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Abstract

I consider settings where outcomes depend on own characteristics and on the characteristics of

other individuals in the sample. I propose a method to identify individuals generating spillovers

and their strength using panel data on outcomes and characteristics. This is in contrast to existing

approaches, which require a priori knowledge of the structure of interactions. The method is suitable

when the structure of interactions is stable over time and few individuals generate spillovers distinct

in magnitude from the rest. To estimate the model, I introduce the Pooled Lasso estimator, a panel-

data counterpart of the Lasso estimator and develop an iterative algorithm for computation that

alternates between Lasso estimation and pooled panel regression. Average marginal spillover effects

across individuals enjoy gains in the rate of convergence under independence of model selection

noise. I apply this methodology to study technological spillovers in productivity in a panel of US

firms. I find evidence that spillovers are asymmetric across firms, arising mostly from small, highly

productive firms.
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1 Introduction

Externalities or spillovers arise as a result of social interactions in a wide range of economically relevant

contexts.1 Quantifying these spillovers is often important from a policy perspective. As a result, a

large empirical literature on estimation of spillover effects has grown over the past decade. In these

exercises, the structure of interactions, that is, who interacts with whom, is often assumed to be known

to the researcher and taken as given. In this paper I propose a methodology to estimate both the

structure of interactions and the spillover effects using panel data. The methodology is useful when

the structure of interactions is hard to observe or difficult to measure, or when the definition of the

relevant structure of interactions is unclear.

Lack of observation of the structure of interactions has been tackled in the literature with the

use of additional data. For example, collection of survey data with self-reported links according to

a particular type of social interactions (e.g. friendship), has been increasing over the past years.2

However, the extent to which collection of survey data mitigates the lack of observability problem

is limited. Depending on the economic setting, individuals might not have incentives to reveal their

links. For instance, competing firms might not be willing to disclose their sources of technological

improvement. Collection of data on the structure of interactions can also be costly, since the number

of potential links among individuals grows exponentially with the number of individuals. Studies

looking at the effect of social interactions on different outcomes might end up collecting huge amounts

of data since structures of interactions can differ depending on the outcome of study.3

My methodology also deals with the lack of observation problem with the use of more data.

In my case, I make use of longitudinal data: repeated observations over time of the outcome and

characteristics of individuals. Nonetheless, the costs of obtaining longitudinal data are arguably lower

since this type of data only grows linearly on the number of individuals. Moreover, since my method

is outcome-based, as will become clear later, the data required for studying the impact of social

interactions on different outcomes only requires data on the different outcomes themselves.

A different challenge in the empirical study of spillovers arises when the definition of the relevant

structure of interactions is unclear. In these cases, estimates on spillover effects can be biased due to

misspecification of the structure of interactions. The risk sharing literature provides an example of this

1Some settings where allowing for spillovers has been important are: education (e.g. Graham, 2008), crime practices

(Lee et al., 2013), consumption behavior (e.g. De Giorgi et al., 2013) , technology adoption (e.g. Conley et al., 2009),

productivity (e.g. Griliches, 1979, Bloom et al., 2013)
2An example of this type of data is the Add Health data. This is a longitudinal study of a US representative sample

of adolescents in grades 7-12 in 1994-95 school year. The Add Health has information on two different types of social

interactions: friendship and romantic relationships. Card and Giuliano (2012) and Lee et al., (2013) are two recent

papers that make use of this dataset.
3Banerjee et al., (2013) collect information on 13 different types of structures of social interactions after they ask

about 13 different types of favor exchange between individuals in 75 rural villages in India.
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situation. In this literature, spillovers are quantified by the degree of insurance against consumption

risk that households in developing countries achieve. Co-movement of household consumption with

aggregate village consumption suggests that all households in the village interact in a single group.

At the same time, the model of full risk sharing is typically rejected in the data (Townsend, 1994).

Recently, Ambrus et al., (2013) are able to shed some light on this puzzle by considering a different

type of structure of interactions: geographic and family groups of households with few connections

with other groups.

In this paper spillovers arise in a linear panel data regression framework when the characteristics of

individuals not only affect their own outcome but also the outcome of other individuals in the sample.

