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Abstract: Biodegradable polymers have recently found significant applications in pharmaceutics
processing and drug release/delivery. Composites based on poly (L-lactic acid) (PLLA) have been
suggested to enhance the crystallization rate and relative crystallinity of pure PLLA polymers. De-
spite the large amount of experimental research that has taken place to date, the theoretical aspects
of relative crystallinity have not been comprehensively investigated. Therefore, this research uses
machine learning methods to estimate the relative crystallinity of biodegradable PLLA/PGA (polyg-
lycolide) composites. Six different artificial intelligent classes were employed to estimate the relative
crystallinity of PLLA/PGA polymer composites as a function of crystallization time, temperature, and
PGA content. Cumulatively, 1510 machine learning topologies, including 200 multilayer perceptron
neural networks, 200 cascade feedforward neural networks (CFFNN), 160 recurrent neural networks,
800 adaptive neuro-fuzzy inference systems, and 150 least-squares support vector regressions, were
developed, and their prediction accuracy compared. The modeling results show that a single hidden
layer CFFNN with 9 neurons is the most accurate method for estimating 431 experimentally mea-
sured datasets. This model predicts an experimental database with an average absolute percentage
difference of 8.84%, root mean squared errors of 4.67%, and correlation coefficient (R2) of 0.999008.
The modeling results and relevancy studies show that relative crystallinity increases based on the
PGA content and crystallization time. Furthermore, the effect of temperature on relative crystallinity
is too complex to be easily explained.

Keywords: polylactic acid; polyglycolide; biodegradable composite; relative crystallinity; machine
learning methods

1. Introduction

Biodegradable materials have recently grown in popularity due to their wide applica-
bility in different practices, including for clinical purposes [1–3], drug delivery [4,5], and
waste remediation [6–8]. Poly (L-lactic acid) (PLLA) is a low-toxic biodegradable polymer
with good mechanical properties. Although PLLA has relatively satisfactory mechanical
characteristics, its crystallization rate is slow. Hence, the fabrication of composites [9]
based on PLLA with a better crystallization behavior has been suggested [10–12]. Chen
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et al. synthesized several completely biodegradable PLLA-based composites by dispersing
polyglycolide (PGA) fibers in the PLLA body [12]. Several laboratory-scale investigations
have been carried out to examine the effect of crystallization time, temperature, and PGA
fiber dosage on the relative crystallinity of pure PLLA and PLLA/PGA composites [12].

Generally, the application domain of polymers is directly related to their physico-
chemical properties, including their tensile strength, elasticity, glass transition temperature,
solubility, and crystallinity [12]. Crystallization is among the most complicated and longest-
standing challenges related to polymer [13–15], composite [16], and zeolite [17] research
and development. The relative crystallinity of polymers shows the degree of alignment of
polymeric chains to one another [18]. Balani et al. claimed that polymer strength increases
by increasing its crystallinity [19]. They also introduced the significant intermolecular
bonding of the crystalline phase as the main factor responsible for their observation [19].

Differential scanning calorimetry, Raman spectroscopy, X-ray diffraction, nuclear mag-
netic resonance, infrared spectroscopy, small-angle X-ray scattering, and microscopy are
the most common techniques for determining crystallinity and crystallization behavior [20].
Despite the diversity of experimental techniques, theoretical and modeling approaches are
still rare in this topic. Molecular simulation is the most utilized method that provides some
insight into polymer crystallization [21]. Therefore, our understanding of this complex
subject is still incomplete and deserves further analysis.

The current study utilizes machine learning methods to accurately estimate PLLA/PGA
composites’ relative crystallinity. Six different artificially intelligent categories, including
four artificial neural networks (ANN), two adaptive neuro-fuzzy inference systems, and
least-squares support vector regression, were considered for this task. Systematic compari-
son analyses using four statistical indices confirmed that the cascade feedforward neural
network provides the most reliable estimations for the relative crystallinity of PLLA/PGA
composites. This model accurately predicts 431 experimentally measured datasets with
an impressive average absolute percentage difference of 8.84%, root mean squared errors
of 4.67%, and correlation coefficient (R2) of 0.999008. This model confirms that the rela-
tive crystallinity of pure PLLA and PLLA/PGA composites increases by increasing the
crystallization time and reduces by reducing the crystallization temperature. Furthermore,
PGA content in the PLLA-based composite has a weak increasing effect on relative crys-
tallinity. To the best of our knowledge, there are no other studies in the literature which
have conducted intelligent modeling related to the crystallinity processes of biodegradable
PLLA/PGA composites.

