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Abstract 

Statistical modelling has been successfully used to estimate the variations of NO2 

concentration, but employing new modelling techniques can make these estimations far more 

accurate. To do so, for the first time in application to spatiotemporal air pollution modelling, 

we employed a soft computing algorithm called adaptive neuro-fuzzy inference system 

(ANFIS) to estimate the NO2 variations. Comprehensive data sets were investigated to 

determine the most effective predictors for the modelling process, including land use, 

meteorological, satellite, and traffic variables. We have demonstrated that using selected 

satellite, traffic, meteorological, and land use predictors in modelling increased the R2 by 21%, 

and decreased the root mean square error (RMSE) by 47% compared with the model only 

trained by land use and meteorological predictors. The ANFIS model found to have better 

performance and higher accuracy than the multiple regression model. Our best model, captures 

91% of the spatiotemporal variability of monthly mean NO2 concentrations at 1 km spatial 

resolution (RMSE 1.49 ppb) in a selected area of Australia.  

 

 

Keywords: NO2; Satellite data; ANFIS; Spatiotemporal; Transport model; Australia.  
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Data availability 

 

The type and source of the data set considered in this study. 

Name of the data set 
Data source (Developer) 

(All websites accessed on April 2016) 
Data format 

Software 

required 

Data 

availability 

OMI tropospheric NO2 

column density 

(molecules × 1015/cm2) 

Aura OMI tropospheric NO2 column 

density product via NASA Giovanni 

interface 

http://giovanni.sci.gsfc.nasa.gov/giova

nni/?instance_id=omil2g 

HDF / 

NetCDF 

files 

ArcGIS 
Freely 

available 

Major road 

PSMA Australia Transport and 

Topography product 

https://www.psma.com.au/products/tra

nsport-topography 

 

ESRI shape 

files 
" " 

Price 

depends on 

the area of 

interest 

Minor road " " " " " " " " 

Industrial point source 

NOx emissions 

Australia National Pollutant Inventory 

http://www.npi.gov.au/reporting/indust

ry-reporting-materials 

xml files 
Microsoft 

Excel / R 

Freely 

available 

Australia population 

density 

Australian Bureau of Statistics 

http://www.abs.gov.au/ausstats/abs@.n

sf/mf/1270.0.55.007 

PNG 

ESRI Grid 

GeoTIFF 

ArcGIS " " 

Australia land use 

classification 

Australian Bureau of Statistics 

http://www.abs.gov.au/websitedbs/cens

ushome.nsf/home/meshblockcounts 

Excel 

spreadsheets 

/ CSV files 

Microsoft 

Excel / R / 

ArcGIS 

" " 

Elevation 

U.S. Geological Survey 

https://www.usgs.gov/products/maps/to

po-maps 

PNG 

GeoTIFF 
ArcGIS " " 

Normalized difference 

vegetation index 

Terrestrial Ecosystem Research 

Network 

http://www.auscover.org.au/node/9 

NetCDF 

files  
" " " " 

Temperature  

Rainfall  

Humidity  

Solar exposure 

Australian Bureau of Meteorology 

http://www.bom.gov.au/climate/maps/#

tabs=Maps 

ESRI Grid 

GIF 

 

" " " " 

Traffic data 

Department of Transport and Main 

Roads 

http://www.tmr.qld.gov.au/Travel-and-

transport/Road-and-traffic-info/Traffic-

reports-and-road-conditions 

ESRI shape 

files 
" " 

Price 

depends on 

the area of 

interest 
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http://www.auscover.org.au/node/9
http://www.bom.gov.au/climate/maps/#tabs=Maps
http://www.bom.gov.au/climate/maps/#tabs=Maps
http://www.tmr.qld.gov.au/Travel-and-transport/Road-and-traffic-info/Traffic-reports-and-road-conditions
http://www.tmr.qld.gov.au/Travel-and-transport/Road-and-traffic-info/Traffic-reports-and-road-conditions
http://www.tmr.qld.gov.au/Travel-and-transport/Road-and-traffic-info/Traffic-reports-and-road-conditions
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Software availability  

The following software has been used in this study for statistical analysis, spatial data 

processing, map creation, and calculating the meteorological and traffic-related parameters: 

 R v. 3.2.3 (R Foundation for Statistical Computing, Vienna, Austria)  

 MATLAB R2014b (MathWorks Inc., Natick, USA)  

 ArcGIS v.10.2 (ESRI Inc., Redlands, USA) 

  Weather Research and Forecasting v 3.8.1 (Powers et al., 2008) 

 South-east Queensland Strategic Transport Model (Ryan et al., 2008) 

Note: No specific software component has been developed for this study. 
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1. Introduction 

Exposure to ambient air pollution is a major environmental risk factor associated with 

adverse health effects (Forouzanfar et al., 2015). Nitrogen dioxide (NO2) is a major component 

of ambient air pollution and a strong marker of traffic-related emissions (Briggs et al., 1997; 

Richter et al., 2005). To date, epidemiological studies have demonstrated that there are adverse 

health effects associated with exposure to NO2 (Crouse et al., 2010; Crouse et al., 2015; Filleul 

et al., 2005; Mölter et al., 2014; Parent et al., 2013; Perez et al., 2012). In addition, NO2 is 

recognized as a good proxy of particle number concentration in urban environments 

(Grundström et al., 2015). Hence more precise estimates of NO2 concentration is needed to 

investigate its associated role on health effects.  

Fossil fuel combustion including coal, gas and oil, are the major sources of NO2 in Australia 

(Australian Government, 2010). As a subset of this, traffic related emissions are a major source 

of NO2 in urban areas (Derwent and Hertel, 1998). About 80% of the NO2 in Australian urban 

areas comes from motor vehicle exhaust (Australian Government, 2010). This indicates that 

traffic flow needs to be carefully investigated for estimating the NO2 concentration in Australia 

as one of the most urbanized countries in the world.  

Different approaches have been used to provide a proxy for traffic flow including calculating 

the length of the roads or road classification (Henderson et al., 2007; Knibbs et al., 2014; 

Sahsuvaroglu et al., 2006), and using nearest traffic count (Dirgawati et al., 2015; Ducret-Stich 

et al., 2013). Some studies used transportation models to obtain more accurate estimates of 

traffic flow, and this approach has been found to provide better results than previous 

approaches (Costabile and Allegrini, 2008; Kim and Guldmann, 2011, 2015; Shekarrizfard et 

al., 2015). 
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Moreover, traffic dynamics can also significantly affect the NO2 emissions, as congested 

traffic (e.g. stop-and-go traffic) results in particulate matters and gaseous emissions peak 

beyond the free-flow traffic condition (Davis and Peckham, 2007; Giakoumis et al., 2012; 

Hagena et al., 2006; Keuken et al., 2010; Rakopoulos and Giakoumis, 2009). Consequently, 

traffic dynamics and condition plays a significant role in the emission of NO2 from vehicles in 

urban areas and should be investigated during the NO2 modelling process. 