As a novelty, I leave unrestricted the identity of the sources of spillovers of individuals, which I allow

to differ from individual to individual. Hence, for a given individual, I do not specify which other

individuals affect its outcome. I do not restrict either the magnitude of the effect of each source of

spillovers. Instead, spillover effects are pair-specific and not necessarily symmetric.

I focus on structures of interactions that are sparse and persistent over time. Specifically, each

individual, over time, is influenced by the same small number of other individuals. My methodology

can also handle settings where individuals receive a common spillover effect, but for each individual,

few other individuals generate a distinct in magnitude spillover effect.

The literature on the economics of social networks provides a motivation for combining sparse

structures of interactions with unrestricted heterogeneity in spillover effects.4 This literature empha-

sizes differences in the intensity of spillover effects depending on the relative position of individuals

in the social network.5 These individuals are often identified with centrality measures according to a

given definition of the structure of interactions. In my methodology, the identity of these individuals,

together with their spillover effects, are estimated from the data.

The identification of sources of spillovers comes from the co-movements of individual’s outcomes

with characteristics of other individuals over time. The panel dimension of the data, together with

the stability of the structure of interactions, is crucial in order to identify sources of spillovers.

There are several settings where my methodology can be useful. For example, in a context of

randomized treatments, where the effect of the treatment is subject to generate externalities, my

methodology can help disentangle direct treatment effects from spillover effects. Moreover, it can be

used to design efficient treatment rules that take spillovers into account.

Another example where the method could be useful is in the context of production functions,

where productivity is subject to generate spillovers. In this context, a particular policy relevant type

of spillovers are technological spillovers arising from R&D investments. This type of spillovers have

been long studied in the literature both at the micro and the macro level.6 Technological spillovers at

4See Jackson (2008) for an overview of the literature.
5An example of this type of special individuals is the key player (e.g. Ballester et. al, 2006).
6For example, at the country level, technological spillovers have been related to foreign direct investment (see Coe
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the firm level will be the object of my empirical application.

To estimate the model I develop a pooled panel data counterpart of the Lasso estimator (Tibshirani,

1996) that I call Pooled Lasso estimator. This estimator minimizes the sum of squared errors of the

model, across individuals and time periods, subject to a constraint on the sum of the absolute values of

the spillover effects. The particular geometry of the constraint, in terms of the sum of absolute values,

is responsible for the sparsity in the structure of interactions of the Pooled Lasso estimator. That is,

many spillover effects are estimated as zero. This property is inherited from the Lasso estimator. The

Pooled Lasso estimator, as Lasso, is able to deal with lots of potential structures of interactions, even

if the number of individuals in the sample exceeds the time dimension of the data. However, it differs

from the Lasso as it allows for differences in the number of sources of spillovers for each individual.

Computation of the Pooled Lasso estimator is efficient given its convex nature. I propose an

iterative algorithm that combines two steps: computation of the Lasso estimator on individual time-

series for each individual, and a panel OLS regression. The first step estimates the sources of spillovers

and spillover effects for each individual, while the second step recovers the effect of own characteristics.

The first step makes use of efficient algorithms to compute the Lasso (Efron et al., 2004).

I study the rate of convergence of the Pooled Lasso estimator in a simplified model where the

number of units, the number of time periods, and the number of sources of spillovers for each individual

grows with the sample size. I compare the rate of convergence of the parameters of the spillover effects

of an OLS estimator, in a model in which the structure of interactions is known, to the rate of

convergence of the Pooled Lasso estimator, in a model where the structure of interactions is unknown.

Under the assumption of mild collinearity across (subsets of) characteristics of all individuals in the

sample (Meinhausen and Yu, 2009), the Pooled Lasso estimator suffers a loss in the convergence rate

proportional to logN , where N is the number of potential sources of spillovers.7

The loss in convergence rate of the Pooled Lasso estimator with respect to the OLS estimator is

mild, even when the number of individuals is relatively large. The reason is that logN can be much

smaller than N . However, the conditions of limited dependence across time series of characteristics of

individuals, which is required for consistency, are substantially more demanding in the case of unknown

structure of interactions than in the case of known structure of interactions. When the structure of

interactions is known, only limited dependence among the characteristics of the (known) sources of

spillovers is needed. Instead, when the structure of interactions is unknown, consistency requires mild

collinearity across all subsets of characteristics of individuals.