2. Materials and Experiments

Chen et al. utilized the solvent method to fabricate several PLLA/PGA composites
with 2–8 weight percent (wt%) of the PGA fiber [12]. The differential scanning calorimetry
(DSC) technique was employed to study the effect of PGA fibers on the isothermal crystal-
lization of fabricated composites [12]. Table 1 shows the range of conducted experiments to
measure relative crystallinity as a function of time, temperature, and PGA dosage in the
considered polymers.

Table 1. Experiment data for the relative crystallinity of PLLA/PGA composites [12].

Crystallization
Time (min)

Crystallization
Temperature

(◦C)

PGA Dosage
(wt%)

Relative
Crystallinity

(%)

Numbers of
Measurements

0–50 90–125 0 0–100 103

0–40 85–125 2 0–100 80

0–35 85–125 4 0–100 100

0–35 85–125 6 0–100 85

0–25 85–125 8 0–100 63
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It should be mentioned that pure PLLA is considered a composite with zero wt%
of PGA fibers. This table shows that PLLA and all PLLA/PGA composites experience a
maximum relative crystallinity of 100%. On the other hand, the crystallization time of pure
PLLA is almost twice that of a composite with 8 wt% of PGA fibers.

For a better presentation of the experimental study conducted by Chen et al. [12], the
histogram of the considered variables is plotted in Figure 1. Histograms of crystallization
time, temperature, PGA content of composites, and relative crystallinity are depicted in
Figure 1A–D, respectively.
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Figure 1. Histogram of experimental measurements for all of crystallization times (A), crystallization
temperatures (B), PGA contents (C), and relative crystallinities (D).

3. Methodology

Machine learning is a trusted method to accurately estimate behaviors of different
phenomena ranging from disease identification [22–26] and privacy-preserving health-
care [27,28] to sustainable development [29]. As previously noted, this study constructs
different machine learning methods and compares their accuracies to identify the most
trustworthy topology for calculating the relative crystallinity of pure PLLA and PLLA/PGA
composites. The multilayer perceptron neural network (MLPNN), recurrent neural network
(RNN), cascade feedforward neural network (CFFNN), adaptive neuro-fuzzy inference
system with subtractive clustering (ANFIS2) and c-means clustering (ANFIS3) membership
functions, and least-squares support vector regression (LSSVR) have been employed in
this regard.
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3.1. Artificial Neural Networks

Artificial neural networks were originally inspired by the operating practice of the
neurological system of human beings [30]. Neurons are the smallest meaningful parts of
neurological and artificial neural networks [31]. It is possible to place several neurons
in some successive layers to create different topologies of the ANN. The MLPNN [32],
CFFNN [33], RNN [34], radial basis function neural networks, and general regression
neural networks are the most well-known ANN types in this regard. Our literature review
confirmed that the first three aforementioned models often provide acceptable accuracy for
regression-based problems. The mathematical and working backgrounds of MLPNN [35],
CFFNN, and RNN [36] are well presented in the literature.

Cybenko theoretically confirmed that ANN models with only one hidden layer
equipped with nonlinear, continuous, and differentiable activation functions are able to
simulate even the most complicated phenomena [37]. The hyperbolic tangent and logistic
activation functions satisfy the conditions proposed by Cybenko [37]. Therefore, it is only
necessary to determine the number of neurons placed in the hidden layer.

3.2. Adaptive Neuro-Fuzzy Inference Systems

Adaptive neuro-fuzzy inference systems can be imagined as an organized combination
of fuzzy logic and ANN methodologies [38]. This type of machine learning category is often
built using five interconnected layers [38]. The membership function is the central part
of the working procedure of the ANFIS-based model. Subtractive clustering and c-means
clustering are the two most widely used membership functions in the ANFIS structure. It is
necessary to determine the cluster radius for the former and the number of clusters for the
latter [38]. Furthermore, an appropriate training algorithm also needs to be appropriately
determined for developing the ANFIS-based model [38].

3.3. Least-Squares Support Vector Regression

Least-squares support vector regression is another machine learning method used
in the current study [39]. This intelligent scenario uses the kernel function to transform
the independent variable into a multidimensional space. Then, it is possible to linearly
relate a target to its transformed independent variables. Suykens et al. comprehensively
explained both the mathematical background and working procedure of the LSSVR [40]. An
appropriate type of kernel function should be determined for the LSSVR-based estimator.
Linear, polynomial, and Gaussian are possible kernel functions for incorporation in the
LSSVR structure [40].