Estimates of air pollution concentration have been traditionally provided by ground 

monitoring networks. The sparse ground measurement network in many parts of the world, 

including Australia makes it difficult to evaluate the spatiotemporal variability of ambient air 

pollution. Even a dense network could not adequately monitor the spatiotemporal variability 

of ambient air pollution, since it is changing on scales much smaller than monitoring networks 

density. This represents a significant limitation on evaluating the adverse health effects 

associated with ambient air pollution. 

Satellite imagery is another important tool rapidly gaining interest in air pollution monitoring 

as it provides sequential observations with extensive spatial coverage (Kloog et al., 2014). Data 

derived from satellite sensors can be combined with ground-based measurements at different 

spatiotemporal scales (Reis et al., 2015). The availability of satellite-derived data has helped 

to overcome the problems associated with sparse monitoring networks by providing 

observations where previously there were none (Martin, 2008; Reis et al., 2015).  

Observation-based statistical methods have emerged as a powerful tool for exploring the 

quantitative relationship between ground-level NO2 concentrations and satellite-derived data, 

and a variety of these methods have been used to quantify this relationship (Bechle et al., 2015; 

Carnevale et al., 2016; Hoek et al., 2015; Horsburgh et al., 2016; Hystad et al., 2011; Knibbs 

et al., 2014; Novotny et al., 2011; Reggente et al., 2014; Vienneau et al., 2013). Machine 
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learning refers to computational techniques which are able to achieve optimal solutions for 

analyzing complicated phenomena at reasonable costs (Kruse et al., 2013; Ovaska, 2004). In 

recent years, machine learning algorithms including support vector machine (SVM) (Moazami 

et al., 2016; Reid et al., 2015; Yeganeh et al., 2012), Bayesian models (Corani and Scanagatta, 

2016; McBride et al., 2007),  k-nearest neighbours (kNN) (Reid et al., 2015), and artificial 

neural network (ANN) (Agirre-Basurko et al., 2006; Al-Alawi et al., 2008; Ordieres et al., 

2005; Wu et al., 2012; Yeganeh et al., 2017) have also been gaining popularity because of their 

high flexibility and proven prediction abilities. The literature however, indicates that adaptive 

neuro-fuzzy inference system (ANFIS), which is accepted as a robust and effective method for 

multivariate analysis, has not been used to date to estimate the spatiotemporal variation of NO2 

concentrations using satellite-based data. 

While some studies have been conducted to investigate the spatial variation of the NO2 in 

Australia (Dirgawati et al., 2015; Knibbs et al., 2014), recent studies have shown that the 

combination of temporal variables (e.g. satellite-based observations and metrological data) 

with temporally fixed geographical factors can improve the predictive ability and extend the 

temporal coverage of the statistical models applied for quantifying the ambient air pollution 

(Bechle et al., 2015; Eeftens et al., 2011; Gulliver et al., 2013; Mölter et al., 2010; Rose et al., 

2011; Sampson et al., 2011). Therefore, there is a clear need to develop a spatiotemporal NO2 

model accounting for both spatial and spatiotemporal variables, in the context of Australia. 

In this study, we aimed to significantly enhance the spatiotemporal estimates of NO2 

concentration by using satellite-based and traffic data in conjunction with comprehensive 

meteorological and geographical data. Further, for the first time, we used a transport model to 

estimate the volume of traffic flow and traffic dynamics (congestion) for all of the individual 

roads and employed them for estimating NO2 concentration. Adaptive neuro-fuzzy inference 

system (ANFIS) was employed to estimate the monthly average concentration of NO2 in a 



S9 

 

selected area of Australia, from 2006 to 2011, and to calculate population-weighted NO2 

concentration in urban areas located in the study area . In turn, a cross-validation technique was 

used for model validation. 

2. Materials and Methods 

2.1. Data collection 

2.1.1. Study location and ground-level NO2 measurements 

This study was carried out in South-east Queensland (SEQ) which is located in the state of 

Queensland, Australia. SEQ has an area of 22,420 km2, and it is home to 3.05 million people 

based on the 2011 Australian census (Australian Bureau of Statistics., 2012). The study area 

consists of Brisbane, the state's capital city, as well as other urban and rural centres including 

Ipswich, Logan City, Gold Coast, Sunshine Coast, and the Lockyer Valley. 

Fossil fuels combustion such as oil, coal, and gas is the main source of NO2 in Australia. 

Motor vehicle exhaust has the highest contribution to NO2 emission in the Australian urban 

areas (Australian Government, 2010). Hourly NO2 concentration is routinely measured by the 

Queensland government and other organizations in charge of regulatory ambient air pollution 

monitoring. Standard chemiluminescence method was used to measure NO2 concentrations in 

SEQ monitoring network. We used quality-assured hourly NO2 measurements from January 

2006 to December 2011 at 12 monitoring sites across SEQ to obtain monthly averages of the 

NO2 concentration. The location and the distance between the air quality monitoring stations 

are provided in supplements. 

2.1.2. Satellite data 
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Daily measurements of NO2 tropospheric column abundance were derived from the Ozone 

Monitoring Instrument (OMI) aboard the Aura satellite at a spatial resolution of 13 km × 24 

km. OMI detects ultraviolet and visible solar backscatter radiation with a wide-field telescope 

using hyperspectral imaging, which provides almost worldwide coverage each day (NASA, 

2007). Differential optical absorption spectroscopy (DOAS) retrieval method was employed to 

obtain the NO2 tropospheric column density from OMI data (Levelt et al., 2006). Aura crosses 

the equator in a sun-synchronous polar orbit for the daylight ascending orbit (Torres et al., 

2007), and passes over SEQ at approximately 14:00 local time. We chose the OMNO2d.v003 

data set derived from OMI which is capable of providing near global, daily, 30% cloud 

screened, tropospheric, 0.25⁰  spatial resolution, NO2 column density. The monthly data sets 

were used to account for the sub-tropical location of the SEQ, where seasonal maritime air 

mass advection combined with topography often creates cloud cover during a large proportion 

of the Austral summer. We obtained the monthly average tropospheric NO2 column density 

over SEQ from NASA Giovanni interface for each month from 2006–2011.  

Normalized difference vegetation index (NDVI) was used to provide a measure of greenness 

and vegetation density. NDVI was employed to examine the impact of vegetation cover on 

NO2 concentration in this study. The monthly mean NDVI data were retrieved from an 

Advanced Very High Resolution Radiometer (AVHRR) sensor carried on the National Oceanic 

and Atmospheric Administration (NOAA) satellite and processed by the Australian Bureau of 

Meteorology (BoM) at a spatial resolution of 1 km (Bureau of Meteorology, 2015).   