Average marginal effects, i.e. averages over individual parameters, can be quantities of interest of

the model for several reasons: First, they can be interpreted as policy parameters, as will be clear in

the empirical application. Second, when analyzing the results, if there are many individual parameters,

looking at statistics on the cross-sectional distribution of the parameters might be more fruitful than

and Helpman, 1991).
7In the baseline model N is also the number of individuals in the sample.
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looking at each of them separately. Finally, when the time dimension of the data is not too large,

each parameter might not be very precisely estimated, however averages are potentially much more

precisely estimated (e.g. Chamberlain, 1992). I find that gains in the rate of convergence of average

spillover effect, i.e. average of spillovers generated by a particular individual on the rest of individuals

in the sample, are analogous to those enjoyed when the structure of interactions is known provided

the noise in estimation is independent across individuals.

Finally, I use my methodology to investigate technological spillovers in a sample of 200 US firms

from 1985 to 2000. Quantifying spillovers is challenging since, among other difficulties, spillovers are

hard to observe. In particular is not clear which firms should generate spillovers on others (Syverson,

2011 and Jaffe, 1986). The literature has proposed several proxy measures of spillovers given the

unobservability of the structure of spillovers. In particular, technological spillovers are usually proxied

with aggregates of R&D in the economy weighted by a technological distance between firms (Jaffe,

1986). In the framework of a Cobb Douglas production function, I use my methodology to recover

the effect of other firm’s R&D on productivity. My methodology can capture the effect of other

firm’s R&D even when there are many potential firms affecting productivity. Specifically, I shed light

on the nature of firms generating spillovers and receiving spillovers. In particular, firms sources of

spillovers are more productive than firms receiving spillovers, and their patents tend to be more cited.

Furthermore, my estimated structure of interactions can explain more variation in the data than other

spillover measures.

The rest of the paper is organized as follows: Section 2 presents the model, section 3 introduces

the Pooled Lasso estimator, section 4 proposes a method of computation of the estimator, section 5

discusses statistical properties of the Pooled Lasso estimator and section 6 illustrates the methodology

in the context of R&D spillovers between firms during the years 1985 to 2000. Section 7 presents

results on a small Monte Carlo exercise and finally section 8 concludes.

2 The Model

In this section I present the baseline model and two settings in which the model can be useful.

2.1 A panel data regression model

Let yit be an individual outcome, xit be an individual characteristic which may generate spillovers, zit

a vector of characteristics which does not generate spillovers, and wit a vector of p controls. I denote

i = 1, . . . , N individuals in the sample, and t = 1, . . . , T time. I consider the following linear model:

yit = αi + βixit +
∑

j 6=i

γijxjt + µ′
izit + θ′wit + δt + ǫit. (1)
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In (1) αi is an individual-specific intercept that captures persistent unobserved heterogeneity across

individuals, βi is an individual specific slope capturing the heterogeneous effect of own characteristics,

and γij are pair-specific parameters capturing the effect of the characteristic of individual j on the

outcome of individual i. Parameter µi captures individual specific effects of other characteristics that

do not generate spillovers, and θ captures the common effect of some controls wit. The ǫit’s are

idiosyncratic shocks that I assume to be uncorrelated with all individual characteristics, xit, zit, wit,

and with the characteristics of the rest of individuals in the sample, xjt for j 6= i. Finally, the δt’s are

time-specific dummies capturing aggregate shocks.

This model is a linear panel data regression model with spillovers, where the x’s of others are

additional explanatory variables of the outcome. Notice that when the number of individuals is large,

the number of regressors can exceed the number of periods of observation.

In this paper a zero spillover effect is interpreted as an absence of interaction from one individual to

another, hence the pair-specific parameters γij capture both the spillover effects and the structure of

interactions. More precisely, the extensive margin, γij 6= 0 or γij = 0, is informative on the structure

of interactions, while the intensive margin, the magnitude of γij when γij 6= 0, captures the spillover

effect of individual j on individual i.

