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Logistic regression yields an adjusted odds ratio that approximates the adjusted relative risk when disease
incidence is rare (<10%), while adjusting for potential confounders. For more common outcomes, the odds ratio
always overstates the relative risk, sometimes dramatically. The purpose of this paper is to discuss the incorrect
application of a proposed method to estimate an adjusted relative risk from an adjusted odds ratio, which has
quickly gained popularity in medical and public health research, and to describe alternative statistical methods
for estimating an adjusted relative risk when the outcome is common. Hypothetical data are used to illustrate
statistical methods with readily accessible computer software.

clinical trials; cohort studies; odds ratio; relative risk

The study of common outcomes is becoming more frequent
in medicine and public health. Studies of symptoms, health
behaviors, health care utilization, and even rare diseases in
high-risk populations all have the potential to occur frequently
(>10 percent) in a study population. This fact becomes an
important consideration in deciding on the appropriate statis-
tical analysis for a study. Typically, researchers use statistical
methods designed for studies of rare diseases, sometimes
incorrectly applied to studies of common outcomes. An
example of this problem is the use of logistic regression to
compute an estimated adjusted odds ratio and the subsequent
interpretation of this estimate as a relative risk. This relation is
approximately true when the incidence of outcome is less than
10 percent but usually not true when the outcome is more
common. Although logistic regression may be correctly
applied to studies of common outcomes, in public health we
are often interested in estimating a relative risk (e.g., the prob-
ability of the outcome for one exposure group divided by the
probability of the outcome for another exposure group
(referent)), not the odds ratio, and it is this inference that
becomes troublesome. In studies of common outcomes, the
estimated odds ratio can, and often does, substantially overes-
timate the relative risk.

A method proposed by Zhang and Yu (1) to correct the
adjusted odds ratio in cohort studies of common outcomes was
proposed in 1998 and has gained popularity in medical and

public health research. A review of the Journal Citation
Reports (accessed on May 15, 2001) identified 74 citations of
this paper, and 56 reported studies utilized Zhang and Yu’s
method in the data analysis. Unfortunately, in most cases the
method was incorrectly applied. By March 28, 2003, 214
scientific publications had cited Zhang and Yu’s paper.

The purpose of this paper is to discuss the drawbacks of the
Zhang and Yu method as applied by many researchers and
briefly review alternative methods for estimating an adjusted
relative risk and its confidence interval when the incidence of
disease is common and confounding exists. The study designs
we focus on include cohort studies and clinical trials with
equal follow-up times for study subjects, and the cumulative
incidence in at least one exposure or treatment group is greater
than 10 percent.

We focus on methods that are compatible with statistical
programs widely used in medical and public health research,
including stratified analysis, Poisson regression, and the log-
binomial model. Other methods to estimate confidence inter-
vals of adjusted relative risks (e.g., delta method, bootstrap)
have attractive properties (2, 3); however, user-friendly soft-
ware is still developmental for these methods and not yet
widely available to researchers. We focus here on the situation
where effect modification (interaction with other factors) of
the relative risk does not exist.
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COMPARISON OF AVAILABLE METHODS

For the purpose of illustration, we created several hypothet-
ical studies; each focuses on the association between a specific
risk factor (E) and disease (D) and needs to be adjusted for a
confounder (C). The data and calculated adjusted and crude
measures of the relative risk for the method reviewed are
shown in table 1. Additionally, we provide results from a
simulation study that highlights the potential bias that may
occur with the Zhang and Yu correction method (table 2).

MODEL SELECTION: STUDYING ASSOCIATION
VERSUS PREDICTION

Rarely is there only one statistical model that adequately fits
a set of data. Rather, researchers find themselves choosing
among a few models that fairly summarize the information.
The choice between models that adequately fit the data is
based on various criteria, one of which is the research ques-
tion. Relative risks are computed for studies that focus on
measuring an association(s) between an exposure(s)/risk
factor(s) and an outcome. Unlike predictive models where
parsimony is revered, regression models for studies of associ-
ation often keep several factors that may not explain large
amounts of the variance in the outcome; however, these vari-
ables confound the association between exposure(s) and
outcome sufficiently to warrant adjusting for them in the anal-
ysis (4, 5). Other criteria considered in model selection
include the existence of influential individuals, extreme
outliers, and other factors related to model fit (4).

ZHANG AND YU’S PROPOSED METHOD

Zhang and Yu proposed an intriguing, simple formula to
convert an odds ratio provided by logistic regression to a rela-
tive risk (1):

R = OR
(1-Py) +(Pyx OR)

In this formula, P, is the incidence of the outcome in the
nonexposed group, “OR” is an odds ratio from a logistic
regression equation, and “RR” is an estimated relative risk.
Most researchers apply this formula to the adjusted odds ratio
to estimate an adjusted relative risk. Using the formula in this
manner is incorrect and will produce a biased estimate when
confounding is present. If no confounding exists, then regres-
sion analysis is not needed and simple calculations can be
used to compute an estimated relative risk (6).

