty sand treated with LS
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Fig. 18. Experimentally observed and model predicted erosion parameter with the dosage of LS

erosion model presented in this paper can capture the erosion of
chemically stabilized soil.

Conclusions

This paper presents the development of a theoretical erosion model
to predict the rate of erosion based on the principle of energy con-
servation. Using this proposed model, the rate of erosion can be
determined if the packing arrangement of soil particles in compacted
specimens, the shear characteristics, mean flow velocity, mean
particle diameter, and specific gravity of the soil are known. In
validating this erosion model, three possible packing arrangements
of spherical particles corresponding to low porosities were consid-
ered to represent the compacted soils. From these structures, the one
whose porosity was closest to that of the tested specimens was se-
lected for both treated and untreated soils. LS was used to stabilize
an erodible silty sand. Direct-shear experiments were conducted to
obtain the stress-strain characteristics of treated and untreated (sat-
urated) soil specimens. The experimental results showed that the
peak shear strength and initial stiffness of the specimens were in-
creased moderately because of treatment, and hence, the strain en-
ergy per unit volume up to peak was also increased. A linear
relationship between the critical shear stress initiating erosion and
strain energy per unit volume at zero effective normal stress was
obtained from the experimental results. This expression was then
used in the model to predict the rate of erosion of untreated and
treated silty sand. It was found that the proposed erosion model
could accurately represent the soil erosion of silty sand treated with
LS.

This proposed erosion model can be used by practicing engineers
to assess erosion-related problems. The surface and internal erosion
of rail and/or road embankments, dam cores, and water channels
are two of the foremost problems that must be considered when
evaluating the safety of these earth structures. Using erodible and/
or dispersive soils in construction of earth structures is not ap-
propriate, especially when they are in contact with water.

However, in some instances, this practice becomes inevitable, and
therefore, the solution is to adopt suitable methodologies to reduce
erosion. In this context, LS is proven to be an effective treatment.
The proposed Eq. (31) can be used to obtain the relationship be-
tween erosion rates and applied hydraulic shear stress for silty sand
treated with different amounts of LS. This helps practicing engi-
neers to determine the amount of LS to be added to the material
before compaction, to eliminate the possibility of erosion after
construction. At this stage, engineers should have some idea of the
possible maximum flow velocity or hydraulic gradient through
cracks to calculate the possible maximum hydraulic shear stress
through cracks.
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Notation

The following symbols are used in this paper:

A* = area under the stress displacement curve of
stabilized soil up to failure at zero effective
normal stress;

A,, = effective area per particle on the shear surface;

a, = radial acceleration of the reference particle;

B = area under the curve f(6) from 6 =0 to 8 = ;

b,c = empirical constants;

by, c; = empirical constants;
by, c, = empirical constants;
D = mean particle diameter;
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WDy

od;
Bx,»

oy

= shear displacement;

shear displacement at failure;

energy required per particle to break interparticle
bonds;

energy required per particle to break interparticle
bonds after stabilization;

= energy required to break the ith interparticle bond;

energy required to erode a small dv volume of soil;
total energy required for erosion in dt time;
energy required to erode one stabilized soil
particle at an angle 6;

= drag force on a soil grain;

friction force acting at the contact point;
frictional resistance between the soil grains;
lift force on a soil grain;

applied normal force on ith contact;

= applied shear force on ith contact because of

shearing;

= specific gravity of soil;

gravitational acceleration;

initial height of the specimen undergoing direct shear;
moment of inertia of a soil grain about its center of
gravity;

average number of bonds per particle;

length of the crack;

mass of a soil particle;

number of interparticle bonds in a unit surface area;
number of particles in a unit volume;

normal force on the reference particle at contact
point;

= mobilized normal resistance at ith contact;
= aconstant depends on the packing arrangement of

soil particles;

radius of the crack at time t;

mobilized shearing resistance at ith contact along
the failure surface;

= displacement of the particle normal to soil bed;

displacement of the particle parallel to soil bed;
mean flow velocity through crack;

velocity of the soil grain at bed level, normal to
soil bed;

velocity of the soil grain at bed level, tangential to
soil bed;

= radial velocity of the reference soil particle;

tangential velocity of the reference soil particle;
work done in rolling the particle;

work done in suspension;

submerged weight of a soil grain;

ratio of lift force to drag force;

angle of the reference particle to the vertical with
respect to the contact particle;

= shear strain;

shear strain at failure;

energy dissipated by excess hydraulic shear stress
in time dt;

displacement along the actual failure surface of ith
contact;

displacement of ith contact along the average
failure surface;

displacement of ith contact normal to the average
failure surface;

& = erosion rate;

(#)" = erosion rate of stabilized soil;

0 = angle of the reference particle inside the crack
with respect to the vertical plane through the axis
of crack;

A,m = empirical constants;
u; = coefficient of friction between soil particles;
p, = dry density of soil specimen;
p,, = density of water;
o’ = effective normal stress;
7' = effective shear resistance;
7, = applied hydraulic shear stress;
T, = critical shear stress initiating erosion;
7, = critical shear stress initiating erosion after
stabilization;
¢’ = angle of internal friction of soil;
¢ = angle of internal friction of stabilized soil;
¢ = angle by which the reference particle rolled; and
Ymax = angle by which the reference particle rolled when
the contact is lost;
o = efficiency factor; and
w, = angular velocity of the soil particle.
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