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Abstract 
SARS-CoV-2 rapidly spread from a regional outbreak to a global pandemic in just a few 

months. Global research efforts have focused on developing effective vaccines against SARS-

CoV-2 and the disease it causes, COVID-19. However, some of the basic epidemiological 

parameters, such as the exponential epidemic growth rate and the basic reproductive number, R0, 

across geographic areas are still not well quantified. Here, we developed and fit a mathematical 

model to case and death count data collected from the United States and eight European 

countries during the early epidemic period before broad control measures were implemented. 

Results show that the early epidemic grew exponentially at rates between 0.19-0.29/day 

(epidemic doubling times between 2.4-3.6 days). We discuss the current estimates of the mean 

serial interval, and argue that existing evidence suggests that the interval is between 6-8 days in 

the absence of active isolation efforts. Using parameters consistent with this range, we estimated 

the median R0 value to be 5.8 (confidence interval: 4.7-7.3) in the United States and between 3.6 

and 6.1 in the eight European countries. This translates to herd immunity thresholds needed to 

stop transmission to be between 73% and 84%. We further analyze how vaccination schedules 

depends on R0, the duration of vaccine-induced immunity to SARS-CoV-2, and show that 

individual-level heterogeneity in vaccine induced immunity can significantly affect vaccination 

schedules.  

 

Significance 
With the global efforts to develop vaccines for COVID-19, it is important to understand the 

contagiousness of the virus to design regional vaccination policy. To that end, we fit a 

mathematical model to data collected from the early epidemic period in the United States and 

eight European countries, estimating that the early epidemic doubles between 2.4-3.6 days. This 

suggests that SARS-CoV-2 is highly transmissible in the absence of strong control measures 

irrespective of heterogeneity in geographic and social settings. We estimated the median basic 

reproduction number, R0 to be 5.8 (confidence interval: 4.7-7.3) in the United States and between 

3.6 and 6.1 in the eight European countries. The herd immunity needed to stop transmission is 

high (between 73% and 84%).  

 

Introduction 
SARS-CoV-2 is the infectious agent that causes COVID-19. It is originated in Wuhan city, 

China in Dec, 2019 (1), and has spread rapidly causing the ongoing global pandemic. Initial 

estimates of the rate of early epidemic spread in Wuhan, China suggested that the epidemic grew 

at 0.1-0.14/day, leading to an epidemic doubling time of 5-7 days (2-5). However, using 

domestic travel data and two distinct approaches, we estimated that the epidemic in Wuhan grew 

much faster than initially estimated, and the growth rate is likely to be between 0.21-0.3/day 

before lock-down was implemented, translating to a doubling time between 2.3 and 3.3 days, and 

an R0 approximately at 5.7 with a confidence interval between 3.8 and 8.9 (6). However, it was 

not clear whether SARS-CoV-2 can spread in other geographic locations as fast as in Wuhan, 

China.  

Accurate estimation of the rate of early epidemic growth is important for many practical 

aspects. First, it is crucial for forecasting the epidemic trajectory, the burden on health care 

systems (7, 8) and potential health and economic damage in the wake of potential second waves 

of COVID-19 outbreak (9). Second, it sets the baseline for evaluation of effectiveness of public 

health intervention strategies. Third, it is important for estimation of the basic reproductive 
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number, R0, which in turn is used for predicting the herd immunity threshold needed to stop 

transmission (6, 10, 11). This is particularly pertinent to the development of vaccination 

strategies, especially given the current global effort to develop effective vaccines (12).  

A major challenge to the inference of the growth of COVID-19 epidemic is that as a result of 

a fast-growing outbreak and a sizable infected population with no or mild-to-moderate symptoms 

(13, 14), case confirmation data is influenced by many factors in addition to the true epidemic 

growth, including substantial underreporting (15). Here, we argue that death and the cause of 

death are usually recorded more reliably and are less affected by surveillance intensity changes 

than case counts and that modeling the joint distribution of cases and deaths gives a more 

accurate assessment of COIVD-19 dynamics. It is possible that deaths from COVID-19 are 

underreported during very early phase of an epidemic when people are unaware of community 

transmission of COVID-19 (16), during the relatively late phase of the epidemic when health 

care system is overwhelmed (8), or for deaths in care homes. However, the underreporting is 

unlikely to significantly affect the growth rate of deaths as long as the rate of underreporting  

during the period between the early and the late phase of the epidemic remains roughly constant 

