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Abstract

The conventional methods used to evaluate battery state-of-charge (SOC) cannot accommodate the chemistry nonlinearities,
measurement inaccuracies and parameter perturbations involved in estimation systems. In this paper, an impedance-based equivalent
circuit model has been constructed with respect to a LiFePO, battery by approximating the electrochemical impedance spectrum
(EIS) with RC circuits. The efficiencies of approximating the EIS with RC networks in different series-parallel forms are first
discussed. Additionally, the typical hysteresis characteristic is modeled through an empirical approach. Subsequently, a methodology
incorporating an H-infinity observer designated for open-circuit voltage (OCV) observation and a hysteresis model developed for
OCV-SOC mapping is proposed. Thereafter, evaluation experiments under FUDS and UDDS test cycles are undertaken with varying
temperatures and different current-sense bias. Experimental comparisons, in comparison with the EKF based method, indicate that the
proposed SOC estimator is more effective and robust. Moreover, test results on a group of Li-ion batteries, from different
manufacturers and of different chemistries, show that the proposed method has high generalization capability for all the three types of

Li-ion batteries.
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I. INTRODUCTION

Lithium-ion battery related technologies have been
attracting the interest of modern electric vehicle producers
because of their high specific energy and long lifetime
compared to lead-acid and nickel-metal batteries [1]-[2]. To
prevent permanent damage and to enable optimum use of the
battery, regular operating conditions should be guaranteed by
the battery energy management system (BEMS). The accurate
and reliable estimation of the State-of-Charge (SOC) is an
essential prerequisite for BEMSs to determine the energy
management strategy [3]. Nevertheless, the inherent
charge-discharge processes involve complex electrochemical
kinetics inside the battery and as an internal state the SOC is
generally unmeasurable. Consequently, some relevant
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quantities need to be measured to identify the SOC indirectly.

Several techniques and methods have been reported to
improve SOC estimation performance. Although the charge
counting method [4] is simple to utilize, the determination of
the initial SOC is difficult and errors caused by uncertain noise,
sensor resolution and measurement rounding are increasingly
accumulated. The open-circuit-voltage (OCV) method [5]
needs to deactivate the battery untill the terminal voltage
approaches its equilibrium potential. In addition, the very flat
OCV-SOC plateau and the pronounced hysteresis
phenomenon during the operation range (the solid ellipse
marked area in Fig. 1) make precise assessment of the SOC
very complicated. The Kalman filter method was put forward
to perform closed-loop SOC estimation in ideal linear systems
[6]. To adapt to nonlinear models (the dash ellipses marked
areas in Fig. 1), the Extended Kalman filter (EKF) [7] and the
Unscented Kalman Filter (UKF) [8] were employed. However,
they give unreliable results in the presence of severe
nonlinearities and the performance is sensitive to the
assumptions of noise characteristics. When the system and
measurement noises are non-Gaussian or correlated, the filters
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Fig. 1. Schematic illustration of OCV-SOC relationship during
continuous charging and discharging process respectively.

I

Fig. 2. A typical equivalent circuit model framework for batteries,
N denotes the order of RC-ladders.

are suboptimal [9]. Arising from temperature fluctuations,
current alternations and aging, there inevitably exist
uncertainties in battery models, which might result in
performance deterioration, even system divergence. In order
to address these problems, attempts to assess the SOC with
observer-based techniques have been documented [10]. As a
robust filter, the Hoo observer based SOC evaluation method
[11] not only guarantees system stability, but also maintains
good adaptability and great robustness.

SOC estimation algorithms are commonly applied in
conjunction with appropriate battery models. Some studies
were carried out on electrochemical models from the
perspective of a molecular level [12]. Since it is necessary to
rely on readily available measurements such as instantaneous
terminal voltage and current, the chemistry-dependent models
are not applicable. Neural network based models [7] possess
superior capability in terms of nonlinear fitting. Nevertheless,
the training of neural networks is time-consuming and relies
heavily on adequate historical data to completely model the
dynamic behavior so as to attain acceptable generalization
capability. Equivalent circuit models [13] are another
common category for battery modeling. Typically, an
equivalent series resistor (ESR) is used as the battery internal
resistance (constant or varying with the SOC and
temperature), a voltage source as the OCV or a bulk capacitor
as the capacity. For the sake of reproducing the primary
electrical characteristic, high order RC networks are
incorporated as illustrated in Fig. 2, where N denotes the
order of the RC ladders. In the frequency domain,
electrochemical impedance spectroscopy (EIS) has been
introduced either to figure out the SOC directly [14], or as an
effective approach for battery modeling [15]. Addationally,

