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Abstract

A challenge to controlling the SARS-CoV-2 pandemic is the ability of the virus to adapt to its new human

hosts, with novel and more transmissible strains of the virus being continually identified. Yet there are no

generally accepted methods to consistently estimate the relative magnitude of the change in transmissib-

lity of newly emerging variants. In this paper we consider three methods for examining and quantifying

positive selection of new and emerging strains of SARS-CoV-2 over an existing wild-type strain. We

consider replication at the level of countries and allow for the action of other processes that can change

variants’ frequencies, specifically migration and drift. We apply these methods to the D614G spike muta-

tion and the variant designated B.1.1.7, in every country where there is sufficient sequence data. For each

of D614G and B.1.1.7, we find evidence for strong selection (greater than 25% increased contagiousness)

in more than half of countries analyzed. Our results also shows that the selective advantages of these

strains are highly heterogeneous at the country level, suggesting the need for a truly global perspective on

the molecular epidemiology of SARS-CoV-2.

Introduction

Recently, several genetic variants of SARS-CoV-2 have been identified that are either suspected or confirmed to have

mutations that increase the contagiousness of the virus above the current circulating variants [1, 2, 3]. For a short

while after the emergence of SARS-CoV-2, it was believed that the adaptive evolution of SARS-CoV-2 was limited, as

evidence for purifying selection was found at most sites, with the clear exception of position 614 of the spike protein

[4]. However, the emergence and rise of more complex variants such as B.1.1.7 in the United Kingdom (UK) has
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shifted this understanding. As SARS-CoV-2 continues to adapt to transmission among humans, we can expect to see

further mutations that alter the phenotype of the circulating virus [5]. Likewise, the gradual roll-out of vaccination

programs globally will slowly change the immunological landscape, possibly leading to the emergence of escape

strains that are partially or fully resistant to existing vaccinations [6, 7, 8].

Molecular epidemiology is a powerful framework comprised of a broad collection of methods and software

designed to facilitate the analysis of pathogen genetic sequence data [1, 2, 3, 9]. These methods allow us to peer beyond

what is provided by traditional epidemiological data such as case counts and death time-series, into the substructure of

an epidemic by tracking the emergence and transmission of new genetic variants. Given the high extent of population

mixing at both local and global levels, the time between the emergence of a new strain in one country and its global

dissemination is short. Given that rapid spread, the ongoing fight against COVID-19 needs new, global tools focused

on rapid modeling and assessment of the risk associated with new strains of SARS-CoV-2 to support global public

health action.

Several groups have investigated the selective advantage of particular SARS-CoV-2 variants, such as D614G

and B.1.1.7, either qualitatively or quantitatively. The global spread of the D614G variant was first described by Korber

et al. [10]. Specifically for the UK, the selection coefficient for the D614G variant has been estimated using various

phylogenetic and phylodynamic methods [3]. Estimates from these methods are highly variable, often producing

inconclusive answers. The increased infectiousness of the D614G variant has also been functionally explained in

terms of ACE2 receptor binding [11]. The selection coefficient of the B.1.1.7 variant has been estimated for England

using a highly detailed deterministic epidemic model [12]. Phylodynamic approaches have led to similar results [2].

More worryingly, the B.1.1.7 variant is associated with increased mortality [13]. These changes to the SARS-CoV-2

phenotype embodied in D614G and B.1.1.7 likely represent only a small fraction of the phenotypic variability in the

broader population.

In this paper we consider three different approaches for analyzing global sequence data to estimate the evidence

for increased contagiousness of existing strains in the context of potentially high levels of between-country movement

of people. Our goal is to test the robustness of results to different modeling assumptions, and to asses these different

approaches as molecular surveillance tools.

Methods

We use three distinct methods to study the change in frequency over time of a SARS-CoV-2 genetic variant: isotonic

regression, a population genetics model, and a stochastic epidemiological model. These models represent trade-offs

in mechanistic detail and computational efficiency. The first takes a descriptive approach to the rise and fall of variant

frequency based around rejecting a null hypothesis of limited or no change in frequency. The second incorporates the

processes of selection and migration in the context of a deterministic theoretical population. The third additionally

includes stochastic effects and more explicit epidemiological processes. By comparing results from these three models,

we assess the robustness of our findings to the assumptions of particular methods. In all models, we compare a new

variant with the circulating background variants. The new and background variants are labeled mt (for “mutant”) and
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wt (for “wild type”) respectively. All data and scripts can be downloaded from https://github.com/eeg-lanl/

sarscov2-selection

Data

All epidemiological data was taken from the COVID-19 Data Repository curated by the Center for Systems Science

and Engineering (CSSE) at Johns Hopkins University [14], aggregated by week to reduce noise. The D614G and

B.1.1.7 variant data were taken from the Los Alamos COVID-19 Viral Genome Analysis Pipeline [10, 15] and GISAID

[16, 17], respectively.

Isotonic regression

The logic behind the isotonic regression method is that, if a variant is under selection strong enough to be worrying,

then we should see a continual increase in its relative frequency. That is, for a variant under selection in a given

country, we should be able to reject the hypothesis that it shows no increase with respect to its background.

Let us consider modeling the time series of pairs (Fwt
t ,Fmt

t ) that count the number of samples identified as

the new variant (Fmt
t ) and all other background sequences (Fwt

t ) observed on a given day t. If we assume that the

individuals whose SARS-CoV-2 virus is sequenced are randomly selected from the pool of infected individuals, then

the number of observed variant sequences Fmt
t , conditional on the total number of sequenced individuals Ft = Fwt

t +

Fmt
t , is binomial with probability pt and size Ft . If the mutations that define the new variant (i.e., the genotype)

are neutral, being neither beneficial nor deleterious, then the proportion pt performs a random walk with constant

expectation. However, if the variant has an evolutionary advantage, then the proportion pt will have a non-decreasing

expectation over time.

Here, we use that observation to devise a statistical test for the null hypothesis that a genotype is not advanta-

geous. This approach does not, however, provide us with an estimate of how advantageous a genotype is because it

does not model the competition between variants.