The structure of interactions is modeled using a “fixed effects” approach. There are two features

that characterize this approach: first, the structure of interactions is persistent over time (i.e. γij does

not carry a t sub-index), and second, the structure of interactions is allowed to be endogenous with

respect to covariates and unobservables. In other words, the γij ’s can correlate with αi, βi, other γij

and any observable individual characteristic in an unspecified way.8

Allowing for general forms of endogeneity in the structure of interactions and spillover effects allows

the researcher to relate the structure of interactions and intensity in spillover effects with characteristic

of individuals, either observables or unobservables, after the model has been estimated. This is in

contrast with “random effects” type models (see Arellano, 2003), where the researcher parametrizes

the structure of interactions and the spillover effects in terms of covariates and unobservables ex-ante,

at the risk of misspecification.9

Stability in the structure of interactions can arise as an equilibrium outcome in some dynamic

network formation processes. For instance, Watts (2001) develops a dynamic game in which, in every

period, a link between two individuals is randomly identified, then according to a specified payoff

function, the link is severed or built depending on whether doing so is beneficial for both individuals.

8The structure of interactions can be endogenous with respect to time-invariant unobservables, like αi and βi but I

rule out cases when the structure of interactions depends on the idiosyncratic shocks ǫit.
9This is the case of many network formation models (e.g. Imbens et al., (2011), where the researcher sets up a rule

of decision of individuals to form links according to parametric functions. Another example, more related with the

specification of spillover effects is Arcidiacono et al., (2012), where spillovers in the classroom arise linearly through time

- invariant unobservables of students.
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Stability of the network is reached after some periods, when no pair of individuals has an incentive to

deviate from their status (either linked or not), under some conditions on the payoff function.

Another situation in which the structure of interactions does not change over time is when individ-

uals establish links on the basis of time-invariant characteristics, as for instance, gender, race, skills,

or other time-invariant features (observables or unobservables). This is consistent, for instance, with

the concept of homophily, where individuals tend to establish relations with individuals with similar

characteristics. This feature seems to be prevalent in many observed social structures (e.g. McPherson

et al., 2001).

Persistence of the structure of interactions allows to recover the sources of spillovers and pair-

specific spillover effects using the longitudinal dimension of the data. In particular, sources of spillovers

of individuals are identified when there are co-movements of the output (net of all other covariates)

with characteristics of other individuals. Nonetheless, in Appendix A I show how to partially relax the

time-invariance assumption on the structure of interactions while keeping the fixed effects approach.

Model (1) can be related with a model of spillovers that has been extensively used in the literature:

the linear in means model (e.g. Manski, 1993). In this model outcomes of individuals within a reference

group depend on the average characteristics of the individuals in that group.10 The spillover effect

is the same for all individuals in the same group, and individuals outside of the reference group are

typically assumed to have a 0 spillover effect. Model (1) extends the linear in means model in at least

three ways: First, it does not restrict the spillover effect to be homogeneous within groups. Instead,

spillover effects can be different for every pair of individuals. Second, spillover effects are not limited

to the group. Finally, individuals with the same characteristics can generate different spillover effects,

since spillover effects can differ across individuals with other observables and unobservables.11

Finally, spillover effects in (1) are not limited to the γij ’s. In particular, the δt can capture,

in an unspecified way, aggregate spillover effects in the economy. Alternatively, the researcher can

parametrically specify aggregate spillover effects and include them as controls in wit. In both cases,

the γij ’s need to be reinterpreted as spillover effects in deviation to an aggregate spillover effect.

Model (1) can be useful in the two following settings:

Example 1: Treatment effect in the presence of externalities Quantifying the direct effect of a

treatment when the comparison group enjoys positive externalities from the treated can be challenging,

even in a randomized treatment setting.12 In these cases the difference in outcomes between the treated

group and the non-treated group can underestimate the treatment effect.

