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Abstract. Suppose independent random samples are drawn from k shifted
exponential populations with a common location but unequal scale param-
eters. The problem of estimating the Renyi entropy is considered. The uni-
formly minimum variance unbiased estimator (UMVUE) is derived. Suffi-
cient conditions for improvement over affine and scale equivariant estimators
are obtained. As a consequence, improved estimators over the UMVUE and
the maximum likelihood estimator (MLE) are obtained. Further, for the case
k = 1, an estimator that dominates the best affine equivariant estimator is de-
rived. Cases when the location parameter is constrained are also investigated
in detail.

1 Introduction

Let �1, . . . ,�k (k ≥ 1) be k shifted exponential populations with a common lo-
cation parameter μ and unknown scale parameters σ1, . . . , σk , respectively. In this
paper, we consider the problem of estimating the Renyi entropy of several expo-
nential populations. Let X be a random variable with density f (x|θ). Then the
Renyi entropy with parameter α ≥ 0 is defined as (Renyi (1961))

Rα(θ) = 1

1 − α
ln

∫ ∞
−∞

f α(x|θ) dx. (1.1)

Note that as α tends to 1, Rα(θ) tends to the Shannon entropy H(θ) =
Eθ(− lnf (X|θ)) (Shannon (1948)). In recent years, the concept of entropy has
found applications in diverse areas such as ecology, hydrology and water re-
sources, social studies, economics, biology etc. In ecology, it is used to measure
the diversity indices of different species whereas in social science, particularly in
model building of urban and regional systems, the concept of entropy is widely
used. The entropy is also used in earthquake forecasting (see Harte and Jones
(2005)). For a detailed account, one may refer to Cover and Thomas (2006).

The problem of estimating the Shannon entropy of various continuous proba-
bility distributions has been addressed in recent years. The asymptotic distribution
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of the UMVUE of the entropy of a multivariate normal distribution is derived by
Ahmed and Gokhale (1989). Misra et al. (2005) considered the problem of estimat-
ing the Shannon entropy of a multivariate normal distribution under the squared
error loss. They established that the best affine equivariant estimator (BAEE) is
admissible in a larger class of estimators. Further, they obtained improvements
over the BAEE. Recently, Kayal and Kumar (2013) have considered estimation of
entropy of several shifted exponential populations with different locations, but a
common scale parameter.

In this paper, we consider the problem of estimating the Renyi entropy of k

exponential populations with a common location but different scale parameters,
which has not been addressed, so far, in the literature. Note that this problem is
qualitatively different from the one considered in the paper by Kayal and Kumar
(2013). In that paper, several exponential populations are assumed to have a com-
mon scale parameter but different location parameters. As a consequence the com-
plete and sufficient statistics in the two models are distinct.

Rest of the paper is organized as follows. The UMVUE of the Renyi entropy of k

exponential populations is derived in Section 2. In Section 3, inadmissibility results
for scale and affine equivariant estimators are obtained. Consequently, estimators
improving over the MLE and the UMVUE are derived. In Section 4, the case k = 1
is considered and the improvement over the BAEE is obtained. Special attention is
paid to the cases when the location parameter is constrained. In Section 5, the risk
performance of various estimators is compared numerically.

2 Derivation of the UMVUE

Assume that the ith population �i is shifted exponential with the probability den-
sity function (p.d.f.)

fi(x) =
⎧⎨⎩

1

σi

exp
{
−

(
x − μ

σi

)}
, if x > μ,

0, otherwise,
(2.1)

i = 1, . . . , k. Then the Renyi entropy of �i is Rα(σi) = lnσi − lnα/(1−α) and so
the Renyi entropy based on �1, . . . ,�k is Rα(σ) = ∑k

i=1 lnσi − k lnα/(1 − α),
where σ = (σ1, . . . , σk). Note that the Shannon entropy in this case is H(σ) =∑k

i=1 lnσi +k. Since α is assumed to be known, the problems of estimating Rα(σ)

and H(σ) are the same as that of estimating Q(σ) = ∑k
i=1 lnσi .