TABLEI

SPECIFICATIONS OF THE INVESTIGATED LPF LI-ION BATTERY

Parameter Value Unit
Manufacturer HUANYU NEW ENERGY

Nominal capacity 10 (0.3C discharge) Ah

Nominal voltage 32 \%

Upper cut-off voltage 3.65 \%

Lower cut-off voltage 22 \%

Operating temperature Charge:0~45 Discharge:-20~60 °C

-

Fig. 3. Dedicated battery charge-discharge tester (left), thermally
controlled environmental chamber (middle) and electrochemical
impedance spectroscopy instrument (right).

since regenerative braking is widely adopted in electric
vehicles, frequent alterations between charging and
discharging are common scenarios during vehicle operation.
Thus, the hysteresis phenomenon has been taken into
consideration in battery modeling [16].

The remainder of this paper is structured as follows. In
section II, the investigated battery and the equipment for
testing are introduced. An equivalent circuit model is built by
approximating the impedance spectrum with RC networks in
the frequency domain, and the OCV-SOC relationship is
identified with consideration of the hysteresis effect. The
procedure of the proposed SOC estimation scheme and a
detailed theoretical analysis of the Hoo observer designated
for OCV observation are depicted subsequently. In the
following section, the proposed battery model is evaluated
through a comparison between the measured and the
simulated voltage responses in the time domain. Then
experimental details of a practical implementation using the
proposed methodology, in comparison with the EKF-based
one, verify the effectiveness of the proposed method.
Additionally, to check the generalization capability of the
proposed method, several other batteries, from different
manufacturers and of different cathode materials, are tested.
Finally, some conclusions are drawn and future works are
discussed.

II. MATERIALS AND METHODS

A. Investigated Battery and Equipment

This research work has been conducted on a 10Ah LiFePO,
(LFP) battery, the specifications of which are listed in Table I.
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A dedicated battery tester, as shown in Fig. 3 (left), is
mandatory to perform charge-discharge experiments under
various current profiles. The ambient temperature is a
remarkable factor that influences the battery electrical
properties. During the experiment, the battery is contained in a
thermally controlled chamber, as presented in Fig. 3 (middle),
to provide pre-set environmental conditions. When measuring
the EIS of the battery, small-signal excitations (lower than
10mV) within the specified frequency range are applied on the
cell while simultaneously evaluating its response with an
EISmeter, which is shown in Fig. 3 (right).

B. Battery Modeling
1) Impedance-based Equivalent Circuit Model

As an analytic method in the frequency domain, the EIS of a
battery characterizes its dynamic behavior. Therefore, it is
usually employed for equivalent circuit parameterization. In
this paper, impedance measurements of the battery were
obtained with an EISmeter under the conditions that
SOC=70%, discharge rate=1C, ambient temperature=25°C
and frequency from 0.1 to 0.5k HZ. The acquired original
impedance diagram has been ploted in the Nyquist plane as
presented in Fig. 4 (the black line with solid square marks, the
negative imaginary part vs. the real part), characterizing an
oblate semicircle at the high-frequency stage and a fixed
gradient line at the low-frequency stage. Then the original
impedance spectrum is fitted with the circuits shown in Fig. 2
by ZSimpWin, where N denotes the order of the RC ladders.
Obviously, as N increases, the fitted curve gradually
approaches to the original curve as depicted in Fig. 4. As a
tradeoff between complexity and accuracy, N = 3 is chosen
in this paper.

In order to study the approximation efficiency by different
circuits on the impedance characteristics, several circuit
variations, referring to the Thevenin model [13] and the Saft
Capacitance model [17], are evaluated. Fig. 5 (b) describes
four 3rd-order heteroid RC circuits in different series-parallel
forms used for fitting. As Fig. 5 (a) depicts, the fitting
differences between the four circuits are negligible, i.e., all
four of he circuit forms apply to the impedance spectrum
approximation.