4. Results and Discussion
4.1. Relevancy Analyses

Both experimental [41] and modeling [42] studies have investigated the effects of the
main influential variables on the considered dependent/target variable. Some statistical-
based methods are available for quantizing the direction and magnitude of relevancy
between any pair of dependent–independent variables [43,44]. Spearman [45], Pearson [46],
and Kendall [47] are three main instances in this field. These methods provide an index
between −1 and +1 to show the direction and magnitude of dependency of a target to
its influential features [48]. Table 2 explains the physical meaning of outcomes of these
relevancy-monitoring methods.
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Table 2. Physical meaning of the Spearman, Pearson, and Kendall indices.

Index Value Direction of Relevancy Magnitude of Relevancy

−1 to < 0 Indirect
Magnitude of indirect

relationship increases from
zero to −1

0 No dependency No dependency

<0 to +1 Direct
Magnitude of direct

relationship increases from
zero to 1

In summary, the negative domain shows the indirect dependency of a dependent
variable to an independent one and vice versa. On the other hand, −1 and +1 are associated
with the strongest indirect and direct relationships, respectively. The magnitude of this
relevancy decreases by converging the index to zero.

The results of applying the aforementioned relevancy scenarios on the collected data-
bank for the relative crystallinity of the PLLA/PGA composites are graphically presented
in Figure 2. Relative crystallinity directly relates to the crystallization time (strong) and
PGA content of composites (weak). On the other hand, relative crystallinity has weak
indirect relevancy with crystallization temperature.

Figure 2. Interdependency of relative crystallinity on time, temperature, and PGA dosage.

4.2. Developing Machine Learning Methods

In order to efficiently use the considered machine learning techniques, their topologies
need to be appropriately determined [37,49,50]. Since several rules of thumb prespecify
some structural features of CFFNN, MLPNN, RNN, LSSVR, ANFIS2, and ANFIS3, it is only
necessary to determine the rest of the features using a trial-and-error procedure. Table 3
divides the structural features of each technique into fixed and adjustable ones.
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Table 3. Summary of the trial-and-error process to find the best structural features of the machine
learning methods.

Machine Learning Method
Structural Property

Numbers of Model
Fixed Property Adjustable Property

MLPNN

Number of hidden layers, i.e., two [37]
The activation function of the hidden
layer, i.e., hyperbolic tangent [37]
The activation function of the hidden
layer, i.e., logistic [37]
Training algorithm, i.e.,
Levenberg–Marquardt [51]

Number of hidden neurons 200

CFFNN

Number of hidden layers, i.e., two [37]
The activation function of the hidden
layer, i.e., hyperbolic tangent [37]
The activation function of the hidden
layer, i.e., logistic [37]
Training algorithm, i.e.,
Levenberg–Marquardt [51]

Number of hidden neurons 200

RNN

Number of hidden layers, i.e., two [37]
The activation function of the hidden
layer, i.e., hyperbolic tangent [37]
The activation function of the hidden
layer, i.e., logistic [37]
Training algorithm, i.e., scaled
conjugate gradient [52]

Number of hidden neurons 160

LSSVR Training algorithm, i.e., least-squares
method [40] Kernel function 150

ANFIS2 Membership function, i.e., subtractive
clustering [38,53]

Radius of cluster
Training algorithm 400

ANFIS3 Membership function, i.e., c-means
clustering [54,55]

Number of clusters
Training algorithm 400

4.3. Selecting the Best Topology for Machine Learning Methods

The experimental databank of the relative crystallinity of PLLA/PGA composites is
randomly divided into training and testing collections. The former includes 366 datasets
(85%), and the latter constates 65 measurements (15%). Five-fold cross-validation uti-
lizes the training collection to determine the adjustable structural features and hyperpa-
rameters of the considered machine learning techniques. The testing collection is then
engaged in evaluating the performance of the constructed paradigms. Four statistical-
based accuracy indices, including average absolute percentage difference (AAPD%), root
mean squared errors (RMSE), correlation coefficient (R2), and relative absolute percentage
error (RAPE%), help to find the most reliable topology for each machine learning tech-
nique. Equations (1)–(4) define mathematical formulations of AAPD%, RMSE, R2, and
RAPE%, respectively.

