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Estimating the Rate of Evolution of the Rate of Molecular Evolution
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A simple model for the evolution of the rate of molecular evolution is presented. With a Bayesian approach, this
model can serve as the basis for estimating dates of important evolutionary events even in the absence of the
assumption of constant rates among evolutionary lineages. The method can be used in conjunction with any of the
widely used models for nucleotide substitution or amino acid replacement. It is illustrated by analyzing a data set
of rbcL protein sequences.

Introduction

If the rate of sequence evolution is the same in
different evolutionary lineages, then comparison of ho-
mologous gene sequences will facilitate chronological
dating of speciation and gene duplication events. In ad-
dition to shedding light on the pattern of historical evo-
lutionary events, the possibility that different lineages
change at about the same rate, if confirmed, would be
an important tool for the characterization of evolution-
ary processes. The molecular clock hypothesis of Zuck-
erkandl and Pauling (1965) has therefore generated care-
ful scrutiny (e.g., Kimura 1983; Ohta 1987; Gillespie
1991).

A variety of statistical tests have been proposed
that evaluate whether a particular data set is consistent
with a null hypothesis of a molecular clock (e.g., Lang-
ley and Fitch 1974; Felsenstein 1981; Wu and Li 1985;
Tajima 1993). Applications of these tests to specific data
sets have shown that the molecular-clock hypothesis can
often be rejected (e.g., Gaut et al. 1992). It might not
be surprising, for example, that rates of evolution differ
between mammalian and viral lineages. On the other
hand, it does seem that there is a correlation of evolu-
tionary rates among closely related evolutionary lin-
eages. This correlation is biologically plausible because
factors that may be responsible for divergence of rates
among lineages (e.g., population size, generation time,
fidelity of DNA replication) may themselves be quite
similar among closely related lineages. It may be the
gradual divergence of these factors that is responsible
for the gradual divergence of evolutionary rates among
lineages.

If the divergence among factors that impact evo-
lutionary rates were better understood, dating of evo-
lutionary events from comparisons of homologous se-
quences could be performed even without an assumption
that the rates of evolution for different lineages are ex-
actly equal. Similarly, inferences made about evolution-
ary processes would be more accurate. Much more work
regarding the identification and characterization of fac-
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tors affecting evolutionary rates of lineages still needs
to be done, but it is clear that the divergence of many
of these factors will be lineage-specific rather than gene-
specific. This is why reliance upon a molecular clock is
likely to be unwarranted even for the analysis of data
sets with sequences from many different loci.

When the goal is to date evolutionary events with
data that clearly violate a molecular clock, the two most
readily available options are both unsatisfactory. One of
these options is to ignore evidence that data are incon-
sistent with the clock and to employ a method for dating
under the incorrect assumption that the clock is valid.
The other option is to ignore data that are inconsistent
with a molecular clock and thereby discard information
pertinent to chronological dates that these data may con-
tain. A more satisfactory choice lies between these two
undesirable extremes. We describe one approach for ex-
tracting dating information from data sets that violate
the molecular clock assumption.

Method

We borrow ideas from the extensive research by
Gillespie (1991) on, as he terms it, ‘‘the rate of evolution
of the rate of evolution.’’ If evolutionary events (e.g.,
nucleotide substitutions) occur independently, then the
number of evolutionary events that occur on a branch
existing from time 0 to time T and having rate R(t) at
time t follows a Poisson distribution with mean

T

B(T) 5 R(t) dt (1)E
t50

(Gillespie 1991). We will refer to B(T) as a branch
length.

A difficulty is that R(t) cannot be directly observed.
One way to overcome this problem is to adopt the re-
strictive molecular clock assumption of a constant rate
with respect to time. Another is to avoid an explicit
model of how the rate changes with time and instead to
estimate the integral in equation (1) separately for each
branch. This has become the usual procedure for max-
imum-likelihood reconstruction of phylogenies (e.g.,
Felsenstein 1981). Because no attempt is made to model
how the rate changes with time, the usual procedure is
not directly applicable to chronological dating.

Statistical and Computational Issues
As the process of molecular evolution becomes bet-

ter understood, the models for statistically describing
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FIG. 1.—Rates and node times on an example tree.

this process will inevitably become more complex. A
cost of the adoption of complicated and parameter-rich
models is that the variance of parameter estimates rises
as the number of parameters increases. At the extreme,
a model contains so many parameters that the number
of parameters exceeds the number of available data
points, and problems of statistical identifiability ensue.
Our own attempts to explicitly model how evolutionary
rates might change over time and then apply maximum-
likelihood techniques have not been successful due to
issues of both computational tractability and statistical
identifiability.

