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Abstract

Wind speed data are of particular importance in the design and management of wind power projects. In the current 
study, three types of linear time series models including autoregressive (AR), moving average (MA), and autoregressive 
moving average (ARMA) were employed to estimate short-term (i.e., daily) and long-term (i.e., monthly) wind speeds. The 
required data were gathered, respectively, from the Tabriz and Zahedan stations in the northwest and southeast of Iran. 
The MA models outperformed the AR and ARMA on the both daily and monthly scales. Daily and monthly wind speed 
values, as a function of lagged wind speed data, were then estimated using two machine learning models of random 
forests (RF) and multivariate adaptive regression splines (MARS). It was found that the RF and MARS provided similar 
results; however, RF performed slightly better than the MARS. Finally, the stand-alone time series and machine learning 
models were coupled to improve the accuracy of the wind speed estimation. Accordingly, the hybrid RF-AR, RF-MA, 
RF-ARMA, MARS-AR, MARS-MA, and MARS-ARMA models were implemented. It was concluded that, the hybrid models 
outperformed the stand-alone RF and MARS for both short- and long-term wind speed estimations where, the RF-AR 
and MARS-AR hybrid models provided the best performances. The hybrid models tested in the present study could be 
e�ective alternatives to the stand-alone machine learning-based RF and MARS models for the estimation of wind speed 
time series.
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1 Introduction

Wind speed a�ects decisions related to agriculture, mari-
time and air transport, urban air pollution management, 
and many other important domains. Recently, wind energy 
as a renewable energy source has received considerable 
attention worldwide, as the uncertainties inherent in our 
dependence on fossil fuels are increasingly recognized [1, 
2]. Wind energy plays a vital role in a sustainable future as 
an important and widely applicable green energy alterna-
tive [3]. The analysis of wind characteristics, such as speed, 

is essential for the design and implementation of wind 
energy projects; these characteristics directly a�ect the 
energy production potential of a wind power plant. Robust 
techniques must be used for the interpretation and esti-
mation of wind speeds due to the challenges presented 
by the random/stochastic, indeterminant, discontinuous, 
and �uctuating nature of the wind speed time series [4–8]. 
Accurate forecasting and estimation of wind speeds are 
essential if wind energy is to reach its full potential as an 
alternative energy in a more sustainable future.
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Wind speed can be measured directly by anemometers 
installed at the desired site, or indirectly, using wind speed 
estimation models. These can be classi�ed as either physi-
cal or statistical models [9]. Physical models employ physi-
cal and mathematical formulas to estimate wind speed 
information [10]; however, these models can be complex 
and time-consuming to employ. Statistical models, includ-
ing the time series models and machine learning-based 
techniques, have the potential to estimate wind speed 
using historical data and other related parameters [2]. In 
another classi�cation, wind speed estimation models can 
be categorized in the stand-alone and hybrid paradigms. 
In fact, the hybrid models are developed to improve the 
performance of stand-alone models when estimating the 
intended time series like wind speed studied in the present 
study. Di�erent approaches could be taken into considera-
tion to implement the hybrid models. One of these meth-
ods is the use of data preprocessing techniques including 
the wavelet analysis (WA), empirical mode decomposi-
tion (EMD), etc. Hybridizing the time series models and 
machine learning ones could also be used as alternatives 
to the stand-alone models with a dependable level of 
precision. Finally, bioinspired optimization algorithms are 
capable of optimizing the parameters of machine learning 
models to increase the accuracy of stand-alone models.

Wind speed time series data, like other meteorological 
data, consist of both stochastic and deterministic com-
ponents [11, 12]. In this context, time series and machine 
learning models are able to capture the stochastic and 
deterministic terms, respectively. Stand-alone time series 
and machine learning models focus on estimating one of 
these components; however, a truly accurate wind speed 
estimation technique should consider both terms. Hybrid 
machine learning-time series models have the ability to 
capture both the stochastic and deterministic terms and 
could have great potential as tools for estimating mete-
orological data.