10According to the terminology of Manski (1993), here I am only considering exogenous effects.
11In Graham et al. (2013) terminology I am relaxing homogeneity and interchangeability assumptions. The authors

argue that the motivation behind these assumptions is normally the lack of further information on the structure of

interactions.
12This is the violation of the SUTVA assumption.
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Model (1) can be useful to disentangle the direct effect from the spillover effect of the treatment. In

particular, when: 1) the treatment histories are heterogeneous across individuals, and 2) the structure

of interactions remains constant over time. An example of heterogeneity in treatment histories is

when treatment is assigned to a different individual each time. Heterogeneity in the time of treatment

assignment across individuals is necessary to recover the structure of interactions. If two individuals

receive treatment on the same period, they cannot be distinguished as sources of spillovers.13

Recovery of the structure of interactions is useful to design policies that efficiently take into account

externalities. As an example, consider the following thought experiment inspired in Miguel and Kremer

(2003): Assume that drug ingestion, the treatment subject to generate spillovers, can affect the health

status of pupils in a school class in a rural country.14 Assume the class is small in comparison with the

time period of observations. Let dit be a binary variable indicating that individual i has been treated

at time t. Assume that the treatment is assigned according to an arbitrary order of pupils where the

first pupil is treated on the first period, the second one is treated on the second period, etc. When all

pupils have been treated once, the first pupil takes treatment again and so on. Let yit be a particular

health outcome that drug ingestion can improve but not harm. Consider the following model nested

by (1):

yit = αi + βidit +
∑

j 6=i

γijdjt + θ′wit + δt + ǫit,

where αi captures pupil-specific unobserved heterogeneity in health status, βi captures heterogeneity

on the treatment for pupil i, γij captures the effect of treatment of individual j on the health outcome

of i.

Allowing for heterogeneity in the treatment effect, βi, is possible given the panel dimension of the

data. The effect of the treatment for each individual can be recovered comparing its outcome over

time, conditional on observables, wit, and controlling for aggregate shocks (δt). Also, the effect of the

treated pupil on other pupils is recovered because in each point in time the treatment is taken by

only one pupil: if at the time that pupil 1 takes the drug, pupil 2 experiences an improvement on its

outcome, then pupil 2 is affected by the treatment of pupil 1.

The school director can be interested in maximizing the aggregate improvement on health status

of the class given a constraint on the number of doses of treatment she can buy. The improvement on

the aggregate health status of the class if pupil k takes the drug is:

N∑

i=1

(yi (dk = 1)− yi (dk = 0)) = βk +
N∑

i=1

γik, (2)

13See Example 2 on identification in the Appendix for further intuition.
14The framework in Miguel and Kremer (2003) is a randomized experiment at the school level. They exploit variation

in the density of schools in a certain area around a treated school to estimate spillover effects of deworming treatment.

They randomize at the school level and not at the class level precisely to be able to control for externalities.
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where yi (dk = 1) and yi (dk = 0) denote health status of pupil i if pupil k takes the drug and if pupil

k does not take the drug, respectively. The increase in aggregate health status depends on the effect

of the drug on the health status of pupil k, but also on the capacity of pupil k to generate positive

externalities on the health status of other pupils in the class. Assuming that the cost of each dose is

homogeneous and unitary, the maximization problem of the school director is then:

max
(D1,...,DN )

{
N∑

k=1

N∑

i=1

(yi (dk = 1)− yi (dk = 0)) ·Dk

}

s.t.

N∑

k=1

Dk = C,

s.t. (D1, . . . , DN ) ∈ {0, 1}N ,

where C is the total budget for buying drugs, and D1, . . . , DN denotes the assignment treatment

variable of pupil 1 to pupil N .

If the direct effect and spillovers effects are either positive or zero, the optimal allocation of the

amount of doses available is to the C pupils with the highest capacity to generate an aggregate

improvement on health status in the class (2). Notice that this allocation does not necessarily coincide

with an allocation of doses to pupils with the highest individual treatment effect (βi). Instead, imagine

a pupil fairly resistant to infections, not experiencing huge losses of health status if infected (low βi),

but with a high degree of interactions with several pupils that if infected suffer from huge losses of

health (high γji’s). In that situation, it might be optimal to treat the “popular” pupil given its

capacity to generate positive spillover effects on other pupils, even though himself does not benefit too

much from it.

