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capture–recapture variables are constructed from Dutch police
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are related to covariates through the truncated Poisson regression
model. These assumptions are discussed in detail, and the tenability
of the second assumption is assessed by evaluating the marginal
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drunk drivers example there is some overdispersion. It is concluded
that the method is useful, provided it is used with care.
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1 Introduction

For many policy reasons, it is important to know the size of specific delinquent

populations. One reason is that it provides insight into the threat these populations

may pose on society. Another reason is that it gives an estimate of the workload of

the police.
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However, estimating the size of a delinquent population may be problematic for

various reasons. Counting the number of crimes frompolice recordsmay lead to a dark

number problem. Itmay be that the crime is registered but the offender is not knownor,

as is often the case with victimless crimes, the crime is not registered at all. In victim

surveys people report the number of times they have been the victim of a particular

crime, such as robbery or burglary. Based on that information an estimate can be

obtained of the total number of these crimes. However, victim surveys do not provide

an estimate of the number of offenders, since they usually are unknown to the victim,

nor do they provide insight into victimless offences. Self-report studies can potentially

estimate the size of a delinquent population since people are simply askedwhether they

are amember of this type of population. Problems related to self-report studies are: the

difficulty of obtaining a representative sample, the risk of socially desirable answers

and the need for large samples if offences are infrequent. For a more elaborate

comparison and an overview of the literature on police registrations, victim surveys

and self-report studies, we refer the reader to WITTEBROOD and JUNGER (2002).

In this paper we discuss a way of estimating the number of offenders from police

data. The data we use are from the Dutch police registration system HKS

(Herkennings Dienst Systeem). Offences committed by a known offender are

registered in this system. Each report of an offence has an offender identification, so

it is possible to construct an offender-based data set. Let’s say we want to estimate

the number of specific type of offenders, such as people who illegally possess guns.

We can construct an offender-based data set that will have the number of offenders

apprehended once in possession of a gun, the number apprehended twice, three

times, and so on. Note that offenders who were never apprehended are not part of

this offender-based data set. Yet, if we could estimate their number we would have

an estimate of the total number of illegal gun owners.

The aim is to estimate the number of offenders never apprehended, using the data

about offenders apprehended at least once. We derive these estimates under two

assumptions. First, the number of apprehensions is a realization of a Poisson

distribution. Second, the logarithm of the Poisson parameter for an offender is a

linear function of covariates. We discuss these assumptions in greater detail at the

end of the introduction.

At this point we want to indicate how we can estimate the size of the population

never apprehended using these assumptions. Say we take an offender whose Poisson

parameter specifies his probability of being apprehended at least once at 0.25,

nonetheless he is apprehended. This implies that, for this one offender, we estimate

that there are three other offenders who have not been apprehended. By performing

this trick for every offender who is apprehended, and adding up all the individual

estimates, we obtain an estimate of the total number of offenders who are not

apprehended, and this solves our problem.

The methods employed in this paper originate from the field of biology, where

they are used to estimate animal abundance. The data we use are a specific form of

capture–recapture data. In capture–recapture data captures and recaptures are made

290 P. G. M. van der Heijden, M. Cruyff and H. C. van Houwelingen

� VVS, 2003



at specific time points, and for each animal seen at least once there is a capture

history. For example if there are five capture times, a history could be 01101 if the

animal is seen at captures 2, 3 and 5 and not seen at captures 1 and 4. Here, we use

only the total number of times someone is captured since we are collecting data in

continuous time. Typically, in the biological application area, covariate information

is not available or not used, leading to a basic model in which the Poisson parameters

are assumed to be homogenous over the animals. For an overview of this area, we

refer the reader to SEBER (1982, chapter 4; 1986), CHAO (1988) and ZELTERMAN

(1988, 2001, chapter 7). In the statistical literature, this problem is also known as the

estimation of the size of a truncated sample (SANATHANAN, 1977), the estimation

of the number of (unseen) species (EFRON and THISTED, 1976; BUNGE and

FITZPATRICK, 1993), or the estimation of the size of a population using samples of

size one (WILSON and COLLINS, 1992).

In criminology there are some early studies by GREENE and STOLLMACK (1981),

who use arrest data to estimate the number of adults committing felonies and

misdemeanors in Washington D.C. in 1974/5, ROSSMO and ROUTLEDGE (1990) who

estimate migrating (or fleeing) fugitives in 1984, and prostitutes in 1986/7, both in

Vancouver, and COLLINS and WILSON (1990) who use arrest data to estimate the

number of adult and juvenile car thieves in the Australian capital territory in 1987.