Computational concerns become particularly im-
portant when the goal is to apply maximum-likelihood
techniques to a situation in which the rates of molecular
evolution are treated as random variables. In such a case,
evaluation of the likelihood requires integration over all
trajectories of rates of molecular evolution that are pos-
sible with a specific phylogeny. In standard applications
of maximum likelihood to phylogeny reconstruction, the
pruning algorithm of Felsenstein (1981) makes maxi-
mum likelihood feasible. In these cases, the sites of se-
quences are assumed to evolve independently, and the
likelihood for a data set is simply the product of the
individual site likelihoods. When it is necessary to in-
tegrate over rate trajectories that are shared by all sites,
the pruning algorithm in its usual form is no longer suf-
ficient to provide computational tractability, because the
likelihood becomes an integral of a product. If a model
were proposed that had only a few possible rate trajec-
tories, likelihood calculations would be feasible but, be-
cause of extreme limitations on the number of possible
rate trajectories, the potential value of these models
would be reduced.

One way to analyze a complicated model and si-
multaneously avoid computational difficulties and un-
desirable statistical behavior is to adopt a Bayesian per-
spective. Bayesian methods have recently been proposed
for phylogeny reconstruction from data sets of both non-
aligned sequences (Allison and Wallace 1994) and
aligned sequences (Rannala and Yang 1996; Mau and
Newton 1997; Yang and Rannala 1997). In Bayesian
analyses, a priori knowledge about parameter values is
summarized through assignment of probability distri-
butions known as priors. The observed data and the pri-
or distributions are then used to determine probability
distributions known as posteriors. The posterior distri-
bution is a probability distribution representing uncer-
tainty about the parameters after observing the data. It
is the posterior distribution that serves as the basis for
Bayesian inference. Although parameters about which
there is little information in the data will have a poste-
rior distribution that is similar to their prior distribution,
an analysis that includes these parameters may still be
more realistic than one in which they are absent, because
their prior (and posterior) distributions will be concen-
trated around biologically reasonable values. Bayesian
inference is thus less subject to problems of overpara-
meterization.

Hierarchical Model of Rate Evolution

Our purpose here is to present a relatively simple
model for the stochastic process that governs the change
of rate with respect to time. This model specifies a prior
distribution of the evolutionary rates along branches. By
allowing autocorrelation of rates over evolutionary time,
the model has the potential to provide an improved sta-
tistical fit to sequence data sets. Our hope is that this
can serve as the basis for future, more realistic, models,
just as the Jukes-Cantor model of nucleotide substitution
(Jukes and Cantor 1969) has served as the basis for
many subsequently proposed more realistic models of
nucleotide substitution. We explain our approach with
reference to amino acid replacements, but other types of
evolutionary events, such as nucleotide substitutions or
insertions and deletions, could also be studied.

We make the simplifying assumption that the rate
of molecular evolution is constant on any particular
branch of an evolutionary tree, but we allow rates to
differ among branches. The rate of branch i will be de-
noted Ri. The autocorrelation of rates between an an-
cestral branch and its direct descendant will depend on
the time difference between the midpoints of the ances-
tral and the descendant branches. For example, the time
difference between the thickened ancestral and descen-
dant branches in figure 1 is

T 1 T T 1 T T 2 T2 3 1 2 3 12 5 .
2 2 2

We assume that the logarithm of the rate on the descen-
dant branch has a normal distribution with a mean equal
to the logarithm of the rate on the ancestral branch and
with a variance equal to the time difference multiplied
by a constant that we will refer to as n. A high value of
n means there is little rate autocorrelation, and a low
value implies strong rate autocorrelation.

By Bayesian convention, a parameter governing a
prior distribution is called a hyperparameter. In our mod-
el, the value of n determines the prior distribution for
the rates of molecular evolution on different branches
given the internal node times. Because the value of the
hyperparameter n can have a strong influence on an
analysis, we add another level to our hierarchical model.
The additional level in the hierarchy allows flexibility
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for the Bayesian analysis by incorporating uncertainty
regarding the appropriate value of n. We add the addi-
tional level via an exponential prior distribution p(n) for
n. Typically, model levels above this additional level
provide little benefit in Bayesian inference (e.g., Carlin
and Louis 1996, p. 24).

As well as specifying the relationship between rates
for descendant and ancestral branches, the distribution
of rates for the two branches on a bifurcating tree that
directly emanate from the root need to be included in
the model. One of these two branches is selected and
referred to as branch 0. Branch 0 will have a rate R0

that is sampled from some specific prior distribution
p(R0). This prior distribution is assumed to be indepen-
dent of n and the internal node times for the tree. We
have used an exponential distribution for p(R0). The log-
arithm of the rate on the second of the two branches
connected to the root is assumed to be sampled from a
normal distribution with a mean equal to log(R0) and a
variance equal to n multiplied by the mean of the du-
rations of the two branches that are directly connected
to the root. For the tree depicted in figure 1, the mean
would be (T1 2 T0)/2 1 (T3 2 T0)/2.

