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ABSTRACT The lithium-ion batteries in the electric vehicles are nonlinear systems with complex elec-

trochemical dynamics, and estimation of battery state-of-charge (SOC) is affected by factors such as

environmental temperature and battery current. Considering the above problems, the accurate estimation

of battery SOC has always been a difficult and the critical issue of battery management system (BMS).

In this paper, the constant phase element (CPE) is introduced to the traditional time domain circuit model

by analyzing the electrochemical impedance spectra of lithium-ion batteries. Accordingly, an equivalent

circuit model based on electrochemical impedance is constructed by using fractional order theory, which

has specific physical significant, leading to the improved estimation accuracy to represent battery voltage.

Moreover, the polarization resistance in the model is replaced by Butler-Volmer (BV) equation, which can

solve the problem caused by large current and temperature variation during the actual operation of electric

vehicles. Next, based on themodel, anH∞ observer is designed for battery SOC estimation, and the proposed

SOC observer is tested by real-time experimental data of battery. The efficiency of the proposed model and

observer are validated by some simulations and experiment tests.

INDEX TERMS Lithium-ion batteries, Butler-Volmer equation, state of charge estimation, electrochemical

impedance model, fractional calculus, H∞ observer.

I. INTRODUCTION

With the promotion of renewable energy, more and more

attention has been paid to electric vehicles [1], [2]. Electric

vehicles have many advantages: environment-friendly, clean

energy, low cost investment. However, low performance of

the BMS of electric vehicle is still the most essential restric-

tion for the development of electric vehicle, and estimation of

battery SOC is one of the main functions of the BMS. SOC is

defined as the percentage of the amount of left energy to the

rated capacity of a battery, which cannot bemeasured directly,

and can only be estimated by the indirectly measured vari-

ables such as current and terminal voltage [3]. Considering

battery internal performance and the diversity of operating

conditions, the high-precision estimation of battery residual

SOC is still a great challenge [4], [5]. Inaccurate estimation
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of the SOCmay lead to over-charge and over-discharge of the

battery, which affects the safety and life of the battery. Hence,

high-precision estimation of the SOC is necessary [6].

A large number of scholars have proposed a variety of

SOC estimationmethods: ampere-hour integral method, data-

driven estimation method, model-based method and so on.

Among them, the ampere-hour integral method is the most

commonly used method in the laboratory, however, due to

the accumulation of the measurement errors of battery cur-

rent, the ampere-hour integral method will lead to large

estimation error of the SOC, this method is more apt to

work as the supporting technique of other methods. Shen

proposed a novel approach using adaptive artificial neural

network (ANN)-based model and neuro-controller for SOC

estimation, results show that the ANN-based battery sys-

tem model adaptively simulates battery system with high

accuracy, and the predicted SOC converges to the real value

quickly within the error of 1% [7]. However, the data-driven
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method may not even be convergent with bad parameters

selection when the training data cannot completely cover

the present operating conditions [8]. Estimators or observers

provide an effective method to estimate SOC. Some schemes

such as the state observer [9]–[12], Kalman filter [13]–[16],

particle filter [17], [18] and H∞ observer [19], [20] are the

most commonly used methods for SOC estimate. Perfor-

mance of an observer is dependent on the quality of a dynamic

model of the lithium-ion batteries, and many models have

been applied to estimate the SOC of lithium-ion batteries.

Generally, common models can be classified into three cat-

egories: electrochemical model, equivalent circuit model and

electrochemical impedance model. Han et al. [21] developed

a simplified pseudo-two-dimensional (SP2D) model, which

could simulate the battery efficiently without too much loss

of accuracy. Base on this model, an estimation algorithm

using the Luenberger observer is proposed. Although elec-

trochemical model can describe the mechanism of the BMS,

it is difficult to identify all parameters. In addition, it requires

the specialized know-how of the operator. Chen and Rincon-

Mora [22] proposed an accurate, intuitive and comprehensive

equivalent circuit model by considering all the dynamic char-

acteristics of the battery, the proposed model can accurately

predict the running time and performance of the battery.

However, the more RC modules in the equivalent circuit,

the higher accuracy of the model, it will also lead to increase

of model parameters and computational burden. Xiong et al.