None of these early studies devote systematic attention to covariate information on

the apprehended individuals or to confidence intervals for the point estimates of the

number of individuals who are not apprehended. Our early statistical work in

criminology is also in this vein (VAN DER HEIJDEN et al., 1993; SMIT et al., 1993).

In more recent work, we have incorporated covariate information by using the

truncated Poisson regression model, which is well known in econometrics (GREENE,

1997, chapter 19; CAMERON and TRIVEDI, 1998, chapter 4; LONG, 1997, chapter 8). We

have developed amethod of estimating a frequency for the zero-count and a confidence

interval for this point estimate (VAN DER HEIJDEN et al., in press). Thus far we have

experience with this method in estimating the number of illegal immigrants in the four

largest Dutch cities in 1995 (see VAN DER LEUN et al., 1998; see HOOGTEIJLING, 2002,

for a critical evaluation of this method) and in the Netherlands in general from 1997 to

2000 (seeENGBERSEN et al., 2002), andwith the number of opiate users inRotterdam in

1994 (SMIT, TOET and VAN DER HEIJDEN, 1996). In this paper we present two further

examples, i.e. on the number of person who illegally own firearms and the number of

car drivers under the influence of alcohol.

1.1 Assumptions

As the methodology originates from the field of biology and we are using it in the

field of criminology, we discuss the assumptions of the methodology in greater detail.

Obviously, assumptions that are realistic for animals may not also be realistic for

human offenders.

The first assumption is that the number of times an individual is apprehended is a

realization of a Poisson distribution. JOHNSON, KOTZ and KEMP (1993) discuss the
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genesis of the Poisson distribution and state that it was originally derived by Poisson

as the limit of a binomial distribution with success probability p and N realizations,

where N tends to infinity and p tends to zero, while Np remains finite and equal to k.
It turns out that even for small N, the Poisson distribution approximates the

binomial distribution reasonably well if p is sufficiently small. For example, for

N ¼ 3 and p ¼ 0.033, and for N ¼ 10 and p ¼ 0.01, the probabilities of counts 0, 1,
2 and 3 are already very close to those of a Poisson distribution with k ¼ 0.1, and
similarly for N ¼ 3 and p ¼ 0.0033, and for N ¼ 10 and p ¼ 0.001 with k ¼ 0.01.
Referring to CHARLIER (1905), JOHNSON et al. (1993) note that the probability of

success p does not have to be constant for the Poisson limit to hold. So, generally

speaking, it follows for the type of applications we are discussing that individuals do

not need to have a constant probability to be apprehended, but it suffices if they

could be apprehended a number of times. A property of the Poisson distri-

bution related to the result of CHARLIER (1905) is that if X1 is a realization of a

Poisson distribution with Poisson parameter k1, and X2 is a realization of a Poisson
distribution with Poisson parameter k2, then X1+X2 is a realization of a Poisson
distribution with Poisson parameter k1+k2. So again we see that the probability of
being apprehended need not be constant: if we split up the full period of data

collection into a larger number of sub-periods and in each of these sub-periods the

count is generated by some Poisson distribution, then the sum of these counts will

also be generated by a Poisson distribution. For drunk driving this means an

individual does not always have to be drunk when he is driving, but it suffices that

this happens at least three times in the period of data collection. Similarly, someone

who illegally owns a gun does not need to have it with him all the time, a small

number of times suffices to consider his count to be generated by a Poisson

distribution.

We note that the Poisson assumption is valid only if a change in the individual

Poisson parameter is unrelated to any prior apprehensions or non-apprehensions.

This follows from the independence of subsequent trials in a binomial distribution.

For example, if someone who illegally owns an gun is apprehended and subsequently

buys a new one but carries it around less often or does not buy a new one at all, the

resulting change in capture probability is a violation of the Poisson assumption.

Similarly, if someone is apprehended with a gun and the police then keep him under

close surveillance, the increase in capture probability is a result of the apprehension

and the Poisson assumption is violated. Or if someone who is driving under the

influence of alcohol is not caught and starts doing so more frequently, his probability

increases as a function of not being apprehended and such an increase violates the

Poisson assumption. In the biostatistical literature, this is known as positive

contagion (if the probability increases) or negative contagion (if the probability

decreases).