AAPD% =
100
N

N

∑
j=1

∣∣∣RCexp − RCcal
∣∣∣

j

RCexp
j

(1)

RMSE =

√√√√ 1
N

N

∑
j=1

(
RCexp − RCcal

)
j

2

(2)
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R2 = 1 −

N
∑

j=1

(
RCexp − RCcal

)
j
2

N
∑

j=1

(
RCexp − RCexp

)
j
2

(3)

RAPE% =

100 ×
N
∑

j=1

∣∣∣RCexp − RCcal
∣∣∣

j

N
∑

j=1

∣∣RCexp − RCexp
∣∣

j

(4)

All above equations need experimental measurements (RCexp), calculated values
(RCcal) of the relative crystallinity (RC), and numbers of training or testing datasets (N) to
be calculated.

The performance of the constructed models was compared using these statistical
criteria to find those adjustable features that present the highest accuracy in the training
and testing stages. Table 4 introduces the best adjustable features for each class of the
machine learning method. This table also reports the accuracy of the selected models
for the training and testing collections as well as their combination, i.e., overall database.
The reported accuracies in Table 4 show that the adaptive neuro-fuzzy inference system
with the c-means clustering membership function (i.e., ANFIS3) is the model that predicts
both training and testing collections with the highest uncertainty. This model estimates
431 experimental measurements of the relative crystallinity of PLLA/PGA composites with
AAPD = 24.78%, RAPE = 14.53%, RMSE = 6.54, and R2 = 0.980306.

Table 4. The most appropriate features for the machine learning methods determined through the
trial-and-error process.

Model The Most Appropriate Characteristics Collection AAPD% RAPE% RMSE R2

MLPNN

Nine hidden neurons Training 11.13 7.38 4.95 0.988679

Hyperbolic tangent and logistic Testing 6.25 5.37 2.38 0.997467

Levenberg optimization algorithm Overall 10.39 7.07 4.65 0.990062

CFFNN

Nine hidden neurons Training 8.74 6.68 4.54 0.990058

Hyperbolic tangent and logistic Testing 9.42 7.28 5.32 0.990337

Levenberg optimization algorithm Overall 8.84 6.76 4.67 0.990082

RNN

Seven hidden neurons Training 10.92 9.81 4.00 0.992677

Hyperbolic tangent and logistic Testing 11.07 13.76 9.14 0.966081

Scaled conjugate gradient algorithm Overall 10.94 10.44 5.12 0.988174

LSSVR Gaussian kernel function

Training 13.03 8.14 5.22 0.987382

Testing 14.13 8.78 4.33 0.992005

Overall 13.20 8.24 5.09 0.988064

ANFIS2 Hybrid optimization algorithm
Cluster radius = 0.5

Training 8.54 5.27 4.41 0.991163

Testing 16.28 8.79 5.36 0.985432

Overall 9.71 5.74 4.57 0.990414

ANFIS3 Hybrid optimization algorithm
Nine clusters

Training 25.81 13.87 6.29 0.981923

Testing 19.01 18.39 7.78 0.971648

Overall 24.78 14.53 6.54 0.980306

Figure 3 reports the outcome of the ranking analysis performed to order the selected
models in Table 4 based on their average prediction accuracy over the training, testing, and
overall collections. Indeed, the average efficiency of each model has been measured using
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their AAPD%, RAPE%, RMSE, and R2 values. This figure shows that ANFIS2 and MLPNN
have the best performance in the training and testing stage, respectively. Since MLPNN
badly estimates the training collection and ANFIS2 prediction for the testing stage is not
very good, neither of them should be selected as the most trusted model. On the other
hand, the CFFNN model with the second prediction ranking for the training, testing, and
overall collections is a better selection for estimating the relative crystallinity of pure PLLA
and PLLA/PGA composites.

Figure 3. Ranking of machine learning methods during model development, model validation, and
their combination.

4.4. Investigating the Effect of Activation Function on CFFNN Performances

Cybenko stated that a continuous, nonlinear, and differentiable activation function
such as hyperbolic tangent and logistic is better to utilize in the structure of artificial neural
networks [37]. However, it is not clear what combination of these activation functions
shows the best predictive performance. Table 5 reports the prediction accuracy of CFFNN
with different combinations of the hyperbolic tangent and logistic activation functions. The
first row of this table shows the previously achieved results (see Table 4) by the hyperbolic
tangent and logistic activation functions in the hidden and output layers, respectively. The
second row of Table 5 confirms that it is possible to improve the prediction accuracy of the
CFFNN model.