[23] proposed a BV equation-based fractional ordermodel for

electric vehicle, and it is proved that it has good performance

concerning the terminal voltage estimation accuracy and SOC

estimation accuracy. Since the diffusion between the internal

electrodes of lithium-ion batteries belongs to a typical type

of anomalous diffusion based on fractal medium, the dif-

fusion coefficient is directly related to the fractional-order,

the physical significance of the electrochemical impedance

model based on the fractional order theory is clear, and the

electrochemical impedance model combines the accuracy of

electrochemical model and the adaptability and extensibility

of equivalent circuit model, it may describe the inherent char-

acteristics of lithium-ion battery. This paper will investigate

the SOC estimation method based on the electrochemical

impedance model.

To accurate estimate the SOC of lithium-ion batteries in

electric vehicles, an H∞ observer is proposed based on a

novel equivalent circuit model of electrochemical impedance.

In Section II, the model which considers both BV equation

and CPE is proposed. Section III proposes the H∞ observer

for SOC estimation. Section IV introduces the battery test

system and the characteristic test of battery. Experimental

results and discussions are provided in Section V. The con-

clusions are presented in the last Section.

II. BATTERY ELECTROCHEMICAL IMPEDANCE MODEL

A. ELECTROCHEMICAL IMPEDANCE MODEL

Electrochemical impedance spectroscopy (EIS) is an impor-

tant tool for analyzing the dynamic behavior of battery.

FIGURE 1. Typical EIS of the lithium-ion battery.

EIS is one of the accurate methods for simulating lithium-

ion batteries, many studies attempt to estimate SOC directly

by EIS, but the EIS method is too complicated to be applied

directly. At present, EIS is mainly used to establish electro-

chemical impedance circuit model.

The EIS of a lithium-ion battery can be divided into three

parts: high-frequency region, mid-frequency region and low-

frequency region. A typical lithium-ion battery EIS is shown

in Fig. 1, in which the horizontal axis is the real part of

the impedance and the vertical axis is the imaginary part of

the impedance. In the high-frequency region, the EIS curve

intersects the real axis, and the intersection point represents

the ohmic resistance of lithium battery. In the mid-frequency

region, the EIS curve is a semi-circular curve segment, which

is related to the double electric layer at the interface between

the battery electrode and electrolyte. This characteristic is

described by parallel connection of a resistor and a CPE.

In the low-frequency region, EIS curve is a straight line

with constant slope associated with the solid diffusion pro-

cess inside the lithium-ion active material particles, which

is described by CPE. In the EIS analysis, fractional-order

components such as CPE are often used instead of ordinary

RC component in order to get higher accuracy. Therefore,

to make the model more accurate by replacing two capac-

itors in the common second-order RC circuit model with

fractional-order components, the equivalent circuit model of

electrochemical impedance shown in Fig.2 can be obtained.

In Fig.2, the circuit impedance of CPE1, and CPE2 can be

expressed as

ZCPE1(jω) =
1

Y1 · (jω)r1
(0 < r1 < 1)

ZCPE2(jω) =
1

Y2 · (jω)r2
(0 < r2 < 1) (1)

where Y1, Y2 ∈ R represent the coefficient of the CPE; j is

an imaginary unit; ω = 2π f , f is the frequency; Voc denotes

open circuit voltage (OCV); Vh is battery terminal voltage

which can be directly measured; Ra, Rb and Rc represent

the Ohmic resistance; Vb and Vc denote the terminal voltage
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of CPE1 and CPE2; r1, r2 are the arbitrary order of the

fractional element. 0 < r1 < 1 and 0 < r2 < 1 represent

respectively the extent to which CPE1, CPE2 deviates from

pure capacitive element. When r1 = r2 = 0, CPE1 and CPE2

are equivalent to resistors; when r1 = r2 = 1, CPE1 and

CPE2 are equivalent to capacitors. The size of r1 determines

the distance from the center of the arc to the real axis in the

mid-frequency of the EIS curve in Fig.1, and r2 determines

the slope of the straight line in the low-frequency section of

the curve [24].

B. DEFINITIONS FOR FRACTIONAL CALCULUS

Through the analysis of EIS, CPE can well describe the

electrochemical impedance characteristics of battery, which

can be applied to battery model establishment and state esti-

mation. However, the CPE is difficult to deal with in time

domain which need to be processed by means of fractional

calculus theory.