Closely related to the contagion issue there is the problem of an open or closed

population. A population is closed if the number of offenders is constant over the

period of data collection, and is open if offenders may enter or leave the population
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during this period. Given what has been noted above, it is clear that the population

may be open as long as entering or leaving it is not related to apprehension or non-

apprehension. For example, detention following an apprehension removes the

person from the population and excludes the possibility of any subsequent

apprehensions, and can therefore be seen as an extreme case of negative contagion.

So far we have only discussed the Poisson assumption pertaining to an individual

count. The second assumption follows from using a regression model, in which the

logarithm of the Poisson parameters is a linear function of covariates. In the

regression model, the Poisson parameters are still assumed to be homogeneous for

individuals with identical values on the covariates, but they are allowed to be

heterogeneous for individuals with different values. Since the differences in Poisson

parameters are assumed to be completely determined by the observed covariates, this

is referred to as observed heterogeneity. So even if the count of every individual is

Poisson distributed, the assumption of Poisson regression is violated if, in addition

to observed heterogeneity, there are differences in the Poisson parameters that

cannot be explained by the observed covariates. This additional heterogeneity is

called unobserved heterogeneity.

In the Poisson regression model that only has observed heterogeneity, the

conditional mean (i.e. the mean conditional on the covariates) is equal to the

conditional variance, whereas if there is unobserved heterogeneity, the conditional

variance is larger than the conditional mean. This is referred to as overdispersion.

In conclusion, the most important violations of the Poisson assumptions in

criminological applications are contagion and overdispersion.

The contagion problem will probably be larger for some offences than for others,

and an indication of its importance can be obtained by studying the behavior of

offenders as well as police officers. If no additional information is available on their

behavior, it seems best to interpret the results with caution. Overdispersion can be

assessed in the data as a result of the analysis, and we return to this and its

interpretation in section 2.2.

We start with an introduction to the data we use for the analysis, i.e. police

records, and then we discuss zero-truncated Poisson regression. This is followed by

the two examples and we end with a critical evaluation of our method.

2 Method

2.1 Police records

Since the early 1980s the Dutch police have registered all violations against more

than 70 different criminal laws, provided the offender is known. From these records,

files over the 1996 to 2001 period have been made available to us for violations

against the laws regarding drunk driving and illegal ownership of firearms. These

files present two problems. First, the quality of administration varies considerably

over the 25 Dutch police regions. This is why we selected for the analyses the five
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police regions reported to maintain the highest administrative quality. These regions

are Rotterdam Rijnmond, Mid-Gelderland, Mid-Holland, South Holland South and

Mid-West Brabant. It is unclear whether these five police regions are representative

of the 25 Dutch police regions. Secondly, due to the police registration behavior

using the registration system to help them find suspects (and not to conduct

statistical analyses), the registration files contain double entries for the same

apprehension. Since double entries result in distorted frequency distributions,

population estimates based on these files would be biased. Fortunately, at the time of

our study the police had just completed a version of the registration files in which

double entries were eliminated as far as possible.

The registration files contain all the violations in the 1996 to 2001 period for drunk

driving or illegal possession of firearms. We constructed dependent capture–

recapture variables by counting the number of times each person was apprehended

for drunk driving and illegal ownership of firearms, respectively. The dependent

variables are computed over fixed periods of time ranging from one to five years. For

illegal ownership of firearms we present an analysis of the data for the 1998 to 1999

period, and for drunk driving for the year 2000.

We used the background variables age, gender, age of first offence and police

region as covariates. From the number of apprehensions for the remaining criminal

offences, we constructed six covariates to measure each person’s criminal history.

These covariates have been constructed according to a standard categorization

employed by Statistics Netherlands (see HULS et al., 2000), distinguishing between

violations related to violence, hard drugs, property, vandalism, traffic and violations

of special ‘‘economic’’ laws (e.g. laws regulating working and environmental

conditions). We computed the covariates by adding the number of apprehensions for

the remaining offences to the corresponding covariate. The covariates are measured

over the five-year period before the last measurement year of the dependent variable.

The five-year period was taken to ensure comparability of criminal histories, since

minor offences are deleted from the files after five years without any further

registration.

Since the distributions of the six covariates measuring criminal history were very

skewed, we transformed them before entering them into the regression model. We

used the transformation log(1+x), since preliminary analysis showed that this

logarithmic transformation led to better predictions of the dependent variables.

Only the ‘‘age of first offence’’ variable had missing values, about one half percent

of the total number of observations. These values were imputed by the age of the

subject minus the mean difference between age and age of first offence in the sample.