Let (ti,Vi), i = 1, . . . ,K denote the date and variant Vi ∈ {wt,mt} from each of the K tested individuals. Our test

is based on fitting isotonic logistic regressions to estimate a monotone non-decreasing probability pt to that data, and

use the logarithm of the likelihood ratio of the fitted isotonic model and model with constant pt as the test statistic.

Unlike in regular parametric cases, that statistic does not have an asymptotic chi-square distribution.

For that reason, we empirically evaluate the null distribution of the test statistic by refitting the isotonic regres-

sion to (ti,V
⋆
i ), where V ⋆

1 , . . . ,V
⋆
K is a random permutation of the original data V1, . . . ,VK . Fitting the isotonic logistic

regression to M random permutations allows us to calculate empirically the country level p-value for the null hypothe-

sis of no evolutionary advantage that are reported in Results. These were calculated in R 3.6.3 using the package cgam

[18] to perform the isotonic logistic regression.

Population genetics model

The goal of this modeling approach is to provide a rapid means of estimating the selective advantage of a new genetic

variant while also allowing for some contribution from migration. We first describe the model within each country.

Then we explain how we fit it to data from all countries.
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The model assumes that time is measured in discrete units of generations. Within each generation, we let

selection act first and then migration. Say that p and q are the frequencies of new and background variants, respectively,

at the beginning of the generation (p+q = 1). Then say that p∗ and q∗ are the variant frequencies after selection, and

p′ and q′ are the frequencies after migration and hence at the beginning of the next generation.

Selection

Define the absolute fitnesses of the two variants as Wwt = β and Wmt = β (1+ s). So β is the geometric growth rate

in number of infected people for the original genotype, and s is the selective advantage (if s > 0) or disadvantage (if

s < 0) of the new variant.

For the moment, let us be explicit about population size. Define Nmt = N p and Nwt = Nq as the numbers of

infected people with each variant at the beginning of this generation, where N is the total number of infected people

in the population. After the selective event, which is transmission of each of the variants to new hosts, the numbers of

infected people become

N∗
mt =WmtNmt = β (1+ s)N p (1a)

N∗
wt =WwtNwt = βNq . (1b)

Even if transmission (and recovery) alters the number of infected people, this change in population size does not affect

the new variant frequencies, i.e.,

p∗ =
N∗

mt

N∗
mt +N∗

wt

=
β (1+ s)N p

β (1+ s)N p+βN(1− p)
=

(1+ s)p

1+ sp
(1c)

q∗ =
1− p

1+ sp
(1d)

is independent of N and of β . So even with arbitrary changes in the number of infected people over time, this simple

deterministic model can track only the variant frequencies. Of course, drift can have large effects when N is small,

and also when a population of any size is growing rapidly. But we leave stochastic effects to our subsequent, more

complex epidemic model.

Migration

Next, a fraction m of our population is replaced by immigrants. That is, some number of infected people leave our

population, and an equal number of infected people arrive from elsewhere. We say that immigration is balanced by

emigration because we are applying this same model to many populations (countries) simultaneously, and travel itself

does not change the total number of infected people.

The change in frequency of the new variant due to migration is

p′ = p∗(1−m)+ p̄m, (2a)
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where p̄ is the frequency of the new variant among the immigrants. To be most generous to the alternative explanation

that immigration is the driving force behind increases in p, we set p̄ = 1 so

p′ = p∗+(1− p∗)m . (2b)

Note that if the number of infected people is increasing over time (β > 1 in the description of selection, above), our

formulation with constant migration fraction m means that the number of infected travelers is also increasing over

time.

Putting together the total effects of selection and migration for this generation, by substituting Eq. (1c) into

Eq. (2b),

p′ =
(1+ s)p+(1− p)m

1+ sp
. (3)

At any time t,

pt =
[s(1+ s)t +m(1−m)t ]p0 +m[(1+ s)t − (1−m)t ]

s[(1+ s)t − (1−m)t ]p0 +[m(1− s)t + s(1−m)t ]
(4)

(see Eq. (A-6)). We define t = 0 as the time at which the new variant first appears in any country. Notice that without

migration (m = 0), Eq. (4) reduces to the logistic model derived in [19].

Fitting to data

For each country, the data we use are the numbers of observations of the background (Fwt
t ) and the new variant (Fmt

t )

each day (t). We fit these data with Bayesian binomial regression, using Eq. (4), with country as a random effect. This

yields separate estimates of s, m, and p0 for each country.

Because the time unit for our data is days, the estimates of s and m from the model fit must be multiplied by

the generation time in order to be interpreted as per-generation processes. The mean serial interval for SARS-CoV-2

is most likely between 4 and 7.8 days [20], so we use a normal distribution with mean 5.9 and standard deviation 1.15

for the mean generation time.

When selection truly favors a variant due to its genetic composition, it should have a similar advantage in

any country. There may be differences from country to country, though, due to chance effects. For example, if the

early-infected people happen to be from a demographic with higher transmission or a city with looser enforcement of

social distancing, selection may appear to be stronger. We therefore use a hierarchical model in which s is drawn for

each country from a normal distribution, whose mean and variance we estimate in order to infer the consistency of

selection.

The migration rate, m, is the proportion of the country’s population swapped out for the new variant each

generation. This is surely quite small, especially considering travel restrictions. We therefore set an exponential prior

on m with mean 0.001.

For numerical stability, we transform all frequencies to the logit scale (see Appendix A). Models were fit with

Stan [21], using 4 parallel chains of length 2000, with a warm-up phase of a 1000 iterations.
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Stochastic epidemic model

To take more detailed population dynamics into account, we use a stochastic compartmental Kermack-McKendrick-

type model. In addition to susceptible (S), exposed (E), infectious (I), and removed (R) individuals, we keep track of

individuals with severe disease (H), and stratify the exposed and infected populations into individuals infected with the

background (wt) or the new variant (mt). The compartment of severe infections is used to model the observed delay

between infection and death. The two strata are used to keep track of the new variant’s frequency in the population,

and model its selective advantage (s).