2.1.3. Meteorological data 

Meteorological parameters including planetary boundary layer height (PBLH), wind 

direction (WD) and wind speed (WS) were carefully investigated in this study. These 

parameters were calculated at a spatial resolution of 3 km at 14:00 local time to match the over-
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pass time of the Aura satellite using Weather Research and Forecasting model (WRF). Details 

on the WRF configuration are provided in the supplement (pages S3-S6). 

Other surface meteorological parameters including mean maximum and minimum 

temperatures, rainfall, and humidity were also examined in this study. These parameters were 

obtained from “high-quality spatial climate data sets” developed by the Australian Bureau of 

Meteorology (BoM) which provides gridded climatological maps for each month of the year 

(Jones et al., 2009). In addition, monthly solar exposure maps are obtained from BoM for the 

study period (Weymouth and Le Marshall, 2001). 

2.1.4. Land use data 

We obtained information on anthropogenic and natural land use data (spatial variables) that 

were potential predictors of NO2 concentration. These variables provided estimates of 

emissions from point sources, changing land cover conditions, and distance to emission sources 

(Table 1). 

2.1.5. Traffic data 

In this paper, we used a four-stage aggregate transport model, the South East Queensland 

Strategic Transport Model (SEQSTM) to simulate current and future transport network of the 

study area (Ryan et al., 2008). The modelled road network includes all freeways, highways, 

arterials, and a selection of collector roads. All public transport routes including three modes, 

namely: bus, rail and ferry are also included with the details of service frequencies. The 

SEQSTM is based on the detailed knowledge of the factors affecting transport behaviours such 

as future changes in population, car ownership, employment, growth in households, and 

changes in the road and public transport networks. This model is typically used to predict 

variations in travel patterns, network flows, transport mode used, increase in general travel 
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volume, and the routing of trips (Evans et al., 2007). SEQSTM is able to calculate the average 

daily traffic volume (TRFV) for each road in the road network. This information was used to 

provide accurate proxies of traffic and to evaluate the traffic effect on NO2 concentration. 

A number of studies highlighted the impact of traffic congestion as a traffic attribute on air 

pollution (Bureau of Transport and Regional Economics., 2007; Luk et al., 2009). Traffic 

congestion mainly falls into two types: recurrent and non-recurrent. Random events such as 

adverse weather and work zones are the main reasons of non-recurrent congestion as these 

events temporarily decrease the capacity of a road, hence the peak demands exceed the normal 

amount. (Hojati et al., 2014). Recurrent congestion, in contrast, is triggered by chronically 

surpassed road capacity, which is a predictable event and can be determined by using transport 

models. Volume to capacity (V/C) ratio is a common congestion performance metric which 

has been used in many studies (Lomax, 1997). The threshold of this measure to be considered 

congestion depends on the road types. As suggested by Klop et al. (2008), a V/C ratio equal or 

higher than 0.8 can be considered congested. SEQSTM is used to calculate the average daily 

congestion based on the V/C measure on each link to provide a measure of congestion and 

assess its effect on NO2 concentration. 

The independent variables summarised in Table 1, were examined to discover which ones 

improved the prediction of NO2 in our modelling process.  
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Table 1. Independent variables included as potential predictors of NO2 

Variables (units) Spatial 

resolution 

Point 

or 

buffera 

Data source 

OMI tropospheric NO2 column 

density (molecules × 1015 / cm2) 

13 × 24 km2 Point Aura OMI product via NASA Giovanni 

interface 

Distance to Coast (km) - " " ArcGIS geoprocessing tools 

Distance to port (km) - " " " " 

Distance to airport (km) - " " " " 

Distance to nearest major road - " " " " 

Distance to nearest minor road - " " " " 

Airport (present/not present) - Buffer " " 

Major road (km) - " " PSMA Australia Transport and 

Topography product 

Minor road (km) - " " " " 

Industrial point source NOx 

emissions (kg/yr) 

- " " Australia National Pollutant Inventory 

Time (Julian month) - Point ArcGIS geoprocessing tools 

Population density (person/km2) 1 × 1 km2 " " Australian Bureau of Statistics 

Land use by type (km2)b Mesh blockc Buffer " " 

Elevation (m) 30 m Point U.S. Geological Survey 

Normalized difference vegetation 

index 

1 × 1 km2 " " Terrestrial Ecosystem Research Network 

Derived from NASA NOAA satellite 

Mean daily maximum 

temperature (°C) 

5 × 5 km2 " " Australian Bureau of Meteorology 

Mean daily minimum temperature 

(°C) 

5 × 5 km2 " " " " 

Rainfall (mm) 5 × 5 km2 " " " " 

Humidity (hPa) 5 × 5 km2 " " " " 

Solar exposure (MJ/m2) 6 × 6 km2 " " " " 

Planetary boundary layer height 

(m) 

3 × 3 km2 " " Derived from Weather Research and 

Forecasting model 

U-component of wind speed (m/s) 3 × 3 km2 " " " " 

V-component of wind speed (m/s) 3 × 3 km2 " " " " 

Wind speed (m/s) 3 × 3 km2 " " " " 

Wind direction (Degrees) 3 × 3 km2 " " " " 

Traffic volume (Passenger car 

unit) 

- Buffer Derived from SEQSTM 

Traffic-length (Passenger car unit 

× m) 

- " " " " 

Congestion frequency (No.) - " " " " 
a 22 Circular buffers were generated with radii of 50 m, 100 m, 200 m, 300 m, 400 m, 500 m, 600 m, 700 m, 800 m, 900 m, 1000 m, 1200 

m, 1500 m, 1800 m, 2000 m, 2500 m, 3000 m, 3500 m, 4000 m, 5000 m, 7500 m, and 10,000 m (Novotny et al., 2011). 

b Four different land use classes were investigated including industrial, commercial, residential, and open space (which contains the 

agricultural land, parks, and water bodies (Rose et al., 2010)). 

c Mesh Block is the smallest geographic unit defined by the Australian Statistical Geography Standard for which the Census data is available 

(Australian Bureau of Statistics, 2011), and can be variable in size. 
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2.2. Modelling approach 

In this study, independent variables were examined either as point or buffer variables. Point 

variables were extracted at each monitoring site (e.g., NDVI, humidity, wind speed), while 

buffer variables were computed within all buffer sizes (e.g., traffic volume, land use type). 

Following similar studies (Knibbs et al., 2014; Novotny et al., 2011), 22 circular buffers were 

created around each monitoring site to obtain local and more remote sources of NO2 (Table 1). 

In total, 262 independent variables were obtained including 20 point variables and 242 buffer 

variables (11 variables computed at 22 buffer sizes). 