To obtain the observable system state-space expression, an
equivalent circuit formed as R(R(RC)(RC)(RC)), as shown in
Fig. 5 (b), is adopted referring to [17]. The amount of stored
energy can be denoted as a bulk capacitor Cpyy . The
capacitance of Cp,;, can be calculated by Equ. (1), where
Vioowsocy and Vigesoc) are the OCV at corresponding SOC
points. Cy is the nominal capacity in Amp-Sec. Since the
value of Cpyy is fixed, the values of the remaining
components can be given by Zsimpwin by fitting the
impedance spectrum.

C _ Cy " Vioowsoc
bulk = 172 2
(Vwo%soc - Vo%soc)/2

€y
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Fig. 6. The response of applying alternating pulses at various
current rates but with a constant amount of charge per pulse (400As,
800As and 1500As respectively) and rest durations of 3600s in
between on the Li-ion cell.

2) Determination of the OCV-SOC Relationship

The OCV of Li-ion batteries is not determined solely by the
SOC. However, it is relevant to the pretreatments due to the
complex electrochemical reactions, e.g. the hysteresis
phenomenon has significant impacts on the OCV-SOC
relationship (Fig. 1). According to the findings on NiMH
batteries outlined in [15], that the hysteresis voltage (Vyyst)
depends exclusively on the throughput of ampere hours (Qp,ys¢)
in the charging or discharging course, similar research and
further study have been carried out on the LiFePO,-based
battery in this paper. As shown in Fig. 6, alternating pulses at
various rates (0.2C, 0.4C, 0.8C and 1.5C) but with a constant
amount of charge per pulse (400As, 800As and 1500As,
respectively) and rest durations of 3600s in between for
equilibrium potential recovery are applied to the Li-ion cell.
The gaps (Vpys:) between the horizontal colored lines are
independent of the current rate, but correspond to the
throughput of the transferred charge (Qpys;). Accordingly, it is
reasonable to conclude that the finding in [15] turns out to be
applicable to the LPF battery. Additionally, it is found that the
maximum of Qpyse (Qnyst max>» A = B inFig. 7) remains as a
constant (approximately equals to 0.042 - Cy) and that the
charging semicycle and discharging semicycle of the inner
hysteresis curves are symmetric and similarly shaped during
the operation range (10%-90% SOC).

Three different hysteresis cases are portrayed in Fig. 7.
Casel (A = B — A) illustrates a typical hysteresis cycle with a
charge throughput of @, ,.,, and both of the terminal
points just locate on the upper and lower OCV-SOC
boundaries respectively; Case2 (A > C - A or B> C' — B)
delineates shallow micro-cycles where the transferred charge
is smaller than Q ¢, s Case3 (A = B - B - A ->A)isa
deep hysteresis cycle and it describes the procedure of
continuously charging with a charge amount over Q ¢, .,

and then discharging to the lower boundary. All three cases

[
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Fig. 7. Three different hysteresis inner cycles of equilibrium
potential between the outer boundaries.
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Fig. 8. Schematic of the zoomed-in hysteresis cycle in Fig. 7.

elucidate a core principle that, point B is always regarded as
the relative reference target for the charging process, and point
A(A’) is regarded as the relative reference target for the
discharging process. From the observation of Fig. 7, the OCV
can be regarded as the superimposition of V(SOC) in the
discharging course and hysteresis voltage, i.e. OCV =
VLB (SOC) + Vhyst (thst)~

As Fig. 7 and 8 indicate, three prerequisites are mandatory for
identifying the inner hysteresis trajectory.

a) The Outer Boundaries of the SOC-OCV Relationship
In essence, the actual variable corresponding to the SOC is

the electromotive force (EMF) which is a crucial internal
state of batteries. Because of the immeasurability of EMF, the
open-circuit-voltage (OCV) is commonly used as a
substitution in practical applications. The battery terminal
voltage can be measured as OCV when the relax time t — oo
after the load is cut off. However, t - oo is obviously
infeasible. Thus, t = 2000s is adopted and has been proven
to be sufficient for equilibrium potential reestablishment by
experiments. Thereafter, the boundary curves (V5 (SOC)
and Vyp (S0C)) can be acquired through a cubic spline
interpolation of the measured OCV-SOC point pairs both in
charging and discharging course.