The process that we have described for the lognor-
mal changes of rates over time is not stationary. With
respect to figure 1, the prior distribution from which R5

is sampled depends on, but will differ from, the prior
distribution from which R0 is sampled. It is unclear
whether this lack of stationarity should be viewed as an
advantage or a disadvantage. Alternative models warrant
further explanation.

To fix notation, let R 5 (R0, R1, . . . , Rk) be the
rates of molecular evolution on the k 1 1 branches of
the rooted tree, and let T be a vector that specifies the
internal node times (including the root). Once the times
T and the constant n are determined, the conditional dis-
tribution p(R z T, n) of the rates of molecular evolution
is determined as above. The distribution of R0 is fixed
a priori and is not affected by the values of T and n.

A binary-splitting branching process, or Yule pro-
cess (e.g., Karlin and Taylor 1975, pp. 119–123), spec-
ifies p(T), the prior probability distribution for T. We
have selected p(T) on the basis of simplicity of the Yule
process. More complicated and potentially more realistic
choices of priors for p(T) (e.g., Yang and Rannala 1997)
can be studied in the future so as to reflect effects of
lineage extinction and taxonomic sampling.

Our prior is generated from the assumption that the
Yule process begins with one lineage splitting into two
lineages. Births of new lineages continue according to
the Yule process until immediately before the birth event
that would result in there being one more lineage than
there are tips on the tree of interest. Only one parameter,
the birth rate, is needed to define p(T) for this Yule
process. For a given number of sequences representing
tips on the tree, the birth rate can be used to calculate
the expected value of 2T0, where T0 is the time of a
common ancestral sequence and the time at the tips of
the tree is assumed to be 0. Likewise, the birth rate can
be determined from the expected value of 2T0.

Although the prior for T is conditional on the birth
rate, this fact is omitted from the notation for the sake
of clarity. Similarly, the priors for n and R0 are expo-
nential, but the parameters upon which these priors de-
pend are not included in the notation.

Posterior Distribution

For a data set X of aligned homologous sequences,
the posterior distribution depends on p(T, R, n z X)
through

p(T z X) 5 p(T, R, n z X) dn dR. (2)E E
R n

The distribution p(T, R, n z X) is

p(X, T, R, n)
p(T, R, n z X) 5

p(X)

p(X z T, R, n)p(T, R, n)
5

p(X)

p(X z T, R, n)p(R z T, n)p(T z n)p(n)
5

p(X)

p(X z T, R)p(R z T, n)p(T)p(n)
5 . (3)

p(X)

The last step is justified by assuming that the value of
n neither provides information about the divergence
times T nor, if both the rates R and the divergence times
T are known, about the data X. Letting B 5 (B0, . . . ,
Bk) represent the lengths of the branches on the tree, we
have

p(X z B)p(R z T, n)p(T)p(n)
p(T, R, n z X) 5 , (4)

p(X)

because p(X z T, R) 5 p(X z B).

Metropolis-Hastings Algorithm

Although the numerator of equation (4) can be di-
rectly calculated, the denominator p(X) is more difficult
to evaluate, because multiple integration over T, R, and
n is required. This fact calls for adoption of the Me-
tropolis-Hastings algorithm (Metropolis et al. 1953;
Hastings 1970) to obtain an approximately random sam-
ple from p(T, R, n z X). The Metropolis-Hastings algo-
rithm is a Markov chain Monte Carlo technique that
permits construction of a Markov chain on the parameter
space (T, R, n) such that the stationary distribution of
the chain is p(T, R, n z X).

The algorithm begins at some initial state that sat-
isfies p(T, R, n z X) . 0. Given the state (T, R, n) of the
Markov chain, a new state (T9, R9, n9) is then randomly
proposed according to a proposal density denoted by
J(T9, R9, n9 z T, R, n). The proposed state is accepted
with probability r, where

p(T9, R9, n9 z X)J(T, R, n z T9, R9, n9)
r 5 min 1, . (5)1 2p(T, R, n z X)J(T9, R9, n9 z T, R, n)

Notice that the p(X) term of equation (4) need not be
calculated to determine the above ratio, because
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p(T9, R9, n9 z X) p(X z B9)p(R z T9, n9)p(T9)p(n9)
5 . (6)

p(T, R, n z X) p(X z B)p(R z T, n)p(T)p(n)

If the proposed state is accepted, it becomes the next
state of the Markov chain. If it is rejected, the next state
of the Markov chain will be identical to the current state.
Then, the Metropolis-Hastings algorithm continues by
again randomly proposing a state. Repeating many cy-
cles of this procedure of random proposals followed by
acceptance or rejection produces a Markov chain with a
stationary distribution that is the desired posterior dis-
tribution p(T, R, n z X). Details of our algorithm are in
the appendix.