In recent decades, numerous studies have explored 
wind speed estimation applying various techniques, 
including the stand-alone and hybrid models. Liu et al. 
[13] proposed two hybrid models to predict wind speed 
by combining the autoregressive integrated moving aver-
age (ARIMA) with arti�cial neural networks (ANNs) and a 
Kalman �lter (KF). The obtained results showed that the 
hybrid models had superior outcomes than the classical 
ARIMA model. A comparative study by Li and Shi [14] eval-
uated the accuracy of three types of ANN, namely back-
propagation (BP), radial basis function (RBF), and adaptive 
linear element (ALR). The RBF was found to provide bet-
ter estimates of wind speed time series. Hu and Chen [15] 
applied the di�erential evolution algorithm to improve the 
performance of long short-term memory (LSTM) models 
in wind speed forecasting. The accuracy of the developed 

hybrid model was improved compared to the stand-alone 
one. Liu et al. [16] improved the e�ciency of a support 
vector machine (SVM) model by coupling it with genetic 
algorithms (GA) for estimating wind speed time series. In 
addition, particle swarm optimization (PSO) was used by 
Kong et al. [17] to increase the accuracy of wind speed 
estimation via the reduced SVM (RSVM). Jiang et al. [18] 
applied two optimization algorithms, including the PSO 
and cuckoo search (CS), to optimize the parameters of the 
SVM technique. The hybrid SVM-CS demonstrated better 
results than the SVM-PSO. Khosravi et al. [19] compared 
the performance of machine learning models in wind 
speed estimation. The results suggested that the group 
method of data handling outperformed the other models 
used. Liu et al. [20] introduced three types of hybrid mod-
els by coupling the extreme learning machine (ELM) with 
the wavelet packet decomposition (WPD) and empirical 
mode decomposition (EMD) for wind speed forecasting. 
The performance of the proposed models was compared 
with ARIMA, SVM, and ELM, and the hybrid WPD-EMD-ELM 
model surpassed the others. Nikolic et al. [21] compared 
the accuracy of ANN, SVM, ELM, and genetic programming 
(GP) for wind speed estimation. They reported that the 
ELM showed the best performance. Mohandes et al. [22] 
estimated wind speed pro�les at various heights with the 
application of an adaptive neuro-fuzzy inference system 
(ANFIS). Their results suggested that the ANFIS is a reli-
able approach for estimating wind speed. Meng et al. [23] 
developed a hybrid model by coupling ANN with WPD and 
a crisscross algorithm. The proposed hybrid model was 
found to present superior results compared to the sin-
gle ANN for wind speed forecasting. Shukur and Lee [24] 
introduced a hybrid model, KF-ANN, utilizing ARIMA. While 
the single KF and ANN models outperformed the single 
ARIMA, the hybrid model yielded improved estimates 
of wind speed time series compared to the stand-alone 
models. Torres et al. [25] examined the performance of the 
autoregressive moving average (ARMA) time series model 
and con�rmed its potential for wind speed modeling. The 
performance of ANN and seasonal ARIMA (SARIMA) was 
evaluated by Bivona et al. [26] in estimating the wind 
speed data. Both techniques produced similar results. Each 
of these studies con�rmed the applicability of time series 
and machine learning models for the estimation of wind 
speeds. Wu et al. [27] hybridized the ELM, complete ensem-
ble EMD (CEEMD), and multi-objective gray wolf optimi-
zation (MOGWO) and reported that such a hybrid model 
can be appropriately employed for wind speed estimation. 
Bilgili and Sahin [28] predicted wind speed using compara-
tive analysis of regression, namely linear regression (LR), 
nonlinear regression (NLR), and arti�cial neural network 
(ANN) methods. In this study, three measuring stations, 
including Antakya, Mersin, and Samandag, were used. 
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Findings illustrated that ANN method had better results 
than the two used models such as LR and NLR. Ghorbani 
et al. [29] predicted short-term wind speed with machine 
learning techniques of ANNs and genetic expression pro-
gramming (GEP) comparing with MLR method. The results 
indicated that both the GEP and ANN were trusted selec-
tions as well as MLR method. Time series analysis of wind 
speed with time-varying turbulence is investigated by 
Ewing et al. [30] to obtain wind energy production, opera-
tional and �nancial hedging strategies of wind-related risk 
applying the ARMA-GARCH-in-mean framework. In gen-
eral, the �ndings revealed that the results have practical 
implications for wind plant operations.

