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Richard Blundell, Lorraine Dearden and Barbara Sianesi

University College London and Institute for Fiscal Studies

October 2001

Abstract

This paper reviews appropriate non-experimental methods and microe-
conometric models for recovering the returns to education using individual
data. Three estimators are considered: matching methods, instrumental
variable methods and control function methods. The properties of these
methods are investigated for models with multiple treatments and hetero-
geneous returns. Data from the British 1958 NCDS birth cohort is used to
estimate returns to schooling and to illustrate the sensitivity of different
estimators to model specification and data availability.

1 Introduction

There are at least three distinct ways of defining the ‘returns to education’:

(a) the private return, (b) the social return and (c) the labour productivity

return. The first of these is made up of the costs and benefits to the individual

and is clearly net of any transfers from the state and any taxes paid. The

second definition highlights any externalities or spill-over effects and includes

transfers and taxes. The final definition simply relates to the gross increase in

labour productivity (or growth). A key component of each of these measures
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is the impact of education on earnings. This is perhaps the aspect of returns

to education measurement where statistical methods have been most developed

and most fruitfully deployed and is the central focus of this paper.

With extensive data available over time and individuals on schooling and on

earnings, the measurement of the education effect on earnings is one area where

we might expect agreement. However, a casual look through the literature on

the impact of education on earnings reveals a wide range of estimates and an

equally wide range of empirical approaches that have been adopted to estimate

the return. So why do the estimates vary so widely and what is the most appro-

priate empirical method to adopt? The answer to these two questions provides

the central motivation for this paper. It is illustrated using the sample of men

from the NCDS Birth Cohort data for the UK. This data source provides a

uniquely rich source of non-experimental data on family background, educa-

tional attainment and earnings. We argue that it is ideally suited to analyse

statistical methods for the measurement of the effect of education on earnings.

The appropriate statistical method to adopt will depend, in a rather obvious

way, on the chosen model for the relationship between education and earnings.

We distinguish two broad characterisations of this specification. The first relates

to the measurement of education. In particular whether we can summarize edu-

cation, or human capital more generally, in a single measure - years of schooling,

for example. This is commonly referred to as a one factor model. It is a re-

strictive framework since it assumes that, as returns to education change over

time, it is only the single aggregate that matters and there are no differential

trends in returns for different education levels. It is convenient though since

we can simply include a single education measure in an earnings equation. The

alternative to this is the multiple factor model where different educational levels

have separate effects on earnings.

We will refer to different education levels as different treatments borrowing
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a common notation from the evaluation literature. A single treatment speci-

fication refers to the impact of a specific educational level - such as gaining a

qualification. A multiple treatment effect model will distinguish the impact of

many different education levels. In general the multiple treatment - multiple

factor model would seem a more attractive framework since we will typically

be interested in a wide range of education levels with very different returns.

However, we will also consider models with a single discrete treatment such as

the impact of a specific qualification and models with a single overall education

level such as years of schooling.

The second characterisation relates to the distinction between heterogeneous

and homogeneous returns. In simple terms - whether the response coefficient

on the education variable(s) in the earnings equation is allowed to differ across

individuals. To allow this to happen according to observables is a relatively

straightforward extension of the homogeneous model, but to allow the het-

erogeneity to be unobservable completely changes the interpretation and the

properties of many common estimation approaches. We begin in Section 2 with

this distinction between model specifications and use it to define parameters of

interest in the earnings education relationship.

Even where there is agreement on the model specification there are alter-

native statistical methods which can be adopted. With experimental data the

standard comparison of control and treatment group recovers an estimate of

the average effect in the population under the assumption that the controls are

unaffected by the treatment. Although in some studies of training, experimen-

tal design is possible and growing in popularity, for large reforms to schooling,

and for measuring the impact of existing educational systems, nonexperimental

methods are essential. There are broadly two nonexperimental methods: those

that attempt to control for correlation between individual factors and schooling

choices by way of an excluded instrument, and those that attempt to measure
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all individual factors that may be the cause of such dependence and then match

on these observed variables. The implementation and the properties of these al-

ternative methods differ according to whether the model is one of heterogeneous

response and whether schooling is represented through a single or multiple mea-

sure. The different properties of these estimators and the drawbacks to each

method are discussed in Section 3.

The various models and non-experimental estimators are then compared in

Section 4 and 5 using the British NCDS data. In particular, we consider the

returns to education for three levels: 1) leaving after completing O levels or

its vocational equivalent 2) leaving after completing A levels or its vocational

equivalent 3) undertake some form of higher education (including sub-degree

level HE).

We only present results for men so as to conserve space and to focus on

the earnings effect versus the employment effect. Our results show significant

returns to basic and higher qualifications in education, even after controlling

for detailed family background and ability test measures. They also highlight

two important features: (a) the returns to education on earnings are sensitive

to the inclusion of controls. In particular we find that controlling for ability test

scores at an early age significantly reduces the returns by a factor of one third.

(b) there is strong evidence of heterogeneity of returns with quite high returns

found among subsets of those who do not stay on for higher qualifications at

school. Although on average the returns among those that stay on for higher

qualifications are higher than for those who do not.

4



2 The Earnings-Education Relationship: Alter-
native Models

This section highlights two central aspects in the empirical investigation

of the earnings return to human capital investments. First among these is the

distinction between the homogeneous returns and heterogeneous returns model.

In the homogeneous returns model the rate of return to gross earnings of a

particular human investment is the same for all individuals. Growing statis-

tical evidence and causal empiricism suggests that the homogeneous returns

restriction is unwarranted.

The second aspect is to distinguish between the one factor and multiple

factor models of human capital. In the one factor model all schooling can be

thought of as an investment in a single homogeneous construct called human

capital. Each additional unit has the same return. An example of an empirical

model that is both one factor and homogeneous returns is the popular linear

regression equation - log earnings regressed on years of schooling. The constant

parameter on the schooling variable is equivalent to homogeneous returns and

the use of years of schooling as a single measure of schooling is equivalent to a

single measure of human capital.

2.1 Earnings and Education in a Homogenous Returns
Framework

For each individual i = 1, ..., n, we let yi represents their earnings or hourly

wage opportunities in work. To begin with we will assume that we are measuring

earnings at one point in time for a sample of individuals who have completed

formal schooling. A good illustration to keep in mind is from the British cohort

studies where a single cohort is followed through education and employment

and sampled at specific intervals usually several years apart. We measure their

earnings when they are 33 years of age and ask: what is the impact on earnings

5



at age 33 of different schooling outcomes?

In the “one factor” human capital model it will always be possible to aggre-

gate schooling into a single measure Si - say, years of schooling. For example,

we may write

ln yi = αi + βSi + εi (1)

where αi represents differing relative levels of earnings across individuals for any

given level of schooling and β measures the marginal return to schooling level

Si in terms of the particular definition of earnings yi. The “error” term εi is

added to capture measurement error in earnings.1

Since educational choices and educational levels are likely to differ according

to productivity (or expected earnings levels more generally), Si is very likely to

be positively correlated with αi and this in turn will induce an upward bias in

the simple least squares estimation of β. However, if Si is measured with error

there will be some off-setting attenuation bias and this trade-off was at the heart

of the early studies on measuring gross private returns (see Griliches (1977) and

Card (1999), for example). We will return to these estimation issues in more

detail below.

As mentioned above (1) assumes both homogeneous returns (the common β

across all i) and one factor human capital (the single measure of schooling Si).

Although popular this seems unduly restrictive. In order to cover a fairly flexible

representation of schooling we will consider the case of a finite set of schooling

levels. For example, in the application to the NCDS we refer to a number of

specific discrete educational levels - as obtaining a qualification, obtaining an

A level, or undertaking higher education. Using notation borrowed from the

experimental literature we will refer to these as multiple treatments. These

will typically be defined in some natural sequence of binary indicator variables:
1Measurement error in the schooling or eduction variable Si is also likely to be important

and will be discussed in terms of the alternative approaches to estimation.
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S1i = 1 if the individual completed the first stage of schooling, S2i = 1 if the

next stage in the sequence is completed etc. For completeness S0i = 1 would

represent the base educational level. For example in the UK context S1i = 1

may refer to staying on after the minimum school leaving age, S2i = 1 might

represent achieving at least one A-level, S2i = 1 to achieving a first degree etc.

Write the exhaustive set of J treatments (schooling levels) under examination

as S1i, S2i, ..,SJi. In this case (1) might be adapted to become

ln yi = αi + β1S1i + β2S2i + ..+ βJSJi + εi (2)

where the β1, β2...βJ . now measure the marginal impact of a higher level of

schooling for some J distinct levels. Still the returns are homogeneous across

individuals but (2) can be seen to relax the “one factor” assumption and allow

different schooling levels to have quite different impact on earnings.

Of course, one can imagine a finer sequence and also possible set of non-

sequential outcomes. All the methods discussed below are easily extended to

more complicated situations but will typically require more demanding data

requirements and modelling assumptions to estimate the “causal” impact on

earnings. Indeed, to begin the discussion of the heterogeneous model we will

begin with a single treatment model and study the “causal” impact of a single

type of schooling level.

Before moving on to the more general models and the alternative methods

of estimation, it is worth pointing out that each of these equations will typically

be specific to a particular time period and location. For example, if (2) refers to

the impact of education levels on the earnings of British men aged 33 in 1991, it

will be unlikely to be stable across time periods and countries. The returns will

depend on the earnings set in the labour market and will in turn depend on the

demand and supply of individuals with these differing human capital attributes.

This point, although quite obvious, is often misunderstood in the context of

7



predicting returns to education.

2.2 The Heterogeneous Returns Model

The heterogeneity we are focussing on here is unobserved heterogeneity

across individuals in the response parameter β. Consider the single treatment

model where we let schooling S1i for individual i be defined as a binary indicator

variable representing the successful achievement of a particular education level

- such as obtaining a qualification, obtaining an A level, or undertaking higher

education, for example. A completely general relationship between this level of

education and earnings in this single discrete treatment heterogeneous returns

model is then written

ln yi = αi + βiS1i + εi (3)

where αi and βi can be thought of as random coefficients representing the

heterogeneous relationship between educational qualification S1i and earnings.