The compartmental model keeps track of the number of individuals S, E, I, H, R in the disease states S, E, I,

H, R, respectively. An individual starts out susceptible, and upon infection enters the exposed compartment and then

becomes infectious at rate α . An infectious individual can either become severely infected at rate ν , or recover at

rate γ . Severely infected individuals either recover or die at rate ω . The total population size is denoted by N, and

we write X = (S,Ewt,Emt, Iwt, Imt,H,R). The transition rates η j(X , t) between the compartments are indicated by the

following diagram, and the parameters are listed in Table 1.

S

Ewt

Emt

Iwt

Imt

H R

β Iwt/N +λwt

β (1+ s)Imt/N +λmt

α

α

ν

ν

γ

γ

ω
(5)

Here the indicated rates are per capita and should be multiplied by the size of the source compartment (e.g.,

ηH→R(X , t) = Hω). The selective advantage of the new variant is equal to s; when s > 0, the mutant has a higher

infection rate β (1+ s) than to the wild-type (β ). The other life-history traits of the virus are assumed to be identical

between wild-type and mutant. To model the effects of non-pharmaceutical interventions (NPI) such as lock-downs,

the infection rate β is a smoothed, piece-wise constant function of time [22]. To account for migration, we added

time-dependent terms λwt and λmt to the per-capita infection rate, representing the exposure of individuals in the

population to SARS-CoV-2 from other regions. The precise definitions of the time-dependent parameters β , λwt, and

λmt are given in Appendix B.

Observation model

The model is fit to two data streams. The first data stream consists of weekly incidence of COVID-19 deaths D.

For this reason, we keep track of an auxiliary accumulator variable ΘHR, which keeps track of all transitions from

H to R within a week. After each time the incidence is observed, the accumulator variable ΘHR is set to 0. Let δ

denote the probability that a severe infection leads to death and not recovery. To account for variability in δ between

demographic groups or reporting errors, we use an over-dispersed negative binomial instead of a binomial or Poisson
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symbol unit value description source

D614G B.1.1.7 variant

UK NL UK NL region

s - 0.28 0.27 0.55 0.28 selective advantage novel vari-

ant

est.a

β0 d−1 0.81 0.80 0.40 0.39 infection rate before lockdown est.

β1 d−1 0.15 0.12 0.25 0.22 infection rate during lockdown est.

β2 d−1 0.21 0.33 0.34 0.37 infection rate after lockdown

relaxation

est.

β3 d−1 - - 0.18 0.20 infection rate after second lock-

down

est.

t0 d 54 54 243 243 initial time -

t1 d 86.6 82.5 305 298 time of lockdown est.

t2 d 188 181 337 336 time of lockdown relaxation est.

t3 d - - 369 365 time of second lockdown est.

p0 - 0.28 0.37 3.0 ·10−4 - initial mutant frequency est.b

λ0 d−1 - - - 5.7 ·10−3 per capita infection rate due to

travel

est.b

rD - 105 115 90.2 93.0 overdispersion parameter death

incidence

est.

rF - 72.8 68.3 70.3 71.6 overdispersion parameter se-

quence data

est.

τ d−1 0.011 0.018 0.021 0.013 overdispersion of the process

noise

est.

ζ - 8.2 ·10−6 1.7 ·10−5 3.3 ·10−4 3.1 ·10−4 initital fraction infected est.

ξ - - - 0.06 0.05 fraction of the population im-

mune at time t0

[23, 24]c

N - 66.5 17.4 66.5 17.4 population size (million) -

1/α d 3 . . . mean duration of incubation

period

[25, 26]

γ d−1 1/4 . . . recovery rate from infectious

stage

[27, 28]d

ν d−1 γ/50 . . . rate of developing severe infec-

tion

[29, 30]e

1/ω d 12.5 . . . duration of severe infection [25, 26]f

δ - 0.3 . . . probability of dying from se-

vere infection

[29, 30, 31]e

Table 1: Parameters for the epidemic model for the United Kingdom (UK) and the Netherlands (NL) and the D614G

and B.1.1.7 variants. Notes: aEstimated. bFor the Dutch B.1.1.7 model, the initial frequency is fixed to 0. Instead,

the variant is introduced due to travel from the UK. cMore recent estimates for sero-prevalence in the Netherlands

are taken from https://www.rivm.nl/pienter-corona-studie/resultaten. dThe generation interval in the

SEIHR model with exponentially distributed transition times is equal to 1/α +(γ +ν)−1 ≈ 1/α +1/γ . Hence, with

an average incubation period of 3 days, we need an average infectious period of 4 days to get an average generation

time of 7 days. eBy taking the probability of developing severe infection equal to 0.02 and the probability of dying

from severe infection equal to 0.3, we arrive at a case fatality rate of 0.6%. Our choice is also comparable to mortality

rates for ICU patients [31]. fThe average time between symptom onset and death is 16.5 days. After subtracting the

duration of the infections period (γ +ν)−1 ≈ 1/γ , we get an average duration of severe infection of 12.5 days.
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likelihood function for the observed death counts. At the time of the n-th observation tn, we then get

Dn ∼ NegBinom
(
δ ·ΘHR(tn),rD

)
(6)

where the parameterization of the NegBinom(ℓ,r) distribution is such that it has mean ℓ and variance ℓ+ ℓ2/r.

The second data stream consists of the number viral samples F that were sequenced each week, and the number

sequences Fmt identified as the new variant. We assume that these sequences are collected from individuals that

transition from the exposed to the infectious compartment, and hence we again define accumulator variables ΘEI
wt and

ΘEI
mt to keep track of such transitions (for wild-type and mutant infections, respectively) during the week between

subsequent observation times. We define fmt = ΘEI
mt/(Θ

EI
wt +ΘEI

mt) for the fraction of individuals that were infected

with the new variant. To allow for over-dispersion of sampling, we use a beta-binomial likelihood function:

Fmt
n ∼ BetaBinom(Fn, fmt(tn)rF ,(1− fmt(tn))rF) (7)

where the parameter rF determines the level of over-dispersion of the sampling process.