(17). We fit mechanistic models to both case and death count data collected from the United 

States (US) and eight European countries during this period, i.e. in early and mid-March, 2020 

before broad interventions were established. We show that in most countries, COVID-19 spreads 

very rapidly, leading to high estimated R0 values and consequently high herd immunity 

thresholds in these countries. We further explore how vaccination schedules depend on the value 

of R0 and the distribution of the duration of vaccine-induced immunity in a population, in the 

context of the durations of protective immunity reported for SARS-CoV-2 (18, 19), as well as 

other coronaviruses such as HCoV-OC43 and HCoV-HKU1 (9, 20), SARS-CoV-1 (21-23) and 

MERS-CoV (24).  

 

Methods 
Data 

We collected daily case confirmation and death count data for the US and eight countries in 

Europe from the John Hopkins CSSE (Center for Systems Science and Engineering) database 

(https://github.com/CSSEGISandData/COVID-19). The data is accessed and extracted on March 

31, 2020. The data consists of time series of the cumulative number of case confirmations and 

deaths by country. Daily incidences were derived from the cumulative counts. We used data 

from the following countries: France (FR), Italy (IT), Spain (SP), Germany (GR), Belgium (BE), 

Switzerland (SW), Netherlands (NT), United Kingdom (UK) and the United States (US). 

We included a subset of case and death count data for inference based on the two following 

criteria. First, to minimize the impact of stochasticity and uncertainty in early data collection, we 

used case confirmation incidence data starting from the date when the cumulative number of 

cases was greater than 100, and used daily new death count data starting from the date when the 

cumulative death count is greater than 20 in each country (see Table S1 and Fig. 1 for the period 

from which data is included). Second, to estimate the early outbreak growth in each country 

before control measures were implemented and at the same time maximize the power of 

inference, we allowed a maximum of 15 days of data points for the two types of data, leading to 

a maximum of 30 data points for each country. Note that the end date of incidence data used for 

inference is at or close to the date when strong control measures were implemented in each 

country (see Table S1), and thus the estimated growth rates represent the epidemic growth before 

broad measures were implemented. We also tested the sensitivity of model predictions when 
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only 10, 13 days of data points are included for inference. The results are consistent across the 

different numbers of data points used (Table S1).  

  

Model 

We construct a SEIR type model using ordinary differential equations (ODEs; see 

Supplementary Text). We consider the exponentially growing phase of the outbreak and thus 

make the common assumption that the susceptible population is constant over time. Then, the 

total number of infected individuals 𝐼∗(𝑡) = 𝐸(𝑡) + 𝐼(𝑡) can be expressed as: 

𝐼∗(𝑡) = 𝐼"∗𝑒#$ (1) 

where 𝑟 is the exponential growth rate of the epidemic (the growth rate for short below), and 𝐼"∗ 
is the number of total infected individuals at time 0, set arbitrarily as January 20, 2020. Note the 

choice of the date of time 0 does not affect our estimation. 

 We solve the ODE model and derive the following expressions for the key quantities for 

model inference (see Supplementary Text). The descriptions and values used for the parameters 

in the ODE model are summarized in Table 1. 

The true daily incidence of infected individuals, Ω(𝑡), can be expressed as: 

Ω(𝑡) = 𝛽(𝑘 + 𝑟)
𝑟(𝑘 + 𝑟 + 𝛽) 𝐼"

∗-𝑒#$ − 𝑒#($&')/ (2) 

where 𝛽 and 1/𝑘 are the transmission parameter of the virus and the latent period of infection, 

respectively. 

The daily new confirmed case count, Ψ(𝑡), is related to the true daily incidence, Ω(𝑡) as: 

Ψ(𝑡) = 𝜃(𝑡) 2 𝑚𝑔

𝑚𝑔 + 𝑟
3
𝑚

Ω(𝑡) (3) 

where 𝜃(𝑡) is the detection probability, i.e. the fraction of newly individuals at time 𝑡 who are 

later detected among all infected individuals. We assumed an Erlang distribution for the period 

between infection and case confirmation (6), where 1/𝑔  and 𝑚  are the mean and the shape 

parameter for the distribution. 