The present study aims to (1) evaluate the e�ciency 
of three linear time series models including autoregres-
sive (AR), moving average (MA), and ARMA, for short- and 
long-term wind speed estimation; (2) investigate the 
accuracy of the machine learning-based random forest 
(RF) and multivariate adaptive regression spline (MARS) 
models for wind speed estimation; (3) develop and imple-
ment six hybrid models via coupling the noted linear time 
series and machine learning models; and (4) compare the 
performance of all of the developed stand-alone and 
hybrid models. To achieve these objectives, two stations, 
the Tabriz station northwest of Iran and the Zahedan sta-
tion southeast of Iran, were selected as the study region. 

It is worthy to note that despite widespread applications 
of machine learning and time series models, speci�cally 
machine learning models, the hybrid machine learning-
time series models have received less attention for esti-
mating the wind speed.

2  Materials and method

2.1  Study location

In the current study, the Tabriz and Zahedan stations 
located in the northwest and southeast of Iran, respec-
tively, were selected as the case study sites (as shown in 
Fig. 1). The Tabriz station, with a latitude of 38° 05′ N, a 
longitude of 46° 17′ E, and an elevation of 1361.0 m above 
the sea level, has a semiarid climate. The Zahedan station 
has an arid climate and is located at a latitude of 29° 28′ 
N, a longitude of 60° 53′ E, and an elevation of 1370.0 m 
above the sea level.

2.2  Data

Raw data for the present study, including daily and 
monthly wind speed data from the selected stations, were 
collected from the Iranian Meteorological Organization 

Fig. 1  Geographical position of 
the studied locations in Iran
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(IMO) during a 25-year period from January 1, 1990, to 
December 31, 2014. The collected data were divided 
into two separate datasets, the training and testing data-
sets. For both of the studied time scales, the �rst 20-year 
data (i.e., 80% of the entire data from 1990 to 2009) were 
applied as the training dataset, while the last 5-year data, 
between 2010 and 2014 (i.e., 20% of the entire data), were 
used as the testing dataset. Figure 2 shows the time series 
plots for the observed daily and monthly wind speeds of 
the studied locations during both the training and testing 
periods.

In addition, statistical parameters of the wind speed 
data for the study period, including the minimum (Xmin), 
maximum (Xmax), average (Xmean), and standard devia-
tion (XSD), are listed in Table 1. The daily wind speed data 
ranged from 0.00 to 11.25 m s−1 (training phase), and 0.00 
to 10.63 m s−1 (testing phase) at the Tabriz station, as well 
as between 0.00 and 14.61 m s−1 (training phase), 0.38 and 
15.25 m s−1 (testing phase) at the Zahedan station. Moreo-
ver, the standard deviations of the daily wind speed data 
were higher than the monthly data at both stations.

Daily and monthly wind speed datasets for the stud-
ied locations were standardized utilizing the following 
equation:

where WS
s
 , WS

o
 , WS

o
 , and �

WSo
 denote the standardized 

wind speed, the observed wind speed, the average of the 
observed wind speed data, and the standard deviation of 
the observed wind speed data, respectively.

2.3  Time series models employed

The idea of time series was initially proposed by Thomas 

and Fiering [31] and then developed by Box and Jenkins 
[32]. The time series models used in the current study 
include autoregressive (AR), moving average (MA), and 
autoregressive moving average (ARMA); they are classi-
�ed as linear time series models. The AR model is devel-
oped according to the Markov chain theory, i.e., any time 
series data recorded at the current time t are related to 
its values at a former time (i.e., t − 1, t − 2, …). To achieve 
the stochastic term in the AR, a simple linear regression 
is performed on the past values of observed data (e.g., 
wind speed) in the standardized form; however, in the MA 
model, it is done on the past values of the stochastic term. 
On the other hand, this regression is performed simultane-
ously in the ARMA on the past values of the standardized 
observational data and stochastic term. The AR, MA, and 
ARMA models can be, respectively, written as:
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Fig. 2  Time series of the observed daily and monthly wind speeds 
at the studied locations during the 1990–2014: a Tabriz station; b 
Zahedan station
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where Zt indicates the observed time series in the stand-
ardized form, p and q represent the order of AR and MA, 
respectively, �

i
 and �j , respectively, denote the coe�cients 

of AR and MA, and �
t
 , �′

t
 , and �′′

t
 represent the stochastic 

series of the observed data estimated via the AR, MA, and 
ARMA models, respectively.

Estimation procedure by the time series models com-
prises three steps: (1) standardizing the observed data, (2) 
specifying the parameters of the used models (i.e., �

i
 and 

�j in Eqs. 2–4), and (3) reporting the optimal AR, MA, and 
ARMA models, speci�cally, identifying the models that 
result in the lowest errors according to the chosen evalu-
ation metrics.