Multivariate Normal Approximation

The rate at which the Markov chain generated by
the Metropolis-Hastings algorithm converges to its sta-
tionary distribution p(T, R, n z X) determines whether
the approach is computationally feasible. Our imple-
mentation requires calculation of p(X z B) for many dif-
ferent values of B. In an entire analysis, p(X z B) may
have to be evaluated millions of times to obtain a suit-
able approximately random sample from p(T, R, n z X).
The usual maximum-likelihood approach also involves
repeatedly evaluating the likelihood p(X z B), but the
purpose of the repeated evaluations is simply to maxi-
mize the likelihood. As a result, the Markov chain Mon-
te Carlo analysis may require many times more evalu-
ations than the maximum-likelihood approach. There-
fore, a Bayesian analysis would be computationally pro-
hibitive if calculation of p(X z B) was too slow. To
address this computational issue, we use an approxi-
mation for the likelihood p(X z B) that is quick to eval-
uate.

We approximate the likelihood surface with a mul-
tivariate normal distribution. The mean of the multivar-
iate normal distribution is B, the maximum-likelihood
estimate of the branch lengths. The covariance matrix
of the multivariate normal distribution is estimated from
the curvature of the log-likelihood surface (i.e., the in-
verse of the information matrix; Stuart and Ord 1991,
pp. 675–676). A Taylor series expansion (through the
quadratic term) of the log-likelihood function around its
maximum shows that the likelihood function can be ap-
proximated with the density of a multivariate normal
distribution multiplied by a constant that does not de-
pend on B (for a related approximation, see Gelman et
al. [1995, pp. 94–95]). The value of the constant need
not be determined, because our Metropolis-Hastings cal-
culations all involve the ratio p(X z B9)/p(X z B), and the
constant is identical for the approximations of the nu-
merator and denominator of this ratio. In fact, we have
structured our Markov chain Monte Carlo algorithm so
that p(X z B9)/p(X z B) will either be 1 or a ratio of
univariate normal densities (see appendix).

In our implementation, we root the tree topology
of interest with an outgroup and assume that the topol-
ogy relating the sequences in our data is known. We
then obtain maximum-likelihood estimates of branch
lengths for the unrooted topology consisting of the out-
group and the ingroup. The next step is to estimate the

covariance matrix for the multivariate normal approxi-
mation. Because branches with an inferred length of
zero can negatively impact the approximation of the co-
variance matrix, we treat them specially but omit the
technical details here. Because we use the outgroup only
to root the topology relating the sequences of interest,
the multivariate normal distribution needed by the Mar-
kov chain Monte Carlo algorithm is determined by in-
tegrating the multivariate normal distribution calculated
from the log-likelihood surface over all outgroup
branches. The covariance matrix that results is simply
the covariance matrix calculated from the log-likelihood
surface with all rows and columns corresponding to out-
group branches removed.

Example

Sanderson (1997) recently demonstrated an ap-
proach for estimating divergence times with a data set
of rbcL DNA sequences. We elected to follow this ex-
ample by illustrating our method with a data set of 31
amino acid sequences from the rbcL chloroplast gene.
Amino acid sequences rather than DNA sequences were
selected to highlight the fact that our method can be
implemented in conjunction with complex and compar-
atively realistic models of sequence evolution.

Alignment of the rbcL sequences was straightfor-
ward, because few insertions and deletions seem to have
occurred since divergence of the proteins from their
common ancestral sequence. The topology relating the
sequences was fixed so that it is compatible with the
one inferred by Sanderson (1997). A Marchantia se-
quence served as the outgroup and allowed the tree re-
lating the remaining 30 ingroup sequences to be rooted.
A model of amino acid replacement that attempts to in-
corporate the impact of protein secondary structure and
solvent accessibility on the process of amino acid re-
placement (Goldman, Thorne, and Jones 1998) was as-
sumed. Branch lengths were estimated wuth this mod-B̂
el (see fig. 2).

Prior Specification

In addition to approximating p(XzB) by finding B̂
and estimating its covariance matrix, prior distributions
need to be specified. The issue of prior distribution spec-
ification arises frequently in Bayesian applications. A
formal Bayesian approach entails specifying the prior
without the assistance of the data. A pragmatic approach
is to adopt the empirical Bayesian strategy of estimating
the hyperparameters that govern the prior distributions
from the data. By not treating the hyperparameters as
random variables, this empirical Bayesian approach vi-
olates the philosophy that attracts many to the Bayesian
framework. However, our incentives for incorporating
the prior distributions into our analysis are mainly to
avoid overparameterization and achieve computational
tractability.

One way to roughly estimate the hyperparameter
for the prior distribution of the root depth is to set the
mean of the prior distribution equal to the root depth
estimated with maximum likelihood and the assumption
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FIG. 2.—Branch lengths estimated by the amino acid replacement
model for the rooted ingroup of rbcL sequences.

of a perfect molecular clock. The PAML package (Yang
1997) was used to analyze the 30 rbcL ingroup sequenc-
es under a hypothesis of a molecular clock. This analysis
was done by assuming the Jones-Taylor-Thornton model
(Jones, Taylor, and Thornton 1992) and constraining the
topology to be identical to the one we assumed. The
resulting estimated depth of the ingroup root was 6.03
amino acid replacements per 100 sites. The depth of the
ingroup root was measured in terms of expected amino
acid replacements per 100 sites rather than in terms of
years, because fossil evidence was not used to calibrate
the molecular clock.