2.2 Zero-truncated Poisson regression

We start by introducing the zero-truncated Poisson distribution, and then work out

zero-truncated Poisson regression.

Consider the data in Table 1. We denote the number of individuals apprehended k

times by fk (k ¼ 1,…,K). Let yi be the number of times individual i (i ¼ 1,…,Nobs) is
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apprehended (yi ¼ 0,1,…). Under the Poisson assumptions the probability that an
individual is apprehended a specific number of times

P ðyijkÞ ¼
expð�kÞkyi

yi!
; ð1Þ

is determined by the Poisson parameter k(k > 0). Note the lack of subscript for k.
At this stage the individual Poisson parameters are still assumed to be homogeneous

in the population.

Since we are using registration data, we do not have an observed frequency of the

individuals who are not apprehended, f0, and this frequency needs to be estimated.

For this purpose we assume that the observed frequencies fk (k ¼ 1,…,K) are
generated by a Poisson distribution truncated at zero.

The zero-truncated Poisson distribution is defined by a probability function

conditional on y > 0, which is

P ðyijyi > 0; kÞ ¼
PðyijkÞ

P ðyi > 0jkÞ
¼ expð�kÞkyi

yi!ð1� expð�kÞÞ ; yi ¼ 1; 2; . . . ð2Þ

with p(yi > 0|k) ¼ 1) exp ()k), i ¼ 1,…,N. Assume we have an estimate k̂k for k.
This estimate can be used to find the probability of an individual not being observed,

p̂p0 ¼ expð�k̂kÞ. The number of unobserved individuals (those individuals who were
not apprehended but had a positive probability of being apprehended) is denoted by

f̂f0 and can be calculated as

f̂f0 ¼
p̂p0

1� p̂p0
Nobs; ð3Þ

where Nobs is the number of observed individuals in the sample. An estimate of the

population size, N̂N , is then obtained by

N̂N ¼ f̂f0 þ Nobs: ð4Þ

VAN DER HEIJDEN et al. (in press) work out a Horvitz–Thompson point and interval

estimate for N̂N . The point estimate for N is

N̂N ¼
XN

i¼1

Ii
pðkÞ ; ð5Þ

Table 1. Observed and estimated counts for illegal possession of firearms (left panel)

and for drunk driving (right panel).

k Observed Estimated Residuals Observed Estimated Residuals

0 0 60,084.0 – 0 104,352.0 –

1 2,561 2,558.9 0.04 8,877 8,847.2 0.32

2 72 76.4 )0.50 481 534.4 )2.31
3 5 2.6 1.48 52 34.0 3.08

4 – – – 8 2.9 2.98

5 – – – 1 0.4 1.06
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where Ii ¼ 1 if individual i is in the sample and Ii ¼ 0, otherwise, and
p(k) ¼ 1) exp(k) is the probability of an individual being present in the sample. This
probability can be estimated by replacing the parameter k with its estimated value k̂k
obtained from fitting the zero-truncated homogeneous Poisson model (2).

The variance of N̂N is given by

varðN̂NÞ ¼ E½varðN̂N j IiÞ� þ varðE½N̂N j Ii�Þ: ð6Þ

The first term in (6) reflects the uncertainty in the estimate k, given the observed
individuals. An estimate is obtained by the well-known delta method. The second

term reflects the effect of the variability in the number of observed individuals. It is a

well-known term in survey sampling. It depends on the p(k) values of all individuals
and can be estimated from the observed individuals by a Horvitz–Thompson type

estimator. For details on how the variance in (6) is estimated, we refer to VAN DER

HEIJDEN et al. (in press). The first term in (6) will dominate the variance varðN̂NÞ if k is
large, because the probability of being observed is large, and the second term in (6)

will dominate the variance varðN̂NÞ if k is small, because then there is a large prob-
ability of not being observed.

We now introduce zero-truncated Poisson regression, where the Poisson

parameter is a function of one or more covariates. Let Y1,…,YN be a random
sample from a zero-truncated Poisson distribution with parameter ki, i ¼ 1,…,N. Let
y1,…,yN be the realizations of Y1,…,YN. In our applications yi is the observed
number of times individual i is found in the police registration system for different

violations of a specific law, e.g. drunk driving. In the Poisson regression model (see

for example CAMERON and TRIVEDI, 1998; GREENE, 1997; LONG, 1997), the Poisson

parameter ki of individual i is a function of a covariate vector xi ¼ (1,xi1,…,xip)T as

log kið Þ ¼ bTxi; ð7Þ

where b ¼ (a,b1,…,bp)T. The Poisson parameter is now given with subscript i, since
the covariates in the regression model introduce observed heterogeneity in the

Poisson parameters. This heterogeneity is called observed since it is determined

completely by the covariates, and individuals with identical covariate values will also

have an identical Poisson parameter.