2.4  Machine learning models employed

2.4.1  Random forest

Random forest (RF), a model proposed by Breiman [33], is 
a relatively new supervised data classi�cation approach. 
Furthermore, RF is a decision tree-based method in which 
a number of decision trees are combined to create the �nal 
RF. Simple training and tuning of parameters, generation 
of accurate results, and the ability to �t nonlinear models 
are among the advantages of the RF method [33].

In general, a decision tree can provide good results for 
training datasets; however, it may produce poor results in 
the testing phase (i.e., over-�tting) due to the existence 
of a tree containing many splits. For such a situation, tree 
pruning is essential to reduce the number of trees and 

(2)Zt =

p
∑

i=1

(�i ⋅ Zt−i) + �t

(3)Zt =

q
∑

j=1

(

�j ⋅ �
�

t−j

)

+ �
�

t

(4)Zt =

p
∑

i=1

(

�i ⋅ Zt−i
)

−

q
∑

J=1

(

�j ⋅ �
�

t−j

)

+ ��
t

splits [34, 35]. The pruning process often leads to improve-
ments in the performance of a decision tree model. How-
ever, decision trees in the RF technique are grouped with-
out pruning. Instead, randomization through bagging and 
random feature selection is used to combat over-�tting 
and generate accurate results [33, 36]. Random samples 
are selected as training sets using the bagging method. 
In general, two-thirds of the training samples, called out-
of-bag samples, are applied toward tree growth, and the 
remaining third is used for cross-validation.

The number of trees (ntree) and predictors on each 
node (mtry) are two user-de�ned parameters a�ecting the 
performance of RF. Breiman [33] stated that ntree = 500 
are enough to obtain good results. While using more than 
500 trees does not improve considerably model perfor-
mance, it also increases the required time to create the 
�nal RF algorithm structure. In terms of nodes, mtry = 1 
was used in the current study since only one input (i.e., 
1-day or 1-month lagged wind speed data) was used as 
an estimator in RF.

2.4.2  Multivariate adaptive regression splines

Multivariate adaptive regression spline (MARS) was initially 
developed by Friedman [37] and is arranged as nonpara-
metric regression models. Nonparametric term implies 
that the relationships among the input and output param-
eters are not already known to the user. This is similar to 
the multiple linear regression (MLR) approach. However, in 
MLR, a unique slope is assigned for each predictor by the 
MLR, while in MARS, various slopes are given for the di�er-
ent ranges of input variables. This leads to the generation 
of more �exible regression models for estimating the tar-
get parameter. The solution space in MARS is divided into 
some intervals of input variables, and splines are �tted to 
each interval. Speci�c spline functions are developed for 
each interval, and the endpoints of each interval are called 
knots. The X predictor is mapped to another variable (i.e., 
Y) via the basis functions. The basis functions can be for-
mulated as either of the following equations:

Table 1  Statistical parameters 
of the daily and monthly wind 
speed data at the studied 
locations

Station Time scale Dataset Xmin Xmax Xmean XSD

Tabriz Daily Training 0.00 11.25 3.13 1.61

Testing 0.00 10.63 3.64 1.68

Monthly Training 0.78 5.56 3.13 0.95

Testing 2.10 5.45 3.64 1.00

Zahedan Daily Training 0.00 14.61 3.21 1.87

Testing 0.38 15.25 3.36 1.56

Monthly Training 0.93 6.22 3.22 0.82

Testing 1.97 5.45 3.37 0.72
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where C illustrates the knot (or a threshold value). The 
basis functions are combined together to produce the �nal 
structure of the MARS as follows [38]:

where �
0
 is an initial constant, �

m
 is the coe�cient of the 

mth basis function, and BF
m

 is the mth basis function. The � 
constants are estimated through the least squares regres-
sion technique.

Estimating the target parameter using MARS involves a 
forward and backward step. During the forward step, over-
�tting often occurs, along with a number of surplus knots; 
the MARS model produced in this �rst step seemingly 
o�ers poor results. The backward step involves a pruning 
technique to remove the extra knots and improve model 
performance. The optimal model is that with the smallest 
generalized cross-validation (GCV) value.