Typically we would assume the αi and βi have a finite population mean and

variance. Below the population means are labelled α0 and β0 respectively.

Despite the preponderance of the homogeneous returns model in the early

literature, the recent focus has been on the heterogeneous returns model (3)2.

This raises the immediate question in this model: what is the parameter of

interest. Is it the average of the βis? If so what average? Is it the average in the

population whether or not level S1i is achieved, β0 - the average treatment effect,

or the average among those who individuals actually observed with S1i = 1, βT

- the average treatment on the treated? In some cases a particular estimation

method will recover a local average treatment effect, measuring the impact of

S1i = 1 on an even smaller subgroup of individuals. We discuss all these in

greater detail in the next section.

2 See for example the papers by Heckman, J., Smith, J. And N. Clements, (1997), Dearden
(1999a) and (1999b) and Blundell, Dearden, Goodman and Reed (2000).
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One interpretation of βi is as a heterogeneous “return” to schooling level S1i

for individual i since it measures the marginal proportional impact of this level

of education on earnings for individual i. Again this measure of returns is a gross

private measure since it ignores all costs of education and also taxes paid on

gross earnings yi. Note that in the “homogeneous” returns model βi is constant

across all individuals. Even so, in this homogeneous returns model αi is allowed

to vary across i to capture the differing productivities (or abilities), and differing

general levels of earnings, across individuals with the same education levels.

It should be pointed out that this model, and the others to be discussed

below, can be readily generalised to allow for observable heterogeneity in both

αi and βi. For example, suppose there are a set of observed covariates Xi (e.g.

early test scores, demographic variables, aspects of the local labor market).

The α and β parameters can be made to depend on these in a quite arbitrary

way. If they are assumed to depend on Xi in a linear fashion then the levels

of Xi and the interactions of Xi with the education variable S1i will enter the

regression specification. The precise form chosen will depend on the richness of

the data set and the particular problem at hand3. But in what follows we shall

always assume that such levels and interactions are included in the specification.

Indeed, in the general nonparametric matching method described below a quite

general form of interaction is allowed. For the most part we will assume that

such observed heterogeneity terms are included, even if this is not explicitly

stated in the discussion of the properties of the various alternative estimators

described below.

As we saw in the homogeneous model (1), the dependence of the schooling

level Si on the unobserved “ability” component αi is critical in understanding

the bias from standard least squares estimation. An additional central issue in

determining the properties of standard econometric estimators in the hetero-

3This was done in Dearden (1999a) using the same NCDS data that is used in this paper.
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geneous effects model is whether or not schooling choice S1i depends on the

unobservable determinants of the individuals’s marginal return from schooling

βi. If βi were known when the individual makes his or her educational choices

then it would seem sensible to assume that choices will - in part, at least, reflect

the return to earnings of that choice. But as mentioned before βi is likely to

vary over time and will depend on the relative levels of demand and supply, so

the dependence of schooling choices on marginal returns is not clear-cut. Some

persistence in returns is however likely and so some correlation would seem more

likely than not.

The discussion of heterogeneous returns will extend easily to the multiple

treatment model (2). Writing the exhaustive set of J treatments (schooling

levels) under examination as S1i, S2i, ..,SJi. The heterogeneous returns model

is then

ln yi = αi + β1iS1i + β2iS2i + ..+ βJiSJi + εi. (4)

We will also want to discuss the one factor model in which Si enters as a single

continuous variable

ln yi = αi + βiSi + εi. (5)

In fact, the three basic specifications (3), (2) and (5) will form the main alterna-

tives considered here. The single discrete treatment case (3) being the baseline

specification.

3 The Earnings-Education Relationship: Alter-
native Methods

The aim here is to investigate the properties of alternative estimation meth-

ods for each of the model specifications considered above. The alternative meth-

ods we consider fall into three broad classes: the instrumental variable method,
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the control function method and the method of matching. The first two require

some excluded instrument which determines education choices but not earnings

while the matching method requires an extensive set of observable characteris-

tics on which to match. All place strong demands on data.

The initial setting for this discussion will be based on the biases that occur

from the simple application of ordinary least squares to the estimation of each

of the model specifications described in the previous section. As mentioned the

primary model specification will be the single discrete treatment heterogeneous

returns model (3) but the extension to the multiple treatment model (4) will

also be considered and so will the specific issues that occur in the one factor

“years of schooling” specification (5). In each of these the complications that

are engendered by allowing the return parameter β to be heterogeneous will be

central to the discussion.

It will also be useful to relate this choice of alternative methods to the eval-

uation and the selection literature (see in particular Heckman and Robb (1985)

and Heckman, LaLonde and Smith (1999)). The treatment effect parameters

referred to above already borrow heavily from this literature. It is easy to see

that even the estimation problem in the education returns framework is syn-

onymous with the construction of a counter-factual in the evaluation literature.

Indeed, some of the more recent developments in the in the returns literature,

for example those which use matching estimators or social experiments, relate

explicitly to similar approaches in evaluation.

It is also worth pointing out that we will not be looking at general spillover

effects or general equilibrium effects of education. In the statistical evaluation

literature this relates to the stable unit-treatment value assumption (SUTVA).

This assumption requires that an individual’s potential outcomes depend only on

his own schooling participation, not on the schooling choice of other individuals

in the population (thus ruling out cross-effects or general equilibrium effects)
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and that the education level chosen by an individual does not depend on the

schooling decisions of others (e.g. thus excluding peer effects in educational

choices).

To illustrate the importance of constructing the counterfactual, consider the

single discrete treatment model (3). For any individual i in the set of individuals

that receive S1i = 1 (i ∈ {S1i = 1}) the earnings outcome is

ln y1i = αi + βi + εi for i ∈ {S1i = 1} (6)

where the superscript 1 refers to the case where individual i receives treatment

S1i = 1.Whereas if the same individual were not to receive this education level

their earnings outcome would be

ln y0i = αi + εi for i ∈ {S1i = 1}. (7)

now the superscript 0 refers to the counterfactual earnings of an individual i for

whom S1i = 1 in the observed data. Suppose that in a random sample of size n

there are n1 individuals for whom S1i = 1. If we could observe both outcomes

for all individuals for whom S1i = 1 then the average

i∈S1i=1

ln y1i − ln y0i
n1

(8)

would be a consistent estimate of the average treatment on the treated effect

βT . To recover the average treatment effect β0 across the whole population

under consideration further requires the counterfactual for the group for which

S1i = 0.

The focus here will be on non-experimental approaches. Of course, in a

randomized experiment the control group is chosen independently of the αi, βi

and εi by design. Consequently the average treatment effect can be measured

directly from a comparison of the control group and the treatment group. This

is the case even in the most general heterogeneous returns model described
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above and whatever the underlying relationship between the education level

variables Sji etc., and the heterogeneous ability and returns parameters αi and

βi parameters respectively. A truly randomised education experiment would

induce full independence between these individual heterogeneity parameters and

the education outcomes. However, pure education or schooling experiments are

very rare. It is difficult to persuade parents or the students themselves of the

virtues of being randomised out of an education programme - except for rather

minor programmes. Our application will be to the main stages of educational

level in the UK and randomised assignment is unavailable. Even if it were,

individuals enrolled may drop out - and systematically too.

However, the pure randomised experiment is useful as a basis for comparison.

“Natural” social experiments are more common. This is the case where some

educational rule or qualification level (say minimum schooling leaving age) is

exogenously changed for one group but not another. Provided the groups are

representative samples from the population then this simple comparison can

recover a parameter of interest like the average treatment effect. Where the

samples differ in their ability levels or other characteristics it may still be possible

to recover an average effect for those who experience the change in rules.

Many alternative methods are available and all have been widely used. Twins

and sibling data can help, an exogenous change in Si that only effects a subsam-

ple of the target group is also useful. The latter relates to instrumental variable

methods more generally, where some variable (or transformation of the data)

has to be found that can vary Si independently of the heterogeneity terms. An

alternative to using instruments is the matching method. This method seeks

to purge the relationship between schooling and earnings of any important ob-

served heterogeneity that would lead to bias, by matching individuals with and

without the schooling level according to some observed characteristic.
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3.1 Least Squares

Consider rewriting the heterogeneous single treatment model (3) as

ln yi = α0 + β0S1i + (αi − α0) + (βi − β0)S1i + εi (9)

where α0 and β0 are the population means of αi and βi. This population may

be defined as all those individuals entering schooling at a particular date. In

this case a parameter of interest will be β0 itself which measures the average

returns to achieving education level S1i in this population. For example, in the

British context S1i = 1 may refer to those staying on after the minimum school

leaving age, or it may refer to those going on to a higher degree.

Gathering the unobservables together we have

ln yi = α0 + β0S1i + ui (10)

with

ui ≡ (αi − α0) + (βi − β0)S1i + εi

The least squares regression of log earnings on schooling produces a biased

estimator of β0 due to correlation between S1i and ui. There are three sources

of such bias:

(i) Ability bias: this occurs due to the likely correlation between S1i and

the (αi − α0) term. A positive correlation inducing an upward bias in the

estimated return.

(ii) Returns Bias: this occurs when the marginal returns (βi− β0) them-

selves are correlated with the schooling choice S1i. The direction of this bias

is less clear and will depend on the average returns among the sub-population

of those with S1i. Indeed, if ability bias is negligible (and the remaining ability

heterogeneity is unrelated to the unobserved return) and returns bias is the only

remaining bias present, then the least squares coefficient estimate will recover

14



the average returns in the sample of those with S1i = 1, that is the average

treatment on the treated.

(iii) Measurement Error Bias: this refers to measurement error in the

schooling variable S1i. This may be due to random misclassification error. As

usual, measurement error of this kind will induce attenuation bias in the re-

gression coefficient and an under-estimate of the returns parameter. For the

purposes of much of the discussion we can redefine εi to include measurement

error in the schooling variables(s).

In the homogeneous returns model the second bias is, by definition, absent.

This is the case that is much discussed in the literature - especially in the one

factor “years of schooling” model (1). Indeed, there is some evidence of a bal-

ancing of biases (see Card (1999), for example), in which case OLS fortuitously

consistently estimates the return coefficient β.