To include the traffic data, we used TRFV which represents the average daily traffic volume 

for a link in a road network per year. A GIS layer containing TRFV data derived from SEQSTM 

was used to calculate TRFV within the buffer. In order to evaluate the effect of the distance 

traveled by each vehicle, the TRFV of each road segment was multiplied by its length to 

calculate the amount of traffic-length interaction (TRFL) in that given buffer, using Eq. 1: 

𝑇𝑅𝐹𝐿𝑖 =  ∑ 𝑇𝑅𝐹𝑉𝑗 × 𝑙𝑒𝑛𝑔𝑡ℎ𝑗  𝑛𝑗=1         (1) 

where i, and j indicate the buffer sizes, and number of roads within each buffer respectively. 

We also used SEQSTM results to calculate the average daily congestion based on the V/C 

ratio on each link (V/C > 0.8). The total number of congested roads was then counted to provide 

the frequency of the congestion occurrence within a buffer (CONF). 
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Figure 1. Conceptual approach for estimating population-weighted NO2 concentration across 

SEQ. 

2.3. Input selection 

We followed “A Distance Decay Regression Selection Strategy” developed by Su et al. 

(2009) to select the best predictors for NO2 models. In the following section, a brief description 

of this method is provided. For more detailed information see Su et al. (2009). As the first step, 

the correlations of the all independent variables with measured NO2 were computed to obtain 

variable distance decay curves. The independent variable which had the highest correlation 

with the NO2 measurements was selected as the first important predictor. A regression model 

was built by the first important predictor and NO2 measurements. In the next step, the variable 

which had the highest correlation with the residuals of the regression model was chosen as the 

potential second important predictor, and the procedure replicated. To avoid multicollinearity, 

the new predictor was added to the model if the inclusion criteria were met. The criteria 

specified for this step were (a) the variance inflation factor (VIF) with parameters already in 

the regression model was less than 3, and (b) the significance level less than 0.05 (Su et al., 
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2009). The process stopped when a new selected predictor failed to meet one of the inclusion 

criteria. 

2.4. Adaptive neuro-fuzzy inference system (ANFIS)  

ANFIS is a hybrid system that incorporates the strengths of fuzzy logic and artificial neural 

network (Jang, 1993; Lin and Lee, 1991). ANFIS combines the fuzzy principles with neural 

network learning abilities which provide an efficient technique for modelling. 

Similar to multi-layer neural network, ANFIS consists of 5 layers. A fuzzy inference system 

is constructed in the first layer to extract a set of rules. In the following 4 layers, the adaptive 

learning algorithm is used to optimize the resulting parameters (Amini et al., 2008).  

In the first layer (known as a fuzzifier), a fuzzy inference system (FIS) needs to be created 

in order to construct membership functions (MF) and extract the if-then rules for the input 

variables (Amini et al., 2008; Jang, 1993). In this study, Sugeno-type fuzzy inference system 

with Gaussian membership function is used, which has the following form: 

𝑀𝐹𝑖𝑗 =  𝑒𝑥𝑝 [− (𝑥−�̅�√2𝛿)2]     for     𝑖 = 1, … , 𝑛    𝑗 = 1, … , 𝑚              (2) 

where j shows the number of membership function associated with independent variable i, and 

δ and �̅� indicate the variance and the mean of the Gaussian membership function (Jang, 1993). 

These functions minimize the number of rules by using “subtractive clustering” method and 

provide an effective model of the data behaviour (for more details see Jang and Gulley (1995)).   

As the fuzzy logic is not able to learn from the input data (Mathur et al., 2016; Naji et al., 

2016), a combination of the back-propagation gradient descent and least-squares learning 

procedures was utilized to provide ANFIS with adaptive learning abilities. (Jang, 1991, 1993; 

The Mathworks Inc., 2005). This adaptive learning process consists of 4 main steps. In the first 

step, the “product” operator is used to calculate the firing strength of the fuzzy rule (w) based 
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on the membership grade (µ) resulting from membership function. In the second step, the 

normalized firing strength (�̅�) for each rule is calculated (Amini et al., 2008). In the third step, 

an individual function is created for each variable using the consequent parameters derived 

from fuzzy rules (f) and its normalized firing strength (Mathur et al., 2016). Lastly, the sum of 

all the outputs resulting from the previous step is calculated to provide the final ANFIS outputs 

(Amini et al., 2008). Figure 2 shows the structure of ANFIS model used in this study. 

 

Figure 2. Schematic representation of ANFIS used to estimate NO2 concentration. 

As described in Section 2.3, “A Distance Decay Regression Selection Strategy” was 

employed to select the input data (predictors) for ANFIS model. The selected predictors were 

composed of different types of data, including meteorological, traffic, land use, and satellite 

data. These predictors were matched with the NO2 concentration aligning measurement timings 

at 12 monitoring sites during the study period (72 months) which resulted in more than 800 

observation sets in total. These observations were divided into training, validation, and test 

subsets. The majority of the observations (70%) were used for training the ANFIS model. 

Training dataset was used to adjust the model weights and derive the required coefficients. In 

order to avoid overfitting, 15% of the observations were used for internal validation process 

and checking the model’s generalization (Wu et al., 2012). This dataset was employed to 
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minimize overfitting which means ANFIS verified that any increase in accuracy over the 

training dataset resulted in a rise in accuracy over an out of sample dataset that has not been 

shown to the model before. Finally, the remaining 15% of the observations were employed as 

the test subset to estimate the NO2 concentration by the models. At this stage, the predictive 

ability of the ANFIS model was tested against the measurements, and the R2 value was also 

calculated. 

2.5. Model evaluation 

In this study, 10-fold cross validation (CV) and leave-one-out cross validation (LOO-CV) 

methods were employed to evaluate the model performance as these method has the ability to 

examine the model’s predictive ability (Beckerman et al., 2013).  

The 10-fold cross validation was accomplished by splitting all data into 10 equal-sized folds. 

Subsequently, one of the folds was used to test the model, and the remaining 9 folds were used 

to train the model (Kim, 2009; Refaeilzadeh et al., 2009). This process was repeated 10 times 

for each model while all folds were used as the test subset and the R2 and RMSE obtained from 

all models were averaged to calculate the final statistics (Dirgawati et al., 2015; Refaeilzadeh 

et al., 2009). 

With LOO-CV technique, one monitoring site was left out and the model was fitted using 

the training sets derived from other sites (Brauer et al., 2003; Hochadel et al., 2006). Then, the 

model was used to predict the concentrations at the left out site and calculate the R2 and RMSE 

values. This procedure was replicated while all sites were used once as the left out sample. 

Finally, the results were averaged to calculate the overall R2 and RMSE. 

We used R v.3.2.3 (R Foundation for Statistical Computing, Vienna, Austria) and MATLAB 

R2014b (MathWorks Inc., Natick, USA) for all statistical and soft computing analyses and 

ArcGIS version 10.2 (ESRI Inc., Redlands, USA) for spatial data processing and map creation. 
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3. Results 

3.1. Modeling results 

In this study, a wide range of ground-based NO2 measurements, land use, meteorological, 

and satellite data were employed to estimate NO2 concentration using ANFIS, as described in 

subsection 2.4. The effect of satellite and traffic variables on NO2 estimations were evaluated. 