2.5  Models development

2.5.1  Time series models development

When developing the stand-alone time series models used 
in the current research, di�erent orders of p in AR, q in 
MA, and p and q in ARMA were examined, and the best-
performing models were then selected and reported. The 
AR, MA, and ARMA time series models were �tted to the 
standardized wind speed data, and the best-performing 
models from this step were selected.

2.5.2  Machine learning models development

Two types of machine learning models, i.e., RF and MARS, 
were employed to estimate daily and monthly wind speed 
time series. Here, lagged wind speed data (i.e., 1 day and 
1 month lagged data) were utilized as inputs into the RF 
and MARS models to estimate the wind speed of the cur-
rent day or month.

2.5.3  Hybrid models development

The main objective of current study is to improve the 
estimation performance of stand-alone RF and MARS 
models through coupling the machine learning models 
with the time series models that are capable of capturing 
the stochastic term of wind speed data (i.e., AR, MA, and 
ARMA). To this end, six hybrid models were developed and 

(5)Y = max(0;C − X )

(6)Y = max(0;X − C)

(7)f (x) = �
0
+

M
∑

m=1

�m ⋅ BFm(x)

evaluated, including RF-AR, RF-MA, RF-ARMA, MARS-AR, 
MARS-MA, and MARS-ARMA. The hybrid machine learning-
time series models were developed using the following 
equation:

where  WSH,  WSS, and  WSD denote the wind speed data 
estimated via the hybrid machine learning-time series 
models, the estimated wind speed (i.e., stochastic term) 
produced by the stand-alone time series models, and the 
estimated wind speed (i.e., deterministic term) found using 
the stand-alone machine learning models, respectively.

3  Application and results

Five statistical metrics, including root-mean-square error 
(RMSE), mean absolute error (MAE), relative RMSE (RRMSE), 
coe�cient of determination (R2), and Nash–Sutcli�e e�-
ciency (NSE), were applied to evaluate the performance 
of the developed models. These metrics were calculated 
through the following formulas:

where  WSo,i and  WSe,i denote the ith observed and esti-
mated wind speed, WS

o
 and WS

e
 indicate the mean of the 

observed and estimated wind speed values, and N is the 
total number of observations.

To measure the performance of all the developed 
models qualitatively, the RRMSE values were catego-
rized as follows: excellent (0% < RRMSE < 10%), good 
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(10% < RRMSE < 20%), fair (20% < RRMSE < 30%), and 
poor (RRMSE > 30%).

Scatter and time series plots were also used to visu-
ally qualify the performance of the machine learning and 
hybrid models.

Various AR, MA, and ARMA time series models were 
firstly fitted to the standardized wind speed data, and 
then, the optimal models that yielded the best perfor-
mance were selected. Table 2 presents the equations of 

the optimal time series models for the study locations 
on both daily and monthly scales.

The values of RMSE, MAE, RRMSE, R2, and NSE for each 
stand-alone time series models for both stations are 
summarized in Tables 3 and 4. A comparative evaluation 
of the stand-alone time series models developed at the 
study sites clearly shows that the MA models, i.e., MA(1) 
on a daily scale and MA(3) on a monthly scale at the Tabriz 
station, and MA(1) on both the daily and monthly scales 

Table 2  Mathematical equations developed from the optimal time series models at the study sites

Station Time scale Models Equations

Tabriz Daily AR(1) Z
t
=

(

0.446344 × Z
t−1

)

+ �
t

MA(1) Z
t
=

(

0.380492 × �
�

t−1

)

+ �
�

t

ARMA(1,1) Z
t
=

(

0.650312 × Z
t−1

)

−

(

0.27029 × �

��

t−1

)

+ �

��

t

Monthly AR(1) Z
t
=

(

0.697019 × Z
t−1

)

+ �
t

MA(3) Z
t
=

(

0.186448 × �
�

t−1

)

+

(

0.230132 × �
�

t−2

)

+

(

0.124544 × �
�

t−3

)

+ �
�

t

ARMA(4,1) Z
t
=

(

0.426033 × Z
t−1

)

+

(

0.207713 × Z
t−2

)

+

(

0.04959 × Z
t−3

)

+

(
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t−4

)

−

(
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t−1

)

+ �
��

t

Zahedan Daily AR(1) Z
t
=

(

0.457735 × Z
t−1

)

+ �
t

MA(1) Z
t
=

(

0.464683 × �
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t−1

)
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0.437226 × Z
t−1

)

+

(

0.026778 × �
��

t−1

)