We first derive the UMVUE of Q(σ). Suppose independent random observa-
tions {Xi1, . . . ,Xin} are available from the ith population �i . We consider the
squared error loss defined by

L(σ, δ) = (
δ − Q(σ)

)2
, (2.2)

where δ is an estimator of Q. Let Xi = min{Xi1, . . . ,Xin}, Yi = ∑n
j=1 Xij and

Zi = Yi − nXi , i = 1, . . . , k. For ith population, (Xi,Zi) is a complete and
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sufficient statistic for (μ,σi). It is noted that Zi and Xi are independently dis-
tributed, where 2σ−1

i Zi follows a chi-square distribution with 2(n − 1) degrees
of freedom and Xi follows an exponential distribution with the location parame-
ter μ and the scale parameter σi/n. Further, we define X = min{X1, . . . ,Xk} and
Ti = Yi − nX. It can be shown that (X,T ) is a complete and sufficient statistic
for (μ,σ ), where T = (T1, . . . , Tk) (Ghosh and Razmpour (1984)). The MLE is
δML = ∑k

i=1 lnTi − k lnn. Also, X and T = (T1, . . . , Tk) are independently dis-
tributed with respective p.d.f.’s

fX(x) = nτ exp
{−nτ(x − μ)

}
, x > μ (2.3)

and

fT (t) = (n − 1)pηlτ−1

(
k∏

i=1

tn−1
i

)
exp

{
−

(
k∑

i=1

tiσ
−1
i

)}
, ti > 0, (2.4)

where η = (
∏k

i=1 σi)
−n, τ = ∑k

i=1 σ−1
i , l = (	(n))−k , p = ∑k

i=1 t−1
i and t =

(t1, . . . , tk). The joint density of Xi and Yi is given by

gi(xi, yi) = nσ−n
i

(
	(n − 1)

)−1
(yi − nxi)

n−2 exp
{
−

(
yi − nμ

σi

)}
, (2.5)

where xi > μ,yi > nxi , i = 1, . . . , k. Also, the joint density of X and Y =
(Y1, . . . , Yk) can be derived as

g(x, y) = n(n − 1)ηl

k∑
i=1

(yi − nx)−1

(
k∏

i=1

(yi − nx)

)n−1

(2.6)

× exp

{
−

(
k∑

i=1

(yi − nμ)σ−1
i

)}
,

where y = (y1, . . . , yn), yi > nx, x > μ. Note that based on the ith sample, the
UMVUE of lnσi is di = lnZi − ψ(n − 1), where ψ(x) = 	′(x)/	(x) is the
digamma function. The estimator di is no longer the UMVUE of lnσi when we
consider all k populations together, though it is an unbiased estimator. To obtain
the UMVUE, we apply Rao–Blackwellization to get

di = E
[{

lnZi − ψ(n − 1)
}|X = x,T = t

]
= E

[{
ln(Yi − nXi)

}|X = x,Y = y
] − ψ(n − 1),

where yi = ti + nx. For i = 1, we get

d1 = E
[{

ln(Y1 − nX1)
}|X = x,Y = y

] − ψ(n − 1). (2.7)

The first term on the right-hand side of the equation (2.7) can be written as

E
[{

ln(Y1 − nX1)
}|X = x,Y = y

] =
k∑

r=1

Sr (say), (2.8)
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where

g(x, y)S1 = ln(y1 − nx)g1(x, y1)
(2.9)

×
∫ y2/n

x
· · ·

∫ yk/n

x

(
k∏

i=2

gi(xi, yi)

)
dxk · · · dx2

and

g(x, y)Sr =
∫ y1/n

x
ln(y1 − nz)g1(z, y1)gr(x, yr)

∫ y2/n

x
· · ·

∫ yr−1/n

x

∫ yr+1/n

x
· · ·

(2.10)

×
∫ yk/n

x

k∏
i=2,i �=r

gi(xi, yi) dxk · · · dxr+1 dxr−1 · · · dx2 dz,

where r = 2, . . . , k. After some simplification, we obtain

S1 = ln(y1 − nx)

(y1 − nx)
∑k

i=1(yi − nx)−1
(2.11)

and

Sr = ln(y1 − nx) − (n − 1)−1

(yr − nx)
∑k

i=1(yi − nx)−1
, r = 2, . . . , k. (2.12)

Putting the values of Sr, r = 1, . . . , k in (2.8), we get the UMVUE of lnσ1 as

d1 = lnT1 − (n − 1)−1[
1 − (JT1)

−1] − ψ(n − 1),

where J = ∑k
i=1 T −1

i . Similarly, the UMVUE of lnσi is obtained as

di = lnTi − (n − 1)−1[
1 − (JTi)

−1] − ψ(n − 1), i = 2, . . . , k.