For this purpose, four different combinations of the variables were created and used for 

modelling process. The first model (model A) consisted of the meteorological and land use 

(spatial) variables. Satellite-based variables (NDVI and OMI tropospheric NO2 column 

density) were included in the previous variables to create model B. With model C; the traffic 

variables (TRFL and CONF; described in Section 2.2) were replaced with road density 

variables (the sum of minor and major roads’ length) used in model B. Finally, all effective 

spatial and spatiotemporal variables were included in model D. 

For all models, the most effective predictors were determined using input selection process 

described in subsection 2.3. The results of the variable selection process are provided in the 

supplement (Table S1). Then, ANFIS was used to estimate the NO2 concentration, and 10-fold 

CV and LOO-CV methods were also employed for assessing the model’s generalization. Table 

2 summarizes the R2 and RMSE values obtained from model fitting and cross validation. 

Model A consisted of the land use (spatial) and meteorological variables, and was able to 

explain 70% of the NO2 variations, but it has the highest RMSE among the other models (2.79 

ppb). The satellite (spatiotemporal) variables included in model B increased the R2 by 14%, 

and decreased the RMSE by 28% compared to model A. 

Using traffic variables rather than the road density in model C, R2 increased by 5% and 

RMSE decreased by 18% compared to model B. Moreover, cross validation analyses showed 

that traffic variables increased the model’s generality, and model C is less over-fitted compared 



S20 

 

to model B due to the small difference between R2 and RMSE values obtained from model 

fitting and cross validation analyses. Finally, model D which included all spatial and 

spatiotemporal variables had the best performance across ANFIS runs with lowest RMSE and 

highest R2. Cross validation results also indicated that the data set used in model D increased 

the spatial predictive ability and model’s generality. 

 

Table 2. R-squared and RMSE for model fittings vs. cross validation 

 Variables 

Model 10-fold CV LOO-CV 

R2 
RMSE 

(ppb) 
R2 

RMSE 

(ppb) 
R2 

RMSE 

(ppb) 

Model A WSa, LUb,  0.70 2.79 0.66 2.91 0.58 4.28 

Model B WS, LU, satellitec  0.84 2.01 0.76 2.43 0.72 2.98 

Model C WS, satellite, INDd, traffice  0.89 1.64 0.87 1.70 0.81 2.21 

Model D 
WS, satellite, IND, traffic, 

minor roadf  
0.91 1.49 0.88 1.69 0.86 2.20 

a Wind speed  
b LU means the land use variables including the sum of industrial land use area within a 400m buffer, 
and the sum of minor and major roads’ length within 800m, and 500m buffers respectively. 
c The satellite variables include NDVI, and OMI tropospheric NO2 column density. 
d IND means the sum of industrial land use area within a 400m buffer. 
e The traffic variables include the frequency of the congestion occurrence within a 1000m buffer and 
the sum of traffic-length interaction values within a 500m buffer. 
f The minor road variable includes the sum of minor roads’ length within a 800m buffer. 
 

We compared the observed NO2 concentrations to the predicted values of the model A, model 

B, model C, and model D (Figure 3). The predicted-observed plot of the model D indicates that 

the values are more equally scattered across the line of agreement at the low and high NO2 

concentrations compared to other models. In addition, the predicted-observed plot shows 

relatively weak correlation between predictions of the model A and actual observations. 
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Figure 3. Scatter plots of predicted vs. observed NO2 concentration for model A, B, C and D 

in SEQ. Blue line indicates the line of agreement (y=x). 

Bland-Altman analysis was used to evaluate the agreement between the observation and 

predictions of model A, B, C, and D (Figure 4). The Bland-Altman plots demonstrated low bias 

in all models. However, model D predictions had the best agreement with the observations, and 

the fewest large residuals among other models.  
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Figure 4. Bland-Altman plots of predicted and observed NO2 concentrations (ppb). 

In addition, a conventional land use regression (LUR) model has been used to predict the NO2 

concentration, and compare the prediction ability of the ANFIS and multiple regression, which 

is mostly used in conventional LUR models. Hence, the optimum dataset used in model D were 

utilized for training both models, and NO2 concentrations were then predicted. A summary of 

the observed and predicted NO2 concentrations is presented in Figure 5. 
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Figure 5. Scatter plots of predicted vs. observed NO2 concentration for ANFIS and multiple 

regression in SEQ. Blue line indicates the line of agreement (y=x). 

Table 3 compares the R2 and RMSE for model fitting and cross validation results. For the 

model fit the R2 values are 0.91 and 0.82 for the ANFIS and multiple regression models, 

respectively. The RMSE values are 1.49 ppb and 2.09 ppb for the ANFIS and multiple 

regression models, respectively. Compared with the multiple regression model, the ANFIS 

model could capture more variability (9%), while its RMSE decreased by 28%.   

Comparing the difference between R2 values derived from model fittings and cross 

validations results showed that the multiple regression model overfits more than ANFIS model. 

This also indicated that the ANFIS model had higher predictive ability and model’s generality 

compared with the multiple regression model. 
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Table 3. R2 and RMSE for model fittings vs. cross validation 

 

Model 10-fold CV LOO-CV 

R2 
RMSE 

(ppb) 
R2 

RMSE 

(ppb) 
R2 

RMSE 

(ppb) 

ANFIS 0.91 1.49 0.88 1.69 0.86 2.20 

Multiple Regression 0.82 2.09 0.79 2.17 0.66 3.88 

 

3.2. Application of the model  

To provide spatial estimates of NO2 concentration, ANFIS model was applied to the centroid 

locations of the population grid in SEQ using the optimal subset of the predictors used in model 

D (best performance model).  

Figure 6a illustrates the land use map of SEQ, and Figure 6b and 6c present the spatial 

distribution of annual average NO2 concentration across SEQ in 2006 and 2011 respectively.   
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Figure 6. (a) Land use map of SEQ (b) Annual average NO2 concentration in 2006 (c) Annual 

average NO2 concentration in 2011.  

In both years, concentration level ranged from 1 to 31 ppb. Areas with higher concentrations 

(20 to 31 ppb) corresponded to cities and major towns. Higher concentrations were predicted 

in locations with extensive adjacent industrial areas and major roads. This pattern was observed 

in all 6 cities of the study area. The highest levels were predicted for the three largest cities: 

Brisbane, Logan, and Ipswich. The annual average NO2 concentration in 2006 and 2011 were 

calculated to compare the concentration levels in 5 local urban centres located in the study area. 
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Figure 7 shows the annual average NO2 concentration levels in 5 local urban centres in 2006 

and 2011. In general, the annual average concentration dropped from 7.5 ppb in 2006 to 6.4 

ppb in 2011. The most significant reduction of NO2 concentration was observed in Ipswich by 

18.3%, and the least significant, at the Sunshine Coast by 6.6%. Also, the highest and the lowest 

average NO2 concentrations were predicted in Brisbane and the Sunshine Coast respectively. 

