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Abstract 

When applying unsupervised learning techniques like ICA or tem
poral decorrelation, a key question is whether the discovered pro
jections are reliable. In other words: can we give error bars or can 
we assess the quality of our separation? We use resampling meth
ods to tackle these questions and show experimentally that our 
proposed variance estimations are strongly correlated to the sepa
ration error. We demonstrate that this reliability estimation can 
be used to choose the appropriate ICA-model, to enhance signifi
cantly the separation performance, and, most important, to mark 
the components that have a actual physical meaning. Application 
to 49-channel-data from an magneto encephalography (MEG) ex
periment underlines the usefulness of our approach. 

1 Introduction 

Blind source separation (BSS) techniques have found wide-spread use in various 
application domains , e.g. acoustics , telecommunication or biomedical signal pro
cessing. (see e.g. [9, 5, 6, 1, 2, 4, 14, 8]). 
BSS is a statistical technique to reveal unknown source signals when only mixtures 
of them can be observed. In the following we will only consider linear mixtures; the 
goal is then to estimate those projection directions, that recover the source signals. 
Many different BSS algorithms have been proposed, but to our knowledge, so far, 
no principled attempts have been made to assess the reliability of BSS algorithms, 
such that error bars are given along with the resulting projection estimates. This 
lack of error bars or means for selecting between competing models is of course a 
basic dilemma for most unsupervised learning algorithms. The sources of potential 
unreliability of unsupervised algorithms are ubiquous , i.e. noise, non-stationarities, 
small sample size or inadequate modeling (e.g. sources are simply dependent in
stead of independent). Unsupervised projection techniques like PCA or BSS will 
always give an answer that is found within their model class, e.g. PCA will supply 
an orthogonal basis even if the correct modeling might be non-orthogonal. But how 
can we assess such a miss-specification or a large statistical error? 

Our approach to this problem is inspired by the large body of statistics literature on 
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resampling methods (see [12] or [7] for references), where algorithms for assessing 
the stability of the solution have been analyzed e.g. for peA [3]. 
We propose reliability estimates based on bootstrap resampling. This will enable 
us to select a good BSS model, in order to improve the separation performance and 
to find potentially meaningful projection directions. In the following we will give 
an algorithmic description of the resampling methods, accompanied by some theo
retical remarks (section 2) and show excellent experimental results (sections 3 and 
4). We conclude with a brief discussion. 

2 Resampling Techniques for BSS 

2.1 The leA Model 

In blind source separation we assume that at time instant t each component Xi(t) 

of the observed n-dimensional data vector, x(t) is a linear superposition of m ::::: n 
statistically independent signals: 

m 

Xi(t) = LAijSj(t) 

j=l 

(e.g. [8]). The source signals Sj(t) are unknown, as are the coefficients Aij of the 
mixing matrix A. The goal is therefore to estimate both unknowns from a sample 
of the x(t), i.e. y(t) = s(t) = Wx(t), where W is called the separating matrix. 
Since both A and s(t) are unknown, it is impossible to recover the scaling or the 
order of the columns of the mixing matrix A. All that one can get are the projection 
directions. The mixing/ demixing process can be described as a change of coordi
nates. From this point of view the data vector stays the same, but is expressed 
in different coordinate systems (passive transformation). Let {ed be the canoni

cal basis of the true sources s = 'E eiSi. Analogous, let {fj} be the basis of the 
estimated leA channels: y = 'E fjYj. Using this, we can define a component-wise 
separation error Ei as the angle difference between the true direction of the source 
and the direction of the respective leA channel: 

Ei = arccos ("e~i: ~ifill) . 

To calculate this angle difference, remember that component-wise we have Yj 

'E WjkAkisi. With Y = s, this leads to: fj = 'E ei(WA)ij1, i.e. fj is the j-th 

column of (WA) - l. 
In the following, we will illustrate our approach for two different source separation 
algorithms (JADE, TDSEP). JADE [4] using higher order statistics is based on 
the joint diagonalization of matrices obtained from 'parallel slices' of the fourth 
order cumulant tensor. TDSEP [14] relies on second order statistics only, enforcing 
temporal decorrelation between channels. 