With logistic regression, an estimated relative risk can be
computed for each covariate pattern (i):

P(Y|E, x5, =+, Xi;)
P(YlE’ X2is “'9-xki)

RR; =

1

e*(Bo"‘ BiE + Boxy; + -+ Brxy)

1+
1+

e-(Bo*’ BrLE+ Boxy;+ o+ Brxyy)

where Y is the outcome factor of interest (dependent vari-
able), E is the exposure of interest, and x,, ..., x, are
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Comparison of methods to compute adjusted relative risks and confidence intervals for studies of common outcomes

TABLE 1.

Datat

84
84
18
54
72

126
126

Confounder level 2
48

12

18
192
192
144

63

27
27
63
42

Confounder level 1
216

24
36

Crude RR
0.24
0.35
1.56
2.77
415

.21
35
00
28
05

Logistic
aOR*
0

Zhang and Yu
95% Cl
0.24, 0.50

RR
0.35
0.52
1.00
2.31
3.31

Log-binomial
95% Cl
0.23,0.48

aRR
0.33

95% ClI
0.22, 0.50
0.35, 0.71

Poisson

aRR
0.33

Stratified,
Mantel-Haenszel
95% Cl*
0.23,0.48
0.37,0.67
0.88, 1.14

0.33
0.50
1.00
2.00
3.00

aRR*

True RR*
0.33
0.50
1.00
2.00
3.00

42

63
147
168
189

204

0.

0.38, 0.69

0.37,0.67

0.50
1.00
2.00
3.00

0.50
1.00
2.00
3.00

72
36

48

42

18
24
18

1.

0.89, 1.12 0.77,1.24

0.79,1.27

48

36

4,

1.93, 2.66
2.52,4.15

1.60, 2.49
2.14,4.21

1.50, 2.67
2.04, 4.42

1.60, 2.49
2.12,4.24

18

96

21

42

5.

* RR, relative risk; aOR, adjusted odds ratio; aRR, adjusted relative risk; Cl, confidence interval.

1 E denotes exposure; D denotes disease; 1/0 represents presence/absence of exposure or disease.
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TABLE 2. Simulation study comparing methods of estimating adjusted relative risk and coverage of

confidence interval*

Median of adjusted

95% confidence interval

Method relative risk % of relative biast coverage
Stratified, Mantel-Haenszel 1.9989 -0.05 93.80
Stratified, logit 1.9972 -0.14 93.90
Log-binomial 1.9999 -0.01 93.80
Poisson 2.0029 0.15 98.80
Zhang and Yu 2.3053 15.27 63.00
Logistic 4.3282 116.4 8.00

* Sample size equals 500 with 50% of subjects exposed. Specified (true) adjusted relative risk is 2.00.
Exposed group: prevalence of confounder, 60%; cumulative incidence of disease, 0.80 when confounder

present and 0.40 when confounder absent. Nonexposed

group: prevalence of confounder, 40%; cumulative

incidence of disease, 0.40 when confounder present and 0.20 when confounder absent. One thousand
random data sets were created, and each statistical method was applied to every data set to estimate the

adjusted relative risk and its confidence interval.

1 % of relative bias = [(median of adjusted relative risk estimated from 1,000 random data sets — true

adjusted relative risk) / true adjusted relative risk ] x 100.

confounders. Although the formula looks complicated, these
probabilities are just the predicted values that statistical
programs provide routinely. It should be noted that this
formula cannot be used for classical case-control studies, as
the intercept cannot be validly estimated.

In data from our studies on the health effects of violence,
the Zhang and Yu correction, applied to the adjusted odds
ratio and using the incidence among the unexposed for the
entire sample, usually tends to be biased away from the null,
suggesting that the strength of association is greater than is
true. This bias occurs because the formula, used as one
summary value, fails to take into consideration the more
complex relation in the incidence of disease related to expo-
sure for each covariate pattern. This finding also occurred in
Zhang and Yu’s simulation studies (1). Although the
formula can be applied to specific covariate patterns, taking
the ratio of the predicted probabilities is a simpler method to
obtain covariate pattern-specific relative risks.

It is also important to note that, in general, if an outcome is
common, then homogeneity of the odds ratio cannot coexist
with homogeneity of the relative risk. It is useful to note that
more than one statistical model may adequately fit the data;
however, allowance for effect modification will depend on
which model is selected.

The most difficult problem in estimating an adjusted rela-
tive risk for studies of common outcomes is not the point
estimate (which we discuss below), but rather the confidence
interval. Zhang and Yu’s proposed confidence interval for
the adjusted relative risk, computed by applying the above
formula to the bounds on the adjusted odds ratio’s confi-
dence interval, also can be biased, leading one to believe that
the relative risk estimate is more precise than is true (7). This
bias occurs because the proposed calculation does not take
into consideration the covariance between the estimated
incidence and estimated odds ratio. Yu and Zhang note that
a “trade-off between simplicity and precision” (8, p. 529) is
at issue with their method; however, we believe that it is
important, particularly when there are policy implications,

not to overstate precision. In the simulation study results
presented in table 2, the computed 95 percent confidence
interval coverage is only 63 percent (it should be 95 percent),
suggesting that in some typical situations substantial misrep-
resentation of precision is possible.