The daily new death count, Φ(𝑡), is related to the true daily incidence, Ω(𝑡) as: 

Φ(𝑡) = 𝑋 2 𝑛𝑑
𝑟 + 𝑛𝑑3

)

	Ω(𝑡) (4) 

where 𝑋 is the infection fatality ratio. Again, we assumed an Erlang distribution for the period 

between infection and death (6), where 1/𝑑 and 𝑛 are the mean and the shape parameter for the 

distribution.  

We tested three different scenarios for surveillance intensity changes over time, modeled as 

the detection probability, 𝜃(𝑡): 
1) 𝜃 is a constant, i.e. no change over time; 

2) 𝜃(𝑡) = 𝑝*+) + (𝑝*,- − 𝑝*+)) $"

$"./"
, i.e. 𝜃 is a Hill-type function of 𝑡; 

3) 𝜃(𝑡) is equal to 𝑝*+)  before 𝑡' , increases linearly to 𝑝*,-  between 𝑡'  and 𝑡0  and stay 

constant at 𝑝*,- after 𝑡0, i.e. 𝜃 is a semi-linear function of 𝑡. 
Note that the time from infection to case confirmation, 1/𝑔, can be a time dependent function as 

we and others have shown previously (6, 25). To keep the model simple, we implicitly assume 

that the time dependent changes in 𝑔 can be included in the estimation of 𝜃(𝑡). 
 

Parameter estimation  
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We fit the daily case count function Ψ(𝑡) and the death count function Φ(𝑡) to incidence data 

and daily death data to infer the exponential growth rate of the infection (𝑟), the initial number 

of total infected individuals at time, and the detection probability (𝜃$). Other parameter values 

are fixed according to previous estimates (see Table 1). The error is calculated as the residual 

sum of squares (RSS) between data and model predictions of incidence or death counts on a log 

scale: 

𝑅𝑆𝑆 =@-log𝑋+ − log𝑋1D /0
+

+@-log 𝑌2 − log 𝑌3D/0
2

 
(5) 

where 𝑋+  and 𝑋1D  are simulated and reported new cases at day i, respectively, and 𝑌+  and 𝑌1D  are 

simulated and reported new death cases at day j, respectively. Note that Eqn. 5 assumes log-

normal error distributions of the case and the death counts. We estimate the parameter values by 

minimizing the RSS for each country. 

 To compare between models, we calculate the Akaike Information Criterion (AIC) score for 

each model as (26): 

𝐴𝐼𝐶 = 2𝑛4 	+ 	𝑛5log(𝑅𝑆𝑆/𝑛5) (6) 

where 𝑛4  is the number of fitted parameters and 𝑛5  is the number of data points used in 

estimation. The model with the lowest AIC score is the best model. A model is significantly 

worse than the best model if the difference between their AIC scores is greater than 2 (26).  

 

Uncertainty quantification 

We evaluate uncertainties in the estimated parameters 𝑟, 𝜃 and 𝐼"∗, in two steps. First, we 

assess uncertainties in these parameters while keeping other parameters in the model fixed. We 

sampled 106 parameter combinations of 𝑟 , 𝜃  and 𝐼"∗  by drawing parameters randomly from 

uniform distributions over the ranges of the parameters 𝑟 and 𝐼"∗ specified in Table 1. For the 

detection probability 𝜃 , we draw random numbers between 0,001 to 1 on a log scale. We 

calculate the RSS and the likelihood for each parameter combination. We accepted a parameter 

combination if the likelihood of this parameter combination was not statistically different from 

the best-fit parameter combinations using the log-likelihood ratio test. Second, to assess how 

estimation was impacted by uncertainties in the fixed parameters, we set different values for the 

mean latent period (2, 3 or 4 days), the mean time from infection to case confirmation (10, 12 or 

14 days), the mean time from infection to death (16.5, 18,5 or 20.5 days) as well as the infection 

fatality ratio (0.4%, 0.8% or 1%). We then re-fit the model and assessed uncertainty in the 

estimated parameter values as described in the first step. The upper and lower bounds reported 

were summarized using simulation results of all accepted parameter combinations in the two 

steps. 