2.2 About Resampling 

The objective of resampling techniques is to produce surrogate data sets that 
eventually allow to approximate the 'separation error' by a repeated estimation of 
the parameters of interest. The underlying mixing should of course be independent 
of the generation process of the surrogate data and therefore remain invariant 
under resampling. 



Bootstrap R esampling 

The most popular res amp ling methods are the Jackknife and the Bootstrap 
(see e.g. [12, 7]) The Jackknife produces surrogate data sets by just deleting one 
datum each time from the original data. There are generalizations of this approach 
like k-fold cross-validation which delete more than one datum at a time. A more 
general approach is the Bootstrap. Consider a block of, say, N data points. For 
obtaining one bootstrap sample, we draw randomly N elements from the original 
data, i.e. some data points might occur several times, others don't occur at all in 
the bootstrap sample. This defines a series {at} with each at telling how often 
the data point x(t) has been drawn. Then, the separating matrix is computed on 
the full block and repeatedly on each of the N -element bootstrap samples. The 
variance is computed as the squared average difference between the estimate on 
the full block and the respective bootstrap unmixings. (These resampling methods 
have some desirable properties, which make them very attractive; for example, it 
can be shown that for iid data the bootstrap estimators of the distributions of 
many commonly used statistics are consistent.) It is straight forward to apply this 
procedure to BSS algorithms that do not use time structure; however , only a small 
modification is needed to take time structure into account. For example, the time 
lagged correlation matrices needed for TDSEP, can be obtained from {ad by 

1 N 

Cij(T) = N 2: at 'Xi(t)Xj(t+T) 
t = l 

with L at = N and at E {O, 1, 2, ... }. 

Other resampling methods 

Besides the Bootstrap, there are other res amp ling methods like the Jack
knife or cross-validation which can be understood as special cases of Bootstrap. 
We have tried k-fold cross-validation, which yielded very similar results to the ones 
reported here. 

2.3 The Resampling Algorithm 

After performing BSS, the estimated ICA-projections are used to generate surro
gate data by resampling. On the whitened l surrogate data, the source separation 
algorithm is used again to estimate a rotation that separates this surrogate data. 
In order to compare different rotation matrices, we use the fact that the matrix 
representation of the rotation group SO(N) can be parameterized by 

with (Mab)ij r5~r5t - r5~r5b , where the matrices Mij are generators of the group 
and the aij are the rotation parameters (angles) of the rotation matrix R. Using 
this parameterization we can easily compare different N-dimensional rotations by 
comparing the rotation parameters aij. Since the sources are already separated, 

the estimated rotation matrices will be in the vicinity of the identity matrix.2 . 

IThe whitening transformation is defined as x' = Vx with V = E[xxTtl/2. 

21t is important to perform the resampling when the sources are already separated, so 
that the aij are distributed around zero, because SO(N) is a non-Abelian group; that 

means that in general R(a)R«(3 ) of- R«(3) R(a) . 



Var(aij) measures the instability of the separation with respect to a rotation in 
the (i, j)-plane. Since the reliability of a projection is bounded by the maximum 
angle variance of all rotations that affect this direction, we define the uncertainty of 
the i-th ICA-Projection as Ui := maxj Var(aij). Let us summarize the resampling 
algorithm: 

1. Estimate the separating matrix W with some ICA algorithm. 
Calculate the ICA-Projections y = Wx 

2. Produce k surrogate data sets from y and whiten these data sets 

3. For each surrogate data set: do BSS, producing a set of rotation matrices 

4. Calculate variances of rotation parameters (angles) aij 

5. For each ICA component calculate the uncertainty Ui = maxVar(aij). 
J 

2.4 Asymptotic Considerations for Resampling 

Properties of res amp ling methods are typically studied in the limit when the number 
of bootstrap samples B -+ 00 and the length of signal T -+ 00 [12]. In our case, as 
B -+ 00, the bootstrap variance estimator Ut(B) computed from the aiJ's converge 

to Ut(oo) := maxj Varp[aij] where aij denotes the res amp led deviation and F 
denotes the distribution generating it. Furthermore, if F -+ F, Ut (00) converges to 
the true variance Ui = maxj VarF[aij ] as T -+ 00. This is the case, for example, if 

the original signal is i.i.d. in time. When the data has time structure, F does not 
necessarily converge to the generating distribution F of the original signal anymore. 
Although we cannot neglect this difference completely, it is small enough to use our 
scheme for the purposes considered in this paper, e.g. in TDSEP, where the aij 
depend on the variation of the time-lagged covariances Cij(T) of the signals, we can 

show that their estimators Ctj (T) are unbiased: 