+ �
��

t

Monthly AR(1) Z
t
=
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0.398564 × Z
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)
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MA(1) Z
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=
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Table 3  Statistical results of the AR, MA, and ARMA time series models implemented at the Tabriz station

Time scale Models Training Testing

RMSE (m s−1) MAE (m s−1) RRMSE (%) R2 NSE RMSE (m s−1) MAE (m s−1) RRMSE (%) R2 NSE

Daily AR(1) 0.625 0.481 19.934 0.851 0.850 0.631 0.460 17.329 0.870 0.859

MA(1) 0.486 0.373 15.521 0.910 0.909 0.491 0.357 13.466 0.920 0.915

ARMA(1,1) 1.188 0.915 37.907 0.537 0.458 1.200 0.874 32.928 0.571 0.491

Monthly AR(1) 0.421 0.325 13.456 0.807 0.802 0.372 0.308 10.225 0.936 0.860

MA(3) 0.203 0.153 6.477 0.958 0.954 0.165 0.139 4.528 0.991 0.972

ARMA(4,1) 0.476 0.362 15.204 0.754 0.747 0.406 0.347 11.165 0.946 0.833

Table 4  Statistical results of the AR, MA, and ARMA time series models implemented at the Zahedan station

Time scale Models Training Testing

RMSE (m s−1) MAE (m s−1) RRMSE (%) R2 NSE RMSE (m s−1) MAE (m s−1) RRMSE (%) R2 NSE

Daily AR(1) 0.795 0.593 24.739 0.820 0.819 0.668 0.470 19.863 0.818 0.816

MA(1) 0.721 0.532 22.458 0.852 0.851 0.603 0.425 17.953 0.851 0.850

ARMA(1,1) 0.721 0.538 22.466 0.852 0.851 0.607 0.426 18.048 0.850 0.848

Monthly AR(1) 0.213 0.168 6.638 0.932 0.931 0.217 0.164 6.438 0.924 0.907

MA(1) 0.144 0.111 4.477 0.969 0.969 0.150 0.116 4.453 0.960 0.956

ARMA(1,1) 0.440 0.341 13.693 0.733 0.708 0.455 0.352 13.514 0.721 0.592
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at the Zahedan station, outperformed the AR and ARMA 
models. The statistical metric values obtained for the best-
performing MA models on a monthly scale during the 
testing period are RMSE = 0.165 m s−1, MAE = 0.139 m s−1, 
RRMSE = 4.528%, R2 = 0.991, NSE = 0.972 for MA(3) at the 
Tabriz station, and RMSE = 0.150 m s−1, MAE = 0.116 m s−1, 
RRMSE = 4.453%, R2 = 0.960, NSE = 0.956 for MA(1) at the 
Zahedan station. The developed ARMA models generally 
display the weakest performance, except for the model 
applied to the daily data from the Zahedan station, where 
the ARMA models demonstrate slightly better results than 
AR(1).

The AR(1) and MA(1) models at the Tabriz station on a 
daily scale can be classi�ed as good (10% < RRMSE < 20%), 
while the ARMA(1,1) model displays poor performance 
with RRMSE > 30%. For the Zahedan station on a daily 
scale, the performance of all the time series models is 
within the fair and good classes during the training and 
testing periods, respectively. On a monthly scale, the per-
formance of the MA(3) model at the Tabriz and the results 
of the AR(1) and MA(1) models at the Zahedan station are 
excellent. In terms of precision, the performance of the 
AR(1) and ARMA(4,1) models at the Tabriz station and 
ARMA(1,1) at the Zahedan station is classi�ed as good.

The evaluation metric values calculated for the stand-
alone RF and MARS models at the Tabriz and Zahedan 
stations are given in Tables  5 and 6, respectively. The 
stand-alone MARS and RF models performed poorly in 
the estimation of daily wind speed, yielding RRMSE val-
ues greater than 30%. Conversely, when using monthly 
wind speed data, both the MARS and RF models produced 
good results according to the RRMSE criterion classi�ca-
tion (10% < RRMSE < 20%).

In total, six hybrid models were developed and evalu-
ated: i.e., RF-AR, RF-MA, RF-ARMA, MARS-AR, MARS-MA, 
and MARS-ARMA. The statistic metrics computed for the 
hybrid models are listed in Tables 5 and 6.