 

Estimation of R0 

We calculated R0 according to the equation proposed by Wearing et al. (27): 

 𝑅" =
𝑟 I 𝑟𝑘𝑚 + 1J*

𝛾 L1 − I 𝑟𝛾𝑛 + 1J
&)M

, (7) 

where 1/𝑘 and 1/𝛾 are the mean latent and infectious periods, respectively, and 𝑚 and 𝑛	are the 

shape parameters for the gamma distributions for the latent and the infectious periods, 

respectively. 
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We set the mean latent period, 1/𝑘, to vary between 3 and 4 days. This is based on that the 

incubation period is estimated to be between 5-6 days (6, 28, 29) and infected individuals 

become infectious approximately 2 days before symptom onset (30).  

We set the mean infectious period, 1/𝛾, to be between 6-8 days to be consistent with the 

estimated mean serial interval, i.e. the mean time interval between symptom onsets of an index 

case and secondary cases in transmission pairs, of 6-8 days (3, 31, 32). See the Discussion 

section for a discussion of the estimates of the serial interval. We note that this range of 

infectious period is also consistent with the findings that infectious viruses can be recovered 

during the first week of symptom onset (and up to 9 days post symptom onset) (24, 33).  

To quantify the uncertainty of 𝑅", we assumed that m=4 and n=3 similar as in our previous 

work (6). We assume that the exponential growth rate, 𝑟, varies in the range estimated from the 

data. The parameters (𝑟, 𝑘, 𝛾) are assumed to be mutually independent and we generate random 

samples from uniform distributions according to ranges of variations defined above to compute 

the resulting 𝑅". We generated 106 parameters, and then computed their respective 𝑅" using Eq. 

(7). We used the 97.5% and 2.5% percentile of the generated data to quantify the 95% 

confidence interval.  

 
Calculation of the level of population immunity after mass vaccination  

We assume a gamma distribution for the duration of population immunity induced by a 

hypothetical vaccine to SARS-CoV-2. Let 𝜏 be the mean duration, and s be the shape parameter 

of the gamma distribution. For simplicity, we assume that the durations of the immunity induced 

by natural infection and vaccination are the same. We further assume that the percentage of 

protected population reaches to 85% after every mass vaccination with the hypothetical vaccine. 

Note that this is likely to be an optimistic scenario (34). The fraction of population that are 

immune to SARS-CoV-2 at time 𝑡∗ after a mass vaccination can then be expressed as 85% ×
-1 − C(𝑡∗)/, where C(𝑡∗) is the cumulative density function of the gamma distribution for the 

duration of population immunity. Based on this expression, we calculate the time when the 

population immunity reaches to the herd immunity threshold value by solving 85% × -1 −
C(𝑡∗)/ = 1 − 1/𝑅"  for 𝑡∗ . The solution for 𝑡∗  is the maximum time interval between two 

vaccinations to maintain herd immunity in a population. 

 

Results 
Estimation of the epidemic growth rate and surveillance intensity 

Using our simplified SEIR-type (susceptible-exposed-infected-recovered) model (see 

Methods and Supplementary Text for details), we fit both the case incidence data and the daily 

death count data to estimate the epidemic growth rate and the detection probability, i.e. the 

probability that an infected person is identified, before interventions were implemented in eight 

European countries and the US. The exponential growth rates of early outbreaks, r, range 

between 0.19 and 0.29/day in the nine countries, translating to doubling times between 2.4-3.7 

days (Fig. 1). Spain and the US had the highest estimated growth rates, at 0.29 and 0.28/day, 

respectively; whereas Switzerland and Netherlands had the lowest estimates at 0.19/day. 

Evaluating uncertainties in these estimates (see Methods), we found that the epidemic growth 

rates are highly constrained by the time series data despite variations in parameter values in the 

model (Fig. 2A). 
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We estimated that the detection probability, i.e. the fraction of infected individuals who are 

detected by surveillance, was likely to be low (<30%) across the countries examined except for 

Germany. The point estimate of the detection probability in the US is 12%, i.e. approximately 1 

in 10 infected individuals were detected, similar to a recent estimate using influenza like illness 

data (35). This is likely due to the high percentage of infected individuals with no or mild-to-

moderate symptoms (13, 14), which are difficult to detect through passive surveillance systems. 