b) The Maximum of Transferred Charge in the Typical
Hysteresis Semicycle (Qnys max)
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By analyzing the experimental results, the maximum of the
transferred charge Qpystmax 1N @ complete (typical)
hysteresis semicycle (Fig. 7 casel) remains a constant during
the operation range (10%-90%SOC). For the investigated
LPF battery, Quyst max approximately equal to 0.042-Cy
(1512As here).
¢) The Maximum of Hysteresis Voltage in Shallow Cycles

(AVchargeand AVdischa'rge)

hyst hyst
charge discharge .
The values of AV, and AI/;lyst_max can be derived

hyst_max
by Equ. (2) at Qnyst = Qnysmax/2, Where fepgrge and
TNaischarge are the proportionality coefficients and SOC €
[0.1,0.9].
AV,RT9e = (Vyp(SOC) = Vys(SOC)) X Nenarge
AVt mas® = (Vyp(SOC) = Vi5(SOC)) X Ngischarge

hyst_max

(2)

According to experimental measurements, 7cparge and

TNaischarge €an be set as 0.247 and 0.218, respectively.

charge
Vhyst

charge discharge discharge
Wpyst max (AViyse and AV, nay ) can be expressed

in Equ. (3).
discharge __ discharge thst
Av;tyst - AVhyst_max Q
hyst_max

AVcharge _ AVcharge thst_max B thst
hyst - hyst_max

Referring to [15], the correlation between A and

(3)

thst_max

Taking the shallow hysteresis cycle (A - C — A) in Fig. 8
as an example, when the cell is charged from the start point A
on the lower boundary, the corresponding target point B on
the upper boundary can be determined by Qpuyst max

(S0Cp = SOCy + Qnyst max/Cn)- C is the stochastic endpoint
of the charging process depending on the load. The charging
trace of the equilibrium potential (A — C) overlaps with the
typical hysteresis charging semicycle (A —-C = E - B),
which can be obtained using a 2nd-order polynomial
approximation of points A, B and E (regarding E as the
pole of the charging semicycle at Qpnyse = Qnyst max/2)-
Similarly, the discharging trace (C = D — A) can be worked
out by regarding C as the start point, A as the end point and
D as the pole.

C. Hoo Based Observer for OCV Observation

The Hoo observer does not require information on the
noise characteristics and provides consistent performance
when subject to uncertainties and disturbances. For the
purpose of accommodating mode uncertainties due to current,
temperature and aging, a linear robust Hoo observer was
designated to perform OCV observation. The schematic
diagram in Fig. 9 demonstrates the procedure of the proposed
methodology, where the Hoo observer determines the OCV
and the OCV-SOC relationship model (studied in section
11.B.2) ultimately gives the SOC estimation result.

The electrical significance of R; in R(R(RC)(RC)(RC))
form (Fig. 5 (b)) is the self-discharge resistor. Accounting for
that the resistance of R, (usually in the level of 10%) is
considerably larger than other resistors, the self-discharge
impact on the transient response can be ignored. Thereafter,
R(R(RC)(RC)RCO)) is simplified as Fig. 10 with R; omitted.

According to Kirchhoff laws and knowledge of transient
circuits, the following equations can be derived:

Vo =1IR, +V, 4)

Ie = (VA - Vbulk)/Re (5)
Is = (VA - Vs)/Rs (6)
Lpy= (V4— Vm)/Rm @)

I, = Cbulkaulk ®

I, = C,V, €))
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Ly = CVin (10)
I=I,+I+1, Y
From Equs. (5)-(7) and (11), V, can be easily deduced as
IR,RsR,, + Vi RsRyy + ViR Ry, + Vi R R
A= RyR + ReRm + RoR, - 42

Combining Equs. (6)-(8) and (11)-(12), the expression of
the voltage across the bulk capacitor Cj,;, can be rewritten:

IRmRs _ Vbulk(Rm + Rs) VmRs

aCpuike

V.R
+—"-,(13)

bulk =
aChuiie

aCpyi aCpyuik

where @ = R,R,, + R.R; + R,R;.
Similarly, V, and V,, can be derived as (14) and (15).