Example 2: Technological Spillovers in Productivity Technological spillovers in productivity

between firms, industries and countries are conceptualized as knowledge transfers. Producers are likely

to attempt to adopt practices of productivity leaders in their own and related industries. At the same

time, producers are unable to fully appropriate all the benefits of their discoveries. Knowledge is

unobservable, and is often proxied with R&D investments under the assumption that R&D enhances

knowledge, which in turn enhances productivity.15

Policy makers are often interested in understanding the social returns to R&D investment, that

is, the aggregate increase in output after a marginal increase in R&D investment of a single or sev-

eral producers. However, quantifying spillovers from R&D is hard.16 A first challenge is the lack of

observation of the channels through which R&D spillovers arise. Several proxies of the structure of

interactions between producers, mainly based on distances, have been related in the literature to the

correlation of productivity between producers: geographic distance (Moretti, 2004), market distance,

15R&D might not be the only source of productivity. See Syverson (2011) for a survey on what determines productivity.
16See Hall et al. (2010) for a broad relation of challenges in the empirical literature on measuring the returns to R&D.
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or technological distance (Jaffe, 1986). A second challenge is to disentangle correlated productiv-

ity shocks from spillovers: closely related producers are likely to experience the same productivity

shocks.17

The methodology is potentially useful in shedding light on the channels through which technological

spillovers between producers arise, since the structure of interactions is estimated from the data. In

particular, I can allow for asymmetries in spillover effects, which might be important to capture that

less efficient producers might be willing to replicate industry leader’s best practices. (Syverson, 2011).

I will develop further this example in section 6, where I study R&D spillovers in a production

function framework in a panel of US firms.

2.2 Sparse structures of interactions

I focus on sparse structures of interactions, namely, structures of interactions where individuals have

relatively few sources of spillovers. Sparsity on the structure of interactions is written in terms of the

parameters of model (1) as: ∑

j 6=i

I{γij 6= 0} = si << T for all i.

In words, for each individual i, the sum of the spillover effects different from zero, si, which is unknown,

is relatively small in comparison to the time dimension T .18

The sparsity assumption only limits the number of sources of spillovers and leaves unrestricted

its identity. Also, it leaves unrestricted the intensity of the spillover effects generated by those few

individuals. In this perspective, the sparsity assumption only restricts the extensive margin of the

γij ’s while leaves completely unrestricted its intensive margin.

A first motivation for sparsity can be found in the literature of economics of social networks. This

literature emphasizes the existence of few individuals in the network with a differentiated capacity

to impact other individuals.19 Identifying these individuals is important in this literature, specially

in policy relevant settings. The sparsity assumption, in combination with heterogeneity in spillover

effects, can be a good setting to recover these individuals from the data.

Sparsity also allows to identify few important sources of spillovers even when the number of po-

tential sources of spillovers is large in relation to the time periods of observation (i.e. N > T ). This

is the case in our empirical application, where the dataset comprises N = 200 firms and T = 16. In

this perspective, sparsity is a way to reduce the dimensionality of the problem.20

17This problem, named by Manski (1993), as the reflection problem is prevalent in the literature of peer effects.
18This definition of sparsity does not fully coincide with the definition of sparsity for instance in Watts (1999), where

the relative number of sources of spillovers is related to the total number of individuals in the sample, N . Instead, it is

related to the number of periods of observations, T .
19Individuals related with high index of centrality measures and/or are located in strategic positions in the network.

See for example Jackson (2008) for an overview on centrality measures.
20A different approach to reduce the dimensionality of the model would have been to impose symmetry in the structure
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More generally, sparse structures of interactions cover a wide range of different structures of in-

teractions. Moreover, they fulfill realistic features of social structures of interactions such as: average

number of connections per individual growing slower than the number of individuals, clustering, ho-

mophily, etc.21 Following, some more concrete examples of sparse structures of interactions.

What type of structures can be captured under the sparsity assumption? Adjacency

matrices A are used in the literature on economic networks to describe the structure of interactions.

These N ×N matrices contain in each position aij either a 1 if individual j is related to individual i,

or a 0 otherwise.22 In our framework, aij = 0 indicates that the output of individual idoes not depend

on the characteristic of unit j. Conversely, aij = 1 indicates that the output of individual i depends

on the characteristic of individual j. The elements of A can be written in terms of the parameters of

model (1) as follows:

aij = I
(
γij 6= 0

)
,

where I () denotes an indicator function. In words, aij capture the extensive margin of the γij ’s.

Our notion of sparsity does not impose conditions on the identity of the units generating spillovers.

In particular, sparsity imposes restrictions on the sum of the rows of the adjacency matrix, but not

on the sum of the columns.