We define 1 ‘‘relative time unit’’ (r.t.u.) as the ex-
pected amount of time for one amino acid replacement
event to occur per 100 sites given some constant rate of
replacement per year. The value of this rate need not be
specified. It is used as a reference so that all other rates
can be measured relative to it. With our model, rates
vary among branches, and the expected number of ami-
no acid replacements between root and tip will vary
among tips. Therefore, if the depth of the root is 6 r.t.u.,
the path from the root to a particular tip may include
mainly branches with a high rate of change and the ex-

pected number of replacements along the path may be
more than 6 per 100 sites. Similarly, the expected num-
ber of replacements along a path from a root of depth
6 r.t.u. to a particular tip may be less than 6 per 100
sites.

Based on the results of the PAML analysis, we de-
cided to set the prior distribution for the Yule process
so that the expected depth 2T0 of the root was 6 r.t.u.
The prior distribution for n was exponential, with mean
1/6. The prior distribution for R0 was exponential, with
mean 1 replacement per 100 sites per r.t.u. We also in-
vestigated the effects of other prior distributions for n
and the root depth.

Implementation

To allow the Markov chain to reach stationarity, the
Markov chain Monte Carlo algorithm completed
100,000 initial cycles before the state of the Markov
chain was sampled. Thereafter, the Markov chain was
sampled every 1,000 cycles until a total of 1,000 sam-
ples were collected. A single run required approximately
83 min of CPU time on a workstation with one 300-
MHz UltraSPARC-II microprocessor.

To explore whether our procedure was generating
an approximately random sample from the posterior dis-
tribution, some runs were performed without evaluating
p(X z B) and instead assuming that this likelihood was
a constant that does not depend on the branch lengths
B. If p(X z B) and p(X z B9) are left out of the acceptance
formula (see eqs. 5 and 6), the stationary distribution of
the resulting Markov chain is just the prior distribution.
Our samples did resemble samples that would be ob-
served when directly sampling from the prior.

As another diagnostic for convergence of the Mar-
kov chain, we started the algorithm at different initial
states. If the procedure is converging, samples that were
obtained from different initial states should yield ap-
proximations similar to those for the posterior. This is
what was observed. It should be noted that positive cor-
relations between the parameter values of consecutive
samples were obtained from our procedure. Although
the procedure does seem to yield a reasonably accurate
description of the posterior, improvements that increase
the ‘‘mixing’’ rate of the Markov chain would reduce
the computational burden.

Results

A rooted tree that summarizes our Bayesian anal-
ysis is shown in figure 3. Except for a few general
points, we will not discuss the results of this analysis in
much detail here, because our purpose is to demonstrate
the feasibility of the method rather than to contribute to
the literature on rbcL evolution.

In conventional maximum-likelihood phylogeny
reconstruction, rates and times are not separately esti-
mated. Instead, they enter the likelihood as a product.
With the method described here, there is some ability to
separately estimate rates of molecular evolution and
node times, but our experience is that this ability is rath-
er limited if the prior distribution for node times is rel-
atively diffuse. This is reflected in table 1 by the high
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FIG. 3.—An rbcL tree obtained from the Bayesian analysis when
the prior distribution had an expected value of 6 r.t.u. for R0 and an
expected value of 1/6 for n. The proportion of the depth for each
internal node relative to the root was calculated for each sample from
the Markov chain Monte Carlo algorithm. The sample means of these
proportions were used to draw the tree.

Table 1
Estimated Posterior Means of the Root Depth and the
Relative Depths of Two Internal Nodes for Four
Combinations of Prior Distributions of n and 2T0

E(2T0) 5 6 E(2T0) 5 18

E(n) 5 1/6 . . . . 2T0

Conifer
Eudicot

4.98 (1.18)
0.39 (0.11)
0.37 (0.09)

14.14 (3.55)
0.39 (0.12)
0.37 (0.09)

E(n) 5 1/18 . . . 2T0

Conifer
Eudicot

5.15 (1.23)
0.39 (0.11)
0.37 (0.08)

14.50 (3.49)
0.40 (0.11)
0.37 (0.10)

NOTE.—Entries labeled ‘‘2T0’’ are nonnormalized root depths. Entries la-
beled ‘‘conifer’’ are the proportions of depths of the nodes representing the most
recent common ancestors of the conifers (i.e., Ginkgo, Picea, Podocarpus) rel-
ative to the root. Entries labeled ‘‘eudicot’’ are the proportions of depths of the
nodes representing the most recent common ancestors of the eudicot angio-
sperms (i.e., Platanus, Nelumbo, Ranunculus, Enkianthus, Nicotiana, Pisum, Fa-
gus, Carya) relative to the root. Estimated standard deviations are shown in
parentheses.