Consequently, the UMVUE of Q(σ) is

δMV =
k∑

i=1

lnTi − k − 1

n − 1
− kψ(n − 1). (2.13)

3 Inadmissibility results for equivariant estimators

In this section, we introduce the invariance considerations for the entropy esti-
mation problem. Indeed, invariance plays an important role in information the-
ory (Khinchin (1957)). Some general inadmissibility results are obtained for both
affine as well as scale equivariant estimators. It is noted that the results presented
in this section are true only for k ≥ 2, because the complete sufficient statistic is
different from the case k = 1. First, we consider the affine equivariant estimators.
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3.1 Affine equivariant estimators

The estimation problem under study is invariant under Ga,b, a group of affine
transformations, where Ga,b = {ga,b :ga,b(x) = ax + b, a > 0, b ∈ R}. Under this
transformation Xij → aXij + b,Xi → aXi + b,Yi → aYi + b,Zi → aZi,X →
aX + b,Ti → aTi and Q(σ) → Q(σ) + k lna. Also, the loss function (2.2) is
invariant under Ga,b if δ → δ + k lna. Therefore, the form of an affine equivariant
estimator is

δφ(X,T ) = k lnT1 + φ(W1, . . . ,Wk−1)
(3.1)

= k lnT1 + φ(W),

where W = (W1, . . . ,Wk−1) and Wi = (Ti+1/T1), i = 1, . . . , k − 1. The following
result provides a general inadmissibility result for affine equivariant estimators.

Theorem 3.1. Let δφ be an affine equivariant estimator of the form (3.1), w =
(w1, . . . ,wk−1) and φ0(w) = ln[kk(

∏k−1
i=1 wi)] − kψ(kn − 1). Further, define the

estimator δ∗
φ by

δ∗
φ =

{
δφ, if φ(w) ≥ φ0(w),
δφ0, if φ(w) < φ0(w).

Under the squared error loss, δ∗
φ improves δφ if P(μ,σ)(φ(W) < φ0(W)) > 0, for

some (μ,σ ).

Proof. The risk function of δφ can be written as

R(μ,σ, δφ) = EWR1(μ,σ,W, δφ),

where

R1(μ,σ,W, δφ) = E
[(

k lnT1 + φ(W) − Q(σ)
)2|W = w

]
,

the conditional risk of δφ given W = w. Note that the conditional risk R1 is a
convex function of φ with minimum attained at

φ̂(w,σ ) = −kE(lnT1|W = w) + Q(σ). (3.2)

To evaluate φ̂(w,σ ) in (3.2) we need to find out the conditional expectation of
T1|W = w. Applying the transformations Wi = (Ti+1/T1), i = 1, . . . , k − 1 and
T1 = T1 to the joint p.d.f. of T = (T1, . . . , Tk) in (2.4), we get the joint p.d.f. of
(T1,W) as

fT1,W (t1,w) = (n − 1)lητ−1

(
k−1∏
i=1

wi

)n−1(
1 +

k−1∑
i=1

w−1
i

)
e−st1 tkn−2

1 ,
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where t1 > 0,wi > 0 and s = σ−1
1 + ∑k−1

i=1 wiσ
−1
i+1. Integrating fT1,W (t1,w) with

respect to t1, we get the marginal density of W as

fW(w) = (n − 1)	(kn − 1)lητ−1

(
k−1∏
i=1

wi

)n−1(
1 +

k−1∑
i=1

w−1
i

)
s−(kn−1),

wi > 0. Therefore, the conditional density of T1|W = w is

fT1|W(t1|w) = (
	(kn − 1)

)−1
skn−1e−st1 tkn−2

1 , t1 > 0,wi > 0, (3.3)

which leads to

E(lnT1|W = w) = ψ(kn − 1) − ln s. (3.4)

Therefore, from (3.2) we get

φ̂(w,σ ) = ln
(
skη−n) − kψ(kn − 1).

To apply the orbit-by-orbit improvement technique of Brewster and Zidek (1974),
it is required to find out the infimum and supremum of φ̂(w,σ ) over σ for
fixed values of w. To obtain the infimum of (skη−n), we apply geometric mean–
harmonic mean (GM-HM) inequality to the variables σ1, (σ2/w1), . . . , (σk/wk−1).
The equality sign holds if σ1 = (σ2/w1) = · · · = (σk/wk−1). Thus, we get

inf
σ

φ̂(w,σ ) = φ0(w) and sup
σ

φ̂(w,σ ) = +∞. (3.5)

Infimum of φ̂(w,σ ) is attained if w1 = · · · = wk−1. An application of the Brewster
and Zidek (1974) technique completes the proof of the theorem. �

A consequence of Theorem 3.1 is the following corollary.

Corollary 3.1. The MLE δML is inadmissible.