V — IReRm _ Vs(Rm + Re) + VmRs + VbulkRm

, (14

§ aC; aC; aC; aC; a4
IR,R; V,(R.+R VoueRs ViR

7 = els m( e s) + bulk™s S e. (15)
aC, aC, aC, aC,

From Equ. (4) and (12) the terminal voltage is obtained as:

B ReRy, R.R; R
Vo=1 (R —) Vi v
f ot p + PG + z m +

R

sttm
V 16
bulk( )

where = R,R,R;.

The system state variables are chosen as x(t) =
Vi Viu Vouu]”, and the system input and output are
selected as u(t) =1 and y(t) = V,, respectively. Therefore,
the state-space equations can typically be expressed as:

{J'c(t) = Ax(t) + Bu(t) a7)
y(t) = Cx(t) + Du(t)
where:
[ R, +R, & R, [ReRm]
aC aC aC aCs
Ao R, B R, + R, R, B R.R,
aC,, aCy, aC, | aCy, |
R, R, R, + R, R.R;
aCpyi aChuire aCpy lacbulkj
C= [R.R,, R.R; RsRm] D= [R +E_
a a a I’ 2T al

Owing to complex internal chemical reactions and outer
interferences such as EMI, there definitely exist system
uncertainties and measurement noises in the actual behavior
of the cell. With reasonable modifications, Equ. (17) is
transformed to:

{x(t) = Ax(t) + Bu(t) + Ewy(t) (18)

y(t) = Cx(t) + Du(t) + Fwy(t)

where wy(t) = [ ®]7 is the noise matrix, the forms of E,
F are as E = [lnn  Onugl, F = [O1un
the dimensions of x, y, respectively.

The observability of (4, C) can be analyzed by calculating
the determinant of:

Q=I[c cAa caAY". (19)

Li.q], and n, q are

Re Rp Ro I
WV WV +'\/\/\/—>:°
Ce }J ) }J Uo
+ -+ -
+ Ue Up Uo

“—— Uocv=f{SOC)

Fig. 11. Equivalent circuit model for EKF based SOC estimation.

If Equ. (19) is nonsingular, then an Hoo observer of (4, C)
can be designed as:

{J?(t) = Ax(t) + Bu(t) + L(y — ¥) 20)
y(t) = Cx(t) + Du(t)
where L is the observer gain, and X(t) and y(t) are the

estimates of x(t) and y(t). The system error equations are
defined as:

é.(t) = (A — LO)e(t) + (E — LF)wy(t)
{ e,(t) = Cey(t) + Fay(t) @1

where e, (t) = x(t) — x(t), e, (t) = y(t) — ¥(t).

According to [18]-[19], for Equs. (18) and (20), with the
given attenuation level y > 0, if there exist a positive definite
matrix P = PT and an appropriate matrix X, such that the
following linear matrix inequality is feasible:

AP + BX + (AP + BX)T E (CP +DX)T
ET —I FT <0,(22)
CP + DX F —y2I

then it is possible to obtain an observer gain L = P~1X that
satisfies:
eIl < vllw(®)]l . which is the prescribed
performance index under the zero initial condition;
*  Error system (21) is stable.
First of all, the attenuation level y needs to be deliberately

determined. The following LMI mincx problem (the
minimization of a linear objective under LMI constraints) can

be solved to select an appropriate ¥ = v/v.

min(v)
P>0
o J[AP +BX + (AP + BX)T E (CP+DX)T .(23)
o ET -1 FT <0
CP + DX F —vl

Then the attenuation level can be set as y* = y + &, where
¢ is an arbitrary stability margin. Finally, by solving Equ. (22),
the matrices P, X and L can be confirmed.