We fit the model to the two data streams using sequential Monte-Carlo (SMC), where parameters are estimated

with iterated particle filtering as described in [32]. The details of the procedure are given in Appendix B.

Diffusion approximation of the epidemic model

Exact simulation of the Markov jump process (MJP) that defines our stochastic epidemic model is very computation-

ally intensive. We therefore switch to a diffusion approximation of the MJP when population sizes become large in

order to do inference more efficiently. This formalism allows us to incorporate two sources of noise. The first being

the process noise inherent to the MJP, which becomes negligible when the sizes of the compartments are large. We

therefore introduce a second noise term that captures other origins of stochasticity that the MJP can not account for

and acts on predominantly large population sizes.

As above, we denote the state of the n-dimensional model (where n= 7) by X i(t) with i= 1, . . . ,n. The discrete,

stochastic model is defined by k = 9 state transitions

X
η j(X ,t)−−−−→ X + ε j , j = 1, . . . ,k (8)

where ε j ∈ Z
n is the increment of the j-th transition. For instance, the transition H → R corresponds to the increment

(0, . . . ,0,−1,1). Using the Kramers-Moyal expansion of the master equation, the MJP is mapped to a system of

stochastic differential equations (SDE) that can be derived from the transitions η j and increments ε j as follows [33]

dX i =
k

∑
j=1

ε i
jη j(X , t)dt +

k

∑
j=1

ε i
j

√
η j(X , t)dB

j
t , i = 1, . . . ,n (9)

where Bt is a 9-dimensional Brownian motion, corresponding to the 9 transitions of the MJP in Eq. (5). The SDE in

Eq. (9) is of the form dX = µ(X , t)dt +σ(X , t)dBt , where µ and σ describe the drift and volatility, respectively. The

8
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volatility matrix σ(X , t) encodes the intrinsic noise of the MJP, which is negligible compared to X when X is large.

We therefore add a small second noise term to the system of SDEs that is proportional to X . After this adjustment, the

SDE becomes

dX i = µ i(X , t)dt +σ i(X , t)dBt + τX idB̃i
t , i = 1, . . . ,n (10)

where B̃t is a n-dimensional Brownian motion, independent of Bt . The parameter τ ≪ 1 determines the magnitude of

the additional noise term.

In Appendix B, we further describe in detail the algorithm used to switch from a discrete (MJP) to a continuous

(SDE) model, and the way the initial condition of the system is determined.

Results

Isotonic regression results

Our first approach, isotonic regression, provides a simple statistical test for relative increase of a new variant. The null

hypothesis is that the daily proportion of SARS-CoV-2 cases that are the mutant variant does not increase over time.

The isotonic regression method rejected this null hypothesis in 33 of 38 countries with sufficient data for D614G and

all 24 of the countries with sufficient data for B.1.1.7 at the 5% significance level. The results are shown as a map

in Fig. 1CD. In general the isotonic regression method identifies the same set of countries as the population genetic

method (see below). However the computed p-value is not directly translated into an estimate for the strength of

selection that is estimated from the other methods.

Population genetic model results

Our hierarchical population genetics model estimates a normal distribution from which is drawn the selection coef-

ficient for each country. The mean of that global distribution for s is 0.25 (90% credible interval (CrI): [0.14,0.35])

for D614G and 0.26 (90% CrI: [0.14,0.36]) for B.1.1.7, both confidently greater than zero (Fig. 2AD). After allowing

for variance around that mean, however (Fig. 2BE), the overall global distribution of s is substantially wider, both

for D614G (90% CrI: [−0.16,0.68], Fig. 2C) and for B.1.1.7 (90% CrI: [−0.07,0.60], Fig. 2F). Uncertainty in our

estimates of global s come from noise in the data, uncertainty in the mean generation time, and heterogeneity among

countries.

The overall selective advantages of these two variants are estimated to be very similar, but that does not mean

that they are equally transmissible. The strength of selection for a variant is measured relative to all the other genotypes

present over that time frame. Because B.1.1.7 emerged after D614G became globally common, the absolute fitness of

B.1.1.7 is likely greater.

Estimates of the selection strength for each variant in each country are shown in Fig. 3. Each variant shows

much heterogeneity among countries. Our model allows for a random component in country-to-country variation in s,

but the differences in estimated s among the countries likely overstates the differences in actual transmission advantage.

Each country surely experiences many processes that are not included in our simple model—such as superspreader

events, nonrandom sampling, or waves of travellers arriving from places with different variant frequencies—and all of
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Figure 1: Map of the results of the population genetic model and isotonic regression method. Panels A and B show

the estimated selection strength for D614G and B.1.1.7 respectively. Yellow, orange, and red indicated selection

coefficient less than 0.3, between 0.3 and 0.6, and above 0.6 respectively. Panels C and D show the p-values from the

isotonic regression method for D614G and B.1.1.7 respectively. Red and green show p-values below and above 0.05

respectively.

this heterogeneity is bundled by the model into differences in s (and m, which is constrained to be small). Furthermore,

strong selection for one variant in one country does not necessarily correspond to strong selection for the other variant

in that country (Fig. S2), suggesting that factors beyond country-level covariates underlie the overall heterogeneity.

In estimating the selective advantage of each variant, our model allows for a contribution of migration in

elevating the variant frequencies (see Methods). Because selection and migration to some extent provide alternative

explanations for change in variant frequency, we find some negative correlation between these two processes (Figs. S3

and S4). The estimates of migration are not particularly distinguishable among countries (Fig. S1), but estimates of

selection nevertheless show clear differences among countries (Fig. 3). We thus conclude that the selective effect of a

variant can be estimated even allowing for a reasonable amount migration.