The detection probability is higher in Germany (with a point estimate of 58%) than in other 

countries, providing an explanation of the high number of reported cases compared to the 

relative low number of deaths in Germany during March 2020. Overall, there exist large 

uncertainties in our estimation of the detection probability (Fig. 2B) due to the uncertainties in 

the fixed parameter values assumed in the model, such as the infection fatality ratio. 

Changes to the detection probability over time, e.g. as a result of changes in testing, could 

lead to an apparent increase or decrease in case count and biases in inference. We considered two 

scenarios involving increases in testing over the study period (see Methods for the mathematical 

formulations), and found no statistical evidence that case counts during the relatively short 

period for which we perform inference are strongly impacted by changes in surveillance intensity 

(Table S2). While it is highly likely that the probability of a case being detected increased over 

the period where testing was becoming available, our analysis excluded data from that period. As 

shown in Fig. 1, the red, open circles indicate data outside of the study period. Most countries 

show a pattern of very rapid increase in detected cases in the very early epidemic period that is 

likely the result of both a growing epidemic and increasing availability and use of testing.  

 

Estimating the basic reproductive number, R0 

We computed the basic reproductive number, R0, for each country following the approach of 

Wearing et al. (27), which uses as input the estimated growth rate, and the durations of the latent 

and infectious periods. We assumed that the duration of the latent period (i.e. the period between 

infection and becoming infectious) and the infectious periods to be 3-4 days and 6-8 days, 

respectively (see Methods for justification of these parameter ranges). These choices of 

parameters are consistent with the estimated mean serial intervals of 6-8 days (3, 31, 32). 

However, some estimates of the serial intervals are shorter (30, 36-38). In the Discussion, we 

present a more complete argument that for the purpose of estimating R0, a mean serial interval 

between 6-8 days is the current best estimate.  

Using the estimated ranges of the growth rates for each country, we estimated that the US 

and Spain had highest median R0s at 5.8 (CI: 4.3-7.3) and 6.1 (5.1-7.5), respectively (Fig. 3 and 

Table 2). For the other countries, we estimated the median R0 ranges between 3.6 and 4.9 (Fig. 3 

and Table 2).  

 

Implications for public health intervention strategies 

      Using our empirical estimates of the growth rates, we explored the implications for public 

health efforts to control the COVID-19 outbreak. We considered an outbreak scenario in a large 

city with a population of 10 million, and three possible goals: 1) containment (i.e. the size of 

epidemic decreases), 2) 1% of the population is infected one year after the intervention, and 3) 

10% of the population is infected one year after the intervention. Efforts needed for each goal are 

similarly high, especially when the population of infected individuals is already more than 1000  

(Fig. 2C). For example, when an outbreak grows at rate 0.28/day (as we estimated for the US), 

the levels of efforts needed to achieve the three goals are between 81% and 84% reduction in 
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transmission; whereas when the growth rate is 0.19/day, the levels of effort needed are between 

71% and 75% reduction. Regardless of the heterogeneity in the growth rates, the force of 

infection must be significantly reduced, arguing for strong and comprehensive intervention 

efforts.  

 

Implications for vaccination strategies 

From the range of R0 estimated above, we estimated that the range of herd immunity 

thresholds needed to prevent sustained transmission is between 73% and 84% using the formula 

1-1/R0 (39) (Table 2). Multiple lines of evidence suggest that the protective immunity may not be 

long lived for SARS-CoV-2 (18, 19). Thus, we further considered how a vaccine with waning 

protection could be used to combat COVID-19 given our estimated levels of R0 (see Method). 

We assumed a gamma distribution for the duration of protective immunity induced by a 

hypothetical vaccine in a population, where s is the shape parameter of the gamma distribution 

(Fig. 4A). 

If the duration of protective immunity from the vaccine follows an exponential distribution, 

(i.e. when 𝑠 = 1), a sizable fraction of individuals lose immunity rapidly, leading to a loss of 

herd immunity shortly after the initial vaccination program, especially when R0 is large and the 

herd immunity threshold is high (Fig. 4B). Consequently, the time between vaccinations required 

to maintain herd immunity is much shorter than the mean duration of protective immunity (Fig. 