Figure 7. Summary of the predicted NO2 concentration in 5 major cities in 2006 and 2011. 

Population-weighted NO2 concentrations were also calculated in local urban centres across 

SEQ. Using ANFIS model, the annual NO2 concentrations were predicted at the centroids of 

the Australian population grid (1 km × 1 km grid) provided by Australian Bureau of Statistics 

(2011). The population density of each grid was multiplied by the predicted NO2 concentration 

for each grid and the sum of this value for all grids was calculated and divided by the total 

population to calculate the population-weighted concentration. Table 4 summarized the 

population-weighted annual average NO2 concentration in urban areas of SEQ in 2011. 
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Maximum and minimum average exposure to NO2 was observed in Brisbane (9.65 ppb/km2) 

and Sunshine Coast (3.83 ppb/km2) respectively. 

Table 4. Mean and population-weighted mean NO2 concentration in urban areas of SEQ cities 

in 2011.  

Location 
Mean concentration  

(ppb) 

Population-weighted 

 mean concentration (ppb/km2) 

Brisbane 8.91 9.65 

Gold Coast 5.2 5.82 

Ipswich 6.06 6.51 

Logan 6.37 7.45 

Sunshine Coast 3.36 3.83 

 

Figure 8 illustrates the seasonal predictions of NO2 concentration in 2006. Mean predicted 

concentrations (ppb) were higher in Winter (6.56 ppb) and Autumn (4.35 ppb) than for Spring 

(4.24 ppb) and Summer (2.98 ppb). Maximum and minimum monthly average NO2 

concentrations were predicted in July (6.89 ppb), and February (2.58 ppb) respectively. 

Monthly prediction maps for 2006 and 2011 are given in the supplement (Figures S2 and S3). 
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Figure 8. Seasonal average NO2 concentrations in 2006. 

4. Discussion 

We employed ANFIS to improve the spatiotemporal modelling of NO2 concentration using 

satellite, meteorological, land use, and traffic variables in South-east Queensland, Australia. 

To our knowledge this study used the ANFIS model to estimate NO2 concentration for the first 

time. Using a cross validation technique, the ANFIS results were found to have good agreement 

with the NO2 measurements. The results provide estimates of monthly and annually NO2 

concentrations for SEQ from 2006 to 2011. 10-fold CV and LOO-CV methods were employed 

to evaluate the predictive ability of the different combination of the predictors. Both CV 

methods used similar types of predictors for each model (model A, B, C, and D). Unlike LOO-

CV, the 10-fold CV used some training sets derived from the left-out site to make its 
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predictions, hence higher R2 and lower RMSE were obtained from 10-fold CV compared to 

LOO-CV results. 

In this research, SEQSTM was used to calculate TRFL, and CONF. Both parameters were 

highly associated with NO2 concentration across ANFIS runs. The WRF model was also 

employed to calculate PBLH, and WS. Based on the input selection results, WS was among 

the important predictors for estimating NO2 concentration. 

Prior studies mostly considered spatial predictors focused on road density and population-

related data. Recent studies demonstrated that meteorological parameters could considerably 

affect the NO2 concentrations (Elminir, 2005; Kim and Guldmann, 2011, 2015), hence we 

evaluated spatiotemporal predictors including satellite, meteorological, and traffic data in order 

to improve the temporal resolution of NO2 estimates. Based on results summarized in Table 2, 

a comparison of the model mainly fed with spatial data (model A) and a model which used a 

combination of spatial and spatiotemporal data (model D) reveals an interesting finding. 

Adding the spatiotemporal data components to spatial data substantially improved the 

modelling accuracy and performance as RMSE decreased by 47% and R2 increased by 21% 

(Figure 3). In addition, cross validation results showed model D was less overfit than model A, 

which means model A is not as general as model D.  

The ANFIS model was found to have better performance and higher accuracy compared with 

multiple regression model, and better agreement with the observed data. Our results also 

corroborated with Sorek-Hamer et al. (2013) who showed that non-linear models like ANFIS 

have higher predictive ability compared with multiple regression model used in conventional 

LUR. 

The results obtained from model A and model B show that including satellite-based variables 

increased the R2 by 14%, and decreased the RMSE by 28%, which indicates the key role of 

satellite-based data in model’s performance. In addition, Table 2 shows that the use of traffic 
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data (model C) rather than road density data (model B) decreased RMSE by 18% and increased 

R2 by 5%. These results support the concept that traffic data derived from transport models 

provide more reliable information about traffic dynamics compared to traditional measures of 

traffic such as road density. In general, our results corroborate previous research 

recommending the use of spatiotemporal variables for NO2 prediction (Bechle et al., 2015; 

Dirgawati et al., 2015; Gulliver et al., 2013; Vienneau et al., 2013), but also demonstrate an 

improved performance when spatiotemporal data is used to estimate the NO2 concentration 

including satellite and traffic data. 

Data sets with different spatial resolutions have been used in our study. The resolution of 

NDVI and WRF outputs, for example, is finer than the OMI satellite data. Individually, OMI 

tropospheric NO2 column density data is provided at a coarse spatial resolution which is not 

accurate enough for assessing the exposure to NO2 in epidemiological studies. However, 

method of combining different buffer sizes of land use parameters with meteorological, traffic 

and satellite-based data enabled the model to combine fine and more spatially coarse data sets 

to estimate NO2 concentration and provide more informative results for epidemiological 

studies. These findings corroborate the result of other studies showing the advantages of 

combining several data with different spatiotemporal resolutions (Reid et al., 2015; Reis et al., 

2015).  

Another important finding was that the average NO2 concentration levels were higher in 2006 

compared to 2011 which could be due to the difference in vehicle emission standards in 

Australia. Prior to 2006, Euro 3 standard was applied to passenger vehicles and trucks in SEQ, 

while then any new vehicle manufactured after 2006 complied with Euro 4 standard in which 

lower level of NO2 emission is permitted.  
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Different methodologies make it difficult to compare our results to other studies, however 

we have attempted to compare our results with other studies which have demonstrated the 

ability of statistical models for predicting NO2 concentration (Dirgawati et al., 2015; Lee et al., 

2014; Rahman et al., 2017). These studies developed LUR models to estimate the variation of 

NO2, and reported R2 lower than 0.75. Our model performed better than these models, which 

can be due to either: (1) the comprehensive input variables used or (2) spatiotemporal 

modelling approach or (3) the more robust modeling algorithm used. 