D. EKF Based SOC Estimation

Based on the widely used Thevenin model [13], an
improved one (Fig. 11) is obtained by adding an extra RC
branch which represents the polarization characteristic. The
hysteresis effect is not considered here and the U,q, can be
obtained by fitting the middle curve between the upper and
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lower boundaries (Fig. 1) with a Sth-order polynomial as: TABLEII
Upey = f(SOC) =¥V _oa, - SOC™,N = 5. (24) THE MODEL PARAMETERS OF CIRCUIT FORMED AS
The other parameters Rn_ Rn R,, C, and C, can be RRERORCURC)) GIVENBY ZSIMPWIN
) ) p > Te> TPy T e P Component Value Component Value
identified through the HPPC test in the time domain. Cbulk(F) 30981 Rs(Q) 0.0158
x = [uf uf u, SOC]" and y, = U? are chosen as RQ(Q) 0.01 Cs(F) 0.5402
the state and output variables, respectively. Then the Rd(©) 1.64+10° Rm(Q) 0.01
state-space can be expressed in discrete form as: Re(Q2) 0.01 Cm(F) 0.2446
Xp41 = Axp + Bip + @
{ k+1 kQ : pk (25)
Vi = fOa) —we —ug —w + v 5]
where w;, and v, are the independent, zero mean, Gaussian <3
process and measurement noise. In addition: 2
_ R - g 0
) =]
0 0 0 0 R ° 3]
| R | s | T
0 ——— 0 0 1+R.C, 6 : ; ;
_ 1+R.C, _ R 0 500 1000 ~ 1500 ~ 2000 ~ 2500 3000
A= R.C ,B = p ) time/ s
0 T +pR L c 0 1+R,C, Fig. 13. Self-designed alternating current profiles as simulated
l pp J 1 operating conditions.
0 0 0 1 C
f (x) cap generated by the reverse mapping from SOC to OCV
C, = axk . according to the OCV-SOC relationship (section II. B.2).
X=?’C\E

Then the standard EKF algorithm can be implemented.

III. EXPERIMENTAL VERIFICATION

Prior to the experiments, the battery is fully charged and
subsequently discharged using a current=1C. The reference
SOC is derived utilizing the method reported in [20], i.e.,
integrating the cell current with the time in post-process. The
parameters in the equivalent circuit model of the investigated
battery (TABLE I) can be obtained through Equ. (1) and
ZSimpWin (section II. B.1), as listed in TABLE II.

A. Model Verification

In order to verify the capability of the proposed model in
capturing the cell’s electrical dynamic characteristics, a
combined battery model incorporating the impedance-based
equivalent circuit part and the OCV-SOC relationship part has
been organized as depicted in Fig. 12. The terminal voltage V,
is predicted by superimposing the dynamic potential produced
by the equivalent circuit part (section II. B.1) and the OCV

The alternating current profiles used to simulate the
operating conditions, as presented in Fig. 13, are both subject
to the cell and the model with initial SOC=70 % and
temperature=27°C.

In Fig. 14, although there exist discrepancies between the
measured terminal voltage and the simulated response, the
maximum error is kept within 25mV over the entire process
and the underlying dynamic characteristics are essentially the
same, which exhibits the excellent capability of the proposed
model to track the electrical behavior of a battery.

B. Comprehensive Evaluation

The Federal Urban Driving Schedule (FUDS) and the
Urban Dynamometer Driving Schedule (UDDS) [21], as
shown in Fig. 15, are commonly used test cycles for EV
research. In this section, a series of verification tests are
conducted by applying FUDS and UDDS as simulated
transient load sequences on the investigated cell to evaluate
the feasibility of the proposed battery modeling approach and
SOC estimation algorithm. For comparison, the EKF-based
SOC estimation method described previously (section II. D) is
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implemented under the same test conditions.

By solving Equ. (23) with the MATLAB LMI toolbox, the
attenuation level y > 0.7114 is calculated. After many tests
and design modifications, y is set at 1.7114 considering the
stability margin. The matrices P, X and L can be
subsequently confirmed by solving LMI (22) as:

8.3049 —-3.2952 -3.5868 1.0994
P =1-3.2952 69768 —2.8611|,X =(0.5945
—3.5868 —2.8611 6.3693 1.5819

and L = P7'X =[1.5156 1.5358 1.7917]".
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Fig. 17. Measured terminal voltage and estimated response V;, (the
output ¥ of Hoo observer in Fig. 16) under FUDS cycles with
varying ambient temperature (-7°C~43°C).

1) Terminal Voltage Prediction

Since the FUDS test cycle includes sharp rises and falls, it
is suitable for examining the prediction capability of the
designed observer which is constructed as expresed in Fig. 16.
As observed from Fig. 17, by comparing the observer output
with the actual battery terminal response, the estimated
output is basically consistent with the measured output. In
particular, the voltage deviation is close to zero within the
optimum temperature range (29~32°C), which indicates the
validity of the proposed Hoo observer.