STRATIFIED ANALYSIS

One of the simplest and best-known techniques for calcu-
lating an adjusted relative risk is stratified analysis (9). Using
stratified analysis, the relative risk between the risk factor of
interest (E) and disease (D) is computed for each level of the
confounder. These stratum-specific relative risks can be
pooled together to create one adjusted relative risk, usually
by taking a weighted average of the stratum-specific relative
risks. Typically, the weights are chosen so that they are
larger for strata with the most individuals and smaller for
strata with fewer individuals (4).

LOG-BINOMIAL MODEL

The log-binomial model has been proposed as a useful
approach to compute an adjusted relative risk. Like logistic
regression, the log-binomial model is used for the analysis of
a dichotomous outcome. Both model the probability of the
outcome (e.g., probability of disease given the exposure and
confounders), and both assume that the error terms have a
binomial distribution. The difference between the logistic
model and the log-binomial model is the link between the
independent variables and the probability of the outcome: In
logistic regression, the logit function is used and, for the log-
binomial model, the log function is used. In general, the log-
binomial model produces an unbiased estimate of the adjusted
relative risk. Although it has a couple of drawbacks, these
appear to pose minimal restriction on its usefulness unless
adjustment for many confounders is needed. First, the confi-
dence interval for the adjusted relative risk computed may be
narrower than is true (10, 11). As seen in table 2, our simula-
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tion study results suggest that this bias is minor and similar to
that found in stratified analysis. Similar coverage was seen in
simulations of a range of relative risks and confounding
patterns (data not shown). Second, in some situations, the log-
binomial model does not converge to provide parameter esti-
mates (10, 12). The lack of convergence may simply be due to
software programs that have a default convergence criterion
that is insufficient. This problem can be remedied by requiring
additional iterations in the modeling fitting process. Another
reason the model fits may not converge to the maximum like-
lihood estimate(s) is that the maximum likelihood estimates
may lie near a boundary of the parameter space. When this
occurs, the iteration can become stuck at the boundary, and a
small adjustment of the interim fit away from the boundary
may be needed to keep the iterations moving toward the
value(s) that maximizes the likelihood.

POISSON REGRESSION AND THE CONCEPT OF
PLACING BOUNDS ON THE CONFIDENCE INTERVAL

Poisson regression is generally reserved for studies of rare
diseases where patients may be followed for different lengths
of time, such as cohort studies of rare outcomes conducted over
many years with some patients being lost to follow-up. In
contrast, unconditional logistic regression is typically utilized
when every patient is followed for the same length of time or
for a defined period with equal follow-up for subjects. For
cohort studies where all patients have equal follow-up times,
Poisson regression can be used in a similar manner as logistic
regression, with a time-at-risk value specified as 1 for each
subject. If the model adequately fits the data, this approach
provides a correct estimate of the adjusted relative risk(s). For
studies of common outcomes, Poisson regression is likely to
compute a confidence interval(s) that is conservative,
suggesting less precision than is true (tables 1 and 2). The
reason Poisson regression produces wider confidence intervals
compared with a log-binomial model and stratified analysis is
that the Poisson errors are overestimates of binomial errors
when the outcome is common (Poisson errors approximately
equal binomial errors when the outcome (disease) is rare). As
the examples in table 1 illustrate, although the confidence
interval is more conservative, the actual difference compared
with a stratified analysis is moderate. Conceptually, this
interval can be thought of as bounding the true confidence
interval.

Computer programs for the log-binomial and Poisson
regression are widely available. For example, many general-
ized linear models’ programs (e.g., PROC GENMOD in
SAS; SAS Institute, Cary, North Carolina) can be used for
both log-binomial and Poisson regression analysis.
Checking the fit of the model can be done using standard
methods.

CROSS-SECTIONAL STUDIES

For cross-sectional studies, two common measures of asso-
ciation are the prevalence ratio and the prevalence odds ratio
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(13). The mathematical computations for these measures are
identical to the relative risk and the odds ratio, respectively.
Thus, the methods presented in this paper can be utilized for
cross-sectional studies; however, a temporal association
between risk factors and “outcome” cannot be assessed.

CONCLUSIONS

The use of an adjusted odds ratio to estimate an adjusted rela-
tive risk appropriate for studies of rare outcomes, however,
may be misleading when the outcome is common. The over-
estimation may inappropriately affect clinical decision-making
or policy development. Additionally, overestimation of the
importance of a risk factor may lead to unintentional errors in
the economic analysis of potential intervention programs or
treatments. Options exist to obtain unbiased estimates of rela-
tive risks in studies of common outcomes. Two methods that
have widely available user-friendly software and often are
statistically appropriate (e.g., fit the data) include stratified
analysis and log-binomial modeling.
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