Fractional calculus is an extension of the traditional integer

calculus, first proposed by Leibniz in 1695, and has now

become a hot research topic in the field of science and engi-

neering. Fractional calculus has high accuracy in describing

nonlinear systems such as battery [25]. In fractional calculus,

the operator aDrt defined as (2), where aDrt is used to repre-

sent the derivative or integral of arbitrary order r with respect

to t; a is the initial time, here, a is 0 by default in this paper.

When r > 0, aDrt represents the fractional derivative; when

r < 0, it stands for the fractional integral. We consider only

0 < r < 1, and the operator is then simplified as Dr .

aDrt =























d r

dt

r

, r > 0

1, r = 0
∫ t

a

(dτ )−r , r < 0

(2)

The Grünwald–Letnikov (G-L) definition is one of the

most commonly used definitions [26], the fractional order

G-L definition is defined as

d r f (t) = lim
Th→0

1

Th
r

[t/Th]
∑

q=0

(−1)q
(

r

q

)

f (t − qTh) (3)

where Th is the sampling period; [t/Th] is the integer part of

t/Th;

(

r

q

)

is the quadratic coefficient of Newton, shown as

(

r

q

)

=
Ŵ(r + 1)

Ŵ(q+ 1)Ŵ(r − q+ 1)
,

r !

q!(r − q)!

=
r(r − 1) · · · (r − (q+ 1))

q!
(4)

C. INTRODUCING BV EQUATION TO ELECTROCHEMICAL

IMPEDANCE MODEL

The equivalent circuit model of electrochemical impedance

obtained in previous section is shown in Fig.2. Considering

the wide range variation of current and significant change of

temperature during the actual operation of electric vehicles,

FIGURE 2. Equivalent circuit model of electrochemical impedance.

FIGURE 3. Equivalent circuit model of electrochemical impedance with
BV equation.

the equivalent circuit model by replacing polarization resis-

tance with BV equation is shown in Fig. 3.

The BV equation depicts the relationship of overpotential

and current in a charge transfer process, the resistance Rb in

the circuit model is replaced by BV equation as

IR = kJ ·

(

exp

(

aa · n · F

Rg ·T
· Vb

)

−exp

(

−ac ·n·F

Rg·T
·Vb

))

(5)

where IR denotes the current; Vb denotes the polarization

voltage. kJ is the product of exchange current density and

electrode area; ac and aa are cathodic and anodic charge

transfer coefficients (ac + aa = 1, ac, aa > 0); n is the

number of electrons involved in the electrode reaction; F is

the Faraday constant(96485C· mol-1); Rg is the universal gas

constant (8.314J· mol−1 · K−1); T stands for temperature

in K .

The cathodic and anodic charge transfer reaction coeffi-

cients to be equal(ac = aa), which is quite correct for lithium-

ion battery [27]. Using substitutions K (T ) = aa ·n ·F/Rg ·T ,

the BV equation can be denoted as

IR = 2kJ ·

(

exp(K (T ) · Vb) − exp(−K (T ) · Vb)

2

)

(6)

Applying the definition of the hyperbolic sine function

sinh x =
(

ex − e−x
)

/2, (6) can be simplified as

IR = 2kJ sinh[K (T ) · Vb] (7)

The mathematical model of the equivalent circuit model is

established as follows

Va = RaI (8)
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Dr1Vb =
I

Y1
−

Vb

Y1Rb
(9)

Dr2Vc =
I

Y2
−

Vc

Y2Rc
(10)

By substituting BV equation into (9), we have

Dr1Vb =
I

Y1
−

2kJ

Y1
sinh[K (T ) · Vb] (11)

Taylor expansion of sinh[K (T )·Vb] in (11) is

sinh [K (T ) · Vb] = [K (T ) · Vb] +
[K (T ) · Vb]

3

3!

+
[K (T ) · Vb]

5

5!
+

[K (T ) · Vb]
7

7!
+ . . . (12)

Since Vb is a very small value, the higher order term in

the expansion tends to zero and is often ignored, (11) can be

simplified to

Dr1Vb =
I

Y1
−

2kJK (T )

Y1
Vb (13)

Therefore, the model shown in Fig.3 can be described by






















Vh = −Vb − Vc − RaI + Voc

Dr1Vb =
I

Y1
−

2kJK (T )

Y1
Vb

Dr2Vc =
I

Y2
−

Vc

Y2Rc

(14)

According to the formula of ampere-time integral method,

we have

SOC = SOC0 −
1

QN

∫ t

t0

ηIdt (15)

Differentiating (15), the fractional model of the SOC can

be obtained as

dSOC

dt
= D1SOC = −I

η

QN
(16)

where η is the charging/discharging efficiency and QN is the

nominal battery capacity.