4C). For example, even if the mean duration of protective immunity is 10 years, vaccination 

must occur every 2.4 month and 2.4 years to maintain herd immunity when R0 is 6 and 3, 

respectively (see the red lines in Fig. 4C). On the other extreme, when s is very large (Fig. 4A, 

𝑠 = ∞), individuals in the population have identical durations of protective immunity. In this 

case, herd immunity persists for a long period of time before the fraction of immune individuals 

suddenly drops to a very low level (Fig. 4B). In this case, herd immunity can be kept at a 

duration similar to the mean duration of protective immunity irrespective of R0 (see blue lines in 

Fig. 4C).  

The reality of an imperfect vaccine is likely to be between these two extremes. When we 

assume 𝑠 = 10, the distribution becomes more Gaussian-like (Fig. 4A) where some people lose 

protective immunity faster than others, but that heterogeneity is relatively low. If a mass 

vaccination achieves 85% immunity in a population and protective immunity lasts on-average 

around 45 weeks to 1 year (18) (consistent with the duration of immunity induced by endemic 

coronaviruses (9, 20)), then vaccination will need to occur once a few months (Fig. 4C). If the 

mean duration of immunity is around 3 years as observed for the antibody response to SARS-

CoV-1 or MERS-CoV (24), vaccination once a year or once two years will be sufficient, if R0 is 

6 or 3, respectively (Fig. 4C). If the mean duration of immunity is greater than 10 years (for 

example, a long T cell immunity to SARS-CoV-1 is observed in individuals recovered from 

SARS-CoV-1 infection (22)), the time interval between repeated vaccinations becomes longer 

than 4 years or 7 years when R0 is 6 or 3, respectively.  

 

Discussion 
In this work, we report rapid COVID-19 epidemic spread before broad control measures 

were implemented in the eight most affected countries in Europe and in the US (during March, 

2020). We further estimated that R0 values range between 3.6 and 6.1 in these countries, which 

means high herd immunity thresholds between 73% and 84%. Together with our previous 

estimates (6), these results are consistent with COVID-19 being highly transmissible in the 
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absence of strong control measures irrespective of heterogeneities in geographic and social 

settings. A high level of coverage of effective vaccines are needed to achieve herd immunity. We 

further show that the heterogeneity of individual-level protection provided by a vaccine is an 

important factor in determining the frequency of vaccinations.  

Awareness of the extraordinary high rates of COVID-19 spread is critically important for 

epidemic preparedness, especially in face of the potential second wave of infection in the fall of 

2020 (9). Regardless of the country, the short doubling times we estimated means that health 

care systems can be overwhelmed in a couple of weeks rather than several months in the absence 

of control (8). For example, a report shows that the number of COVID-19 patients admitted to 

intensive care units in Italy grew at a rate of approximately 0.25/day during early epidemic (7). 

While we found remarkably high levels of spread in all examined countries, we caution that our 

inference is largely driven by data collected from highly populated areas, such as Wuhan in 

China, Lombardy in Italy, and New York city in the US. Heterogeneities in the growth rate 

almost certainly exist among different areas within each country. For example, recent works 

suggest that the rate of spread is positively associated with population densities (40). Therefore, 

the estimates we provide may represent good estimates in populated areas such as in cities. 

Calculation of the basic reproductive number requires knowledge of the duration and 

distribution of the serial interval, which in turn is determined by the latent and the infectious 

periods. By explicitly considering the distributions of the latent and the infectious periods, our 

work more accurately incorporate the timing of transmission events in the estimation of R0 (27). 

Our estimates of R0 for several European countries are slightly higher than the estimated 

effective reproductive numbers during early dynamics reported in a work published recently (17). 

The explicit consideration of the distributions of the latent and the infectious periods and a 

slightly longer serial interval assumed in our approach are likely to be the cause of this 

discrepancy.  