Furthermore, we can bound the difference t:.ijkl(T,V) = COVF [Cij(T),Ckl(V)] 

COV p [Ctj ( T), Ckl (v)] between the covariance of the real matrices and their boot

strap estimators as 

if :3a < 1, M ;::: 1, Vi: ICii (T) I :S M aJLICii(O) I. In our experiments, however, the 
bias is usually found to be much smaller than this upper bound. 

3 Experiments 

3.1 Comparing the separation error with the uncertainty estimate 

To show the practical applicability of the resampling idea to ICA, the separation 
error Ei was compared with the uncertainty Ui . The separation was performed on 
different artificial 2D mixtures of speech and music signals and different iid data 
sets of the same variance. To achieve different separation qualities, white gaussian 
noise of different intensity has been added to the mixtures. 
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Figure 1: (a) The probability distribution for the separation error for a small uncertainty 
is close to zero, for higher uncertainty it spreads over a larger range. (b) The expected 

error increases with the uncertainty. 

Figure 1 relates the uncertainty to the separation error for JADE (TDSEP results 
look qualitatively the same) . In Fig.1 (left) we see the separation error distribution 
which has a strong peak for small values of our uncertainty measure, whereas for 
large uncertainties it tends to become flat, i.e. - as also seen from Fig.1 (right) -
the uncertainty reflects very well the true separation error. 

3.2 Selecting the appropriate BSS algorithm 

As our variance estimation gives a high correlation to the (true) separation error, 
the next logical step is to use it as a model selection criterion for: (a) selecting 
some hyperparameter of the BSS algorithm, e.g. choosing the lag values for 
TDSEP or (b) choosing between a set of different algorithms that rely on different 
assumptions about the data, i.e. higher order statistics (e.g. JADE, INFO MAX, 
FastICA, ... ) or second order statistics (e.g. TDSEP). It could, in principle, be 
much better to extract the first component with one and the next with another 
assumption/ algorithm. To illustrate the usefulness of our reliability measure, we 
study a five-channel mixture of two channels of pure white gaussian noise, two audio 
signals and one channel of uniformly distributed noise. The reliability analysis for 
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Figure 2: Uncertainty of leA projections of an artificial mixture using JADE and TDSEP. 
Resampling displays the strengths and weaknesses of the different models 

JADE gives the advice to rely only on channels 3,4,5 (d. Fig.2 left). In fact , these 
are the channels that contain the audio signals and the uniformly distributed noise. 
The same analysis applied to the TDSEP-projections (time lag = 0, ... ,20) shows, 
that TDSEP can give reliable estimates only for the two audio sources (which is 
to be expected; d. Fig.2 right). According to our measure, the estimation for the 
audio sources is more reliable in the TDSEP-case. Calculation of the separation 
error verifies this: TDSEP separates better by about 3 orders of magnitude (JADE: 



E3 = 1.5 . 10- 1 , E4 = 1.4 . 10- 1 , TDSEP: E3 = 1.2 . 10- 4 , E4 = 8.7· 10- 5). Finally, 
in our example, estimating the audio sources with TDSEP and after this applying 
JADE to the orthogonal subspace, gives the optimal solution since it combines the 
small separation errors E3, E4 for TDSEP with the ability of JADE to separate 
the uniformly distributed noise. 