Consequently, the battery is modeled as a nonlinear frac-

tional system, which can be expressed as
{

Drx (t) = Ax (t) + Bu (t)

y(t) = Cx (t) + Du (t) + h (x (t))
(17)

where x(t) = [Vb(t)Vc(t) SOC(t)]
T is the state vector; y(t)

is the battery terminal voltage Vh (system output); u(t) rep-

resents the battery current I (system input); r = [r1r21]
T

represents the order vector, and A, B, C , D are the matrices

with appropriate dimensions as

A =











2kJK (T )

Y1
0 0

0 −
1

Y2Rc
0

0 0 0











, B =















1

Y1
1

Y2

−
η

QN















C =
[

−1 −1 d1
]

, D = −Ra (18)

The function h∗(x(t)) has been extensively used to rep-

resent the OCV-SOC relationship for many batteries [22],

which is expressed as

h∗ (x (t)) =

M
∑

k=0

dkSOC (t)k (19)

where dk (k = 0, 1, . . .M ) are the coefficients of

h∗(x(t)).When the linear term d1SOC(t) is excluded from

h∗(x(t)) and incorporated into the input matrix C , h(x(t))

in (17) can be get. According to the relationship between the

OCV- SOC of the battery, h(SOC) is a monotonic increasing

function, it can be easily shown that (19) is Lipschitz contin-

uous within 0 ≤ SOC ≤ 1, then βmin ≤ ḣ (SOC) ≤ βmax .

Since the battery charge-discharge process involves com-

plicated physical and chemical reactions, (17) are further

rewritten as (20)
{

Drx (t) = Ax (t) + Bu (t) + Eωx(t)

y (t) = Cx (t) + Du (t) + h (x (t)) + Fωy(t)
(20)

where ωx denotes the state disturbance; ωy is the output

disturbance. The disturbances ωx and ωy are assumed to be

bounded: ‖ωx < ∞‖ and
∥

∥ωy < ∞
∥

∥.

Based on model (20), our objective is to design an H ∞

observer for a nonlinear fractional order system for battery

SOC estimation.

III. H∞ OBSERVER DESIGN

According to the battery model (20), the following observer

is proposed
{

Dr x̂(t) = Ax̂(t) + Bu(t) + L(y(t) − ŷ(t))

ŷ(t) = Cx̂(t) + Du(t) + h
(

x̂(t)
) (21)

where x̂(t) is the state estimation; ŷ(t) denotes the output

estimation of the real terminal voltage, and L is the observer

gain that will be designed later. Then, the error system is given

by (22).

Drex(t) = Aclex(t) + LH (t) + (E − LF)ω(t) (22)

where ex(t) = x(t) − x̂(t) =
[

Ṽ b(t) Ṽ c(t) SÕC(t)
]T

is

the estimate error of the state; Acl = A − LC ;E = [I0, 0];

F = [0, I0];H (t) = h
(

x̂(t)
)

− h (x(t));ω(t) = [ωx(t)ωy(t)]
T

is the synthetic disturbance, and I0 denotes identity matrix

with appropriate dimensions.

The aim of designing an H∞ observer is as follows: For

a given attenuation level γ >0, designing the observer (21)

such that the error system (22) is stable and the following

inequality is satisfied under the zero-initial condition

‖ex (t)‖ ≤ γ ‖ω (t)‖ (23)

Since dynamic error system (22) contains fractional order

terms, it can not be directly analysed by Lyapunov theory.