This model (7) provides an estimator for the unknown parameter ki for the
sampled individuals and thus for the probability of being present, p(ki),
i ¼ 1,…,Nobs. VAN DER HEIJDEN et al. (in press) derive the Horvitz–Thompson

estimator for the total number of individuals in a heterogeneous Poisson population

which is defined by

N̂N ¼
XN

i¼1

Ii
pðxi; b	Þ ; ð8Þ

where Ii ¼ 1 if the individual is present and 0 otherwise. The variance of N̂N can be
split into two parts as in (6) estimated in much the same way as the variance of (7).

For details, we refer to VAN DER HEIJDEN et al., (in press).
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For every fitted model the deviance, also known as the likelihood ratio, is

calculated as )2 times log (likelihood of the current model/likelihood of the
saturated model). In a contingency table context, it is possible to evaluate the fit of

a model if the cells in the table are reasonably filled. However, if there are

continuous covariates, the deviance cannot be used to assess the absolute fit of a

model. Then, if we compare two nested models, the difference between the

deviances can be used to assess the relative fit of the two models: this difference is

chi-square distributed and allows us to assess the significance of the explanat-

ory variables that are in the more complex model but not in the less complex

model.

The Poisson distribution is characterized by equality of mean and variance. An

important reason for overdispersion (the variance exceeds the mean) is unobserved

heterogeneity. This type of heterogeneity is called unobserved since the differences in

the individual Poisson parameters cannot be explained by measured covariates. For

the truncated Poisson regression model, a Lagrange multiplier test on overdispersion

was developed by GURMU (1991). It compares the model fit of the Poisson model

against alternative models with an extra dispersion parameter included, such as the

negative binomial model. The test statistic is chi-square distributed with one degree

of freedom. We have used this test to assess and compare the degree of

overdispersion in different models.

Another way to assess model fit is to compare the distribution of the count

variable observed in the data with the distribution estimated by the model. For this

purpose we use Pearson residuals, i.e. residuals computed as (observed–fitted)/sqrt

(fitted).

We now discuss an interesting property of the truncated Poisson regression model

when used for the estimation of population sizes, i.e. a model with fewer covariates

has a lower estimate of the population size N. This can be explained as follows.

Assume that a truncated regression model with one dichotomous covariate is true,

and that the model without this covariate is not true. This latter model is consequently

misspecified. We now show that this misspecified model will have a lower estimate of

the population size than the true model. As can be deduced from equation (5), the

estimate of the population size is directly related to the estimate of the probability of

the zero count p0, which is p0 ¼ exp()k). Let the two Poisson parameters in the true
model be (x+d) and (x)d), and let the Poisson parameter in the misspecified model be
x. Then Figure 1 illustrates that exp(E()k)) is smaller than E( exp()k)), which is also
known as the Jensen inequality. Generalization to a situation with more covariates is

straightforward. In practice, this means significant covariates should always be

included in the model. If not, the model is misspecified and the estimated population

size will be too low. Also assume all the observed covariates are included in the final

model, but there is still overdispersion, i.e. the observed heterogeneity is taken into

account, but there is remaining unobserved heterogeneity. This means the final model

is misspecified, and the final estimate of the population size can only be considered as

a lower bound.
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3 Examples

We present two examples. The first example pertains to the illegal possession of

firearms, and the second example to drunk driving.

In the introduction we saw that there are two main threats to the validity of the

assumptions we are making, i.e. contagion and overdispersion. Overdispersion can

be assessed from the data, and this will be discussed below.