Much of the practical discussion of the properties of least squares bias de-

pends on the richness of other control variables that may be entered to capture

the omitted factors. Indeed, the method of matching, described below, takes

this one step further by trying to eliminate the imbalance of observables by

matching observations with similar covariates. One simple recommendation in

the use of least squares seems worth following - add in a rich set of controls

and try to find separate measures of the education variable that may not suffer

from the same measurement error. The rich set of controls may help reduce

the ability bias and the second measure of schooling may be used to purge the

measurement error. But, in the end, a comparison with the alternative meth-

ods: instrumental variables, control functions and matching is always helpful in

assessing how to interpret a least squares estimate of education returns.
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3.2 Instrumental Variable Methods

The Instrumental Variable (IV) estimator seems a natural method to turn

to in estimating returns - at least in the homogeneous returns model. The biases

we have discussed in the case of least squares all stem from the correlation of

observable schooling measures with the unobservables in the earnings regres-

sion. If an instrument can be found that is correlated with the true measure

of schooling and uncorrelated with the unobservable ability, heterogeneity and

measurement error terms, then surely a consistent estimator of the returns is

achievable. This turns out to be true in the homogeneous returns model but not,

except for certain special cases described below, for the heterogeneous returns

model.

Even in the homogeneous returns model, finding a suitable instrument is

not easy. However, social and natural experiments can be useful - and many

such instruments have been used. Alternatively, parental background variables

are often chosen. But to be useful they must satisfy the Instrumental Variable

criteria of being correlated with the schooling choice and correctly excluded

from the earnings equation.

To more formally investigate the properties of the IV estimator, define an

instrumental variable Zi and assume that it satisfies the orthogonality condi-

tions4 :

IV: A1: E[(αi − α0)|Zi] = 0
IV: A2: E[(βi − β0)|Zi] = 0
IV: A3: E[εi|Zi] = 0
Additionally assume that the instrumental variable is related to S1i through

IV: A4: E[S1i|Zi] = Ziπ
4 In fact the IV estimator we will discuss will typically only require the weaker covariance

restrictions cov(αiZi) = cov(βiZi) = cov(εiZi) = 0 rather than these mean independence
assumptions.
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where π is a finite vector of unknown reduced form coefficients.

To discuss the general properties of the IV estimator in the heterogeneous

returns model consider the conditional expectation of (9) under assumptions

IV: A1 - A4

E[ln yi|Zi] = α0 + β0Ziπ +E[(βi − β0)S1i|Zi]. (11)

Note that IV: A4 implies that π can be estimated consistently from the least

squares regression of S1i on Zi - the first stage, reduced form regression. There

is nothing in assumptions IV: A1 - A4 that makes the final term in (11) disap-

pear. Further assumptions are required. Indeed, even IV: A4 is controversial

since in this specification S1i is discrete and this assumption is better suited to

the one factor “years of schooling” model. Indeed, in the homogeneous “one

factor” model βi is constant across i and the latter term is zero by definition.

Consequently, instrumental variable estimation can produce a consistent esti-

mator of β in this case.

One way to interpret the IV estimator is as the (weighted) least squares

estimator for the transformed regression model

Zi ln yi = Ziαi + βiZiS1i + Ziεi (12)

with the weights depending on the sample covariance matrix of Ziεi. In the case

where there is a single instrument the IV estimator reduces to

βIV =
cov(ln yi, Zi)

cov(Si, Zi)
(13)

Consequently, given the IV assumptions IV: A1 - A4, an IV transformation

Zi that eliminates αi but leaves βiS1i unaffected, will estimate the average βi

among those individuals for whom S1i = 1. This is the treatment on the treated

parameter βIV = βT . A prime example of such a transformation is a differencing

instrument. There are three such differencing transformations commonly used.
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The first is the difference in differences estimator. This compares the group of

individuals with S1i = 1 to the group with S1i = 0 before and after the treatment

S1i occurs. This transformation sweeps away any common individual component

(αi, for example) and just picks out the average of βi among those individuals

with S1i = 1. Precisely the treatment on the treated parameter. The difference

in differences estimator is ideally suited for training programmes for which there

is an earnings observation before and after training but less applicable in the

schooling/formal education evaluation problem where a “before” observation

of earnings is very unlikely to be available, since for most individuals formal

education is completed before labour market participation.

A second such differencing instrumental variable estimator is to use a sample

of twins5. The contrast in this case is between individuals within pairs of twins.

Differencing within twins eliminates common gene determined ability or family

effects. These are often what is being represented by αi. In the homogeneous

returns model this perfectly identifies β. However, it only uses information on

twins who have different S1i outcomes. This may only be a small subset of

twins. Typically twins separated at birth are used and this tends to increase

the probability of different values of S1i within any pair. In the heterogeneous

returns model the twin difference estimator recovers the average marginal return

on those twins with different schooling outcomes. This may be a representa-

tive sample of the population but it may not. In general what is estimated

strictly reflects the local average of the returns among the sample of twins who

experience both outcomes.

Finally, more general groups can be compared. For example we may compare

the outcomes among two groups that have a similar distribution of abilities but

who, from some exogenous reform, experience different schooling outcomes6.

5 See for example Ashenfelter and Krueger (1994), Altonji and Dunn (1996), Ashenfelter
and Zimmerman (1993), Behrman et. al. (1996), Bonjour et. al. (2000).

6For example see the papers by Angrist and Krueger (1991) and (1992), Butcher and Case
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A classic example of this is the comparison of adjacent cohorts one of which

experiences a school reform (say a change in the minimum school leaving age)

and the other who does not7. Again in the homogenous treatment effects model

this can be used to estimate β, but in the heterogeneous model it will estimate

the average of returns among those induced to take more schooling by the reform.

This is the Local Average Treatment Effect and will not in general equal the

average returns among those with S1i - the treatment on the treated parameter,

or the average in the population - the average treatment effect. The way in

which the IV estimator for the heterogeneous returns model is related to a local

average of the returns is investigated further below. First we consider some

special cases.

Even where the IV estimator does produce a consistent estimate of β there

remains the issue of efficiency and of weak instruments. Efficiency concerns the

imprecision induced in IV estimation when the instrument has a low correlation

with the schooling variable. The weak instrument case is an extreme version of

this where the sample correlation is very weak and the true correlation is zero.

In this case IV will tend to the biased OLS estimator even in very large samples

(see Bound et.al. (1995) and Staiger and Stock (1997)).

3.2.1 IV in the Heterogeneous “One Factor” Model

Consider the one factor or “years of schooling” model (5). This is a case

where assumption IV A4 would seem plausible and note that this assumption

implies:

Si = Ziπ + vi where E(vi|Zi) = 0. (14)

and a consistent estimate of π can be obtained from OLS on the reduced form

Now assume

(1994), Harmon and Walker (1995), Meghir and Palme (2000).
7This was the reform exploited by Harmon and Walker (1995).
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IV A5: vi = ρvβ(βi − β0) + ηi, with E[(βi − β0)
2] = σ2β.

This assumption implies

E[(βi − β0)Si|Zi] = ρvβσ
2
β

so that (11) becomes

E[ln yi|Zi] = α0 + β0Ziπ + ρvβσ
2
β

= α0 + β0Ziπ (15)

so that the IV estimator will, under these assumptions, consistently estimate

the average return β0 but not the intercept.

Note that this is very specific to the continuous schooling measure Si in

the one factor model, since then the additively separable model for (14) is a

reasonable specification for the reduced form. Even so the homoscedasticity

assumption imbedded in IV A4 is strong. A useful generalisation of this IV

estimator for this specification occurs in the Control Variable approach discussed

below.

3.2.2 IV in the Homogeneous One Factor Model

By definition this is a specification in which βi is constant for all i. Conse-

quently σ2β = 0 and (11) becomes

E[ln yi|Zi] = α0 + β0Ziπ (16)

so that IV consistently estimates the α0 and β0 parameters.

Note that the exact same IV estimator can be computed from a regression of

log earnings on schooling Si including the reduced form error vi as an additional

regressor

ln yi = α0 + β0Si + ρuvvi + ςi where E[ςi|Si, vi] = 0 (17)
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Replacing vi by

vi = Si − Ziπ

i.e. the residual from the reduced form, preserves the correspondence with IV.

This augmented regression framework for IV is popular for testing the exogene-

ity assumption (H0 : ρuv = 0) and generalises to binary choice and censored

regression settings (see Smith and Blundell (1986)).

The estimation of α and β by the inclusion of vi in this homogeneous returns

specification is also exactly equivalent to the control function approach . As we

will show below, this analogy between IV and control function breaks down

outside the one factor homogeneous returns model.

3.2.3 IV in the Heterogeneous Single Treatment Model: Estimating
the Local Average Treatment Effect

Even in the general heterogeneous returns model with a single treatment

(3), it is still possible to provide an interesting interpretation of the IV estimator

even if it does not estimate the average treatment on the treated or average

treatment parameter. The interpretation of IV in this model specification was

precisely the motivation for the Local Average Treatment Effect of Imbens and

Angrist (1994).

Suppose there is a single discrete binary instrument Zi = {0, 1}. For example,
a discrete change in some educational ruling that is correlated with the schooling

level Si in the population. There will be four subgroups of individuals, one of

these is of particular interest and is made up of those individuals who are seen

with education level S1i = 1 after the rule change (Zi = 1) but who would not

have had this level of schooling in the absence of the rule change (Zi = 0). This

is the group induced to change behavior by the instrument. To be more precise
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we define the events

D1i ≡ {S1i|Zi = 1}

D0i ≡ {S1i|Zi = 0}

and assume

LATE: A1 For all i ether [D1i ≥ D0i] or [D1i ≤ D0i].