Hence, continuous frequency integral transformation needs

to be applied. To prove the stability of the observer, the fol-

lowing properties and lemmas are presented.
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Property 1:

HT (t)H (t) ≤ eTx (t)Lf ex(t),Lf = diag
{

0, 0, β2
min

}

Proof: By utilizing the mean value theorem, the follow-

ing is obtained

H (t) = h
(

x̂(t)
)

− h (x(t))

= −
∂h

∂x

∣

∣

∣

∣

x=ξ

[

(x(t)) − x̂(t)
]

ξ ∈
[

ξVb(t) ξVc(t) ξSOC(t)
]T

(24)

Note that

∂h

∂x
=

[

∂h (x (t))

∂Vb(t)

∂h (x (t))

∂Vc(t)

∂h (x (t))

∂SOC(t)

]

=
[

0 0 ḣ (SOC)
]

(25)

Then

HT (t)H (t) = eTx (t)

(

∂h

∂x

)T (
∂h

∂x

)

ex(t)

= eTx (t)





0

0

ḣ (SOC)









0

0

ḣ (SOC)





T

ex(t)

≤ eTx (t)Lf ex(t) (26)

The proof is completed.

Lemma 1: A fractional differential equation, Drixi(t) =

gi(t), 0 < ri < 1, is equivalent to the following continuous

frequency distributed model [28].

∂zi(ω, t)

∂t
= −ωzi(ω, t) + gi(t)

xi(t) =

∫ ∞

0

µi(ω)zi(ω, t)dω

µi(ω) =
sin(riπ )

π
ω−ri (27)

and for ri = 1, Drixi(t) = gi(t) can be represented as

∂zi(ω, t)

∂t
= −ωzi(ω, t) + gi(t)

xi(t) =

∫ ∞

0

µi(ω)zi(ω, t)dω

µi(ω) = δ(ω) (28)

where gi(t) represents the input; xi(t) denotes the output;

zi(ω, t) is the frequency distributed state variable; and µi(ω)

is the frequency weighting function, δ(ω) is a unit impulse

function.

Lemma 2 [29]: For a matrix S

S =

[

S11 S12
S21 S22

]

ST12 = S12, if S11 < 0, S22 − ST12S
−1
11 S12 < 0 or S22 < 0,

S11 − S12S
−1
22 S

T
12 < 0, we must have S < 0, and vice versa.

Theorem 1: For the system (20) and the observer (21), with

the given attenuation level γ > 0, if there exist matrices

FIGURE 4. Connection diagram of test system.

FIGURE 5. Battery test bench.

P = PT > 0, M with appropriate dimensions, together with

a scalar ε, such that

1 =







3 M PE −MF

MT −
1

ε
I 0

(PE −MF)T 0 −γ 2I






< 0

3 = ATP+ PA−MC − CTMT +
1

ε
Lf + I (29)

then the error system is globally asymptotically stable at

the zero-equilibrium point, where M = PL, and the observer

gain can be derived by L = P−1M .

Proof: According to Lemma 1, (22) can be converted

into

∂z(ω, t)

∂t
= −ωz(ω, t) + Aclex(t) + LH (t)

+(E − LF)ω(t)

ex (t) =

∫ ∞

0

µ(ω)z(ω, t)dω (30)

where

z(ω, t) =
[

z1(ω, t) z2(ω, t) z3(ω, t)
]T

ex (t) =
[

Vb(t) Vc(t) SOC(t)
]T

µ(ω) = diag
[

µ1 (ω) µ2 (ω) µ3 (ω)
]

=











sin(r1π )

π
ω−r1 0 0

0
sin(r2π )

π
ω−r2 0

0 0 δ (ω)











(31)
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FIGURE 6. Constant current discharge and charge curves at different
current rates: (a) constant current charge curve; (b) constant current
discharge curve.

After the equivalent transformation, the fractional order

model is transformed into a continuous frequency distributed

state model. In order to analyze the stability of the trans-

formed error system (30), the integral type Lyapunov func-

tion (32) is chosen.

V (t) =

∫ ∞

0

zT (ω, t)µ(ω)Pz(ω, t)dω (32)

The derivative of V (t) takes the form of (33), as shown at

the bottom of the next page.

To simplify (33), applying Young’s inequality [30] to (33)

yields

V̇ (t) = eTx (t)
(

ATclP+ PAcl

)

ex (t)

+
1

ε
HT (t)H (t) + εeTx (t)MMT ex (t)

+ωT (t)(E − LF)TPex+e
T
x (t)P(E−LF)ω(t) (34)

In addition, according to property 1, (36) is simplified to

V̇ (t) ≤ eTx (t)

(

ATclP+ PAcl +
1

ε
Lf

)

ex (t)

+εeTx (t)MMT ex (t) + ωT (t)(E − LF)TPex

+eTx (t)P(E − LF)ω(t) (35)

FIGURE 7. HPPC test: (a) voltage profiles; (b) current profiles.