This leaves us with the problem of contagion, i.e. the probability of an

apprehension or non-apprehension may increase as the result of an apprehension

or non-apprehension of the same offender. This probability can also increase as

the result of a behavior change on the part of the offender (e.g. if the offender

finds out the punishment following an arrest is relatively minor, or might decrease

if the punishment is evaluated as unpleasant), or as a result of a change in the

behavior on the part of the police. For both the offences studied in this section,

we have investigated the change in police behavior by studying arrest reports and

interviewing police officers about a sample of offenders apprehended at least

twice. In this study it became clear that contagion resulting from a change in

police behavior, if it is present at all, cannot be large. For drunk driving, this is

because most apprehensions take place at random, since the police apprehend

most offenders by stopping and checking all passing drivers. Many offenders are

apprehended as the result of their own behavior (such as displaying a gun in a

public place), guns are found when they commit other offences so here the

apprehensions do not take place due to any random initiative taken by police

officers.

Fig. 1. Illustration showing that a model with a dichotomous covariate has higher estimates of N̂N than a
model without a covariate.
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Table 1 shows the observed recapture frequencies for illegal ownership of firearms,

as f1 ¼ 2,561, f2 ¼ 72 and f3 ¼ 5. Note that the sample variance in the dependent
variable is small, so the information is limited. In Table 2 we report a model search

procedure. The null model has a deviance of 738.1. We then add the gender variable

to the model but the deviance does not become significantly better (D devi-

ance ¼ 0.1, for 1 d.f.). If we add the two age variables, i.e. current age and age at first
offence, the fit improves significantly (D deviance is 10.2, for 2 d.f.). Adding six count
variables for criminal history (violence, drugs, economic offences, traffic violations,

property crimes and vandalism) also improves the fit (D deviance is 29.3, for 6 d.f.),
but adding four dummy variables for the five police regions does not improve the fit

further, so the distribution of the counts of the regions do not seem to differ if we

control for sex, age variables and criminal histories. An indication that the model fits

well is given by the match between observed and expected frequencies: the Pearson

residuals are relatively small.

Another indication of fit is given in Table 2 by the test for overdispersion, i.e. a

violation of the Poisson assumption (column headed by with v2ð1Þ, and p-value in
column 5). This test indicates whether there is evidence for unobserved heterogen-

eity, given the inclusion of covariates that take observed heterogeneity into account.

This test shows that once we include the six criminal history covariates, there is no

evidence in the data for further unobserved heterogeneity, so the Poisson assumption

is not violated.

For the most comprehensive model f̂0f0 ¼ 60,084.0, so for this model the total
population size is estimated as N̂N ¼ 62,722 (C.I. is 43,973–81,471). The population
size estimates for the other models are shown in Table 2. These estimates illustrate

the typical result, proven at the end of section 2.2, that the more covariates (i.e. the

more observed heterogeneity) there are in the model, the larger the estimate for N̂N.

Table 2. Model comparisons Illegal possession of firearms in top panel, drunk driving

in bottom panel.

Model Deviance D dev. d.f. v2ð1Þ p N̂N C.I.

Null model 738.1 – – 6.4 0.01 44,201 (34,828–53,574)

+ Gender 738.1 0.1 1 6.4 0.01 44,239 (34,843–53,634)

+ Age var. 727.9 10.2 2 5.4 0.02 48,244 (36,863–59,625)

+ Violations 698.6 29.3 6 2.0 0.16 60,782 (43,321–78,244)

+ Regions 696.3 2.3 4 1.8 0.18 62,722 (43,973–81,471)

Null model 4,652.4 – – 115.4 0.00 78,710 (72,738–84,682)

+ Gender 4,634.8 17.5 1 110.3 0.00 82,319 (74,828–89,809)

+ Age var. 4,515.2 19.7 2 73.1 0.00 99,124 (87,609–110,639)

+ Violations 4,389.3 125.8 6 30.7 0.00 108,097 (95,581–120,612)

+ Regions 4,358.4 30.9 4 24.6 0.00 113,771 (99,857–127,685)

Deviance is the likelihood ratio. D dev. follows a chi-square distribution with degrees of
freedom equal to the number of added covariates and can be used to assess the relative fit
of two nested models. v2ð1Þ with its p value refers to the Gurmu test for overdispersion, the
test is chi-square distributed with one degree of freedom. N̂N gives the estimated popu-
lation size of the model, with C.I. the 95 percent confidence interval.
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We also see that if covariates are added that are not significant, N̂N does not become

substantially larger.

Table 3 reports the raw regression coefficients (b) for the most comprehensive

model. We also included the exponents of the raw regression coefficients since these

are more easily interpretable. These indicate the (multiplicative) factor the expected

count in the dependent variable changes by as a result of a unit change in the

covariate, given that all the other covariates are held constant. For a general

discussion of the interpretation of these coefficients, we refer to LONG (1997, p. 223–

226, 241). Long distinguishes an interpretation in terms of expected counts and an

interpretation in terms of the distribution of counts. We first give an interpretation in

terms of expected counts, and then give an interpretation in terms of the truncated

distribution (discussion of Table 4).