There are some limitations attributed to the data availability in this study, consequently 9% of 

the NO2 variations were unexplained by the ANFIS model. The number of observations plays a 

key role in statistical models (Basagaña et al., 2012). Therefore special attention has been paid to 

the number of observations. The use of the temporal data provided further variability for air quality 

measurements in this study. The number of observations used in this study was enough to meet the 

minimum requirements suggested by Basagaña et al. (2012), but sparse spatial distribution of the 

monitoring sites in the study area remain as a limitation of this study. 

Although the traffic congestion found to be a better metrics for the traffic data compared with 

the road density, the use of SEQSTM limited our model, as SEQSTM provided only the annual 

average congestion, which smoothed out the monthly variation of the congestion data. Another 

issue was that the concentrations were measured from 2006 to 2011, while the land use parameters 

were only available for 2011. 

Moreover, the type of the air quality monitoring stations was not included as a potential predictor. 

Levy et al. (2015) suggested that including this predictor could improve the performance of LUR 

model. Aura passes over SEQ at 14 pm, hence the OMI tropospheric NO2 column density might 

underestimate the actual NO2 concentration due to the high rate of the photochemical reactions in 

the atmosphere at this hour of the day. The cloud cover during a proportion of the Austral summer 
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resulted in missing satellite data, hence the modelling outputs may be affected by the loss of the 

satellite data during the Austral summer. 

5. Conclusions 

In this study, a satellite-based model was developed for estimating the spatiotemporal 

variation of NO2 concentration on a monthly base. An ANFIS model used for predicting NO2 

concentration performed very well and exhibited satisfactory performance with R2, and RMSE 

equal to 0.91, and 1.49 ppb, respectively. It provided estimates of monthly and annually NO2 

concentrations during 2006-2011. The traffic and satellite data used in this study was found to 

enhance the estimation of NO2 concentrations. The method of combining spatiotemporal data 

with different resolution, such as that from satellite, traffic, and meteorological data with local 

land use parameters significantly improved the model’s performance, and provided more 

informative results. This novel approach can be applied to precisely estimate the NO2 

concentration in different environments. The model is particularly useful for epidemiological 

studies and other researches looking for accurate estimates of  NO2 concentration at different 

times. Finally, our study demonstrates the great potential of the ANFIS model trained by traffic 

data incorporated with satellite, meteorological, and land use data to improve the accuracy of 

spatiotemporal NO2 estimations. Further analysis such as sensitivity and uncertainty analyses 

can also be done to assess the importance of input parameters and uncertainty in the modelling 

results. 
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1. Modelled Planetary Boundary Layer Height and Wind Vectors 

The Climate Research Group (CRG) of The University of Queensland (UQ) School of 

Geography, Planning and Environment Management provided the planetary boundary layer 

(PBL) height and wind vectors (U and V) for the spatial analysis of the project. The Weather 

Research and Forecasting model (WRF) was used to calculate daily at 2 pm Australian Eastern 

standard Time (AEST): (1) average PBL height in metres above ground level (AGL); and (2) 

10 metre AGL wind vectors. These variables were averaged for each month for six years (2006 

to 2011). The time of 14:00 AEST was chosen to coincide with the instrument ephemeris 

calculated Aura satellite overpass time for the study area. 

1.1 Weather Model Configuration 
WRF is a community “numerical weather prediction and atmospheric simulation system for 

both research and operational applications” (Skamarock et al., 2005) that has been evolving 

through predecessors for some twenty years. CRG used WRF version 3.5 for this work. 

The WRF three dimensional, two domain configuration was designed considering model 

guiding documentation (Wang et al., 2012) and a project need to optimise model running time 

and still enable at least a moderate model output spatial resolution. The WRF nested domains 

were at a 5:1 (outer:inner) ratio as shown in Figure S1. The model domains were centred at 

latitude 27.5 degrees south and longitude 152 degrees east – just west of the project subject 

city of Brisbane. The outer domain had a spatial resolution of 15 km and the inner domain was 

therefore set at 3 km. The domain design, particularly the size of the outer domain, made 

optimal use of six-hourly Global Forecasting System (GFS) reanalysed meteorological data 

archive. The inner domain size of 3 km was chosen to resolve terrain features suitable to the 

GIS based multivariate analysis while not burdening the model run times unnecessarily. WRF 

earth surface database best spatial resolution is 30 arc-seconds so the inner domain spatial 

resolution matched the geographical initial condition data. While it has been shown that a WRF 
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1 km spatial resolution best accounts for topographic effects on wind flow (Horvath et al., 

2012), the project selection of WRF wind vectors (U, V) at 10 metres above ground level 

combined with the 3 km spatial resoultion provided a suitable modelled wind surface to use in 

the GIS enabled multivariate spatial analsysis. The WRF inner domains was sized to 121 * 121 

grid squares – greater than the minimum 100 * 100 grid square size recommended by WRF 

user guidance (Wang et al., 2012). The model tropospheric depth was divided into 30 sigma 

levels. 

 

 

Figure S1: the WRF model two domain design centred on a location to the west of the 
Australian city of Brisbane at 27.5 south and 152 degrees east. 
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GFS 6 hourly, reanalysed meteorology data is provided by the US National Centre for 

Environmental Prediction (NCEP) as final operational global tropospheric analysis. Since this 

data incorporates weather observations at one degree latitude/longitude a large outer domain is 

needed so that sufficient meteorology is provided to the model boundary and initial conditions. 

WRF model geographical boundary and initial conditions created by the WRF Pre-processing 

System (WPS) were compiled from: 

 United States Geological Survey (USGS) topography at 30 arc-seconds; 

 USGS 24 land use categories; 

 USGS 16 soil categories; and 

 Standard WRF provided albedo, soil temperature, sea surface temperature and green 

fraction data sets. 

WRF physics scheme configurations were chosen based on those found optimal for wind 

modelling (Deppe et al., 2013; Santos-Alamillos et al., 2013; Yang et al., 2013; Zhang et al., 

2013) and suitable for Australian environmental conditions (Evans et al., 2012). The main 

physics scheme selections being: 

 Microphysics – WSM (WRF single moment) 3-class; 

 Longwave radiation – RRTM (Rapid Radiative Transfer Model) scheme; 

 Shortwave scheme – Dudhia scheme; 

 Surface layer option – Monin-Obukhov scheme; 

 Land surface option – Unified Noah land-surface model; 

 Boundary layer option – YSU (Yonsei University) scheme; 

 Cumulus option (outer domain only) – Kain-Fritsch scheme; and 

 Vertical velocity damping switched on. 
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1.2 Weather Model Runs and Data Extraction 
WPS and WRF were setup to process one month per model run for the six years; 2006 to 2011. 

Accordingly, 72 individual WRF model runs were packaged up and run in Australia’s National 

Computing Infrastructure. A WRF run time-step of 90 seconds was used. WRF output was 

segmented into daily data output files for each month of each year to simplify the variable 

extraction process. 