Table 2
Posterior Means and Standard Deviations of Normalized
Root Depths (2T0)

E(2T0) 5 6 E(2T0) 5 18

E(n) 5 1/6 . . . . . . .
E(n) 5 1/18 . . . . . .

6.21 (1.10)
6.07 (1.06)

6.21 (1.12)
6.17 (1.11)

sensitivity of the posterior expectation of 2T0 to the
prior distribution of 2T0. Although the posterior distri-
bution of 2T0 is quite sensitive to its prior distribution,
posterior distributions of the ratios of the depths of par-
ticular nodes to the root depth 2T0 are robust to the
prior distribution (table 1). By normalizing rates and
times of each sample generated by the Metropolis-Has-
tings algorithm so that the average rate on the sample
tree is 1 and so that branch lengths are identical before
and after normalization, we find that the normalized val-
ues of 2T0 are also robust to the prior distribution (table
2). The normalized values of n seem to be more robust
to the prior distribution than are the nonnormalized val-
ues (table 3).

The posterior means of the normalized times to the
root are close to but greater than the root depth of 6.03
replacements per 100 sites estimated by the PAML pro-
gram. The difference may be partially attributable to our
analysis allowing evolutionary rates to evolve, but this
explanation need not be invoked. The difference may
also be explained by the fact that PAML ignores align-
ment columns with gaps, whereas our programs treat

gaps as missing data. Another possible source of the
small difference is that the model of amino acid replace-
ment assumed in the Bayesian analysis allows rate het-
erogeneity among sites that is associated with structural
environment, but the Jones-Taylor-Thornton model does
not.

The fossil record implies that the existence of the
conifer clade probably predates the origin of the eudicot
angiosperm clade (see Sanderson 1997). Our analysis
finds the ages of these two clades to be more similar
than they probably are (table 1 and fig. 3). This simi-
larity may be attributable to the estimation of the branch
lengths on the unrooted tree. It may also be explained
by the prior distributions assumed in our analysis. Pre-
liminary simulations show no obvious bias in the esti-
mates of node depths relative to root depths (data not
shown).

Discussion and Conclusions

Information concerning dates of evolutionary
events can be extracted from sequence data sets even
when the assumption of globally constant rates of evo-
lution is unwarranted. Others have come to the same
conclusion (e.g., Penny, Murray-McIntosh, and Hendy
1998) but have chosen different strategies for extracting
this information. The method that is most similar to our
own is probably the ‘‘nonparametric’’ technique out-
lined by Sanderson (1997). This technique shares with
our approach the idea that autocorrelation of rates can
be exploited to extract chronological information. In
some sense, the technique of Sanderson and our highly
parametric technique are at opposite ends of a statistical
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Table 3
Posterior Means and Standard Deviations of
Nonnormalized and Normalized Values of n for Four
Combinations of Prior Distributions of n and 2T0

E(2T0) 5 6 E(2T0) 5 18

E(n) 5 1/6 . . . Nonnormalized
Normalized

0.18 (0.09)
0.14 (0.07)

0.07 (0.04)
0.16 (0.07)

E(n) 5 1/18 . . Nonnormalized
Normalized

0.12 (0.05)
0.10 (0.04)

0.06 (0.03)
0.14 (0.06)

continuum. Rather than explicitly modeling the evolu-
tion of the rate of evolution, the Sanderson method ex-
tracts chronological information by optimizing what
seems to be a reasonable criterion. As with our method,
it allows different rates on different branches of the tree
and assumes that rates are constant on individual
branches. Unlike our method, it assumes that branch
length estimates are the true branch lengths. With the
assumptions underlying the Sanderson method, the rate
on a branch is equal to the estimated branch length di-
vided by the duration of the branch. The Sanderson tech-
nique infers internal node times by minimizing the sum
over all ancestral and descendant branches of some
function that penalizes a change in rates between the
ancestral and descendant branches. This penalty func-
tion may take the form of the squared difference be-
tween ancestral and descendant rates, for example. Be-
cause both highly parametric and less parametric ap-
proaches enjoy great success in the field of statistics, it
is premature to make general conclusions regarding the
merits of our approach and that of Sanderson. Both war-
rant further exploration.

A promising feature of the Sanderson technique
that we intend to implement is the inclusion of con-
straints. It would be straightforward to directly incor-
porate fossil evidence that a particular node of the tree
has an age that equals or surpasses some minimum.
Constraints have the potential to improve date estima-
tion throughout the tree and will also influence the pos-
terior distribution of n. Consideration of constraints may
greatly reduce the sensitivity of the posterior distribu-
tions of 2T0 and n to their priors.