Given the model selection procedure, it is not surprising that the sex variable is

not significant. The sign of the regression coefficient for age of first offence is in the

Table 3. Raw regression coefficients, standard errors, t tests and exponents of regression coefficients for

illegal possession of firearms (left panel) and for drunk driving (right panel).

b s.e. t Exp(b) b s.e. t Exp(b)

Intercept )3.82 0.40 )9.67 0.02 )1.67 0.15 )11.20 0.19

Male 0.00 – – 1.00 0.00 – – 1.00

Female 0.35 0.46 0.75 1.42 ).46 0.23 )2.01 0.63

Age first offence ).02 0.02 )1.31 0.98 ).03 0.01 )5.58 0.97

Age 0.03 0.02 2.01 1.03 0.01 0.01 1.55 1.01

Violence 0.34 0.18 1.86 1.41 0.10 0.11 0.93 1.10

Drugs 0.21 0.24 0.90 1.24 ).13 0.23 ).54 0.88

Economic ).68 0.84 ).80 0.51 ).31 0.57 ).54 0.74

Traffic 0.25 0.24 1.04 1.29 0.66 0.07 9.63 1.94

Property 0.53 0.14 3.81 1.69 0.20 0.08 2.50 1.22

Vandalism 0.02 0.23 0.10 1.02 0.24 0.12 2.07 1.27

Rotterdam Rijnmond 0.00 – – 1.00 0.00 – – 1.00

Gelderland Center ).16 0.32 ).48 0.85 ).61 0.16 )3.77 0.54

Holland Center ).44 0.45 )1.00 0.64 ).56 0.15 )3.87 0.57

South Holland South 0.06 0.34 0.17 1.06 ).35 0.13 )2.61 0.71

Center and West Brabant ).34 0.31 )1.10 0.71 ).13 0.10 )1.25 0.88

Table 4. Observeda N, estimated N and estimated probability of being observed for

some subgroups: for illegal possession of firearms (left panel) and for drunk driving

(right panel).

Obs. N Est. N Prob. Obs. N Est. N Prob.

Male 2,496 60,030.3 0.042 8,738 99,070.3 0.088

Female 142 2,691.9 0.053 681 14,700.9 0.046

Rotterdam Rijnmond 1,172 25,401.7 0.046 3,960 37,481.2 0.106

Gelderland Center 423 10,120.7 0.042 962 15,699.9 0.061

Holland Center 237 7,093.5 0.033 1,260 21,151.4 0.060

South Holland South 262 4,669.1 0.056 1,278 18,081.9 0.071

Center and West Brabant 544 15,437.3 0.035 1,959 21,356.8 0.092
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expected direction (the lower the age at the first offence, the larger the count) but

not significant. Age is significant (for each year, the expected count increases by a

factor of 1.03). The log transformations of the counts for the violation histories

provide some evidence of a positive relation between violence and property crimes

and the expected number of times someone is caught for illegal possession of

firearms.

For the purposes of illustration we also show the estimated probabilities of being

apprehended at least once in the left panel of Table 4. We only do so for the

categorical covariates. All the estimates are around 0.042, the overall probability of

being apprehended at least once. Estimates for the different levels do not differ much,

and this is not surprising given that Table 2 shows that neither sex nor region

contribute significantly to the model.

The second example pertains to drunk driving. Here the variance in the counts is

larger than for the firearms example (see Table 1). Also the sample size is much

larger. The observed and estimated frequencies are not as close as in the previous

example, as is also indicated by the higher values of the residuals.

The model search reported in the bottom panel of Table 2 shows that now all the

sets of variables increase the fit of the model, in particular the criminal histories.

Also, note that the estimated population sizes increase substantially with each model.

What makes this example different from the firearms example is that, in the final

model, the v2ð1Þ-test shows that there is still evidence of overdispersion (unobserved
heterogeneity). This result is in line with the larger residuals in Table 1. Additional

covariates are needed to take the unobserved heterogeneity into account, but

unfortunately they are not available. However, since every additional covariate leads

to an increase in N̂N, this means we should interpret the estimate of 113,771 of the

final model as a lower bound estimate of the true population size, so the true

population size is estimated to be larger than 113,771. See the discussion at the end

of section 2.2.