FIGURE 8. OCV-SOC curves at different temperatures.

Define the following performance index

J =

∫ ∞

0

[

eTx (t)ex(t) − γ 2ωT (t)ω(t)
]

dt (36)

Therefore

J =

∫ ∞

0

[

eTx (t)ex(t)−γ 2ωT (t)ω(t)+V̇ (t)
]

dt−

∫ ∞

0

V̇ (t)dt

<

∫ ∞

0

[

eTx (t)ex(t) − γ 2ωT (t)ω(t) + V̇ (t)
]

dt (37)
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FIGURE 9. EIS of the lithium battery.

A sufficient condition for J ≤ 0 is that

eTx (t)ex(t)−γ 2ωT (t)ω(t)+V̇ (t)≤0, ∀t ∈ [0, ∞) (38)

Then

eTx (t)ex(t) − γ 2ωT (t)ω(t) + V̇ (t)

≤ eTx (t)

(

ATclP+ PAcl +
1

ε
Lf + I

)

ex (t)

+εeTx (t)MMT ex (t) − γ 2ωT (t)ω(t)

+ωT (t)(E − LF)TPex + eTx (t)P(E − LF)ω(t) (39)

By lemma 3, inequality (39) is converted to (40)

eTx (t) ex (t)−γ 2ωT (t) ω (t)+V̇ (t) ≤

[

ex (t)

ω (t)

]T

1

[

ex (t)

ω (t)

]

(40)

where

1 =







3 M PE −MF

MT −
1

ε
I 0

(PE −MF)T 0 −γ 2I







3 = ATP+ PA−MC − CTMT +
1

ε
Lf + I (41)

FIGURE 10. Dynamic experiment test: (a) voltage profiles; (b) current
profiles.

Therefore, a sufficient condition for J <0 is that (41) is less

than zero. Then under the zero-initial condition, the following

is obtained

‖ex (t)‖ − γ ‖ω (t)‖ ≤ 0 ⇒ ‖ex (t)‖ ≤ γ ‖ω (t)‖ (42)

This completes the proof.

To realize the above observer, this paper adopts the

G-L definition in (4), which is the most direct numerical

V̇ (t) =

∫ ∞

0

[

∂zT (ω, t)

∂t
µ(ω)Pz(ω, t) + zT (ω, t)µ(ω)P

∂z(ω, t)

∂t

]

dω

=

∫ ∞

0

[−ωz(ω, t) + Aclex(t) + LH (t) + (E − LF)ω(t)]T µ(ω)Pz(ω, t)dω

+

∫ ∞

0

zT (ω, t)µ(ω)P [−ωz(ω, t) + Aclex(t) + LH (t) + (E − LF)ω(t)] dω

≤

∫ ∞

0

[

eTx (t)ATclµ(ω)Pz(ω, t) + HT (t)LTµ(ω)Pz(ω, t) +ωT (t)(E − LF)Tµ(ω)Pz(ω, t)
]

dω

+

∫ ∞

0

[

zT (ω, t)µ(ω)PAclex(t) +zT (ω, t)µ(ω)PLH (t) + zT (ω, t)µ(ω)P(E − LF)ω(t)
]

dω

= eTx (t)
(

ATclP+ PAcl

)

ex (t) + ωT (t)(E − LF)TPex (t) + 2eTx (t)MH (t) + eTx (t)P(E − LF)ω(t) (33)
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TABLE 1. Experiment equipment.

FIGURE 11. CPE order fitting curve.

implementation method.


































x̂ (k + 1) =
[

T rhA+ diag (r)
]

x̂ (k)

−

N+1
∑

q=2

(−1)q

(

r

q

)

x̂ (k + 1 − q)

+T rhBu (k) + T rh L
(

y (k) − ŷ (k)
)

ŷ (k) = Cx̂ (k) + Du (k) + h
[

x̂ (k)
]

(43)

where

T rh = diag
(

T
r1
h T

r2
h Th

)

(

r

q

)

= diag

[(

r1
q

)(

r2
q

)(

1

q

)]

(44)

IV. BATTERY TEST SYSTEM AND MODEL

PARAMETER IDENTIFICATION

A. BATTERY TEST SYSTEM

According to the actual situation, the connection diagram of

test system is shown in Fig. 4. Based on LabVIEWplatform, a

FIGURE 12. The static experiment at 25◦C: (a) terminal voltage profiles;
(b) terminal voltage estimation error profiles.

battery test bench is built as Fig. 5, the experiment equipment

is shown in the Table 1.