Proof. The MLE δML can be written as

δML = k lnT1 + φ(w),

where φ(w) = ln(T2
T1

· · · Tk

T1
) − k lnn. We see that the MLE is an affine equivariant

estimator of the form (3.1). The MLE is inadmissible since φ(w) < φ0(w), for
n ≥ 2 and k ≥ 2. �

Remark 3.1. Note that the UMVUE can be written as

δMV = k lnT1 + φ(w),

where φ(w) = ln(
∏k−1

i=1 wi) − kψ(n − 1) − k−1
n−1 . The UMVUE is inadmissible

if φ(w) < φ0(w), which is not possible. Thus, Theorem 3.1 does not lead to an
improvement over the UMVUE. However, we show in the next section that the
UMVUE can be improved in a larger class of estimators when μ is known a priori
to be negative.
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Remark 3.2. Note from (3.2), the BAEE does not exist, for k > 1. However, when
k = 1, Q(σ) = ln(σ1), and the BAEE exists. It is given by

δBA = lnT1 − ψ(n − 1), (3.6)

which is also a generalized Bayes estimator with respect to the improper prior
π(σ1) = σ−1

1 , σ1 > 0. It is noted that the BAEE is also the UMVUE when k = 1.

Remark 3.3. Using the arguments in the proof of the Theorem 2.4 of Misra et
al. (2005), it can be shown that the BAEE is admissible in the class of estimators
depending on T1 alone, when k = 1.

3.2 Scale equivariant estimators

In this section, we will look for the improvement over the UMVUE by looking at
the larger class of scale-equivariant estimators with respect to the scale group of
transformations Ga = {ga :ga(x) = ax, a > 0}. The form of the scale equivariant
estimator is obtained as

δξ (X,T1, T2, . . . , Tk) = k lnT1 + ξ

(
X

T1
,
T2

T1
,
T3

T1
, . . . ,

Tk

T1

)
(3.7)

= k lnT1 + ξ(V ) (say),

where V = (V1,V2, . . . , Vk), V1 = X/T1, and Vi = Ti/T1, i = 2,3, . . . , k. The risk
function of δξ as given in (3.7) can be written as

R(μ,σ, δξ ) = EV R1(μ,σ,V, δξ ),

where

R1(μ,σ,V, δξ ) = E
[(

k lnT1 + ξ(V ) − Q(σ)
)2|V = v

]
(3.8)

which is minimized with respect to ξ at

ξ̂ (μ,σ, v) = −E(k lnT1|V = v) + Q(σ). (3.9)

Applying the transformations V1 = X/T1,V2 = T2/T1,V3 = T3/T1, . . . , Vk =
Tk/T1, T1 = T1, we get the joint p.d.f. of T1 and V as

f (t1, v) = C

(
1 +

k∑
i=2

v−1
i

)
enμτ exp

{
−

(
nv1τ +

(
σ−1

1 +
k∑

i=2

viσ
−1
i

))
t1

}
(3.10)

× tnk−1
1 ,

where C = n(n−1)ηl(v2v3 . . . vk)
n−1, t1 > 0, t1v1 > μ,v2 > 0, v3 > 0, vk > 0. To

derive the conditional density of T1 given V , the marginal density of V is required,
which can be obtained by integrating f (t1, v) given in (3.10) with respect to t1.
Note that the range of t1 is different for different values of μ and v1. The cases are
described below:
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Case (i). When μ > 0 and v1 > 0, we have μ/w1 < t1 < ∞. Therefore, the
marginal density of V is

f (v) = B

∫ ∞
μ/v1

e−At1 tnk−1
1 dt1, (3.11)

where B = C(1 + ∑k
i=2 v−1

i )enμτ and A = nv1τ + (σ−1
1 + ∑k

i=2 viσ
−1
i ).

Also, the conditional density of T1 given V is

f (t1|v) = e−At1 tnk−1
1∫ ∞

μ/v1
e−At1 tnk−1

1 dt1
, t1 >

μ

v1
. (3.12)

Thus, we have

E(lnT1|V = v) =
∫ ∞
Aμ/v1

ln ze−zznk−1 dz∫ ∞
Aμ/v1

e−zznk−1 dz
− lnA. (3.13)

Substituting the above expression in (3.9), we get

ξ̂ (μ,σ, v) = ln
(
Akη−n) − k

∫ ∞
Aμ/v1

ln ze−zznk−1 dz∫ ∞
Aμ/v1

e−zznk−1 dz
. (3.14)

Using the MLR property, it can be shown that the supremum and infimum of
ξ̂ (μ,σ, v) are +∞ and −∞, respectively.
Case (ii). When μ < 0 and v1 > 0, t varies from 0 and ∞. Therefore, the condi-
tional distribution of T1 given V can be obtained as

f (t1|v) = Ank

	(nk)
e−At1 tnk−1

1 , t1 > 0. (3.15)

Hence,

E(lnT1|V = v) = ψ(nk) − lnA.