Fits of the population genetic model to each country are shown in Figs. S5 and S6 for D614G and B.1.1.7,

respectively. The countries differ dramatically in sampling effort and data availability over time. The robustness of the

population genetic model is tested with a more detailed epidemic model below. For this analysis, we focused on two

countries—the United Kingdom and the Netherlands—for which a lot of data is available. Our focal countries show

different stages of the variant trajectories, but in both the model fits show relatively narrow credible intervals.
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Figure 2: Estimated global distribution of selection coefficients for the D614G and B.1.1.7 variants from the population

genetics model. The hierarchical model estimates the mean (left column) and standard deviation (middle column) of

a normal distribution from which the selection coefficient, s, of each country is drawn. To compose the overall

(posterior predictive) distribution of s (right column), we sampled many values of the mean and standard deviation

from the posterior distribution of the model, and for each drew many samples from the normal distribution it defines.

Thus, panels A and D provide the estimated mean selection coefficient across countries, while panels C and F provide

the overall distribution for each country’s selection coefficient. In each panel, dark vertical lines mark the median, and

the 90% CrIs are shaded.

Stochastic model results

The overall stochastic model fits to D614G and B.1.1.7 for the UK and Netherlands are shown in Fig. 4 and 5 re-

spectively. The models provide very good fits to the data in both cases matching both the death time series and the

change in proportions of the mutant variant in both countries. D614G shows a very similar pattern in the UK and

Netherlands where the mutant was spreading in a way that is nearly indistinguishable from the wild-type strains for a

period of several weeks in the early epidemic period. However, in both countries the model predicts that the mutant

strain very quickly outpaces the wild-type strains and continues to become more relatively prevalent even when the

overall prevalence is declining by orders of magnitude.

The dynamics of B.1.1.7 in the UK and Netherlands are substantially different from both D614G and each

other. In both cases the mutant strain is much slower to rise, occurring over a period of months rather than weeks
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Figure 3: Selection coefficients for each country, from the population genetic model. Points mark the median, and

thick and thin lines are 90% and 95% CrIs, respectively. Corresponding estimates of migration are in Fig. S1.

as was the case with D614G. In both countries, the mutant strain rises exponentially despite the large changes in the

overall prevalence of COVID-19 due to changing policies and behaviors during this time. Specifically in the UK,

the rise in death incidence after December 14 2020 is preceded by the rapid increase of the B.1.1.7 strain, both in

frequency and absolute numbers (Fig 5). This suggests that the interventions ongoing in the UK were sufficient to

bring the background strains below threshold but not B.1.1.7.

To further substantiate this, we calculated the instantaneous effective reproduction number (Re) using the in-

ferred trajectories of the stochastic model (Fig S7). The effective reproduction number of the wild-type fluctuates

abound the threshold value 1 between November and December, following the increased NPI (non-pharmaceutical

intervention) initiated end October [34]. As the B.1.1.7 variant has a ∼ 50% higher reproduction number, these NPI

were not sufficient for controlling the growth of the variant, leading to a doubling of the death incidence in January

2021 and the necessity of further stringent restrictions. This suggests that new variants with an increased fitness are

particularly dangerous when in-place NPI are only resulting in a marginal control of the epidemic.

As the B.1.1.7 variant was most likely introduced to the Netherlands from the UK, we incorporated external

forces of infection in the Netherlands (λwt and λmt in Eq. (5)) to account for this fact (see Appendix B). This process

allows a source of infection in the Netherlands, governed by rate λ0 (Table 1), that is proportional to the prevalence of

B.1.1.7 in the UK. We forced the migration process to zero after December 21, 2020 to account for travel restrictions

from the UK to the Netherlands. Based on a sample of 100 reconstructed trajectories of the stochastic model (Fig. 5B,

green curves), we estimate that at that time of the travel restriction being in place, 6694–10287 individuals were

infected with the B.1.1.7 variant in the Netherlands. That is, the model suggests that the establishment of B.1.1.7 in
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Figure 4: Mechanistic model fit to D614G data in the Netherlands and UK. Panels A and B show many realizations of

the prevalence of the background, Iwt, and D614G variant, Imt for the maximum likelihood model fit. Panels C and D

show the number of deaths accumulated up to the week scale (black dots) and the model fits to those data. The bars

around the points indicate the 95% predictive interval for the data according to the model. Panels E and F show the

proportion of sequenced genomes with a glycine on position 614 of the spike protein in a given week. The blue lines

are realizations of the model fit to the data. Vertical bars on the data indicate the 95% confidence intervals (CI) for the

proportion based on the number of sampled genomes.
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Figure 5: Mechanistic model fit to B.1.1.7 data in the Netherlands and UK. Panels A and B show many realizations

of the prevalence of the background, Iwt, and B.1.1.7 variant, Imt for the maximum likelihood model fit. Panels C and

D show the number of deaths accumulated up to the week scale (black dots) and the model fits to those data. The

bars around the points indicated the 95% predictive internal for the data according to the model. Panels E and F show

the proportion of sequenced genomes classified as the B.1.1.7 variant in a given week. The blue lines are realizations

of the model fit to the data. Vertical bars on the data indicate the 95% CI for the proportion based on the number of

sampled genomes.
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Figure 6: Profile likelihood for the selection effect of D614G in the UK and Netherlands. The maximum likelihood

estimate (MLE) is indicated by a dashed line and the 95%CI is indicated by a grey box. For the UK, we estimated

a selection coefficient s = 0.28 (95% CI: [0.23,0.33]), and for the Netherlands we estimated s = 0.27 (95% CI:

[0.20,0.35]). The red box plots show the estimates from the population genetics model (Fig. 3).

the Netherlands was facilitated by migration from the UK, however, the major factor in the spread of B.1.1.7 in the

Netherlands is its selective advantage s.

The profile likelihoods of s, the increase in contagiousness for the mutant variant, for the D614G and B.1.1.7

are shown in Fig. 6 and 7. The profile likelihoods show well constrained estimates of s. In general the confidence

intervals in the mechanistic model are comparable with or more narrow than the population genetic model, which

is consistent with the model being both more constrained and using more data. In addition, the population genetics

model takes the uncertainty in the average length of the generation interval into account. The point estimates of s

from both models are close to one another with the largest difference being about 0.12 for B.1.1.7 in the UK. Point

estimates of the other model parameters are listed in Table 1. The fact that the population genetics model results in

smaller estimates of s in some cases can be understand by looking at the population dynamics. The emergence of

the variant is in all cases followed by increased NPI, leading to a decrease in the number of infected individuals, and

also the relative growth rate of the variant. This is interpreted by the population genetics model as a smaller selection

coefficient.