2) SOC Estimation Considering Temperature

SOC estimation performance comparisons between the
EKF-base method and the proposed method subject to the
UDDS cycles with varying temperatures is shown in Fig. 18
(a). The estimation accuracies of both methods vary with the
temperature. It is shown that the proposed estimator keeps a
higher precision than the EKF-based estimator during the
whole temperature range from -7°C to 45°C. Especially, the
proposed method gets the best result when the temperature is
around the optimum temperature.

As shown in Fig. 18(a), it is clear that the temperature is a
critical factor influencing estimation performance, especially
at low temperatures. To analysis the robustness of the
proposed method under harsh conditions, low temperature
tests are conducted. Fig. 18(b) exhibits the estimation results
with the temperature kept at 0°C. Compared with the EKF
method, the proposed method has superior noise suppression
capability. However, the performances of both methods
degrade severely and there exist constant discrepancies of
almost 2.199% (Hoo) and 3.647% (EKF), respectively. This
is due to the battery capacity fading and model parameter
distortion arising from low temperatures. To concentrate on
algorithm research, low temperature operation remains a
future work that will be discussed in subsequent articles.

3) SOC Estimation with Current Sensor Bias

In order to evaluate the robustness of the proposed method



Estimating the State-of-Charge of ...

651

SOC estimated by H8 and EKF [ —— SOC EKF TABLE III
——SOC H8 SOC ESTIMATION ERROR CHARACTERISTICS IN FIG. 19
—cocrel Bias Error
characteristics characteristics
Mean RMSE
EKF Hoo EKF Hoo
N N(0,0) -0.8979 0.0112 0.3509 0.0895
E N(0,10) -0.9638 0.0254 0.8073 0.3218
[
8 N(0,20) -0.8823 0.0768 1.0603 0.4226
@ | N(5,10) -1.7037 -0.2157 0.8914 0.3505
Y e ! Temperature -----------j---woeoeooos
E ____________ X
*E 20} T~ 241
“é 5 T 20
‘9.10 I X 16
3000 3500 4000 4500 ) 5600 5800 6000 5 12l
time/s break 5 08 L
o O
(a) Q o4l
- SOC estimated by H~ and EKF [ —— SOC_EKF _gg :.-.- i
0] M temperature=0C —— SOC_Hinf| T T T T T T T T T T T
. % —SOC ref 0 50 100 150 200 250 300 350 400
% I MMWMWMM cycles
Q40 v% Fig. 20. SOC estimation error margins vs. cycles, 30°C.
30 %
5 TABLEIV
error EKF Mean=3.647 RMS=0.1263 | SPECIFICATIONS OF 4 DIFFERENT LI-ION BATTERIES
\°4 Hyuww\ " ”| LRI [y il 1‘ el ML “v“ Batl Bat2 Bat3 Bat4
< FU SAM
S 3 (1Ml N WL Manufacturer HUANYU
5 3 ‘ ™ error Heo Mean—z 199 RMS=0.0207 |\ Pl NENG L;UNCG
- 1 : . . . 1N1;3L013
h t LiFePO. LiMn,O.
2 ‘ ‘ ‘ ‘ ‘ chemistries 1re 4 1Mn, 04 Ml’ll/}Oz
3000 3500 4000 4500 5000 5500 6000 Nominal 20 5 5 2.6
timels capacny(Ah)
(b) Vzll‘za‘g‘en(il) 32 32 3.6 37
Fig. 18. SOC estimation results by the proposed and EKF method Upper cut-off
erlder EDES cycles (a) thlf ambif(:)nt temperature varying from -7 to voltage(V) 3.65 3.65 4.2 4.2
°C the temperature kept at 0°C. N
(b) p p Lower cut-off 20 20 23 275
Voltage(V)
N3 288 EKF tem(;izit;:;%oc) Charge:0~45 Discharge: -20~60
§ | ——SOC ref
ot UDDS cycles in Fig. 19 show that the SOC can be accurately
 FEstimation error| 3 estimated with an error of less than 1.5% by the proposed
z j TR ! method all over the process, and with an error of 4% by the
S f ' - -
s -1 m“':mﬂ IMM ' IJuH Minth ' l | W EKF method as a comparison. Table III tabulates the
_ I | i il o i .. .. . .
S 3 error EKF | i ! i statistical characteristics of the SOC estimation errors.
w - i T L . .
4 error He | P F As observed from Table III, the negative impact on the

r . [} ()
Current measurements bias '