A point made by J. Kim and communicated by San-
derson (1997) is that methods of phylogeny reconstruc-
tion themselves could capitalize on the idea that closely
related evolutionary lineages are likely to evolve at sim-
ilar rates. A consequence of this rate autocorrelation is
that branches that are nearby in a tree will have corre-
lated lengths. Widely used methods of phylogeny recon-
struction ignore this potential information.

An approach for reconstructing phylogenies that in-
cludes a model of evolution of the rate of evolution
would benefit not only from incorporation of the ten-
dency for branch lengths to be correlated due to rate
autocorrelation structure, but also from the information
that the time structure of a tree can provide. Even in the
absence of rate autocorrelation, branch lengths will be
correlated due to this time structure. For instance, in
figure 1, the branch with rate R4 and the branch with

rate R5 evolved for identical amounts of time. If the rates
experienced by these branches were independent, the
branch lengths would be correlated due to their exis-
tence for a common amount of time.

It is valid to attach a slightly different interpretation
to the probabilistic structure of our model. Instead of
having constant rates of molecular evolution on a branch
and different rates of molecular evolution on different
branches, the model can be viewed as describing the
average rate of molecular evolution on branches and
how this average rate differs among branches. To reduce
computation, we do not explicitly model variation of
rates of molecular evolution within a branch. A branch
attached to a slowly evolving ancestral branch and two
quickly evolving descendant branches probably experi-
enced a higher rate of evolution near its end than near
its beginning, but this is not reflected by our model. We
cannot quantify the loss of information due to this in-
adequacy of our model, but we suspect that the loss is
typically small.

The fact that different genes evolve at different
rates is well established. The rate of molecular evolution
probably evolves at different rates for different genes as
well. With our model, this issue can be addressed by
comparing the posterior distributions of n for different
genes.

Three general possibilities for changes in the rate
of molecular evolution are depicted in figure 4. Figure
4A exhibits no autocorrelation; the rate of molecular
evolution in one time interval is independent of the rate
of molecular evolution in the next time interval. Figure
4B and C both show a positive correlation between the
rates in successive intervals. In figure 4B, the logarithm
of the rates drifts around a mean value of 0. In other
words, figure 4B shows a stationary process. In figure
4C, the process is not stationary. Instead, figure 4C was
generated according to a Brownian motion process.
Therefore, the absolute value of the difference between
the logarithm of the rate at time 0 and the logarithm of
the rate at time t will tend on average to increase as t
increases. In fact, this difference will tend toward infin-
ity as t approaches infinity.

The model for change of the rate of molecular evo-
lution that we have described and implemented here is
approximately a Brownian motion process that operates
on the logarithm of the rates of molecular evolution.
However, the actual process affecting the rate of molec-
ular evolution may behave more like the processes in-
dicated by figure 4A or B. In the future, a specific hy-
pothesis that the actual process falls into a particular one
of these three categories could be evaluated in a Baye-
sian framework.

The method we have described accounts for un-
certainty of branch length estimates as well as variation
of rates due to evolution. By accounting for these two
types of variation in an integrated framework, improved
estimates of evolutionary dates and more accurate quan-
tification of uncertainty is possible. One strength of our
approach is that it can be used with all widely used
models of nucleotide substitution and amino acid re-
placement. We are optimistic that generalizations and
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FIG. 4.—Relationship between the logarithm of the rate of molecular evolution and time. A, A process with no autocorrelation. B, A
stationary process with positive autocorrelation. C, A nonstationary process with positive autocorrelation.
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FIG. 4 (Continued)

refinements of this approach will prove worthwhile for
understanding both evolutionary history and the process
of evolution.
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APPENDIX

The Markov Chain Monte Carlo Algorithm

In our implementation, the Metropolis-Hastings al-
gorithm actually cycles through a series of proposal
steps. The resulting Markov chain is irreducible and
aperiodic. Each individual step involves a proposed state
that differs from the current state of the Markov chain
by the value of only one or a few parameters.

Proposal Step for n

In one step of the cycle, a state (T9, R9, n9) is pro-
posed that differs from the current state (T, R, n) only
by the value of n. The proposed value n9 is generated
by first randomly sampling a value U from a uniform
distribution on the (0, 1) interval and then setting

n9 5 ne ,H (U20.5)1

where H1 is a constant with a prespecified value. With
this rule for proposing a new value of n, equation (5)
simplifies to

p(R9 z T9, n9)p(n9)n9
r 5 min 1, . (7)1 2p(R z T, n)p(n)n

Internal Node Time Proposal Steps

The next part of the cycle for our algorithm in-
volves proposing states for which all but one internal
node time is the same for the current and proposed
states. In this part of the cycle, a new time for each
internal node i is proposed exactly once and then this
part of the cycle is exited. The internal node i will have
parental node p, eldest-child node e, and youngest-child
node y. The rate on a branch will be indexed according
to the node at which the branch ends. Therefore, the rate
on the branch that ends at node i will be denoted Ri,
whereas Re and Ry, respectively, denote the rates on the
branches that end at nodes e and y.