So that the instrument has the same directional effect on all whose behaviour

it changes. Assume for instance that D1i ≥ D0i; in this case the IV estimator
has the very simple form:

βIV =
cov(ln yi, Zi)

cov(Si, Zi)
(18)

=
E[ln yi|Zi = 1]−E[ln yi|Zi = 0]
E[Si|Zi = 1]−E[Si|Zi = 0] . (19)

Under independence of βi, αi and εi from Zi this reduces to

βIV =
E[βiSi|Zi = 1]−E[βiSi|Zi = 0]

Pr[D1i > D0i]
(20)

=
E[βiD1i]−E[βiD0i]
Pr[D1i > D0i]

(21)

= E[βi|D1i > D0i]. (22)

Which provides a useful interpretation for IV - it estimates the average returns

among those induced to change behaviour under the instrument - the Local

Average Treatment Effect, LATE. For example, suppose Zi = 1 reflected a

bad financial event for the family at the time the education decision was being

made. Then IV would pick out the average marginal return among those taking

schooling level S1 relative to the average returns among those taking schooling

level S1 whose family did not experience financial difficulties. This could be a

very high local average return.
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3.2.4 Some Drawbacks of IV

The LATE discussion highlights the point that the IV estimate in the het-

erogeneous returns model will typically vary depending on which instrument is

used. Moreover, it could vary widely according to the local average it recovers.

For example, if the instrument is a change in the minimum school leaving age

which then induces a change in those achieving schooling level S1i, the IV esti-

mator will estimate the average returns among those induced to achieve S1i = 1

by the school leaving age reform. These could be a group with very high (or

very low) returns. If those who now achieve S1i were those who had little to gain

then the local average could be low. If on the other hand, they are individuals

who had previously left education earlier because of a lack of information or

family resources, the local average return for them could be quite high.

In any case the lesson to be learned from the discussion of IV in the het-

erogeneous returns model is that the nature of the incidence of the instrument

within the distribution of returns βi is critical in understanding the estimated

β coefficient.

3.3 Control Function Methods

3.3.1 The Heterogeneous Single Treatment Model

Suppose S1i in (3) is determined according to the binary response model

CF: A1 S1i = 1(Ziπ + vi > 0) and vi ∼ N(0,σ2v)
also assume αi and βi relate to S1i according to

CF: A2 αi − α0 = ραvvi + ξαi

CF: A3 βi − β0 = ρβvvi + ξβi

Note that given CF: A1 - CF: A3

E[(αi − α0)|S1i = 1] = ραvλ1i,

E[(αi − α0)|S1i = 0] = ραvλ0i
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and

E[(βi − β0)|S1i = 1] = ρβvλ1i

where λ0i and λ1i are the standard inverse Mills ratios from the normal selection

model (Heckman (1979)) - or control functions.

With these additional assumptions in place, the model (9) can be written

ln yi = α0 + β0S1i + ραv(1− S1i)λ0i + (ραv + ρβv)S1iλ1i + ωi (23)

with

E[ωi|S1i, (1− S1i)λ0i, S1iλ1i] = 0.

Consequently, least squares estimation of the augmented log earnings regres-

sion which includes the additional terms (1− S1i)λ0i and S1iλ1i will produce a
consistent estimator of β0. These additional terms are labelled control functions

and eliminate the bias induced by the endogeneity of schooling. Note that these

control function terms depend on the unknown reduced form parameter π, but

this can be consistently estimated at a first stage Probit step - again analogous

to the selection model8.

3.3.2 The Homogeneous Returns Model

In the special case where βi is constant for all i, the control function terms

reduce to a single term

ραv((1− S1i)λ0i + S1iλ1i). (24)

3.3.3 The Multiple Treatment Model

The extension to the multiple treatment case is reasonably straightforward.

As in (4), write the exhaustive set of J treatments (schooling levels) under

8An early example of this can be found in Willis and Rosen (1979).
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examination as S1i, S2i, ..,SJi. The heterogeneous returns model (9) is then

extended to

ln yi = αi +
J

j=1

βjiSji +
J

j=0

ρjSjiλji..+ βJiSJi + ωi (25)

with S0i = 1− J
j=1 Sji, . and

E[ωi|S1i, ..., SJi] = 0

However, note that to avoid multicollinearity problems the λji terms will

need to have independent variation, suggesting that at least J − 1 excluded
instruments will be required for identification. Typically finding such a large

set of “good” instruments is difficult. An alternative identification strategy is

to link the λji terms together. For example, if the schooling outcomes follow an

ordered sequence then it may be that a single ordered probit model could be

used for all λji terms.

3.3.4 The Heterogeneous One-Factor Model

Consider the one factor or “years of schooling” model (5). As mentioned

above in the discussion of IV for this case, assumption IV A4 would seem plau-

sible, so that we may write

Si = Ziπ + vi where E(vi|Zi) = 0. (26)

Now given the control function assumptions CF A1 - CF A3, we may write

ln yi = α0 + β0Si + ραvvi + ρβvSivi + ωi (27)

where

E[ωi|Si, vi, Sivi] = 0

and now the inclusion of control functions vi and Sivi, render least squares

consistent (see Garen (1984), for example).
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Again note that this is very specific to the continuous schooling measure

Si in the one factor model and the additively separable model for Si. Finally,

as we noted above, in the homogeneous one factor model the control function

approach reduces to a regression of log earnings on schooling Si including the

reduced form error vi as an additional regressor

ln yi = α0 + β0Si + ραvvi + ωi where E[ωi|Si, vi] = 0 (28)

The estimation of α and β by the inclusion of vi in this homogeneous returns

specification is also exactly equivalent to the IV approach.

3.3.5 Some Drawbacks of CF

The control function approach allows for heterogeneity in a multiple treat-

ment model but at the cost of being able to construct a set of control function

- one for each treatment - that have independent variation. This places strong

demands on instrument availability. That is an excluded instrument is required

for each treatment. Moreover, a functional form assumption is typically made

on the control function. This is equivalent to making an assumption on the

distribution of unobservables.

It is true that the distributional assumptions can be relaxed, following the

recent developments in the semiparametric selection model literature, but the

requirement on excluded instruments can only be weakened by strengthening

the model for the treatment choices. For example, in the application below we

exploit the sequential nature of educational qualifications to estimate an ordered

Probit model from which the control functions for each qualification level can

be derived. In that example a single instrument would be sufficient.

3.4 Matching Methods

The matching method is a (non-parametric) approach to the problem of

identifying the treatment impact on outcomes. The main purpose of matching
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is to re-establish the conditions of an experiment when no such data is available.

As discussed earlier, in the case of a social experiment, random assignment of

individuals to treatment ensures that potential outcomes are independent of

treatment status, which allows one to compare the treated and the non-treated

directly, without having to impose any structure on the problem.

The matching method attempts to mimic an experiment by choosing a com-

parison group from all the non-treated such that the selected group is as similar

as possible to the treatment group in terms of their observable characteristics.

Under the matching assumption that all the outcome-relevant differences be-

tween any two individuals are captured in their observable attributes, the only

remaining difference between the two groups is programme participation, so

that the outcomes of the matched non-treated individuals constitute the correct

sample counterpart for the missing information on the outcomes of the treated

had they not been treated9.

The central issue in the matching method is choosing the appropriate match-

ing variables. We will point out this is a knife edge decision as there can be too

many as well as too few to satisfy the assumptions for recovering a consistent

estimate of the treatment effect. In some ways this mirrors the issue in choosing

an appropriate excluded instrument in the IV and Control Function approaches

discussed above. However, it will become clear that instruments do not make

appropriate matching variables and visa versa. Instruments should satisfy an ex-

clusion condition in the outcome equation conditional on the treatment whereas

matching variables should impact on both the outcome and treatment equations.

3.4.1 General Matching Methods

To illustrate the matching solution for the average impact of the treatment

on the treated in a more formal way, consider a completely general specification

9This discussion refers to the estimation of the average treatment effect on the treated; for
the average effect of the non-treated, a symmetric procedure applies.
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of the earnings outcomes in the single discrete treatment case. Denote the

earnings outcome that would result if individual i were to receive the level

of education of interest as ln y1i , and let ln y
0
i be the earnings outcome if the

same individual were not to receive this education level. The actually observed

outcome ln yi can thus be expressed in terms of the potential outcomes and

of the observed treatment indicator S1i as ln yi = ln y0i + S1i(ln y
1
i − ln y0i ).

The solution to the missing counterfactual advanced by matching is based on

a fundamental assumption of conditional independence between non-treatment

outcomes and the schooling variable S1i:

MM: A1 ln y0 ⊥ S1 | X
or its weaker version:

MM: A1’ E(ln y0 | X, S1 = 1) = E(ln y0 | X, S1 = 0)
This assumption of selection on observables requires that, conditional on

observed attributes X, the distribution of the (counterfactual) outcome ln y0 in

the treated group is the same as the (observed) distribution of ln y0 in the non-

treated group. For each treated observation (ln yi : i ∈ {S1i = 1}) we can look
for a non-treated (set of) observation(s) (ln yi : i ∈ {S1i = 0}) with the same X-
realisation. Under the matching assumption that the chosen group of matched

controls - i.e. conditional on the X’s used to select them - does not differ from

the treatment group by any variable which is systematically linked to the non-

participation outcome ln y0, this matched control group constitutes the required

counterfactual. Actually, this is a process of re-building an experimental data

set.

For the matching procedure to have empirical content, it is also required

that

MM: A2 P (S1i = 1 | Xi) < 1 for Xi ∈ C∗

which guarantees that all treated individuals have a counterpart on the non-

treated population over the set of X values over which we seek to make a com-
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parison. Depending on the sample in use, this can be quite a strong requirement

(e.g. when the education level under consideration is directed to a well specified

group). If there are regions where the support of X does not overlap for the

treated and non-treated groups, matching has in fact to be performed over the

common support region; the estimated treatment effect has then to be rede-

fined as the mean treatment effect for those treated falling within the common

support.

Based on these conditions, a subset of comparable observations is formed

from the original sample, and with those a consistent estimator for the treat-

ment impact on the treated (within the common support C∗) is the empirical

counterpart of:

E(ln y1 − ln y0|S1 = 1, C∗)

= C∗ [E(ln y
1 | X, S1 = 1)−E(ln y0 | X, S1 = 1)] dF (X | S1 = 1)

C∗ dF (X | S = 1)

= C∗ [E(ln y
1 | X, S1 = 1)−E(ln y0 | X, S1 = 0)] dF (X | S1 = 1)

C∗ dF (X | S = 1)

= C∗ [E(ln y | X, S1 = 1)−E(ln y | X, S1 = 0)] dF (X | S1 = 1)
C∗ dF (X | S = 1)

If the second assumption is fulfilled and the two populations are large enough,

the common support is the entire support of both. Note that this estimator is,

simply, the mean difference in earnings on the common support, appropriately

weighted by the distribution of participants.