Discussion

We have illustrated three different approaches to measuring selection effects from the global SARS-CoV-2 genetic

sequence data. Our analyses all point to very strong but heterogeneous selective advantages for the D614G and

B.1.1.7 variants at the country level, even allowing for both migration and drift. It is important to note that our

methods look for an advantage of a given variant over whatever variants are circulating at the time, rather than against

a fixed reference strain. This means that the estimates of a fitness advantage of B.1.1.7 in many countries is relative to

a background that consists mostly of D614G. Thus, the fitness of B.1.1.7 exceeds that of D614G, which itself exceeds
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Figure 7: Profile likelihood for the selection effect of B.1.1.7 in the UK and Netherlands. The MLE is indicated by a

dashed line and the 95%CI is indicated by a grey box. For the UK, we estimated a selection coefficient s = 0.55 (95%

CI: [0.50,0.60]), and for the Netherlands we estimated s = 0.28 (95% CI: [0.20,0.38]). The red box plots show the

estimates from the population genetics model (Fig. 3).

the original genotype. Our stochastic epidemiologic model suggests that the level of transmissibility of currently

circulating variants is sufficient to reduce the qualitative effect of non-pharmaceutical interventions (NPIs) in Europe.

SARS-CoV-2 is rapidly adapting to its new human hosts, and strains with elevated contagiousness will likely

continue to emerge as the virus continues to adapt. This situation is challenging as elevated contagiousness narrows

the range under which vaccination programs can eliminate the virus, and it also opens up the possibility of escape

mutations allowing infection among vaccinated persons. Integrating molecular epidemiology surveillance into SARS-

CoV-2 pipelines is essential for not only monitoring the emergence of new strains, but for establishing an early warning

system to monitor for escape mutations in the era of vaccine roll-out. Each approach that we examined has its own

strengths and weaknesses for how it can fit into an expanded molecular epidemiology surveillance system.

The isotonic regression method is easy to compute and based on the very straightforward premise that a con-

sistent selective advantage should produce a continually increasing frequency of the new variant in all countries where

it has been observed. However, because the method is based on a hypothesis-testing framework, there is no way to

determine the strength of selection relative to the background strains. Likewise, the method could be misleading in a

context where the genetic background is rapidly changing (e.g., other strains under positive selection are introduced

into the population during the study period). We believe that a regression-based approach is, nevertheless, very useful

for rapidly evaluating evidence of selection potentially in large-scale molecular surveillance pipelines.

The population genetic model is more mechanistically explicit than the regression approach and, therefore,

gives a direct estimate of the selection effect. The model also allowed us to integrate a simple migration process and

to jointly estimate the parameters of selection and migration. The population genetic model is also simple enough

that it was coded in a popular statistical language and fit to the global data in a matter of hours on a standard laptop
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computer. Its framework to estimate country-level selection effects shaped by an overall global distribution makes it

potentially quite useful for general molecular surveillance purposes. However the primary weakness of the population

genetic model is that it does not account for random fluctuations in the underlying populations, which, given that the

point of estimating selection effects in near real-time is to give warning before the new variant becomes widespread,

is potentially a problem.

The stochastic mechanistic model solves this problem by explicitly modeling stochastic effects that could

produce changes in variant frequency by chance alone, in addition to selection and migration. Our approach takes this

idea one step further by allowing noise above what would be expected in a typical homogeneous stochastic model; our

logic behind this choice is that the epidemiological model assumes homogeneous mixing at the state level, which we

know to be unrealistic. In reality, transmission is occurring at much smaller local scales that can lead to sudden jumps

in both the number of cases and number of observed variants; allowing for extra noise in the stochastic model makes

the method less sensitive to mis-specifications such as an over-simplified population structure. Despite being more

complex and using additional data, we found that the mechanistic model was in agreement with the population genetic

model, suggesting that the population genetic model is a reasonable balance between computability and accuracy.

All of our models (and most of the other published models) make the assumption that genomes are selected

at random from the set of all possible cases. If, for example, samples were sequenced specifically because they were

in contact with someone that was known to be infected by the variant under study, the data may be biased toward

over-estimating the spread and hence selective advantage of the new variant. There is almost certainly some bias from

the non-random processes by which samples are obtained and sequenced; however, we believe that our results are still

overall valid for three reasons. First, it is unlikely that the same level of bias from non-random sampling would occur

in each country to produce a similar pattern in each country; that is, countries represent semi-independent systems.

Second, the evidence for selection effects includes parts of the time series before people were concerned about the

spread of new variants, and, therefore, were unlikely to preferentially sequence the new variants. Third, the UK has

put effort into developing a representative sample of SARS-CoV-2 genomes in their country and the estimates for the

selection effects in the UK for D614G and B.1.1.7 are very close and slightly above the population average for these

lineages.

Several studies using other methods have similarly found D614G and B.1.1.7 to each have a selective advantage

over other variants circulating contemporaneously [10, 19, 3, 12, 2]. In contrast, however, van Dorp et al. [35] found

no support for a selective advantage of any of the variants they tested, including D614G. We suspect this is because

their statistical test required the repeated emergence of a variant in order to draw any power. Although phylogenetic

replication is an appropriate requirement in many situations, it is too conservative for identifying variants of concern

on the timescale at which they emerge. Instead, to test for a selective advantage of variants that have arisen only once,

power can be obtained from fitting explicitly epidemiological models within one location (e.g., our stochastic model,

and others [19, 3, 12, 2]) or looking for consistent effects in multiple locations with largely-distinct conditions (e.g.,

our isotonic regression and population genetic models, and Korber et al. [10]).