Table 5. Investigating the effect of activation functions on the predictive performances of the
CFFNN method.

Hidden Layer Output Layer Training Testing Overall

Hyperbolic tangent Logistic 8.74 9.42 8.84

Logistic Logistic 7.97 8.61 8.06

Logistic Hyperbolic tangent 8.33 6.80 8.10

Hyperbolic tangent Hyperbolic tangent 9.35 5.53 8.78

In summary, a single hidden layer CFFNN with nine hidden neurons equipped with
the logistic activation functions in its layers is the most accurate model for predicting the
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relative crystallinity of pure PLLA and PLLA/PGA composites. Therefore, all the following
analyses were directed using this intelligent method.

Figure 4 presents the iterative procedure that the Levenberg–Marquardt passes to
adjust hyperparameters of the CFFNN model. After 100 iterations, the mean squared errors
(MSE) between experimental and prediction values of the relative crystallinity converge to
the predefined desired value, i.e., MSE = 0.75 × 10−3. The MSE value can be calculated
using Equation (5).

MSE =
1
N

N

∑
j=1

(
RCexp − RCcal

)2

j

(5)

Figure 4. Results of the iterative procedure conducted using the Levenberg–Marquardt to train the
CFFNN method.

4.5. Analyzing the Performance of the CFFNN Model

A cross-plot of the estimated relative crystallinities by the proposed CFFNN with
respect to their corresponding experimentally measured information is shown in Figure 5.
It can be observed that almost all CFFNN predictions have been successfully mapped on
their associated experimentally measured data points. Moreover, the previously achieved
results in Table 4 state that the regression coefficients for the training, testing, and overall
collections are 0.990058, 0.990337, and 0.990082, respectively.

Figure 6 depicts the residual error (Equation (6)) histogram between the CFFNN predic-
tions and actual values of relative crystallinity of pure PLLA and PLLA/PGA composites.

Residual error =
(

RCexp − RCcal
)

(6)
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Figure 5. Predicted versus actual measured values of relative crystallinity.

Figure 6. Histogram presentation of deviation between predicted and actual values of relative
crystallinity (average error = 0.398%, standard deviation = 4.72%).

This figure confirms that the maximum residual error of +10% and minimum value
of −10% are provided by the fabricated CFFNN model. It can also be observed that ~175
training samples and ~23 testing samples were simulated with zero residual error. The
fitted red curve confirms that the observed results obey normal distribution.
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Kernel density estimation [56] is employed to plot a distribution of the CFFNN predic-
tions and actual values of the relative crystallinity data collections (see Figure 7). Although
the data distribution is very close to normal distribution, two normal distributions can be
simply detected. Furthermore, the distributions of CFFNN predictions and actual values
are almost identical. The predicted and actual distributions are slightly different between
the magnitudes of 15 and 85. Hence, Figure 7 confirms the robustness of the proposed
CFFNN model.

Figure 7. Kernel density estimation for actual measurements and CFFNN predictions.

4.6. Checking the Validity of Experimental Data

Since CFFNN has been constructed using experimental measurements of the relative
crystallinity of PLLA/PGA composites, its reliability may be affected by potential outliers
in the collected databank [51]. Therefore, it is a good idea to evaluate the level of poisoning
of the experimental databank by such outliers [51]. The leverage is a practical statistical
method for distinguishing valid and suspect measurements in a given database [51]. This
method identifies valid/suspect data by plotting the standardized residual against the hat
index (see Figure 8). The mathematical form of the standardized residual (SR) is shown
using Equation (7).

SR =

(
RD
SD

)
k

k = 1, 2, . . . , N (7)

A region bounded by −3 < standardized residual < +3 and Hat index < warning
leverage is valid, and all five other parts are suspect domains. Based on Equation (8),
the numbers of influential factors (IF) and experimental data (N) are required to calculate
the warning leverage (WL). Since the current study utilizes three influential factors (i.e.,
crystallization time, crystallization temperature, and PGA dosage) to estimate relative
crystallinity (N = 431), WL = 0.0278 (Figure 8: vertical dashed green line) [39].

WL = 3 × (IF + 1)/N (8)
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Figure 8. Applying leverage analysis to detect reliable as well as outlier information.