Thus from (3.9), we have

ξ̂ (μ,σ, v) = ln
(
Akη−n) − kψ(nk). (3.16)

Note that supremum of ξ̂ (μ,σ, v) is +∞. The infimum of ξ̂ (μ,σ, v) can be
obtained by applying the GM-HM inequality on the variables (σ1/nv1 + 1),
(σ2/nv1 + v2), . . . , (σk/nv1 + vk) and is given by

inf
μ,σ

ξ̂ (μ,σ, v) = ln

(
kk(nv1 + 1)

k∏
i=2

(nv1 + vi)

)
− kψ(nk).

Case (iii). When μ < 0 and v1 < 0, we have 0 < t1 < μ/v1. Under this assumption,
the conditional distribution of T1 given V can be obtained as

f (t1|v) = e−At1 tnk−1
1∫ μ/v1

0 e−At1 tnk−1
1 dt1

, 0 < t1 <
μ

v1
. (3.17)
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Note that the value of A can be positive or negative. For A > 0, we get

ξ̂ (μ,σ, v) = ln
(
Akη−n) − k

∫ Aμ/v1
0 ln ze−zznk−1 dz∫ Aμ/v1

0 e−zznk−1 dz
, (3.18)

and for A < 0, we have

ξ̂ (μ,σ, v) = ln
((

A′)kη−n) − k

∫ A′μ/v1
0 ln ze−zznk−1 dz∫ A′μ/v1

0 e−zznk−1 dz
, (3.19)

where A′ = −A. It can be shown that for both the cases when A > 0 or A < 0, the
supremum and infimum of ξ̂ (μ,σ, v) are +∞ and −∞, respectively.

For the function ξ(v) defined in (3.7), let

ξ0(v) =
{

ln
(
v∗) − kψ(nk), if v1 > 0 and v∗ > exp

{
ξ(v) + kψ(nk)

}
,

ξ(v), otherwise,
(3.20)

where v∗ = kk(nv1 + 1)
∏k

i=2(nv1 + vi). Using Brewster and Zidek (1974) tech-
nique, we get the following result for μ < 0.

Theorem 3.2. Let δξ be a scale equivariant estimator of the form (3.7) and ξ0(v)

be as defined in (3.20). If there exists a (μ,σ ) such that P(μ,σ)(ξ0(V ) �= ξ(V )) > 0,
then the estimator δξ0 dominates δξ , for the squared error loss when μ < 0.

As a consequence of the Theorem 3.2, we get the following corollary.

Corollary 3.2. When μ < 0, the UMVUE and the MLE are inadmissible and are
respectively dominated by the estimators given by

δIMV =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ln
(
T k

1 V ∗) − kψ(nk),

if V1 > 0 and

V ∗ > exp

{
k∑

i=2

lnVi + k
(
ψ(nk) − ψ(n − 1)

) − k − 1

n − 1

}
,

δMV, otherwise
and

δIML =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ln

(
T k

1 V ∗) − kψ(nk),

if V1 > 0 and V ∗ > exp

{
k∑

i=2

lnVi + k
(
ψ(nk) − lnn

)}
,

δML, otherwise,

where V ∗ = kk(nV1 + 1)
∏k

i=2(nV1 + Vi).

Remark 3.4. Since the complete sufficient statistics are different for the cases
when k ≥ 2 and k = 1, all the results for k population case do not follow directly for
the one population case, as seen in the next section. We propose some estimators
which improve the BAEE for the case k = 1.
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4 Improving upon the BAEE when k = 1

When k = 1, the Renyi entropy of an exponential population is Rα(σ1) = lnσ1 −
lnα
1−α

, so that the problem reduces to the estimation of lnσ1 with respect to the
squared error loss. The form of a scale equivariant estimator is given by

δξ (X1, T1) = lnT1 + ξ(U), (4.1)

where U = X1/T1. A general inadmissibility result is derived for the scale equiv-
ariant estimators of the form (4.1) in the following theorem. For the function ξ(v)

in (4.1), we define

ξ0(u) =
{

ln(nu + 1) − ψ(n), if 0 < u < d∗ or, m∗ < u < 0,
ξ(u), otherwise,

(4.2)

where d∗ = (exp{(φ(u) + ψ(n)} − 1)/n and m∗ = max{−1/n, d∗}.
Theorem 4.1. Let δξ be a scale equivariant estimator of the form (4.1) and ξ0(u)

be as defined in (4.2). If there exist (μ,σ1) such that P(μ,σ1)(ξ0(U) �= ξ(U)) > 0,
then with respect to the squared error loss, the estimator δξ is inadmissible and is
improved by δξ0 .