Based on the RRMSE index, the performance of all 
hybrid models was excellent (RRMSE < 10%) for data from 
both stations on a monthly scale. On a daily scale at the 
Tabriz station, the accuracy of hybrid models generated 
via coupling the RF and MARS models with the AR and 
MA models was excellent, while the performance of the 
RF-ARMA and MARS-ARMA models generally belonged to 
the good class. For the Zahedan station on a daily scale, 
the accuracy of the hybrid models was classi�ed as excel-
lent, except for the RF-MA and MARS-MA models during 
the training period, which displayed good performance.

The MA and ARMA time series models, respectively, 
demonstrate the best and worst wind speed estimation 
ability at both locations on daily and monthly scales. The 
stand-alone RF and MARS models generally illustrate 
similar results on both time scales; however, the RF model 

shows slightly improved statistics compared to the MARS. 
Comparing the accuracy of stand-alone time series and 
machine learning models (i.e., AR, MA, ARMA, RF, and 
MARS) at the study sites reveals that the stand-alone AR, 
MA, and ARMA time series models yield better estimates of 
wind speed than the stand-alone RF and MARS on a daily 
scale. This result is also observed on a monthly scale for the 
Zahedan station during both training and testing periods; 
however, the RF and MARS show better results than the AR 
and ARMA at the Tabriz station during the training period.

The developed hybrid models outperform the stand-
alone RF and MARS, yielding lower RMSE, MAE, and 
RRMSE values, as well as higher R2 and NSE values (see 
Tables 5 and 6). For example, the error statistics of best-
performing hybrid model at the Tabriz station on a daily 
scale during the testing period (i.e., MARS-AR(1)) are 
RMSE = 0.081 m s−1, MAE = 0.061 m s−1, RRMSE = 2.220%, 
R2 = 0.998, and NSE = 0.998, while the same statistics for 
the corresponding stand-alone model (i.e., MARS) are 
RMSE = 1.279 m s−1, MAE = 0.936 m s−1, RRMSE = 35.094%, 
R2 = 0.441, and NSE = 0.422. Similarly, the values of RMSE, 
MAE, RRMSE, R2, and NSE at the Zahedan station improved 
from 1.249 m s−1, 0.892 m s−1, 37.152%, 0.358, and 0.357 in 
the stand-alone MARS to 0.045 m s−1, 0.023 m s−1, 1.330%, 
0.999, and 0.999 in the hybrid MARS-AR(1) during the test-
ing period.

To graphically evaluate and compare the performance 
of the proposed hybrid models with the stand-alone 
machine learning models, the best-performing hybrid 
models for both daily and monthly scales (presented with 
the error statistics in bold in Tables 5 and 6) and the cor-
responding stand-alone machine learning models (i.e., 
MARS) were selected. The respective scatter and time 
series graphs were plotted, as shown in Figs. 3 and 4. The 
scatter plots show signi�cant dispersion around the 1:1 
line for the stand-alone MARS models, especially on a 
daily scale, while fewer dispersions are apparent for the 
hybrid models, indicating improved performance on the 
part of the hybrid models compared to the stand-alone 
models. The results of time series plots suggest the ability 
of the proposed hybrid models to capture the observed 
wind speed time series. In contrast, the stand-alone MARS 
model illustrates poor performance. In terms of estimat-
ing the high/peak and low daily and monthly wind speed 
values, the stand-alone MARS model tends to overestimate 
the low values and underestimate the peak values, par-
ticularly on a daily scale. However, the hybrid models o�er 
acceptable performances in estimating the high and low 
values of the wind speed time series. This trend was also 
observed for all the other stand-alone and hybrid models.

Among the hybrid models, the RF-AR and MARS-AR 
generally performed the best on both the daily and 
monthly scales, specifically on a daily scale. The hybrid 
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models created through coupling the MARS and time 
series models (i.e., MARS-AR, MARS-MA, and MARS-
ARMA) led to more accurate estimates of the daily and 
monthly wind speed in comparison with the hybrid 
RF-AR, RF-MA, and RF-ARMA models. Improved perfor-
mance on the part of the hybrid models was observed 
for the Tabriz station on the monthly time scale, except 
for the RF-MA(3) and MARS-MA(3) models during the 

training period, where the performance of MA(3) is bet-
ter than the mentioned hybrid models. At the Zahedan 
station on a monthly scale, the AR(1) and MA(1) models 
were found to be superior to the hybrid RF-ARMA(1,1) 
and MARS-ARMA(1,1) models.