WRF netCDF output files were processed with the well-known netCDF Operator (NCO) 

software toolkit (Zender, 2008) to extract the three required variables. WRF wind output is 

retained as two Cartesian coordinate parameters – U and V wind vector components. “U” wind 

is air motion in the “x” direction and “V” wind is air motion in the “y” direction (Stull, 2000). 

WRF outputs PBL height in a variable PBLH. These three variables were extracted from the 

daily files and averaged per month and redeposited in netCDF files retaining the model grid 

point latitude and longitude variables so that the files could be ingested into ArcGIS. The daily 

files were then used separately to output the maps of each variable for each day of 2011.  
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 2. Monthly predictions of NO2 concentration in South-east Queensland 

The seasons in Australia are described in the following way: Spring - the three transition 
months September, October and November. Summer - the three hottest months December, 
January and February. Autumn- the transition months March, April and May (Bureau of 
Meteorology, 2017). 
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Figure S2: Monthly average predictions of NO2 concentration in 2006. 
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Figure S3: Monthly average predictions of NO2 concentration in 2011. 

3. Results of input selection 

 

Table S1: Results of input selection for model A, B, C, and D. 
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 Std. Error t value Pr(>|t|)     Variance 

Inflation 
Factor 

Model A 

MinorRoad_800a  5.77e-05  7.50 2.05e-13     1.82 
Industrial_400b  1.90e-03  20.40 < 2e-16     1.38 
MajorRoad_500c  1.01e-04  9.76 < 2e-16     2.01 
WSd  6.52e-05 -9.44 < 2e-16     1.03 
Model B 

ONe  1.75e-04  30.64 < 2e-16  1.30 
MinorRoad_800  3.82e-05  11.32 < 2e-16  1.97 
Industrial_400  1.24e-03  12.37 < 2e-16  1.46 
MajorRoad_500  6.49e-05  18.69 < 2e-16  2.05 
VIf  9.71e-04 -7.36 1.01e-05 1.37 
WS  4.55e-05 -8.20 2.28e-05 1.23 
Model C 

ON  2.06e-04 24.25 < 2e-16  1.31 
TrfLen_500g  1.29e-09 22.07 < 2e-16  4.36 
CongCount_1000h  6.47e-06  9.20 < 2e-16  4.46 
Industrial_400  1.59e-03 8.18 < 2e-16 1.65 
VI  5.11e-04 -6.41 5.23e-05 1.29 
WS  5.33e-05 -7.61 4.96e-05 1.21 
Model D  

ON  1.72e-04  31.07 < 2e-16  1.31 
TrfLen_500  8.18e-10 18.61 < 2e-16 4.90 
CongCount_1000  2.57e-05  9.20 < 2e-16  4.61 
MinorRoad_800  4.01e-05  7.73 < 2e-16  2.29 
Industrial_400  1.29e-03  12.37 < 2e-16  1.66 
VI  9.50e-04 -6.18 3.13e-05 1.39 
WS  2.55e-05 -8.21 2.72e-05 1.21 

a The minor road variable includes sum of minor roads’ length within a 800m buffer. 
b The industrial variable includes sum of industrial land use area within a 400m buffer. 
c The major road variable includes sum of major roads’ length within a 500m buffer. 
d Wind speed. 
e OMI tropospheric NO2 column density. 
f Normalized difference vegetation index. 
g Traffic-length interaction within a 500m buffer. 
h The frequency of the congestion occurrence within a 1000m buffer. 

 
 

 

4. Air quality monitoring stations 
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The location and the distance between the air quality monitoring (AQM) stations are shown in 

Figure S4 and Table S2, respectively. The spatial resolution of the satellite observations is 13 

km × 24 km, while the average distance between the AQM stations in the study area is 52.23 

km. Hence, the resolution of the satellite observation is finer than the spatial distribution of the 

AQM stations. Therefore, the use of the satellite observations provided informative data for 

estimating the NO2 concentration between the stations and improved the modelling 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. The location of the air quality monitoring stations in the study area 

Six monitoring stations operated during the whole study period, while other stations did not 

measure the NO2 concentration continuously throughout the study period. A summary of the 

missing data period in the monitoring stations is provided in the following: 

 Pinkenba: January 2011  
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 Rocklea: March 2008, February 2011 to December 2011 

 Springwood: February 2006 

 Toowoomba: January to December 2011 

 Woolloongabba: January 2006 to March 2008 

 Wynnum North: January 2006 to August 2007 
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Table S2: The distance between air quality monitoring stations within the study area (km). 

 Deception 
 Bay 

Flinders 
 View 

Mountain 
 Creek 

Mutdapilly 
North  

Maclean 
Pinkenba Rocklea 

South 
Brisbane 

Springwood Toowoomba Woolloongabba 
W

Deception 
 Bay 

0                     

Flinders 
 View 

57.26 0                   

Mountain 
 Creek 

56.19 111.88 0                 

Mutdapilly 72.92 16.66 126.32 0               
North  

Maclean 
64.22 28.53 120.35 37.49 0             

Pinkenba 26.62 43.01 81.15 59.26 39.78 0           
Rocklea 39.17 25.26 95.33 41.57 25.19 18.43 0         
South  

Brisbane 
32.41 31.68 88.65 48.15 31.79 11.23 7.38 0       

Springwood 47.72 36.1 102.76 50.49 20.52 21.29 15.55 17.53 0     
Toowoomba 109.19 75.99 144.78 66.94 103.39 110.89 97.53 101.17 111.28 0   

Woolloongabba 33.8 31.6 89.37 47.24 30.31 12.19 6.25 1.44 16.43 101.25 0 
Wynnum  

North 
28.99 45.49 82.25 61.76 39.94 3.84 20.18 13.92 20.44 114.37 14.32 
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5. Model evaluation metrics 1 

Different metrics can be used for evaluating the modelling performance. In this study, the 2 

coefficient of determination (R2) was utilized to describe the proportion of the variation in the 3 

dependent variable(s) which can be explained by a model of interest (Yeganeh et al., 2012), 4 

and it is calculated as bellow:  5 

𝑅2 = 1 − ∑ (𝑌𝑖− 𝑌𝑖∗)2𝑛𝑖=1∑ (𝑌𝑖− �̅�𝑖)2𝑛𝑖=1                                                                                                               (1) 6 

In addition, the root mean squared error (RMSE) was used to evaluate the accuracy of the 7 

modelling performance using equation 2: 8 

𝑅𝑀𝑆𝐸 =  √1𝑛 ∑ |𝑌𝑖 − 𝑌𝑖∗|2𝑛𝑖=1                                                                                                (2) 9 

where i indicates the number of the samples, Yi is the observation value, Ȳi is the average of 10 

observations, and Yi
* is the predicted value. 11 

 12 
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