Proof. We write the risk function of δξ given in (4.1) as

R(μ,σ1, δξ ) = EUR1(μ,σ1,U, δξ ),

where R1(μ,σ1, u, δξ ) denotes the conditional risk of δξ given U = u given by

R1(μ,σ1, u, δξ ) = E
[
(δξ − lnσ1)

2|U = u
]

= E
[(

lnT1 + ξ(U) − lnσ1
)2|U = u

]
.

It can be noted that the conditional risk R1 is a function of μ/σ1. Therefore, with-
out loss of generality, we take σ1 = 1. We also see that the conditional risk R1 is a
convex function of ξ and the choice of ξ minimizing it is

ξ̂ (μ,u) = −E(lnT1|U = u). (4.3)

Also, from (3.10), the joint density of T1 and U is

fT1,U (t1, u) = n

	(n − 1)
e−(nt1u−nμ+t1)t1

n−1, t1u > μ, t1 > 0.

In order to determine the marginal density of U , the density fT1,U (t1, u) needs to
be integrated with respect to t1. For different values of μ and u, we get different
ranges of t1 and these are described below.

(i) μ > 0 and u > 0. In this case, t1 varies from μ/u to ∞.
(ii) μ < 0 and u > 0. In this case, t1 varies from 0 to ∞.

(iii) μ < 0 and u < 0. Here, t1 varies from 0 to μ/u.
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Case (i). When μ > 0 and u > 0, putting k = 1 and making changes accordingly,
we get from (3.14)

ξ̂ (μ,u) = ln(nu + 1) −
∫ ∞
η1

lnpe−ppn−1 dp∫ ∞
η1

e−ppn−1 dp
(4.4)

= ln(nu + 1) − h1(η1) (say),

where η1 = μ(nu + 1)/u. Using the MLR property and then applying Lem-
ma 3.4.2 of Lehmann and Romano (2005, p. 70), it can be shown that the function
h1(η1) given in (4.4) is nondecreasing for η1 > 0. Thus, we get

sup
η1

h1(η1) = +∞ and inf
η1

h1(η1) = ψ(n)

and consequently

sup
μ

ξ̂ (μ,u) = ln(nu + 1) − ψ(n) and inf
μ

ξ̂ (μ,u) = −∞. (4.5)

Case (ii). When μ < 0 and u > 0, we get from (3.16) for k = 1

ξ̂ (μ,u) = ln(nu + 1) − ψ(n). (4.6)

Case (iii). When μ < 0 and u < 0, we get from (3.18)

ξ̂ (μ,u) = ln(nu + 1) −
∫ η1

0 lnpe−ppn−1 dp∫ η1
0 e−ppn−1 dp

(4.7)
= ln(nu + 1) − h2(η1) (say),

for nu + 1 > 0. Using the MLR property as in Case (i), we can show that h2(η1)

is a nondecreasing function in η1,0 < η1 < ∞. Hence,

sup
η1

h2(η1) = ψ(n) and inf
η1

h2(η1) = −∞.

Thus, we get from (4.7)

sup
μ

ξ̂ (μ,u) = +∞ and inf
μ

ξ̂ (μ,u) = ln(nu + 1) − ψ(n). (4.8)

Further, when (nv + 1) < 0, we get from (3.19)

ξ̂ (μ,u) = lnq −
∫ η2

0 lnpeppn−1 dp∫ η2
0 eppn−1 dp

(4.9)
= lnq − h3(η2) (say),

where η2 = (μq/u) and q = −(nu + 1). It can be shown that the function h3(η2)

is nondecreasing for 0 < η2. Therefore,

sup
η2

h3(η2) = +∞ and inf
η2

h3(η2) = −∞,
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which leads to

sup
μ

ξ̂(μ,u) = +∞ and inf
μ

ξ̂ (μ,u) = −∞. (4.10)

An application of the Brewster–Zidek technique on the function R1(μ,σ1, u, δξ )

completes the proof of the theorem. �

The following corollary is an immediate consequence of Theorem 4.1.

Corollary 4.1. The BAEE δBA of lnσ1 is improved by

δIB =
{

lnT1 + ln(nU + 1) − ψ(n), if 0 < U < d∗∗ or, m∗∗ < U < 0,
lnT1 − ψ(n − 1), otherwise,

where d∗∗ = (e(ψ(n)−ψ(n−1)) − 1)/n and m∗∗ = max{−1/n, d∗∗}.