The outcomes of applying the leverage method on the PLLA/PGA crystallization
database are depicted in Figure 8. It can be seen that 417 datasets are valid, and only
14 measurements may be outliers. Applying the leverage method to the experimental
database demonstrates that more than 97% are valid measurements. Therefore, the validity
of the experimental data is approved, and the engineered CFFNN method is ready to be
used in real applications.

4.7. Monitoring the Effect of Influential Features on Relative Crystallinity

Figure 9 utilizes experimentally measured information as well as CFFNN prediction to
investigate the effect of time and mass dosage of PGA fibers on the relative crystallinity of
pure PLLA and its composites. An excellent compatibility level exists between actual and
predicted crystallinity information. Experimental observations, as well as modeling results,
show that the relative crystallinity of pure PLLA and PLLA/PGA gradually increases with
increasing time. Furthermore, increasing the PGA mass dosage from 0% to 8% decreases
the time needed to reach the maximum relative crystallinity of 100%. It can be seen that
pure PLLA experiences maximum crystallinity at 50 min, while the PLLA/PGA composite
reaches the maximum value after just 30 min. It can be concluded that the addition of PGA
fibers to the PLLA structure improves the crystallization rate. However, all composites
reach maximum crystallinity in half the time that is required for pure PLLA.

The effect of PGA fiber dosage and crystallization time on the relative crystallinity of
PLLA/PGA composites is shown in Figure 10. This figure shows that the required time
for achieving full crystallization decreases by increasing the PGA content in the composite
structure. The composite containing 8 weight percent of PGA fibers reaches maximum
crystallinity faster than the other available PLLA/PGA composites.
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Figure 9. The effect of PGA dosage and crystallization time on rate of crystallization at 125 ◦C.

Figure 10. How PGA dosage affects relative crystallization of PLLA/PGA composites at 85 ◦C.

The effect of temperature on the relative crystallinity of PLLA-based composites
containing 8 wt% of PGA fibers is presented in Figure 11. It can easily be seen that
relative crystallinity shows a complex reaction to temperature change. Despite this complex
behavior, CFFNN successfully predicted crystallinity variation and estimated all individual
experimental samples.
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Figure 11. Isothermal relative crystallinity of the PLLA/PGA composite with 8 wt% of the fiber.

Relative crystallization from below the melting temperature to above glass tempera-
ture often shows a complex behavior [13]. This complex behavior is observed in long-chain
polymers and also monomeric substances [13]. At the vicinity of melting temperature, the
crystallization rate is very slow [13]. As the temperature further decreases, the crystalliza-
tion rate gradually increases and finally reaches its maximum value [13]. At temperatures
below this maximum condition, the overall crystallization rate is retarded once again [13].

4.8. Transferability of the Proposed Model

All empirical, semi-empirical, or intelligent methodologies extracted from historical
data are only applicable for interpolation purposes on a considered system. Indeed, their
extrapolation ability is so limited that they should be used with caution. Therefore, the
deployed cascade feedforward neural network in this study can only be applied to esti-
mate the relative crystallinity of biodegradable polylactic acid and polyglycolide polymer
composites covering the reported values in Table 1. There is no guarantee of accurately
estimating the relative crystallinity of other polymer composites using the constructed
CFFNN machine.

5. Conclusions

This study used six different machine learning categories to correlate the relative
crystallinity of pure PLLA and PLLA/PGA composites to crystallization time, crystal-
lization temperature, and PGA dosage in composites. So many intelligent models have
been constructed, and their accuracy has been compared to choose the best one for the
given purpose. The ranking study using four accuracy indices confirmed that the cascade
feedforward neural network has the highest level of agreement with the 431 experimentally
measured datasets. This model predicted the available databank with an extraordinary
correlation coefficient (R2) of 0.999008, root mean squared errors of 4.67%, and average
absolute percentage difference of 8.84%. Reliability checking confirmed that 97% of the
experimental information is valid. The results also showed that relative crystallinity directly
relates to crystallization time and PGA dosage in the composites, and it has a weak indirect
relationship with crystallization temperature. Indeed, relative crystallinity increases by
increasing time and PGA dosage in the composites. On the other hand, variation of relative
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crystallinity based on temperature is too complex to suggest a general route for its behavior.
The literature has also observed such complex behavior for both long-chain polymers and
monomeric substances.
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