If we are also interested in using matching to recover an estimate of the

treatment on the non-treated, as we do in our application to the NCDS data,

we need to extend MM: A1 to include ln y1and MM: A2 to 0 < P (S1i = 1 | Xi)
for Xi ∈ C∗.
As it should now be clear, the matching method avoids defining a specific

form for the outcome equation, decision process or either unobservable term.

We simply need to ensure that, given the right observables X, the observations
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of non-participants are statistically what the participants’ observations would

have been had they not participated. Under a slightly different perspective, it

might be said that we are decomposing the conditional treatment effect in the

following way:

E(ln y1 − ln y0|X,S1 = 1) =

{E(ln y1|X,S1 = 1)−E(ln y0|X,S1 = 0)}−

{E(ln y0|X,S1 = 1)−E(ln y0|X,S1 = 0)}

The latter term is the bias conditional on X, which under the matching assump-

tion MM:A1’ is zero.

Heckman, Ichimura, Smith and Todd (1998) use experimental data to pro-

vide a very useful breakdown of the bias which arises when the treatment on the

treated parameter is estimated using the earnings of the observed group with

S1i = 0 (ln y0 | X,S1i = 0) to construct the counterfactual, rather than the

true counterfactual (ln y0 | X,S1i = 1). They show that the bias term can be

decomposed in three distinct parts:

bias = E(ln y0 | X,S1i = 1)−E(ln y0 | X,S1i = 0) = B1 +B2 +B3

where B1 represents the bias component due to non-overlapping support of

X; B2 is the error part due to misweighting on the common support of X

as the resulting empirical distributions of treated and non-treated are not the

same even when restricted to the same support; and B3 is the true econometric

selection bias resulting from “selection on unobservables”. Through the process

of choosing and re-weighting observations, matching corrects for the first two

sources of bias. Arguing the importance of the remaining source of bias amounts

to arguing the inadequacy of the conditional independence assumption (MM:

A1) in the specific problem at hand, which should be done in relation to the
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richness of the available observables (i.e. the data X) in connection to the

selection/outcome processes.

3.4.2 Propensity Score Matching

It is clear that when a wide range of variables X is in use, matching can

be very difficult to implement due to the high dimensionality of the problem. A

more feasible alternative based on the results of Rosenbaum and Rubin (1983)

is to match on a balancing score, that is a function of the observables X, b(X),

with the property: X ⊥ S1 | b(X). This is usually carried out on the propensity
score, the propensity to participate given the full set of observed characteristics:

p(Xi) ≡ P (S1i = 1 | Xi). By definition, treatment and non-treatment observa-
tions with the same value of the propensity score have the same distribution of

the full vector of regressors X. Rosenbaum and Rubin have further shown that

under MM: A1 and MM: A2, that is when

ln y1, ln y0 ⊥ S1 | X and 0 < p(X) < 1

then

ln y1, ln y0 ⊥ S1 | p(X)

In other words, the conditional independence remains valid if p(X) - a scalar

variable on the unit interval - is used for matching rather than the complete

vector of X. Under the two matching assumptions, a matched sample at each

propensity score p(X) is thus equivalent to a random sample: conditioning on

the propensity score, each individual has the same probability of assignment to

treatment, as in a randomised experiment, so that individuals with the same

value of p(X) but a different treatment status can act as controls for each

other. At any value of p(X), the difference between the treatment and the

non-treatment averages is thus an unbiased estimate of the average treatment
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effect at that value of p(X), and the estimate of matching can be thought of as

a weighted average of the estimates from a series of mini random experiments

at the different values of p(X).

3.4.3 Implementing Propensity Score Matching Estimators

The main idea of matching is to pair to each treated individual i some group of

‘comparable’ non-treated individuals and to then associate to the outcome ln yi

of treated i, a matched outcome ln yi given by the (weighted) outcomes of his

‘neighbours’ in the comparison group.

The general form of the matching estimator for the average effect of treat-

ment on the treated (within the common support) is then given by

βMM =
i∈{S1i=1∩C∗}

ln yi − ln yi wi

with wi typically set equal to 1/N∗1 (N∗1 being the number of treated individuals

falling within the common support C∗).

The general form for the outcome to be paired to treated i’s outcome is

ln yi =
j∈C0(pi)

Wij ln yj (29)

where

• C0(pi) defines treated i’s neighbours in the comparison group (where prox-
imity is in terms of their propensity score to i’s propensity score, pi) and

• Wij ∈ [0, 1] with j∈C0(pi)
Wij = 1 is the weight placed on observation j

in forming a comparison with treated observation i.

The different matching estimators differ in how they construct the matched

outcome ln y, that is in how they define the neighbourhood for the control group

for each treated observation. They also differ in how they choose the weights

for the control group.
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The traditional and most intuitive form of matching is nearest-neighbour

matching, which associates to the outcome of treated unit i a ‘matched’ outcome

given by the outcome of the most observably similar control unit ki. This

amounts to defining C0(pi) as a singleton:

C0(pi) = ki ∈ {S1 = 0} : |pi − pki | = min
j∈{S1=0}

{|pi − pj |}

and setting Wij = 1(j = ki) (ie. giving a unity weight to the closest control

observation and zero to any other).

In our application below we use a variant of nearest-neighbour matching,

caliper matching (see Cochran and Rubin (1973) and for a recent application,

Dehejia and Wahba (1999)). The ‘caliper’ is used to exclude observations for

which there is no close match, thus allowing to better enforce common support

on the propensity score. This involves matching treated individual i with its

nearest-neighbour non-treated individual j provided that:

δ > |pi − pj | = min
k∈{S1=0}

{|pi − pk|}

If none of the non-treated individuals are within a certain predefined absolute

distance or caliper δ of the treated individual i under consideration, individual

i is left unmatched.

A different class of matching estimators has been recently proposed by Heck-

man, Ichimura and Todd (1997) and (1998), Heckman, Ichimura, Smith and

Todd (1998). In kernel-based matching, the outcome ln yi of treated individ-

ual i is matched to a weighted average of the outcomes of more (possibly all)

non-treated individuals, where the weight given to non-treated individual j is

in proportion to the closeness of the propensity scores of i and j. That is, the

weight in equation (29) above is set to:

Wij =
K

pi−pj
h

j∈C0(pi)
K

pi−pj
h
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where h is the bandwidth and K(.) is the kernel.

With e.g. the Gaussian kernel, K(u) ∝ exp{−u2/2} and all the non-treated
units are used to smooth at pi, that is C0(pi) = {j : S1j = 0}. By contrast,
with the Epanechnikov kernel, K(u) ∝ (1− u2) · 1(|u| < 1) and thus only those
non-treated units whose propensity score falls within a fixed ‘caliper’ of h from

pi are used to smooth at pi, that is C0(pi) = {j ∈ {S1 = 0} : |pi − pj | < h}.
Typically with kernel-based matching ‘common support’ is imposed on treated

individuals, that is those treated whose propensity score is larger than the largest

propensity score in the non-treated pool are left unmatched.

3.4.4 Multiple Treatments - Mahalanobis metric matching

The most attractive feature of propensity score matching methods is the fact

that they allow to select individuals based on a single variable (nearest-neighbour

matching), or to non-parametrically smooth outcomes on a single variable (kernel-

based matching). The idea underlyingMahalanobis metric matching is to reduce

the dimensionality of the matching problem by first combining the variables one

wants to match on into a distance measure and to then match on the result-

ing scalar variable. Choosing the Mahalanobis distance defined below has the

advantage of offering a unit free metric, which is essential when the matching

variables have different units. Rubin (1979) and (1980) and Rosenbaum and

Rubin (1985) have looked at Mahalanobis metric matching as an alternative

to, as well as in combination with, propensity score matching, by comparing

the performance of matching estimators based on the propensity score alone,

on the X’s combined into a distance measure or on the X’s together with the

propensity score combined into a distance measure.

Even when one decides in favour of propensity score matching, however,

in some settings one may need to match on more than one propensity score.

In particular, when individuals can receive a set of different treatments, ade-
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quately controlling for observed differences may require matching on two scores

(for a very recent application to a framework of mutually exclusive multiple

treatments, see Lechner (2001)). In our application to the multiple treatment

framework below, we will need to match on three scores.

In such situations, the different scores can be first combined into a distance

metric. Formally, if matching needs to be performed on k > 1 scores, the

formulae for the different types of estimators described above continue to apply

after replacing pi − pj with the Mahalanobis distance d(i, j) defined as:

d(i, j) = (Pi −Pj)W−1(Pi −Pj)

wherePi is the k×1 vector of scores of individual i,Pj is the k×1 vector of scores
of individual j and W is the pooled within-sample (k × k) covariance matrix
of P based on the sub-samples of the treated and complete non-treated pool.

This metric effectively weights each co-ordinate in proportion to the inverse of

the variance of that co-ordinate.

3.4.5 Some Drawbacks to Matching

The most obvious criticism that may be directed to the matching approach is

the fact that the identifying conditional independence assumption (MM: A1) on

which the method relies is in general a very strong one. As mentioned above,

the plausibility of such an assumption should always be discussed on a case-

by-case basis, with account being taken of the informational richness of the

available dataset (X) in relation to the institutional set-up where selection into

the treatment takes place.

Furthermore, the common support requirement implicit in MM: A2 may at

times prove quite restrictive. In the case of social experiments, randomisation

generates a comparison group for each X in the population of the treated,

so that the average effect of the treatment can be estimated over the entire
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support. By contrast, under the conditional independence assumption matching

generates a comparison group, but only for those X values that satisfy MM: A2.

In some cases, matching may not succeed in finding a non-treated observation

with similar propensity score for all of the participants. If MM: A2 fails for

some subgroup(s) of the participants, the estimated treatment effect has then

to be redefined as the mean treatment effect for those treated falling within the

common support.