If node i is not the root, its proposed time T should9i
be greater than the time Tp of its parental node p and
less than the time Te of its eldest-child node e. Our cur-
rent implementation samples T from the uniform dis-9i
tribution on the interval from Tp to Te. It would be pos-
sible to concentrate the distribution of our proposed time
T closer to the current time Ti, but we have not yet9i
needed to implement this refinement. So that p(X z B)
and p(X z B9) are not involved in our calculations of r,
we adjust proposed rates on all branches connected to
node i so that all branch lengths are the same for the
proposed and current states of the Markov chain. If a

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/15/12/1647/963101 by guest on 21 August 2022



1656 Thorne et al.

new time for the node currently at time Ti were being
proposed, we would set

R (T 2 T )i i p
R9 5 ,i (T9 2 T9)i p

R (T 2 T )e e iR9 5 ,e (T9 2 T9)e i

and

R (T 2 T )y y i
R9 5 .y (T9 2 T9)y i

In order to determine the ratio of the proposal den-
sities (see eq. 5), it helps to reparameterize so that the
proposed state has only one parameter with a value dif-
ferent from that of the current state. Without repara-
meterization, the proposed and current states have dif-
ferent values of Ri, Ry, Re, and Ti. Reparameterization
from a parameter space (Ri, Ry, Re, Ti) to a parameter
space (Bi, By, Be, Ti), where Bi, Be, and By, respectively,
represent the lengths of branches that end at nodes i, e,
and y, leads to only the value of Ti being different be-
tween the proposed and current values of the repara-
meterized parameter space. Because T is being sampled9i
from a uniform distribution, the proposal densities in the
reparameterized space are equal, and their ratio is 1. In
the original parameter space, adjustment for the trans-
formation of the random variables (i.e., parameters)
means that the proposed state should be accepted with
probability

p(R9 z T9, n9)p(T9)(T 2 T )(T 2 T )(T 2 T )i p e i y i
r 5 min 1, .1 2p(R z T, n)p(T)(T9 2 T9)(T9 2 T9)(T9 2 T9)i p e i y i

(8)

To propose a new time T for the root node of the90
ingroup, it must be ensured that the proposed time of
this root node is less than the time Te of its eldest-child
node. This is accomplished by setting

T 5 Te 2 (Te 2 T0)e ,H (U20.5)290

where U is a uniform random variable on the interval
(0, 1) and H2 is the value of a prespecified constant. By
also adjusting proposed rates for branches that are con-
nected to the root such that the current and proposed
states of the Markov chain have the same branch
lengths, calculations are again simplified. With a repar-
ameterization strategy similar to the one for proposing
new times of internal nodes that are not the root, it can
be shown that r simplifies to

p(R9 z T9, n9)p(T9)(T 2 T )y 0r 5 min 1, , (9)1 2p(R z T, n)p(T)(T9 2 T9)y 0

where y is the youngest-child node of the root.

Rate Proposal Steps

For each of the k 1 1 branches on the ingroup, we have
a proposal step for suggesting a new rate R (i ∈ {0,9i
. . . , k}) from the current state Ri. This is accomplished

by sampling a value U from a uniform distribution on
(0, 1) and using a prespecified constant H3 to get

R 5 Rie .H (U20.5)39i

Unlike for the previous proposal steps, this type of step
does have proposed branch lengths that differ from the
current branch lengths. In this case,

p(X z B9)p(R9 z T9, n9)R9ir 5 min 1, . (10)1 2p(X z B)p(R z T, n)Ri

The only part of our Metropolis-Hastings cycle in which
the proposed and current states have different branch
lengths is the step corresponding to equation (10). Be-
cause only one branch length will differ between B and
B9, the ratio p(X z B9)/p(X z B) simplifies to become a
ratio of univariate normal densities. For all other steps
of the Metropolis-Hastings cycle, the ratio is 1, because
the numerator and denominator of the ratio p(X z B9)/
p(X z B) are equal.

‘‘Mixing’’ Step

To improve convergence of the Markov chain, we
have found it worthwhile to add one additional step per
cycle. With this step, all proposed node times differ
from the current node times by a factor of M. The value
of M is obtained by

M 5 e ,H (U20.5)4

where U is a uniform random variable on the interval
(0, 1), and H4 is a prespecified constant. For all node
times Ti, the proposed state has

T 5 MTi.9i

The proposed rate for all branches is determined by

1
R9 5 R .i iM

Under this scheme, the current and proposed states have
identical branch lengths. For a reparameterization strat-
egy similar to the one outlined for proposing node times,
it can be shown that the probability of accepting the
proposed state should be

p(R9 z T9, n9)p(T9) 1
r 5 min 1, , (11)

I1 2p(R z T, n)p(T) M

where I is the number of internal nodes (including the
root) on the bifurcating tree.
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