We now turn to the interpretation of the regression coefficients. For drunk

driving the sex variable is significant (for a female the expected count is 0.68 times

that of a man), as is the age at the first offence and the three criminal history

covariates ‘other traffic violations’, ‘property crimes’ and ‘vandalism’. So the more

often someone is caught for other traffic violations, the higher the expected count

for drunk driving. The police regions also differ significantly. The number of

estimated apprehensions in Rotterdam Rijnmond is about 1.85 times higher than

in Gelderland Center (1.85 is the inverse of the exponent of the regression

coefficient of Gelderland Center).

Table 4 shows interesting differences between the estimated probabilities of

being apprehended at least once: males seem to be caught almost twice as often

as females. Also, in Rotterdam Rijnmond the police seems to be more effective

than in Gelderland Center and Holland Center (the probabilities of being

apprehended at least once being 11 percent as compared with 6 and 6 percent,

respectively).
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4 Discussion

We have shown how police records can be used to estimate the size of criminal

populations. These estimates can be used to evaluate the effectiveness of the police

forces, and grant insight into differential arrest rates (COLLINS and WILSON, 1990)

for different groups.

Even though the definition of the data is straightforward, the data are

contaminated with errors. The reason is that the police do not collect these data

for the purpose of conducting statistical analyses; they do so facilitate the process of

apprehending individuals. Therefore the registration is not always as careful as it

should be. For example, extensive data cleaning was required to minimize the

likelihood of incorrect double counts (i.e. the same apprehension appearing twice in

the system). Clearly, an incorrect double count decreases fk by 1 but increases fk+1 by

1, so that there appears to be more recaptures than there actually are. The result is

that the estimated zero count, f̂f0, is too low. Although careful attention has been

paid to eliminating incorrect double counts, it is possible that there are still a few in

the data.

As regards the meaning of our estimate N̂N, one might wonder what it stand for?

The firearms example may make clear why its meaning is not as straightforward as

one may think. Imagine someone with a gun safely buried somewhere in his home.

This individual has a zero probability of being apprehended, and we cannot

generalize from the individuals who actually are apprehended to this type of

individual. Basically, we can only generalize from the apprehended individuals to

similar individuals who are not apprehended but who are in principle apprehensible.

Thus the estimate N̂N does not stand for the total number of illegal gun owners, it only

stands for the apprehensible ones. On the other hand, do non-apprehensible

individuals really exist and, if so, do these individuals belong to the population of

interest? To have a zero capture probability, an individual has to hide his gun that

well that it no longer poses any threat to society. We stress that the population

estimate is still useful, since it is represents the number of individuals who pose a

threat to society and is thus a good indication of the police workload (we may not

reasonably expect the police to apprehend non-apprehensible individuals).

We have extensively discussed the assumptions of the model in section 1.1. The

main threat to the validity of the model outcomes are contagion and overdispersion.

Contagion refers to the capture probabilities changing as the result of apprehensions

or non-apprehensions. We have given a few examples of why this might occur in the

context of police registration data. In section 3 we discuss the possible behavior

change of police officers, and conclude that our additional research (not reported

here in detail) leads to the conclusion that it is not likely to be a serious problem.

However, we do not have any insight into the contagion resulting from a possible

change in the behavior of offenders. In general, positive contagion makes the

observed counts too large, which leads to an underestimation of the population size.

Negative contagion will make the observed counts too small, which leads to an

302 P. G. M. van der Heijden, M. Cruyff and H. C. van Houwelingen

� VVS, 2003



overestimation of the population size. In section 3 we discuss the openness of the

population in the context of negative contagion, and conclude that leaving the

population as a result of an apprehension is a violation of the Poisson assumption.

Overdispersion may result from unobserved heterogeneity. Unobserved hetero-

geneity becomes evident as a result of the analysis, and there is evidence of

overdispersion in the drunk driving example, but not in the firearms example. The

result is that the estimated population size can only be interpreted as an estimate of

the lower bound for the true population size.

One last area where violation of the model assumptions may occur is in the

dependence of the observations (COLLINS and WILSON, 1990), which would occur if

certain apprehensions involve more than one individual at the same time. This type

of violation can, in principle, be checked in the police registration system.

Concluding, we presented a method that provides an estimate of the population

size, but the assumptions underlying the method need careful consideration as

violations may seriously distort the estimate. We think it is advisable to compare the

estimates found with estimates from other sources, if they are available.
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