If the impact of treatment is homogeneous, at least within the treated group,

no additional problems arises besides the loss of information. Note, however,

that the setting is general enough to include the heterogeneous case. If the

impact of participation differs across treated individuals, restricting to the com-

mon subset may actually change the parameter being estimated; in other words,

it is possible that the estimated impact does not represent the mean outcome

of the programme, so that we are unable to identify βT . This is certainly a

drawback of matching in respect to randomised experiments; when compared

to standard parametric methods, though, it can be viewed as the price to pay

for not resorting to the specification of a functional relationship allowing to ex-

trapolate outside the common support. In fact, the absence of good overlap

may in general cast doubts as to the robustness of traditional methods relying

on functional form.

4 Measuring Returns in the NCDS: The Data

In this section we compare the different estimation approaches outlined in

Section 3. We begin by comparing the wage outcomes of those individuals who

obtain some qualifications (qualifications) with those who obtain no qualifica-

tions (no qualifications). We do this so that we can compare different regression

(parametric) based estimates of the returns to obtaining qualifications with sin-
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gle treatment matching techniques. We then go on to consider the sequence

of multiple treatments (O levels or equivalent, A levels or equivalent, higher

education) and again compare parametric based estimates of the returns to

these different education paths, with estimates derived from multiple treatment

matching approaches.

4.1 Single Treatment Models - qualifications versus no
qualifications

The estimated returns to obtaining qualifications versus leaving education

with no qualifications are shown in Table 1. The “treated” are all those obtain-

ing at least an O-level qualifications or equivalent and we would expect a wide

range of returns among this group. We begin by comparing the different regres-

sion based estimates. Specification (i) gives the OLS estimate when we only

use minimal controls (region and ethnicity). We see from Table 1 that for this

basic specification the estimated return to staying on for men is 37.0%. When

we include ability and school type variables (specification (ii)) these estimates

fall. The estimate for is reduced to 27.5%. There is a further fall when we also

include standard family background variables10, with the estimated return for

this sample of men being 25.5%.

The Instrumental Variable and Control Function Results: The next

two specifications in Table 1 allow the education variable to be endogenous. In

the first of these, specification (iv), we include controls for region and ethnicity

alone (i.e. the same as specification (i)) and use the standard family background

variables (set I) as instruments for staying-on. The IV estimates of the returns

to staying on are significantly higher at 78.6%. However, we should note that the

overidentifying restrictions are overwhelmingly rejected suggesting misspecifica-

10The family background variables that we include are parent’s education, age,
education×age, father’s social class when child was 16 (six dummies), mother’s employment
status when the child was 16, and the number of siblings the child had at 16.

37



tion. In specification (v) we instead include these family background variables

as controls in the regression together with ability and school type variables(as

in specification (iii)) and use more credible instruments, set II. These are the

number of older siblings the child has (which controlling for total number of

siblings is exogenous), whether the family was experiencing financial difficulties

in 1969 or 1974, and finally parental interest in the child’s education at the age

of seven as assessed by the child’s teacher11. The IV estimates using this set

II instruments are still higher than least squares with controls but have fallen

back to 47.4%12.

The large increase in estimated returns over the corresponding OLS spec-

ifications probably reflect three factors. These factors are always important

to consider when interpreting IV estimates of returns. The first relates to the

discussion of the Local Average Treatment Effect - LATE. In that discussion

we noted that the IV estimator, in the heterogeneous returns single treatment

model, will depend on the choice of instrument and the group of individuals

whose schooling is impacted by the instrument. Here the important instru-

ments for specification (iv) relate to parent’s education and social class, whereas

in specification (v) they relate to birth order, parent’s interest in the child’s ed-

ucation and bad financial problems for the family. It could well be that the

average return within this group who would otherwise have completed qualifi-

cations is high. The third relates to measurement error. This would also result

in an increase over the OLS estimates but it is unlikely that there is serious

measurement error in these recorded education levels. The third factor relates

to the use of invalid instruments. This will induce an upward bias in the return.

Some experiments we have conducted suggest that certain of the instruments

used in specification (iv)- fathers and mother’s education, for example - may be

11For both the mother and father we have 3 dummy variables corresponding to “expects
too much”, “very interested” and “some interest”.
12The Sargan test does not reject the validity of the instruments: p-value 0.317.
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invalid instruments.

Overall the high values for these IV estimates probably reflect the extreme

heterogeneous nature of the group who obtain qualifications and emphasise the

extreme caution with which instrumental variable estimates of rates of return

should be treated. This is confirmed by the results from the control function

model which specifically allows for heterogeneity in the returns to qualifications.

This control function model is simply a more general version of the endogenous

treatment effects model, in that the only difference is that the inverse mill ratio is

now fully interacted with our qualifications dummy. Our estimate of the return

to qualifications is further reduced to 37.7%. We reject the null hypothesis of

homogeneous returns for those with qualifications13. These estimates are almost

identical to those of specification (i) where we have only controlled for region

and ethnicity. In the full multiple treatment model below, the corresponding

IV estimates remain higher than the OLS results, however they appear more

reasonable and stable across specifications.

The Matching Results: We now move on to our matching estimates. We

adopt two sorts of matching, one-to-one matching with replacement (nearest

neighbour matching) and kernel based matching using the Epanechnikov kernel.

We estimate a probit model of qualifications versus no qualifications and match

on the predicted probability of obtaining qualifications from this model. We

estimate the effect of obtaining qualifications for those who actually obtained

these qualifications (treatment on the treated) and for those who did not obtain

qualifications (treatment on the non-treated). The first involves matching each

person who obtained a qualification, with somebody who looks like them, but

did not obtain any qualifications. The differences in wages between these two

groups (each of equal size) is the estimated effect of obtaining a qualification
13The coefficients on the control functions (see section 3) are -0.003 (0.047) for no qualifi-

cations and -0.278 (0.109) for qualifications.
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for those who did so (those who did not obtain a qualification can be used

more than once). With kernel density matching, the wage of each individual

who obtained a qualification is compared with the weighted average of wages

for all individuals who did obtain a qualification who fall within a specified

bandwidth. Again the difference in wage outcomes gives us our estimate of the

effect of obtaining a qualification, for those who did undertake a qualification.

The second involves matching everyone who did not obtain a qualification, with

a person who looked like them, but did obtain a qualification. The difference

between the outcomes for these two groups gives an estimate of what this group

would have received, if they had instead decided to undertake a qualification. To

ensure common support, we impose a caliper of 0.0025 for our nearest neighbour

matching and a bandwidth of 0.06 for our kernel based matching14 . We also

report the estimate when common support is not imposed.

If we look at the results for men in Table 1 we see that the estimated return

to obtaining a qualification for those who actually undertook the qualification

(treatment on the treated) is around 31 to 35 %15, whereas the estimated return

for those who did not (treatment on the non-treated) is around 23 to 24 %, a

significant difference of around 10 percentage points. The treatment on the

treated results are somewhere between our highest and lowest OLS estimates

but below our IV and CF estimates whereas the treated on the non-treated

results are below all these estimates. These results suggest that if those who

have no qualifications were to undertake them, they would receive a lower return

than the group who had already undertaken them.

14We experimented with the sensitivity of our estimates to the caliper and bandwidths used
but this made little difference to our estimates.
15We focus on the results where common support has been imposed.
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Table 1: The returns to obtaining a school qualification - NCDS Men
Estimation Coef (S.E.) No.

technique and specification: obs

OLS:

(i) region and ethnicity 0.370 (0.017) 3639

(ii) — (i) + ability & school type variables 0.275 (0.017) 3639

(iii) — (ii) + family background (excl instruments) 0.255 (0.017) 3639

Instrumental Variables:

(iv) — (i) using set I instruments 0.786 (0.038) 3639

(v) — (iii) using set II instruments 0.474 (0.082) 3639

Control Function:

(vi) — (iii) using set II instruments 0.377 (0.094) 3639

Matching - Effect of treatment on the treated:

(vii) Nearest neighbour - all obs 0.346 (0.034) 2988

(viii) Nearest neighbour - caliper (0.0025) 0.352 (0.033) 2815

(ix) Kernel weighting - all obs 0.334 (0.025) 2988

(x) Kernel weighting - bandwidth(0.06) 0.313 (0.025) 2795

Matching - Effect of treatment on the non-treated:

(xi) Nearest neighbour - all obs 0.231 (0.028) 651

(xii) Nearest neighbour - caliper(0.0025) 0.242 (0.028) 619

(xiii) Kernel weighting - all obs 0.235 (0.020) 646

(xiv) Kernel weighting -bandwidth (0.06) 0.236 (0.019) 643

Note: Matching standard errors are bootstrapped (390 replications)
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4.2 The Multiple Treatment Model

We now turn to a more disaggregated analysis that focuses on the sequential

nature of educational qualifications. To this end we separate the qualifications

variable into those who stopped education after completing O levels or equiva-

lent, those who stopped after completing A levels or equivalent, and those who

completed O levels, A levels and higher education (HE). In this sequential model

we exploit the ordering of our outcomes. For the control function estimates we

use an ordered probit model in our first stage for these three levels of education

over the base16. Our matching estimator uses an adaption of the propensity

score matching method for multiple sequential treatments and this is described

in detail in Appendix A.

The Instrumental Variable and Control Function Results: The OLS,

IV and control function results are shown in Table 2. The return to higher

education versus no qualifications is obtained by adding the return to O levels

or equivalent, the return to an A level or equivalent and the return to HE.

Overall the results have a distinct pattern. Controlling for ability and school

type is important and reduces the return to education at all levels. The IV

results are higher than the OLS results. The Control Function estimates are

somewhat smaller than the IV estimates but lie above the OLS estimates.

These results are enormously informative. The fact that OLS estimates of

the impact of education on earnings are lower than either the IV or CF estimates

suggests that there is some attenuation bias in OLS most likely due to measure-

ment error. The finding that IV is often higher than CF is strong evidence of

heterogeneous responses, the IV estimate picking out some local average effect

16From this we calculate the control function terms described in Section 3. In this approach
the control functions are interacted with each of the qualification levels. Standard errors
are corrected to take into account the generated regressor(s) in the model as well as for
heterescedasticity.
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Table 2: Regression estimates of the returns to qualifications - NCDS Men
(i) (ii) (iii) (iv) (v)

Variable OLS Basic OLS Full set of IV IV CF
Specification controls Spec (i) Spec (ii) Spec (ii)

O level or equivalent 0.207 0.166 0.315 0.289 0.221
(0.018) (0.018) (0.053) (0.010) (0.010)

A level or equivalent 0.094 0.077 0.170 0.166 0.155
(0.016) (0.016) (0.035) (0.068) (0.137)

HE 0.298 0.249 0.393 0.373 0.331
(0.016) (0.016) (0.029) (0.063) (0.153)

Number of observation 3639 3639 3639 3639 3639

which, as we have already indicated, can be quite high in certain subpopulations.