In some applications to reliability and life testing problems, the minimum guar-
antee time may be bounded below or above. In such a case, we may consider the
parameter μ to be nonnegative or negative.

4.1 The Case k = 1 and μ ≥ 0

We study in this section the problem of estimating lnσ1, under squared error loss,
when μ ≥ 0. The MLE of lnσ1 remains unchanged as for the case of unrestricted
parameter space and is δM = lnT1 − lnn. The following theorem establishes that
the BAEE δBA of lnσ1 is inadmissible.

Theorem 4.2. Let d∗∗ be defined in the Corollary 4.1 and μ ≥ 0. Then the esti-
mator defined by

δ+
IB =

{
lnT1 + ln(nU + 1) − ψ(n), if U < d∗∗,
lnT1 − ψ(n − 1), otherwise,

dominates the BAEE δBA of lnσ1.

The theorem follows using (4.5) and the Brewster and Zidek technique.
We also observe that the generalized Bayes estimator of lnσ1 with respect to a

noninformative prior π(μ,σ1) = 1/σ1,μ > 0, σ1 > 0 is given by

δ+
GB = (T1 + nX1)

n−1 lnT1 − ln(T1 + nX1)T1
n−1

(T1 + nX1)n−1 − T1
n−1

(4.11)
− ψ(n − 1).
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4.2 The Case k = 1 and μ < 0

Assume now μ is bounded above and hence, without loss of generality, we may
take it to be negative. This type of situation may arise in cases where the mini-
mum guarantee time may be known to be less than a pre-specified constant. The
restricted maximum likelihood estimator (RMLE) of lnσ1 is given by

δRM =
{

lnT1 − lnn, if X1 < 0,
ln(T1 + nX1) − lnn, if X1 ≥ 0.

(4.12)

The following theorem proves that the BAEE of lnσ1 is inadmissible when μ < 0.

Theorem 4.3. Let μ < 0 and m∗∗ be defined as in Corollary 4.1. Then the estima-
tor defined by

δ−
IB =

{
lnT1 + ln(nU + 1) − ψ(n), if U > 0 or, m∗∗ < U < 0,
lnT1 − ψ(n − 1), otherwise,

dominates the BAEE δBA of lnσ1.

Proof. The proof follows using (4.6), (4.8) and (4.10) and the Brewster and Zidek
technique.

Finally, we mention that the generalized Bayes estimator of lnσ1 with respect
to the noninformative prior π(μ,σ1) = 1/σ1,μ < 0, σ1 > 0 can be seen to be

δ−
GB =

{
lnT1 − ψ(n − 1), if X1 < 0,
ln(T1 + nX1) − ψ(n − 1), if X1 ≥ 0.

(4.13)
�

Example 4.1. As an application of the results of this section we consider the data
set given in Grubbs (1971). The data can be shown to follow a two-parameter
exponential distribution. The data gives mileage at failure for nineteen military
personnel carriers. Various estimators considered in this section are computed and
given here (the values reported are accurate up to 2 decimal places): δML = 6.7277,
δBA = 6.8098, δIB = 5.1217. As δIB has the best risk performance, the estimate
5.1217 is recommended for Q(σ).

5 Numerical comparisons

In this section, the risk performance of various estimators derived in the Sections 2,
3 and 4 is compared numerically. In Section 2, the UMVUE was derived. In Sec-
tion 3, the improving estimators over the MLE in a class of affine equivariant es-
timators was obtained and further improvements over δML and δMV were obtained
in a class of scale equivariant estimators when μ < 0. In Table 1, The relative
percentage risk improvement over the estimator δML by δIML, δMV and δIMV is
presented for k = 2. The risk values of the estimators were calculated using sim-
ulations based on 10,000 samples of size n = 10 and different values of μ, σ1
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Table 1 The relative percentage risk improvement over δML by δIML, δMV and δIMV for k = 2

μ σ1 σ2 δIML δMV δIMV μ σ1 σ2 δIML δMV δIMV

−0.1 0.2 0.5 0.04 17.76 17.77 −0.02 0.2 0.5 5.29 17.77 18.67
1.0 0.06 17.69 17.72 1.0 6.60 17.69 18.67
2.0 0.07 17.62 17.64 2.0 7.27 17.62 18.68

0.5 0.4 0.29 17.92 17.98 0.5 0.4 9.04 17.92 19.30
2.0 1.72 17.72 18.05 2.0 13.24 17.72 19.78
2.5 1.87 17.69 18.01 2.5 13.47 17.69 19.80