A central question in any modelling endeavor is how much detail is required to accurately address the problem
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in question. In the last year, a large number of models have been developed to study various aspects of the SARS-

CoV-2 pandemic, ranging from very simple [25] to extremely detailed [12]. For the purpose of estimating selective

advantages of variants, we argued that (relatively) simple models are sufficient. With our most complex model, we

took a pragmatic approach and incorporated an additional noise term that can account for some of the unavoidable

model misspecification. Such a noise term could potentially also be included in methods that allow for more efficient

Bayesian inference with stochastic models [36].

The emergence of new variants with increased contagiousness or resistance mutations has the potential for

significant implications for control of COVID-19 especially given that very few countries have been able to use NPIs

alone to bring the viral growth rate sub-critical for extended periods of time. Integrating modeling into surveillance

systems will help facilitate early-warning systems and improve our ability to design both pharmaceutical and non-

pharmaceutical interventions that can stop the spread of COVID-19.
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Appendix A: Population genetics model

Variant frequencies over time

Here we derive the equation for the mutant frequency pn as a function of the generation n under the population genetics

model with both selection and migration (Eq 4). In the main text, we derived that the new variant’s frequency p′ in the

next generation is

p′ =
(1+ s)p+(1− p)m

1+ sp
. (A-1)

We can write this slightly differently as a Möbius transformation of p:

p′ =
(1+ s−m)p+m

sp+1
≡


 1+ s−m m

s 1


 · p. (A-2)

In general a Möbius transformation has the form


 a b

c d


 · x ≡ ax+b

cx+d
, (A-3)

and it has the nice property that A · (B · x) = (AB) · x for two matrices A and B (see e.g., [37]). Hence, in order to find

the variant frequency in the n-th generation, we need the n-th matrix power of

M =


 1+ s−m m

s 1


 . (A-4)

For this we have to diagonalize M. The eigenvalues of M are equal to 1+ s and 1−m. Then eigenvectors are given by

(1,1)T and (m,−s)T . Hence, we can write M =UΛU−1 where

U =


 1 m

1 −s


 and Λ =


 1+ s 0

0 1−m


 . (A-5)

Then Mn · p0 =UΛnU−1 · p0, which is equal to

pn =
[s(1+ s)n +m(1−m)n]p0 +m[(1+ s)n − (1−m)n]

s[(1+ s)n − (1−m)n]p0 +[m(1+ s)n + s(1−m)n]
. (A-6)

Transformation to the logit scale

To avoid numerical issues during inference, we transform the mutant frequency to the logit-scale, and re-parameterize

the model. Let R =
(

1 0
−1 1

)
. Then

logit(x) = log(R · x). (A-7)
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Let r0 = R · p0 and rn = R · pn. Then

rn = (RUΛnU−1R−1) · r0, (A-8)

and we have RU =
(

1 m
0 −(m+s)

)
. Hence,

(
RUΛn(RU)−1

)
=


(1+ s)n m

m+s
[(1+ s)n − (1−m)n]

0 (1−m)n


 (A-9)

and therefore

rn =

(
1+ s

1−m

)n

r0 +
m

m+ s

[(
1+ s

1−m

)n

−1

]
. (A-10)

This equation has a removable singularity at s =−m. To see this, we write

m

m+ s

[(
1+ s

1−m

)n

−1

]
=

m

1−m

(
1+s
1−m

)n −1

1+s
1−m

−1
=

m

1−m

n−1

∑
k=0

(
1+ s

1−m

)k

. (A-11)

Now we define σ = 1+s
1−m

and µ = m/(1−m). Then we get the following re-parameterized model:

rn = σnr0 +µ
1−σn

1−σ
. (A-12)

Appendix B: Stochastic epidemiological model

Time-dependent infection rate

To model the effects of government restrictions such as lock-downs, the infection rate β is a (smoothed) piece-wise

constant function of time. We allow for n ∈ {3,4} epidemic stages to model e.g. unrestricted spread, lockdown, and

relaxation of the lockdown [22]. We let β vary smoothly between the epidemic stages, thereby allowing for an uptake

period for (release of) restrictions. More precisely, β = β (t) is defined as

β (t) = β0 (1−Hυ(t − t1))

+
n−2

∑
i=1

βi ·Hυ(t − ti)(1−Hυ(t − ti+1))

+βn−1 ·Hυ(t − tn−1)

(B-1)

where Hυ is a smoothed Heaviside function defined by Hυ(t) = (1+ exp(−t/υ))−1
, with parameter υ determining

the duration of the transition period between different epidemic stages. The time-varying infection rate β is illustrated

in Fig. S7A. To determine the parameter υ , we require that Hυ(∆t/2) = 95%, where ∆t is the length of the uptake

period. Solving for υ , we find υ = ∆t/(2 · logit(0.95)). We set ∆t = 7 days, hence the uptake period takes a week.

In the case of variant B.1.1.7 in the Netherlands, we added an external force of infection, λwt and λmt for wild-

type and mutant respectively, to account for contacts with infectious individuals from the UK. Because the number of

infected individuals the UK varied over time, the external infection forces of infection λwt and λmt depend on time as
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follows

λwt(t) = λ0E[Iwt(t)/N(t)] , λmt(t) = λ0E[Imt(t)/N(t)] . (B-2)

Here, the trajectories Iwt(t)/N(t) and Imt(t)/N(t) correspond to the fraction of individuals in the UK that are infected

with wild-type and mutant respectively. The expectation is taken over the filtered trajectories that were reconstructed

with the SMC algorithm. Finally, the scaling parameter λ0 represents the product of the contact rate between individ-

uals in the two countries, and the probability of infection per contact. When we fit the model to the Dutch data, the

parameter λ0 is estimated, but the fraction of infectious UK citizens is assumed known.