A first example of a sparse structure of interactions is one in which all individuals receive spillovers

from the same individual. In the context of the empirical application this would amount to have a

single firm, a sort of technological leader, generating spillovers on the productivity of the rest of the

firms in the sample. Figure 1 is a representation of this type of network in terms of an adjacency

matrix. This type of structure is called a star network in the literature on economic networks, and the

technological leader a central player. The star network is sparse since each firm has exactly one other

firm from whom it receives spillovers. A structure of interactions in which there is a central player in

each industry is also a sparse structure of interactions.

Another example in which each individual has only one source of spillover is in a lattice: each

individual is a source of spillover to another individual and only to one other individual. The main

feature in these structures is that all individuals can be reached in the structure through “friends of

friends”. That is, all individuals are connected.

A structure of social interactions where individuals interact in pairs, triads or small groups is also

sparse. De Giorgi and Pelizzari (2012) consider this type of structure in their study of the mechanisms

of interactions between pairs of individuals in the same class, in terms of their outcomes in test scores.

of interactions (γij = γji). In general, the suitability of this assumption depends on the specific application one has in

mind. In the context of technological spillovers allowing for asymmetry is interesting to study the interaction of spillovers

with differences in productivity between firms.
21Chandrasekhar and Jackson (2013) also focus on sparse networks to develop an estimator of static network formation.
22In its most general definition, adjacency matrices do not necessarily contain only 1’s or 0’s.
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Figure 1: Star network

A =

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0







Note: Adjacency matrix with N = 9, si = 1 for all i 6= 6 and s6 = 0. The source of spillover for all individuals is the

same individual: i = 6.

Moreover, this structure can arise after a dynamic network formation process, as discussed before,

where pair stability is reached after some periods.

A wide category of large sparse networks are the so-called small world network (Watts, 1999). These

structures of interactions share some features with the lattice, in the sense that most individuals are

connected indirectly through other individuals, but at the same time show high degree of clustering or

lots of small groups. Small worlds are found in many real social structures of interactions, one of the

most famous one being the the Co-stardom network or the film or actor collaboration graph, where

two actors are linked if they have appeared in the same movie.23

Sparse structures of interactions cover many different adjacency matrices. However, some appli-

cations might not be suited to a small number of sources of spillovers. Also, in some dataset, the

longitudinal dimension of the panel might be too short and might tighten too much the number of

sources of spillovers allowed for each individual. In those cases, allowing for additional sources of

spillovers can be done by imposing prior information on the structure of interactions. In the con-

text of the empirical application, spillovers might come from two different sources: an average R&D

spillover at the industry level, capturing average level of knowledge in the industry, and additionally,

some firm-specific sources of spillover, either within the same industry or not. An illustration in terms

of the adjacency matrix can be found in Figure 2.

23The data to build this structure of interactions can be found in the Internet Movie Database

(http://www.imdb.com/).
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Figure 2: On top of industry spillovers

A =

0 1 1 0 0 1 0 0 0

1 0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 1 0

1 0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0 0

0 1 0 1 1 0 0 0 0

0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 1 0 1

1 0 0 0 0 1 1 1 0







Note: Representation of a structure of interactions with two different layers of spillover effects: Individuals receive

spillovers within small pre-specified groups (e.g. firms within the same industry). Additionally, individuals receive

spillovers from few other individuals inside or outside its own group. The light coloring indicates the spillover effect

from the reference group while the dark coloring indicates the additional sources of spillovers of each individual.

2.3 Quantities of interest

There are two different types of objects of interest: the parameters related to the effect of the charac-

teristics generating spillovers, and the common parameters.

2.3.1 Average marginal effects

Model (1) is a fixed-effects model, where the number of parameters grows with the sample size of

individuals. When N is large, making sense of the estimates by looking at each of them separately

might not be a good strategy. Instead, looking at distributional characteristics of the fixed effects

might be more informative. In addition, if T is small with respect to N , fixed effects are imprecisely

estimated.24 Aggregate quantities are potentially more precisely estimated (e.g. Chamberlain (1992)).

What features of the distribution or marginal effects are interesting depends on the application.

In what follows I define two types of quantities of interest: private effects and social effects. The

first type of effect involves marginal effects with respect to own characteristics, while the second type

involves, in addition, marginal effects with respect to characteristics of other individuals.