N S
o O
T T

]
'
[

)
=)
—

h

)

: N(0,0) '] N(0,20
750 1500

time/ s

Fig. 19. SOC estimation results by the proposed and EKF method
under UDDS cycles at 30°C, adding normally distributed bias
N(x,y) to the current measurements, where x, y indicate the mean
and variance of the normal distribution.

current/ mA
o

A
o
T

N(0,0)

N(5,10)

L
"
i
0 2250

3000

against external noises, normally distributed random bias
with different means and variances are injected into the
current measurements. The experimental results under the

performance of the EKF-based method resulting from
measurement errors is more obvious, i.e., the proposed method
is more tolerant to noises.

4) SOC Estimation Considering the Aging Factor

The aging effect is inevitable and increasingly severe as
the number of charge-discharge cycles increases [22]. The
cell is cycled repeatedly according to the electric vehicle
profile (DST cycle) from full charge (3.65 V/cell) to 80%
depth of discharge (DoD). The estimation error margins
versus cycles are exhibited in Fig. 20. It is obvious that the
performance can be maintained and remain below 0.5%
when the cycle number is less than 200.
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Fig. 21. SOC estimation results on four different Li-ion batteries by
the proposed method under different magnifications of UDDS
cycles with varying temperature.

C. Generalization Evaluation

In addition, the proposed method has also been applied to
another four Li-ion batteries from different manufacturers and
made of different cathode materials, as detailed in TABLE IV,
to examine its generalization capability. To get roughly the
same discharging trajectories, the batteries are subject to
different magnifications of the UDDS cycles according to
their capacities, e.g. 0.75-UDDS for Batl (20 Ah) and
0.15-UDDS for Bat4 (2.6 Ah). As can be seen in Fig. 21, the
proposed estimator performs the best in the LiFePO, cases
(Batl and Bat2) and the error is confined to 1.5% when the
temperature ranges from 55°C to 0°C. By comparison, there
are a lot of sharp spikes for Bat3 (LiMn,0,) and Bat4
( LiNi;/3C04/3Mn, 30, ). As the temperature drops, the
estimation performances for all the four batteries degrade. In
summary, for all the three types of Li-ion batteries the SOC
error is confined to an acceptable level, less than 3% in most
scenarios within the common operation temperature range,
which is applicable to the real applications.

IV. CONCLUSION AND DISCUSSIONS

This paper develops an impedance-based equivalent circuit
model by approximating the electrochemical impedance
spectrum with RC-network circuits. In addition, the typical

hysteresis phenomenon is modeled. Subsequently, a
methodology incorporating the Hoo observer designated for
OCYV observation utilizing the equivalent circuit model and the
hysteresis model developed for OCV-SOC mapping is
proposed for SOC estimation. Validation experiments under
complicated current profiles (FUDS and UDDS) together with
varying temperatures and different current measurement bias
are carried out. Besides, the influence of the aging factor is
also evaluated. With the comparison of the EKF-based method,
the proposed method provides better SOC estimation
performance when there exist measurement errors and
temperature fluctuations. In addition, generalization tests
indicate that the proposed method is effective and applicable
to other types of Li-ion batteries.

However, a few issues concerning the proposed method
need to be discussed here. These issues can give directions for
future work.

1) As the temperature falls below zero, the estimation
performance degrades significantly. Hence, it is
necessary to take temperature as a consideration when it
goes beyond the range of [0,45]°C.

2) Aging is an important factor influencing estimation
accuracy when the system works for a long time. To
obtain more comprehensive models, the aging effect
needs to be considered.

3) For batch applications, the identification of the
OCV-SOC relationship is too complicated. More
concise methods for establishing the OCV-SOC directly
according to the parameters in product descriptions, such
as chemistry, nominal capacity, nominal voltage,
internal impedance and charge/discharge cut-off voltage,
need to be developed.
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