Initial condition

To complete the description of the dynamic model, we have to specify the initial conditions. Let ζ and ξ denote

the fractions of infected and removed individuals at time t0, respectively. To determine the correct balance between

exposed, infectious, and severely infected individuals, we compute the eigenvalues of the Jacobian matrix of the infinite

population limit of the MJP model. The linearized system without the S and R compartments around the disease-free

steady state with S = (1−ξ )N and R = ξ N equals

d

dt




E

I

H


=




−α β (1−ξ ) 0

α −γ −ν 0

0 ν −ω







E

I

H


 (B-3)

We use the eigenvector X0 = (E0, I0,H0)
T with ∑

3
i=1 X i

0 = ζ N corresponding to the dominant eigenvalue of the Jacobian

matrix in Eq. (B-3) to define the initial condition of the model. The parameter p0 determines the initial fraction of

infections with the mutant virus, and hence we have Emt,0 = p0E0, Imt,0 = p0I0, Ewt,0 = (1 − p0)E0, and Iwt,0 =

(1− p0)I0. We then set S0 = (1−ξ −ζ )N and R0 = ξ N. Finally, the initial state of the stochastic model is randomized

by sampling from a Poisson distribution with mean equal to the deterministic initial value.

Hybrid model simulation

Because for small population sizes the diffusion approximation defined by the system of SDEs in Eq. (9) breaks down,

as it e.g., does not allow for fixation of the mutant, we model small population sizes discretely using an adaptive

tau-leap approximation of the Markov jump process (Eq. (5)). Hence, we implemented a hybrid algorithm in which

variables can switch between a discrete and continuous type.

At any particular time t, the system consists of continuous components X i for i ∈ C (t) and discrete elements

X i for i ∈ D(t) = {1, . . . ,n} \C (t). Since for i ∈ C (t), the continuous element X i(t) is generally non-constant, the

transition rates η j(X , t) will in general be time dependent. This means that we have to integrate the following system
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of SDEs and ODEs

dX i =
k

∑
j=1

ε i
jη j(X , t)dt +

k

∑
j=1

ε i
j

√
η j(X , t)dB

j
t + τ X idB̃i

t , i ∈ C (t)

dH j

dt
= η j(X , t) , j ∈ E (t)≡ { j ∈ {1, . . . ,k} : ∃i ∈ D(t) : ε i

j 6= 0}
(B-4)

Hence, we have to keep track of those transition rates η j for which the increment ε i
j is non-zero for a discrete com-

ponent X i. The initial conditions for the hybrid system Eq B-4 are given by X i(tm) = xi
m and H j(tm) = 0. We then

integrate the system until time tm+1 = tm + hm. At this point, we sample the number of stochastic events Ym that

occurred in the time interval (tm, tm+1], from the Poisson distribution

Ym ∼ Poisson
(
∑ j∈E (tm)H j(tm+1)

)
(B-5)

Thereafter, Ym events with index j are sampled from the categorical distribution, with probability proportional to the

cumulative transition rate H j(tm+1). The increments ε j are then added to the discrete part of the state X

X j(tm+1) 7→ X j(tm+1)+ ε
j

i , i ∈ D(tm) (B-6)

After applying these Ym discrete transitions, we have to re-evaluate which components of the state are discrete and

which are continuous. We choose a fixed threshold T = 50 below and above the populations are discrete and continu-

ous, respectively. Hence, at time tm+1 we update the partition of {1, . . . ,n} as follows

D(tm+1) = {i : X i < T} , C (tm+1) = {i : X i ≥ T} (B-7)

Finally, we set the next initial condition xm+1 = X(tm+1) and H(tm+1) = 0 and repeat the process.

The tau-leap step size hm is chosen adaptively such that the expected number of events E[Ym] within each τ-leap

interval (tm, tm+1] is approximately equal to 1. To accomplish this, we choose

hm = min
{

hmax,
(
∑ j∈E (tm)η j(X(tm), tm)

)−1
}

(B-8)

where hmax = 1d. Between jumps, the hybrid system (Eq B-4) is integrated using the Euler-Mayurama method with a

step size of min{0.01,hm}.

Sequential Monte-Carlo

The method used for inference is described in full detail and generality elsewhere [32]. Here we give a brief description

highlighting some of the choices made for this particular model and data set.

In order to reconstruct the latent epidemic trajectories X , given the observed data O, consisting of death in-

cidence data D and genetic data Fmt and F , we use sequential Monte-Carlo (SMC). We simulate J = 104 replicates

of the model (particles) forward in time from one observation time (ti−1) to the next (ti), each with different initial
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conditions X j(ti−1). Given each of the J predicted states X j(ti) of the model at time ti, we calculate the likelihood

w j = L(Oi|X j(ti),θ). We then sample with replacement J particles with probability proportional to the weight w j

using a systematic resampling method [38]. The re-sampled particles are used as initial condition at time ti, and we

repeat the above steps until we reach the final observation.

The Monte-Carlo estimate of the conditional likelihood of observation Oi|Oi−1, is given by the average of the

weights

L(Oi|Oi−1,θ) =
1

J

J

∑
j=1

L(Oi|X j(ti),θ) (B-9)

where we write L(O1|O0,θ)≡ L(O1|θ). The total likelihood of the time series given θ is equal to

L(O1, . . . ,ON |θ) =
N

∏
i=1

L(Oi|Oi−1,θ) (B-10)

All likelihood computations are done on the log-scale to minimize floating-point errors.

To estimate parameters, we extended the state X with the parameter vector θ , allowing the parameters to be per-

turbed after each observation time. For the j-th particle, we now have a state (X j,θ j), and weight w j = L(Oi|X j(ti),θ j).

The extended-SMC algorithm is then iterated M = 200 times, and after each iteration m the magnitude of the parameter

perturbations is reduced. The perturbations are Gaussian θ j 7→ θ j +amε , with ε ∼N (0,Σ). Here, Σ is a diagonal ma-

trix with diagonal elements given in Table S1. For bounded parameters, the perturbations are reflected in the boundary

of the domain. The ratio a ∈ (0,1) reduces the magnitude of the parameter perturbations. We choose a =
M
√

10−2 such

that after M iterations the magnitude of the perturbations is reduced by 99%. After each iteration of the extended-SMC

algorithm, for each particle we reset the state X j to the a randomly sampled initial state of the epidemic model, while

θ j is inherited from the previous extended-SMC iteration. To speed-up the computations, we implemented the model

and SMC algorithm in C++ and used multi-threading to update particles between observations in parallel.
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