1.0 0.5 1.14 17.94 18.10 1.0 0.5 11.94 17.94 17.67
1.5 4.14 17.83 18.63 1.5 15.69 17.83 20.28
2.0 4.84 17.79 18.40 2.0 16.19 17.79 20.30

1.5 0.5 1.42 17.98 18.14 1.5 0.5 12.55 17.98 19.67
1.0 4.22 17.94 18.62 1.0 15.80 17.94 20.39
2.0 6.84 17.85 18.82 2.0 17.30 17.85 20.56

and σ2. We have chosen two values of μ as −0.1 and −0.02. We observe marginal
improvement over the δML by δIML but substantial improvement by δMV and δIMV.
The amount of improvement is more for values of μ close to 0. For the sake of
space we have presented very few values, however, similar observations are made
for various other values of n, μ, σ1 and σ2.

In Section 4, the improvements were obtained over the best affine equivariant
estimator in a class of scale equivariant estimators. The cases of restrictions on μ,
that is, μ ≥ 0 and μ < 0 were also considered. The risk values of the proposed
estimators are calculated using simulations based on 10,000 samples of sizes n =
10,20, 30. Since the risk functions of the estimators are independent of σ1, we take
σ1 = 1 for simulations. The plots of the risk functions of the proposed estimators
for different sample sizes are given in Figures 1(a)–(i) below. On the basis of the
simulation results, we observe the following:

(i) Figures 1(a), (b), (c) represent the risk function of the estimator δIB for
n = 10,20 and 30, respectively when μ is not restricted. The risk of the BAEE δBA
is 0.1179,0.0538 and 0.0353, respectively. We observe that the region of improve-
ment of δIB over δBA becomes smaller for larger sample sizes. For the present case,
the region of improvement is approximately within |μ| ≤ 0.05. Outside this region
δIB takes constant value, equal to the risk of δBA. It is also observed that when
|μ| becomes smaller then the margin of improvement increases and the maximum
improvement occurs when |μ| is close to zero.

(ii) When μ is restricted on the positive real line, the risk functions of the
estimators δ+

IB and δ+
GB are plotted in Figures 1(d), (e), (f). It is observed that δ+

IB
improves δBA when μ is close to zero. The region of improvement is approximately
μ ≤ 0.1. We observe also that the estimator δ+

GB improves δBA. δ+
GB performs better

than δ+
IB approximately, when 0.06 ≤ μ ≤ 1, and δ+

IB performs better than δ+
GB

when 0 ≤ μ ≤ 0.06.
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(a) (b)

(c) (d)

(e) (f)

Figure 1 Risk plots of δIB, δ+
IB, δ+

GB, δ−
IB, δ−

GB and δRM.
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(g) (h)

(i)

Figure 1 Continued.

(iii) When μ is negative δRM performs better than the δM for μ ≥ 0.1 and for
other values of μ, δM performs better than δRM. We observe that δ−

GB is a better
estimator than δRM when μ ≤ −0.04 and reverse happens for μ ≥ −0.01. It is
also noticed that δ−

IB always perform well than δRM. The region of improvement
of the estimator δ−

IB over δBA is μ ≥ −0.1. Figures 1(g), (h), (i) represent the risk
functions of the estimators δ−

GB, δRM and δ−
IB.

6 Conclusion

The concept of entropy was introduced in thermodynamics but has later found ap-
plications in diverse areas such as communication, biological systems and social
sciences (see Robinson (2008)). In this paper, the problem of estimating the Renyi
entropy of k (≥ 1) exponential populations with a common location but differ-
ent scale parameters has been explored. This model arises frequently in reliability
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and life testing studies. Consider, for example, k manufacturing processes for a
product. Assume that the life of the product manufactured using the ith process
has an exponential distribution with location parameter μi and scale parameter σi ,
i = 1, . . . , k. Here due to difference in the manufacturing processes, the expected
lives (μi + σi)’s may be different, but commercial considerations may force the
producers to keep the minimum guarantee times μi ’s to be the same.

In this paper, we derive the UMVUE using Rao–Blackwellization. The MLE
is shown to be inadmissible in a class of affine equivariant estimators. Further
estimators improving upon the MLE and the UMVUE are derived in a class of
scale equivariant estimators when μ < 0. As the best affine equivariant (BAEE)
does not exist for k (≥ 2), we consider k = 1 as a special case and obtain an
estimator improving the BAEE. The cases when prior considerations force μ to
be non-negative or negative are also discussed. The improved performance of new
estimators is demonstrated through a numerical comparison of risk functions for
k = 1,2 using Monte Carlo simulations. An application to the actual data set is
also given.
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