Various estimates of the mean serial interval (SI) exist for COVID-19. Similar to our earlier 

work (6), we assumed parameter values that are consistent with a mean SI of 6-8 days. This is 

based on estimates using data from Wuhan, China and Vo, Italy (3, 32). Shorter mean SIs were 

reported in the literature, for example, 4.0 days in Du et al. (36),  5.8 days in He et al. (30), 4-5 

days in Nishiura et al. (37), 4-5.2 days in Ganyani et al. (38). However, these estimates were 

based on transmission pairs reported in locations outside of Wuhan, Hubei province, and other 

Asian countries and territories neighboring China, where active surveillance and rapid isolation 

programs were implemented. Indeed, we previously estimated that in provinces outside of Hubei 

province, the mean time from symptom onset to hospitalization/isolation, was as short as 1.5 

days after Jan 18th. A short duration between symptom onset and hospitalization was also 

estimated for the outbreak in Singapore (25). This is in stark contrast to the time to 

hospitalization estimated for patients in Wuhan (9-13 days (3)). Rapid isolation of infectious 

individuals prevents further transmission after isolation, and thus inference of SIs from the 

transmission pairs that were rapidly isolated will be biased towards shorter values. The impacts 

of active tracing and isolation have been demonstrated by Bi et al. (31) and discussed in Ref. 

(41). Bi et al. showed that in transmission pairs where index cases were isolated within 3 days 

after symptom onset, the estimated mean SI is 3.6 days on average; whereas when index cases 

were isolated after 3 days post symptom onset, the estimated mean SI becomes much longer, 

approximately 8.0 days. Importantly, a recent work estimated the mean serial interval based on 

data from and Vo, Italy (32), and showed that the mean SI is 7.2 days, consistent with estimates 

from Wuhan, where little activate isolation efforts were in place during early epidemic (3). 
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Therefore, to calculate R0 (in the eight European countries and the US where minimal active 

tracing and isolation programs were implemented), a serial interval between 6-8 as estimated in 

Refs. (3, 31, 32) represents the best estimate. Further work characterizing the heterogeneities of 

the distribution of serial intervals (11) and measuring serial intervals from individuals who are 

asymptomatic may help to improve the estimation of R0.  

We calculated the herd immunity thresholds to be between 73% and 84% in China (6), the 

US and the eight European countries, based on the formula 1-1/R0 in a well-mixed population 

(39). Heterogeneity in population structure may lead to certain degree of deviations (42). 

Nonetheless, these are very high thresholds to reach even with an effective vaccine. For example, 

for an effective vaccine with 90% efficacy, a coverage of 90% of the population only leads to a 

population immunity of 81%. A recent survey showed that only approximately 50% of 

Americans plan to get a COVID-19 vaccine (34). Our results highlight the importance of public 

education about COVID-19 vaccination to ensure high vaccine coverage to achieve herd 

immunity (34).  

It is not known how long the vaccine induced protective immunity lasts. We found that if the 

duration of immunity is relatively short as suggested in refs. (18, 19), and similar to the durations 

of protective immunity against other endemic coronaviruses (9, 20) or MERS-CoV (24), a 

frequent vaccination schedule once every couple of years to multiple times per year is needed to 

maintain herd immunity. However, a recent report showed that the T cell immunity to SARS-

CoV-1 can last for 17 years in patients recovered from SARS-CoV-1 infection (22). In this case, 

a less frequent vaccination schedule is needed. Furthermore, we found that in addition to the 

mean duration of vaccine-induced protective immunity, the distribution of the duration is an 

important factor in determining vaccination frequency. A vaccine that induces a more uniform 

response in a population is better than a vaccine that induces a heterogeneous response in 

maintaining population immunity. Studies of the kinetics of antibody dynamics in individuals, 

such as refs. (19, 43), will help making more precise predictions of vaccine schedules. The stark 

difference between the durations of the protective antibody immunity and the T cell immunity 

(22) suggests that quantifying the individual heterogeneities in the kinetics of the T cell response 

will also be important.  

Overall, our work shows that SARS-CoV-2 has high R0 values and spread very rapidly in the 

absence of strong control measures across different countries. This implies very high herd 

immunity thresholds, and thus highly effective vaccines with high levels of population coverage 

will be needed to prevent sustained transmission. If the protective immunity induced by 

vaccination is not long lasting, understanding the full distribution of the duration of protective 

immunity in the population is crucial to determine the frequency of vaccinations. 
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Figures 

 

 

 
Figure 1. Estimation of the exponential growth rate and the doubling time of epidemics in 

eight European countries and the US. Red and black symbols show the daily counts of new 

cases and new deaths, respectively. Closed dots denote data used for parameter inference; 

whereas open circles denote data that are not used for parameter inference. We simulated the 

model using sampled parameter combinations that are able to explain the data shown in dots (see 

Uncertainty quantification in Methods). The colored bands denote the area between the lower 

and upper bounds of simulated/predicted true daily infection incidence (blue), daily cases (red) 

and daily deaths (grey) assuming no intervention efforts nor changes in surveillance intensity. 