Fig. 3  Scatter and time series 
plots of the observed daily and 
monthly wind speeds via the 
best hybrid models and the 
corresponding stand-alone 
machine learning models at 
Tabriz station
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4  Discussions

Wind speed depicts one of the most plentiful sources 
of renewable energy. Moreover, wind speed is clearly a 
vital factor in the performance of buildings and struc-
tures from an engineering point of view. To this end, the 
short-term and long-term wind speeds for two stations 

of Tabriz and Zahedan located at northwest and south-
east of Iran, respectively, are investigated.

As concluded, the hybrid models created through 
hybridizing the machine learning and time series models 
performed better than the stand-alone ones in estimating 
wind speeds. It can be justi�ed considering the fact that 
the hybrid models employ both the stochastic and deter-
ministic terms of the wind speed data in the modeling 

Fig. 4  Scatter and time series 
plots of the observed daily and 
monthly wind speeds via the 
best hybrid models and the 
corresponding stand-alone 
machine learning models at 
Zahedan station
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procedure, which could be considered as an advantage 
of the hybrid models. Contrary, the stand-alone machine 
learning and time series models focus only on modeling 
the deterministic and stochastic terms, respectively. 
Indeed, it is a major drawback of the stand-alone models.

The results achieved in the present work (i.e., a much 
better performance of the hybrid machine learning-time 
series models compared to the stand-alone machine learn-
ing models) are in agreement with the outcomes of pre-
vious works [11, 12, 39–44]. The di�erent hybrid models 
were developed by the authors via coupling the various 
machine learning and time series models to estimate the 
hydrological and meteorological data and reported the 
higher accuracies of hybrid models than the stand-alone 
machine learning models.

In addition, various hybrid models have been imple-
mented in the literature [13, 24, 45–48] to improve the 
performance of wind speed modeling by coupling the 
machine learning and time series models. In these studies, 
various types of the time series models including the lin-
ear and nonlinear ones were hybridized with the machine 
learning models. The outcomes have veri�ed the superior-
ity of hybrid models compared to the stand-alone machine 
learning ones, which support the results achieved in the 
present work.

5  Conclusions

The current research explores the estimation of daily and 
monthly wind speed data at two stations in Iran, namely 
the Tabriz and Zahedan stations. To this end, three stand-
alone time series models, including AR, MA, ARMA, 
and two machine learning models consisting of RF and 
MARS, were developed and applied to estimate daily and 
monthly wind speed data at the studied stations. The 

error metrics, RMSE, MAE, RRMSE, R2, and NSE, were uti-
lized to compare the performance of all the developed 
models. Of the stand-alone time series models, the MA 
models performed better than the AR and ARMA models 
on both the daily and monthly time scales. For the case 
of machine learning models, the RF and MARS models 
performed at a similar level, yielding poor results when 
applied to daily data (RRMSE > 30%), and good results 
(10% < RRMSE < 20%) when applied to monthly data.

To improve wind speed estimation accuracy, hybrid 
models were developed by coupling AR, MA, and ARMA 
with the RF and MARS modeling approaches. The results 
showed a much better performance for the hybrid 
machine learning-time series models compared to the 
stand-alone machine learning models. Of the six hybrid 
models (i.e., RF-AR, RF-MA, RF-ARMA, MARS-AR, MARS-
MA, and MARS-ARMA), the RF-AR and MARS-AR models 

outperformed the others in terms of estimation accuracy. 
Generally, the performance of the hybrid models devel-
oped in the current study ranked as excellent according 
to the RRMSE classi�cation criterion, for both daily and 
monthly time scales.

The present study explored the performance of six 
types of hybrid models developed through coupling the 
linear AR, MA, and ARMA models with the RF and MARS 
machine learning models. Further investigation into 
alternative hybrid models is suggested, through integrat-
ing diverse time series models, including the nonlinear 
autoregressive conditional heteroscedasticity (ARCH) 
model and self-exciting threshold autoregressive (SETAR) 
model, with machine learning models such as ANN, ANFIS, 
gene expression programming (GEP), convolutional neural 
networks, and deep learning. In addition, the authors rec-
ommend that the methodology presented in the current 
study could be employed to estimate solar radiation time 
series, toward a deeper understanding of another source 
of renewable and sustainable energy.
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