Among these estimates the CF estimate is probably the most reliable estimate

of the average impact of each education level on gross earnings17. The results

show significant overall returns to educational qualifications at each stage of

the educational process even after correcting for detailed background variables

and ability differences, as well as allowing for heterogeneity in the education

response parameters.

The Matching Results: To implement our adapted propensity score match-

ing method for this sequential treatment case, we estimated three propensity

scores. We used the full set of variables available for matching but do not include

our set II instruments which we argued impacted on the education treatment

level but not directly (conditional on treatment) on the earning outcome. Such

instruments are not appropriate matching variables. The first was a probit of

qualifications (O levels, A levels and HE) versus no qualifications; the second

was a probit of A-levels and HE versus O levels; and the third was a probit of

higher education versus A levels. On the basis of these three probits we es-

timated the unconditional probability of undertaking each of our 3 treatments

and no qualifications (which in Appendix A we denote by r(j,X), j − 0, 1, 2, 3)
for our whole sample, including those who did not make particular qualification

17The coefficients on the control functions are -0.061 (0.070) for no qualifications; -0.099
(0.056) for O levels; -0.121(0.063) for A levels; and -0.084 (0.067) for HE.
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transitions. We then compared the outcomes across each of our four groups,

matching on the appropriate one dimensional propensity score for the particu-

lar transition in question which again is defined in Appendix A.

Our approach involves estimating the incremental return to each of our three

qualifications by actual qualification. For those with no qualifications, we es-

timate the returns they would have got if they had undertaken each of the

three qualifications (treatment on the non-treated). For those with O level

qualifications we estimate the return they obtained for taking that qualification

(treatment on the treated) and the returns they would have obtained if they

had progressed to A levels or HE (treatment on the non-treated). For those

with A levels we estimate the returns they obtained for undertaking O and A

level qualifications (treatment on the treated) and the returns they would have

obtained if they had progressed to HE (treatment on the non-treated). For

those with HE all estimates are treatment on the treated. In all of our tables

we italicise treatment on the non-treated results.

We present three sets of results. The first set of results uses nearest neighbour

matching but does not impose common support. The second set uses nearest

neighbour matching but only accepts matches within a caliper of 0.0025 and

only includes individuals who are matched for every possible transition (so that

we can make comparisons across the same sets of individuals). The third set

uses kernel density matching using a bandwidth of 0.06 and again only includes

individuals who are matched at every possible transition. The results of doing

this are given in Table 3.

Focusing on the results in Table 3, we see that the estimate of a return to an

O level is generally lower when we impose common support (with the exception

of the effect estimated using nearest neighbour for those with no qualifications).

If we focus on the treatment on the treated results the estimates of the re-

turns are very close using both methods and rise with the actual qualification
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Table 3: Multiple Treatment Matching Results - NCDS Men
Actual Estimated Returns Number

Qualification: O level A level HE of

Est (SE) Est (SE) Est (SE) observations

None:

Nearest neighbour - all obs 0.245 (0.032) 0.023 (0.042) 0.286 (0.052) 651

Nearest neighbour - cal (0.0025) 0.270 (0.038) 0.054 (0.045) 0.258 (0.047) 443

Kernel denisty - bdwith (0.06) 0.150 (0.021) 0.065 (0.023) 0.273 (0.035) 619

O level:

Nearest neighbour - all obs 0.189 (0.030) 0.179 (0.025) 0.226 (0.034) 993

Nearest neighbour - cal (0.0025) 0.177 (0.032) 0.185 (0.031) 0.235 (0.036) 716

Kernel denisty - bdwith (0.06) 0.174 (0.022) 0.066 (0.018) 0.257 (0.021) 970

A level:

Nearest neighbour - all obs 0.231 (0.039) 0.062 (0.026) 0.367 (0.028) 965

Nearest neighbour - cal (0.0025) 0.208 (0.039) 0.053 (0.031) 0.368 (0.033) 726

Kernel denisty - bdwith (0.06) 0.187 (0.026) 0.064 (0.018) 0.260 (0.020) 922

HE:

Nearest neighbour - all obs 0.267 (0.064) 0.076 (0.045) 0.240 (0.031) 1030

Nearest neighbour - cal (0.0025) 0.250 (0.049) 0.036 (0.045) 0.263 (0.036) 595

Kernel denisty - bdwith (0.06) 0.241 (0.041) 0.077 (0.024) 0.227 (0.021) 897

Note: Treatment on the non-treated estimates italicised. Matching standard errors are

bootstrapped (390 replications)
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obtained. The estimates range from 17.4% for those with O levels to 25% for

those with HE qualifications. They are very close (on average) to the results

we obtained from the control function method (22.1%). The results for treat-

ment on the non-treated are more ambiguous. The nearest neighbour method

estimates an effect of 27.0% compared to an estimate of 15.0% using the kernel

density method. This illustrates clearly the problems in choosing an appropriate

matching strategy and the sensitivity of some matching results to the estima-

tion technique chosen. In our results it appears to be a particular problem with

some of the treatment on the non-treated estimates.

If we now turn to the estimates of the returns to A levels we see that the

treatment on the treated returns range between 3.6% and 7.7% which are unam-

biguously lower than all our regression based estimates. Most of the treatment

on the non-treated estimates range between 5.4% to 6.6%, but there is an es-

timate of 18.5% for those with O levels using nearest neighbour techniques.

Finally if we look at the return to HE estimates we see that with the exception

of nearest neighbour matching for those with A levels (which has an estimate of

36.8%), the estimates range between 22.7% and 27.3%. These latter estimates

are close to the OLS estimates whereas the former result is closer to the IV

and CF results. Interestingly, for HE the matching results suggest the effect

of treatment on the non-treated may be higher than treatment on the treated

which has very interesting policy implications. This dimension was missed in

our single treatment model.

5 Summary and Conclusions

The aim of this paper has been to review alternative methods and models

for the estimation of the effect of education on earnings, and to apply these to

a high quality common data source. We have highlighted the importance of the
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model specification. In particular, the distinction between single treatment and

multiple treatment models. Also the importance of allowing for heterogeneous

returns - that is returns that vary across individuals for the same educational

qualification. We considered three main estimation methods which rely on dif-

ferent identifying assumptions - instrumental variable methods, control function

methods and propensity score matching methods. In each case the properties

were analysed distinguishing between a single treatment model and a model

where there are a sequence of possible treatments. The sequential multiple

treatment model we argued is well suited to the education returns formulation

where educational qualification levels in formal schooling tend to be cumulative.

With heterogeneous returns defining the ‘parameter of interest’ is central.

We distinguished four possible parameters of interest: the treatment on the

treated, the local average treatment effect, the average treatment effect and

the impact of treatment on the non-treated. In the homogeneous effects model

these were all equal but in the heterogeneous effects model they can differ sub-

stantially. Which is of interest will depend on the policy question. Moreover,

different estimation methods were shown to identify different parameters of in-

terest.

Our application was to NCDS 1958 birth cohort study for Britain. This data

is ideally suited for evaluating the impact of education on earnings using non-

experimental data and is sufficiently rich to allow the comparison of matching,

control function and instrumental variable methods. First there are extensive

and commonly administered ability tests at early ages. Second there are accu-

rately measured family background and school type variables ideal for matching.

Finally there are variables that are very likely to influence schooling but not

wage outcomes, such us temporary financial difficulties among the parents and

the composition of siblings. These make good choices for excluded instruments

in the application of instrumental variables or control function methods.
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The application showed the importance of allowing for schooling choices to

depend on family background variables, financial constraints, etc. - as well as

ability. Among the estimators used we found that OLS was very sensitive to

the inclusion of ability measures and family background variables. In general

these tended to reduce the estimated return. But there was strong evidence

of heterogeneous returns with the instrumental variable estimator often much

higher than OLS and by more than could be explained from attenuation bias

caused by measurement error in the qualification level data.
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A Appendix A: A Balancing Score for Sequen-
tial Multiple Treatments

In the educational context, we can view the sequential treatments (basic edu-

cation, O-levels, A-levels, higher education) in a dose-response framework (cf.

Imbens, 2000). Like a drug which can be applied in different doses, the se-

quential treatments would thus correspond to ordered levels of a treatment —

education (or investment in human capital). We focus on continuous education,

where individuals take uninterrupted sequential decisions of an incremental na-

ture: at each point, they can either stop or move on to the next educational

level.
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We consider four treatments: D ∈ {0, 1, 2, 3}

• D = 0 for stopping at basic (i.e. no qualifications)

• D = 1 for stopping at O-Levels (i.e. stay on and stop with O-levels)

• D = 2 for stopping at A-Levels (i.e. stay on, take O-levels and stop with

A-levels)

• D = 3 for stopping at Higher Education (i.e. stay on, take O-levels, take

A-levels and stop with HE)

Incidentally, we can link this analysis to the dynamic programme evaluation

framework recently suggested by Lechner and Miquel (2001). In our case of an

obliged chain of educational choices, we only have a restricted set of possible

sequences, four in fact. In addition, in each period there is only one type (and

in fact a different type) of treatment available.

Consider four periods: in period 0 everyone achieves basic qualifications, in

period 1 the relevant choice is whether to take O-levels or not; in period 2 the

only treatment available is A-levels but only provided one has achieved O-levels

in the previous period; while the treatment in period 3 is higher education but

available only for those with A-levels. Outcome Y is then observed after period

3 (at age 33). The four possible sequences, corresponding to the four values of

D defined above, are thus:

t 0 1 2 3
D = 0 1 0 0 0
D = 1 1 1 0 0
D = 2 1 1 1 0
D = 3 1 1 1 1

Define the sequence of treatments, each received at the beginning of each

period t, as S = (S0, S1, S2, S3), in our case, S0 = 1 for all; for t = 1, 2, 3,

St ∈ {0, 1} and St = 1 =⇒ St−1 = 1.