3.3 Blockwise uncertainty estimates 

For a longer time series it is not only important to know which ICA channels are 
reliable, but also to know whether different parts of a given time series are more 
(or less) reliable to separate than others. To demonstrate these effects, we mixed 
two audio sources (8kHz, lOs - 80000 data points) , where the mixtures are partly 
corrupted by white gaussian noise. Reliability analysis is performed on windows of 
length 1000, shifted in steps of 250; the resulting variance estimates are smoothed. 
Fig.3 shows again that the uncertainty measure is nicely correlated with the true 
separation error, furthermore the variance goes systematically up within the noisy 
part but also in other parts of the time series that do not seem to match the 
assumptions underlying the algorithm. 3 So our reliability estimates can eventually 

Figure 3: Upper panel: mixtures, partly corrupted by noise. Lower panel: the blockwise 

variance estimate (solid line) vs the true separation error on this block (dotted line) . 

be used to improve separation performance by removing all but the 'reliable' parts 
of the time series. For our example this reduces the overall separation error by 2 
orders of magnitude from 2.4.10- 2 to 1.7.10-4 . 

This moving-window resampling can detect instabilities of the projections in two 
different ways: Besides the resampling variance that can be calculated for each 
window, one can also calculate the change of the projection directions between two 
windows. The later has already been used successfully by Makeig et. al. [10]. 

4 Assigning Meaning: Application to Biomedical Data 

We now apply our reliability analysis to biomedical data that has been produced 
by an MEG experiment with acoustic stimulation. The stimulation was achieved 
by presenting alternating periods of music and silence, each of 30s length, to the 
subjects right ear during 30 min. of total recording time (for details see [13]). The 
measured DC magnetic field values, sampled at a frequency of 0.4 Hz, gave a to
tal number of 720 sample points for each of the 49 channels. While previously 

3For example, the peak in the last third of the time series can be traced back to the 

fact that the original time series are correlated in this region. 



[13] analysing the data, we found that many of the ICA components are seemingly 
meaningless and it took some medical knowledge to find potential meaningful pro
jections for a later close inspection. However, our reliability assessment can also 
be seen as indication for meaningful projections, i.e. meaningful components should 
have low variance. In the experiment, BSS was performed on the 23 most powerful 
principal components using (a) higher order statistics (JADE) and (b) temporal 
decorrelation (TDSEP, time lag 0 .. 50). The results in Fig.4 show that none of 
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Figure 4: Resampling on the biomedical data from MEG experiment shows: (a) no JADE 
projection is reliable (has low uncertainty) (b) TDSEP is able to identify three sources 
with low uncertainty. 

the JADE-projections (left) have small variance whereas TDSEP (right) identifies 
three sources with a good reliability. In fact , these three components have physical 
meaning: while component 23 is an internal very low frequency signal (drift) that 
is always present in DC-measurements, component 22 turns out to be an artifact of 
the measurement; interestingly component 6 shows a (noisy) rectangular waveform 
that clearly displays the 1/308 on/off characteristics of the stimulus (correlation to 
stimulus 0.7; see Fig.5) . The clear dipole-structure of the spatial field pattern in 
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Figure 5: Spatial field pattern, frequency content and time course of TDSEP channel 6. 

Fig.5 underlines the relevance of this projection. The components found by JADE 
do not show such a clear structure and the strongest correlation of any component 
to the stimulus is about 0.3, which is of the same order of magnitude as the strongest 
correlated PCA-component before applying JADE. 

5 Discussion 

We proposed a simple method to estimate the reliability of ICA projections based on 
res amp ling techniques. After showing that our technique approximates the separa
tion error, several directions are open(ed) for applications. First, we may like to use 
it for model selection purposes to distinguish between algorithms or to chose appro
priate hyperparameter values (possibly even component-wise). Second, variances 



can be estimated on blocks of data and separation performance can be enhanced 
by using only low variance blocks where the model matches the data nicely. Finally 
reliability estimates can be used to find meaningful components . Here our assump
tion is that the more meaningful a component is, the more stably we should be able 
to estimate it. In this sense artifacts appear of course also as meaningful, whereas 
noisy directions are discarded easily, due to their high uncertainty. 
Future research will focus on applying res amp ling techniques to other unsupervised 
learning scenarios. We will also consider Bayesian modelings where often a variance 
estimate comes for free, along with the trained model. 
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