The battery used in this paper is lithium-iron phosphate

power battery LF56. The characteristic test of battery is be

designed, the test consists of six parts: maximum available

capacity test, rate characteristic test, hybrid power pulse char-

acterization (HPPC) test, OCV test, AC impedance test and

dynamic experiment test.

The purpose of maximum available capacity test is to

determine the maximum available capacity of the battery

under present situation. The battery is filled with constant

current and constant voltage method at standard current, and
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FIGURE 13. The static experiment at 25◦C : (a) SOC profiles; (b) SOC
estimation error profiles.

FIGURE 14. The static experiment at −20◦C: (a) terminal voltage profiles;
(b) terminal voltage estimation error profiles.

then discharged to cut-off voltage with standard current, it is

necessary to measure the maximum discharge capacity of the

battery for three times and take the average. The maximum

available capacity of the battery at different temperatures is

shown in Table 2.

FIGURE 15. The static experiment at −20◦C: (a) SOC profiles; (b) SOC
estimation error profiles.

FIGURE 16. Terminal voltage profiles of the dynamic experiment at 25◦C.

TABLE 2. Maximum available capacity results at different temperatures.

The rate characteristic experiment is used to test the capac-

ity retention rate of battery under different charge and dis-

charge direct currents to evaluate the capacity loss of the

power battery at high rate. Fig.6 shows the constant current

discharge and charge curves of the battery at different direct

current (DC) rates.

The HPPC test is used to charge and discharge the power

battery by continuous pulse excitation to obtain dynamic

characteristics parameters of the power battery, the voltage

and current response are shown in Fig.7.

The purpose of OCV test is to establish the relationship

between OCV and SOC of power battery. The OCV-SOC

curves at different temperatures are obtained through experi-

ments as shown in Fig. 8.

26880 VOLUME 8, 2020



N. Chen et al.: Estimating the SOC of Lithium-Ion Battery Using an H-Infinity Observer

FIGURE 17. Terminal voltage estimation error profiles of the dynamic
experiment at 25◦C.

FIGURE 18. SOC profiles of the dynamic experiment at 25◦C.

FIGURE 19. SOC estimation error profiles of the dynamic experiment
at 25◦C.

The AC impedance test is a measurement method which

uses a small amplitude sinusoidal wave potential as distur-

bance signal to obtain characterization data of battery related

characteristics. Fig.9 shows the measured EIS of battery,

the test frequency is 10mHz-10kHz.

The dynamic experiment test is carried out under the exci-

tation condition of variable current, Fig.10 shows the current

and voltage curves of the dynamic test of the battery.

B. PARAMETER IDENTIFICATION

In order to realize the designed SOC observer, the model

parameters need to be identified, the parameters are identified

through the joint analysis of EIS and HPPC experimental

voltage response of lithium battery. The order of the CPE

is identified by using frequency fitting method in frequency

FIGURE 20. Terminal voltage profiles of the dynamic experiment at
−20◦C.

FIGURE 21. Terminal voltage estimation error profiles of the dynamic
experiment at −20◦C.

FIGURE 22. SOC profiles of the dynamic experiment at −20◦C.

domain [31]: the slope of the low-frequency part of EIS is

r2π/2 and commonly nearly π/4, so parameter r2 is equal to

0.5. The impedance spectrum curve composed of CPE and

a resistance is shaped like a semicircle, and the regression

rate of the semicircle varies will be changed with r1, when

r1 = 0.62, the measured impedance spectra will be matched

well, as shown in Fig.11.

We have performed battery tests at different temperatures

(−20◦C,−10◦C, 0◦C, 25◦C, 40◦C). Due to the length limit of

the paper, the simulation and experiment results at−20◦C and

25◦C are given later. The residual parameters are identified by

the least squares method according to the voltage response

of HPPC test shown in Fig.7 [31], [32], and the results of

parameter identification is shown in Table 3.
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TABLE 3. Results of parameter identification.