The sequential nature of the decision process is captured by the modelling

of the choice probabilities as follows:

Define
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• r(j, x) ≡ Pr{D = j|X = x} for j = 0, 1, 2, 3.
Further define the following probabilities:

• P 1(x) ≡ Pr{(OL ∨AL ∨HE) = 1|X = x} - the stay-on probability

• P 2(x) ≡ Pr{(AL ∨HE) = 1|OL = 1,X = x}

• P 3(x) ≡ Pr{HE = 1|AL = 1,X = x}
Thus we have:

D =


0 r(0, x) = 1− P 1(x)
1 r(1, x) = (1− P 2(x))P 1(x)
2 r(2, x) = (1− P 3(x))P 2(x)P 1(x)
3 r(3, x) = P 3(x)P 2(x)P 1(x)

Let Y k denote the outcome, Y ≡ lny, if the individual were to receive treatment
(or education level) k.

We are interested in the following 12 pairwise comparisons of the effects of

treatments (education levels) m and l, with m, l ∈ {0, 1, 2, 3} and m > l:

E(Y m − Y l | D = j)
for j =m (effect on the treated) and j = l (effect on the non-treated).

Note that in the framework by Lechner and Miquel (2001), evaluating the

impact of stopping at one education level versus stopping at another one for

those individuals who have stopped at one of such levels amounts to evaluat-

ing the effect of one sequence of treatments compared to another sequence of

treatments (each of length four) for those individuals who have followed a given

sequence.

In our case, we need to identify all the counterfactuals of the type:

E(Ym | D = l) and E(Y l | D = m)
(More precisely, we need to identify E(Y k | D = j) for
(k, j) = (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3) (effect on the treated)

as well as for

(k, j) = (1, 0), (2, 0), (3, 0), (2, 1), (3, 1), (3, 2) (effect on the non-treated). )

An extension of the conditional independence assumption MM: A1 that

would allow to identify them is what Imbens (2000) termed ‘strong unconfound-

edness’:

{Y 0, Y 1, Y 2, Y 3} ⊥ D| X0 = x0
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This CIA corresponds to Lechner and Miquel (2001) full CIA Assumption 2-I or

2-II, and can be rewritten in terms of potential outcomes each one corresponding

to one of the sequences of treatments:

Y 1000, Y 1100, Y 1110, Y 1111 ⊥ St | X0 for all t = 1, 2, 3

In words, conditional on the information observed prior to period 0, X0, as-

signment to treatment in each period is independent of potential outcomes, in

particular it is not affected by any new information related to the outcomes that

may arrive in between schooling choices.

This implies that the complete treatment sequence, in our case the maximum

level of education attained, is chosen at the beginning of period 0 — just as the

dose of a drug is decided at the start — based on the information contained in

X0.

The assumption that subsequent schooling choices are not affected by the

outcomes of the schooling decisions in the previous periods hinges on the absence

of intermediate outcomes on which to possibly base future S decisions. This

amounts to ruling out ‘intermittent’ educational choices - where an individual

achieves a level of education, drops out of the education system, observes the

corresponding outcomes (both in terms of Y and of possibly endogenous X’s)

and then possibly decides on re-entering the schooling system for investment in

the next level of education.

Note however that the weaker form (implied by strong unconfoundedness)

would suffice to our purposes:

{Y l, Y m} ⊥ D| X0 = x0,D ∈ {l,m}
for (l,m) = (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)

This relaxes the CIA above by requiring conditional independence to hold only

for the subpopulations receiving treatment m or treatment l (see Lechner 2001).

The common support assumption corresponding to MM: A2 is:

0 < r(j, x) ≡ Pr{D = j|X0 = x} < 1 for x ∈ C∗ and j = 0, 1, 2, 3

which for the P j s implies the requirements:

0 < P j(x) < 1 for x ∈ C∗ and j = 1, 2, 3.
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A.1 Looking for a balancing score

If we wanted the X s (in what follows we drop the time-0 subscript from X)

to be simultaneously balanced in the four groups defined by the highest level

of education attained, i.e. if we required the same distribution in four selected

(matched) subgroups of the four types of treated, we would need to look for a

function of the X s, b(X), such that (cf. Theorem 2 by Rosenbaum and Rubin,

1983 and Proposition 1 in Lechner 2001):

X ⊥ D | b(X)
⇐⇒ E(Pr{D = m|X} | b(X)) = Pr{D =m|X} ∀m = 0, 1, 2, 3

Setting up the corresponding system:
E(Pr{D = 0|X} | b(X)) =
E(Pr{D = 1|X} | b(X)) =
E(Pr{D = 2|X} | b(X)) =
E(Pr{D = 3|X} | b(X)) =

r(0, x) =
r(1, x) =
r(2, x) =
r(3, x) =

1− P1(X)
(1− P2(X))P 1(X)
(1− P3(X))P 2(X)P 1(X)
P 3(X)P 2(X)P 1(X)

Choosing either b(X) = {r(1, x), r(2, x), r(3, x)} or b(X) = {P 1(X), P 2(X), P 3(X)}
would solve the system. (Note that the dimensionality has been reduced by one;

this is allowed by the adding up of the treatment probabilities).

We are however just interested in the pairwise comparison of the various

levels of the treatment, so that the above balancing score may actually be more

restrictive than required for some type of comparison.

A.1.1 A balancing score for the pairwise comparisons

1. E(Y 1 − Y 0 | D = j) for j = 0, 1
In this case, we just need

X ⊥ D | b(X), D ∈ {0, 1}

which is verified if

E(Pr{D = 1|X,D ∈ {0, 1}}| b(X)) = Pr{D = 1|X,D ∈ {0, 1}}

One could use the propensity score:

Pr{D = 1|X, D ∈ {0, 1}} = r(1,X)

r(1,X) + r(0,X)
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which is itself a function of P 1(X) and P 2(X),

so that alternatively a balancing score for the problem is b(X) = {P 1(X), P 2(X)}.
For the other set of parameters, a finer score than the propensity score is

always the 3-dimensional b(X) = {P 1(X), P2(X), P 3(X)}:
When matching on the 1-dimensional propensity score, imposing common

support can be done in terms of this scalar; when matching on the other

balancing scores -> imposed on each element.

2. E(Y 2 − Y 0 | D = j) for j = 0, 2
The propensity score is r(2,X)

r(2,X)+r(0,X) ,

so that a balancing score for the problem is b(X) = {P 1(X), P 2(X), P 3(X)}.

3. E(Y 2 − Y 1 | D = j) for j = 1, 2
The propensity score is r(2,X)

r(2,X)+r(1,X) ,

so that a balancing score for the problem is b(X) = {P 1(X), P 2(X), P 3(X)}.

4. E(Y 3 − Y 0 | D = j) for j = 0, 3
The propensity score is r(3,X)

r(3,X)+r(0,X) ,

so that a balancing score for the problem is b(X) = {P 1(X), P 2(X), P 3(X)}.

5. E(Y 3 − Y 1 | D = j) for j = 1, 3
The propensity score is r(3,X)

r(3,X)+r(1,X) ,

so that a balancing score for the problem is b(X) = {P 1(X), P 2(X), P 3(X)}.

6. E(Y 3 − Y 2 | D = j) for j = 2, 3
the propensity score is r(3,X)

r(3,X)+r(2,X) ,

so that a balancing score for the problem is b(X) = {P 1(X), P 2(X), P 3(X)}.
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Table 4: Appendix B: Summary Statistics: NCDS Men

Variable 3639 Observations
Mean (S.D.)

Real log hourly wage 1991 2.040 (0.433)
Qualifications:
O levels or equivalent 0.821 (0.383)
A levels or equivalent 0.548 (0.498)
Higher Education 0.283 (0.451)

White 0.969 (0.173)
Maths ability at 7:
5th quintile (highest) 0.212 (0.408)
4th quintile 0.190 (0.392)
3rd quintile 0.185 (0.389)
2nd quintile 0.158 (0.365)
1st quintile (lowest) 0.141 (0.348)

Reading ability at 7:
5th quintile (highest) 0.165 (0.371)
4th quintile 0.187 (0.390)
3rd quintile 0.188 (0.391)
2nd quintile 0.179 (0.383)
1st quintile (lowest) 0.166 (0.372)

Ability at 7 missing 0.115 (0.319)
Comprehensive school 1974 0.468 (0.499)
Secondary modern school 1974 0.162 (0.368)
Grammar school 1974 0.099 (0.299)
Private school 1974 0.052 (0.222)
Other school 1974 0.018 (0.134)
Father’s years of education 7.270 (4.827)
Father’s education missing 0.172 (0.377)
Mother’s years of education 7.342 (4.606)
Mother’s education missing 0.159 (0.366)
Father’s age 1974 43.171 (13.736)
Father’s age missing 0.075 (0.263)
Mother’s age 1974 41.475 (10.864)
Mother’s age missing 0.049 (0.216)
Father’s social class 1974:
Professional 0.044 (0.205)
Intermediate 0.145 (0.352)
Skilled non-manual 0.076 (0.265)
Skilled manual 0.297 (0.457)
Semi-skilled non-manual 0.010 (0.098)
Semi-skilled manual 0.095 (0.293)
missing 0.106 (0.308)

Mother employed 1974 0.513 (0.500)
Number of siblings 1.692 (1.789)
Number of siblings missing 0.106 (0.308)
Number of older siblings 0.821 (1.275)
Father’s interest in edn:
Expects too much 0.013 (0.114)
Very interested 0.252 (0.434)
Some interest 0.215 (0.411)

Mother’s interest in edn:
Expects too much 0.032 (0.175)
Very interested 0.344 (0.475)
Some interest 0.354 (0.478)

Bad finances 1969 or 1974 0.159 (0.365)
Region 1974:
North Western 0.100 (0.300)
North 0.070 (0.256)
East & West Riding 0.079 (0.270)
North Midlands 0.072 (0.258)
Eastern 0.073 (0.261)
London & South East 0.143 (0.350)
Southern 0.057 (0.232)
South Western 0.061 (0.240)
Midlands 0.088 (0.283)
Wales 0.054 (0.227)
Scotland 0.096 (0.295)
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