Deviations of open circles from the corresponding bands thus indicate either changes in 

surveillance intensity or impacts of control measures.  
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Figure 2. Fast spread of SARS-CoV-2 and its implications for public health interventions. 

Point estimates and confidence interval ranges of the exponential growth rate, 𝑟  (A) and the 

detection probability, 𝜃 (B) in each country. See Table 2 for country name abbreations. (C) High 

levels of control efforts, measured as fractions of transmission reduction (y-axis), are needed to 

achieve containment, i.e. reverting epidemic growth (dots), or mitigation, i.e. the final fraction of 

infected individuals is 1% (x) or 10% (open circle) after a year. We assumed initial infected 

population as shown in x-axis and epidemic growth rates of 0.19 (red) or 0.29/day (blue). 
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Figure 3. Point estimates and ranges of the reproductive number R0 in each country. Point 

estimates were shown in red numbers. See Table 2 for country name abbreations. 
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Figure 4. The importance of the distribution of the duration of vaccine-induced immunity 

in maintaining herd immunity in a population. (A) Three scenarios for the distribution: 

exponential (shape parameter 𝑠 = 1), Gaussian-like (𝑠 = 10) and identical (𝑠 = ∞). All three 

distributions have the same mean, i.e. 1 year. The color code applies to all panels. (B) The 

fraction of individuals who are immune in a population over time. We assumed that 85% of 

population are immune after a mass vaccination at time 0. The dotted lines show the heard 

immunity thresholds, i.e. 83% (for R0=6) and 67% (for R0=3). (C) The time when the population 

immunity decreases to the threshold value (predicted for each R0) for the three scenarios. We 

assumed R0=3 (dashed lines) or 6 (solid lines) in the calculations. Note the dashed blue line 

overlaps with the solid blue line. The dotted lines show mean durations of immunity of 45 weeks, 

3 years and 10 years. 
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Tables 

 
Table 1. Description of parameter and their values. See the Supplementary Text for 

discussions of choice of parameter values. 
Parameters Description Value  Ranges used in 

uncertainty analysis 

References 

𝑟 Exponential growth rate Estimated 

from data 

0.1 – 0.35 /day  

𝐼!
∗ 𝐼!

∗ is the number of total infected 

individual at time 0 (Jan. 20) 

Estimated 

from data 

0.0001 – 10 on a log 

scale 

 

𝛽 Infectivity in the SEIR model Calculated 

from 𝑟  

 See 
Supplementary 

text 

1/𝑘 The mean latent period, i.e. 

from infection to becoming 
infectious 

3 days  3-4 days (6, 29) 

1/𝑔 The mean duration from 

infection to case confirmation 

12 days 10-14 days (6, 25) 

𝑛 Shape parameter for the 
duration from symptom onset to 

death. 

4 4-5  

1/𝑑 Mean duration from infection to 

death 

21.5 days  20.5 – 23.5 days (6, 44) 

𝑋 Infection fatality ratio 0.01  0.004 – 0.014 (45, 46) 

 

 

 

Table 2. Estimated medians and confidence intervals of the basic reproductive number, R0, 

and their corresponding herd immunity thresholds for eight European countries and the 

US. 

Country Abbreviation Median R0 
Confidence 

interval - R0 

Herd immunity 

threshold 

Confidence 

interval – herd 

immunity 

Belgium BE 3.8 (3.2, 4.7) 74% (68%, 79%) 

France FR 4.4 (3.6, 5.4) 77% (72%, 81%) 

Germany GR 4.7 (3.8, 5.8) 79% (74%, 83%) 

Italy IT 4.9 (4.0, 5.9) 79% (75%, 83%) 

Netherlands NT 3.7 (3.2, 4.3) 73% (68%, 77%) 

Spain SP 6.1 (5.1, 7.5) 84% (80%, 87%) 

Switzerland  SW 3.6 (3.0, 4.4) 72% (66%, 77%) 

United 

Kingdom 
UK 3.9 (3.3, 4.6) 74% (69%, 78%) 

United States US 5.8 (4.7, 7.3) 83% (79%, 86%) 
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