FIGURE 23. SOC estimation error profiles of the dynamic experiment
at −20◦C.

TABLE 4. Identified coefficients for the OCV-SOC polynomial.

For the OCV at −20◦C and 25◦C, the polynomial function

fitting method is used to obtain the function of SOC with

OCV as shown in (45), and the fitting results are shown

in Table 4.

h (SOC) = d5 ∗ SOC5 + d4 ∗ SOC4 + d3 ∗ SOC3

+ d2 ∗ SOC2 + d1 ∗ SOC + d0 (45)

The LMI toolbox in MATLAB is used to solve the

LMIs (29), the observer gains at different temperatures are

(46), as shown at the bottom of this page.

V. EXPERIMENT VALIDATIONS OF THE

SOC ESTIMATION

The efficiency of the proposedmodel with nonlinear observer

will be verified by both the static and dynamic experimental

operating conditions.

Static experiment: the discharging current is set to constant

1C (56A) in the battery testing system, and the experiment

are conducted at different temperatures of 25◦C and −20◦C.

The reference SOC curve is calculated based on the ampere-

hour integral method. In order to compare the performance of

the model, the proposed model in the paper, the integer order

model, and the electrochemical impedance model which do

not introduce the BV equation are used to predict the output.

The above threemodels are recorded asModel 1,Model 2 and

Model 3, respectively.

At 25◦C, the terminal voltage estimation and its errors

in Fig.12, and SOC estimation and its errors are shown

in Fig.13.

At −20◦C, the terminal voltage estimation and its errors in

Fig.14, and SOC estimation and its errors are shown in Fig.15.

To evaluate the performance of the proposed SOC esti-

mation model, the dynamic experiment shown in Fig.10 is

conducted with the proposed SOC estimation model and

other two models. At 25◦C, the terminal voltage estimation,

terminal voltage estimation errors, the SOC estimation and its

errors are shown in Figs.16-19, respectively.

At −20◦C, the terminal voltage estimation and its errors,

the SOC estimation and its errors are shown in Figs.20-23,

respectively.

Table 5 and Table 6 are the root mean square error (RMSE),

mean absolute error (MAE), maximum error (MAX) of the

all models under static experiment and dynamic experiment

at −20◦C and 25◦C. It can be observed that all models

perform better at high temperature than at low temperature

in Table 5 and Table 6, the RMSE of the proposed model

at −20◦C and 25◦C is smaller than the other two models,

this phenomenon is more evident at the lower temperature.

It can be seen from Fig.12,14,16 and 20 that the proposed

model has less error and higher precision than the other two

models in estimating the terminal voltage. Fig.13,15.18 and

22 show that the proposed model can accurately estimate

SOC, and the estimation error of SOC is limited to a very

narrow error range, the error of the proposed model is less

than the other two model after convergence. This shows that

the proposed model can estimates battery terminal voltage

more accurately, which is used to correct the estimated SOC.

It can be observed from Table 6 that when estimating the

battery SOC in a dynamic environment, the proposed model

is better than the other two models to predict the output.

Moreover, at −20 ◦C where the performance of the other

two models deteriorate significantly, the proposed model

can still give an accurate SOC estimation with the RMSE

less than 0.05.

25◦C

ε = 0.191γ = 1.578

P =





1.1424 −0.0457 −0.0102

−0.0457 1.2613 −0.0302

−0.0102 −0.0302 1.0812





L =





−0.2725

−0.1873

−0.2514





−20◦C

ε = 0.245γ = 2.491

P =





1.1251 −0.0498 −0.0015

−0.0498 1.2205 −0.0446

−0.0102 −0.0446 1.0747





L =





−0.3342

−0.2473

−0.0422





(46)
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TABLE 5. Estimation Performance of Three Models for Static Experiment.

TABLE 6. Estimation Performance of Three Models for Dynamic Experiment.

VI. CONCLUSION

Based on the analysis of EIS, a fractional order model of

lithium-ion batteries based on electrochemical impedance

was proposed, and BV equation was introduced to replace

the polarization resistance in conventional equivalent circuit

model. An H∞ observer for the SOC estimation is designed.

By Lyapunov’s direct method, the observer gains which can

stabilize the error system are obtained. The experiment and

simulation results show that the proposed model and the

observer can accurately estimate the battery state.
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