Private effects Increase in outcome due to an increase in own characteristics:

24This phenomenon is the incidental parameter problem (Neyman and Scott, 1948), and arises when the number of

parameters grows with the sample size.

13



• Increase in i’s outcome after increase in own characteristics:

Pi =
∂ yi

∂ xi
= βi.

• Average increase in outcome due to increase in own characteristics:

P =
1

N

N∑

i=1

βi.

Social effect Increase in outcome due to increase in others’ characteristics:

• Increase in i’s outcome after increase of characteristics of j :

Mij =
∂ yi

∂ xj
= γij .

• Average increase in outcome after increase of characteristics of j:

Mj =
1

N

N∑

i=1

γij +
1

N
βj .

• Aggregate increase in outcome after increase of characteristics of all individuals:

M =
N∑

j=1

N∑

i=1

γij +
N∑

j=1

βj .

Aggregate marginal increase in outcome after a marginal increase on the characteristics of all individ-

uals in the sample is the sum of the aggregate increases in output due to spillovers plus the aggregate

increase in output due to the increase in own characteristics.

2.3.2 Common parameters

Alternatively, the object of interest might be θ, the common parameter. In this case, model (1) can

be seen as a model where cross-sectional dependence is unobserved and is modeled in a flexible way

through the parameters γij ’s.
25 When characteristics of others have an effect on the outcome, and

additionally, characteristics are correlated among individuals, not controlling for this cross-sectional

dependence can lead to omitted variable bias on the common parameters.

25An alternative way of capturing cross-sectional correlations is by means of interactive fixed effects (Bai, 2009), or by

adding grouped patterns of heterogeneity (Bonhomme and Manresa, 2012).
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3 Estimation

I propose to estimate model (1) as the minimizer of the following criterion:

(
α̂, β̂, Γ̂, θ̂, δ̂

)
= argmin

(α,β,Γ,θ,δ)
Q (α, β,Γ, θ, δ) +

N∑

i=1

λi

N∑

j=1
j 6=i

∣∣γij
∣∣ σ̂j , (3)

where

Q (α, β,Γ, θ, δ) =
N∑

i=1

T∑

t=1

(yit − αi − βixit −
N∑

j=1
j 6=i

γijxjt − θ′wit − δt)
2,

and α = (α1, . . . , αN ) and β = (β1, . . . , βN ) are N × 1 vectors containing all firm-specific parameters,

δ = (δ1, . . . , δT ) is a T × 1 vector containing all time-specific parameters, and Γ is a matrix with zeros

in the diagonal containing all the γij . Finally, σ̂2
j = 1

T

∑T
t=1(xjt − x̄j)

2, the empirical variance of the

characteristic of individual j.

Criterion (3) has two parts. The first part, Q, is a sum across all individuals and time periods

of squared residuals, where residuals are defined in terms of model (1). Q coincides with the OLS

criterion of a pooled panel data regression model. The second part is a penalization on the parameters

of the structure of interactions, γij ’s. This penalization is an increasing function in the sum of the

absolute values of the parameters of the structure of interactions since λi are greater or equal than

zero for all i.

The two parts of the criterion are exerting opposite forces. The OLS part decreases with the

number of parameters γij that are different from zero. The penalty, in contrast, increases with the

absolute value of the parameters γij , and in particular, with the number of parameters γij that are

different from zero. The researcher can change the relative importance of the two parts by choosing

different values of the parameters λi’s. For instance, when λi’s are big, the minimizer of (3) is likely

to have all γij ’s equal to zero.

Solutions of (3) are sparse. Sparsity in the γi’s arise due to the particular geometry that the

absolute value introduces in the penalty. More precisely, the kinks of the absolute value cause the

zero-out of many potential sources of interaction.

A closely related estimator that deliver sparse solution is the Lasso estimator, introduced by

Tibshirani in 1996. In its original formulation, the Lasso minimizes the sum of the squared errors

of a linear regression, with a penalty on the sum of the absolute values of the parameters. When

δ = 0, β = 0 and θ = 0, the Pooled Lasso Estimator coincides the Lasso estimators on each of the N

time-series regressions of the outcome on the characteristics of the rest of individuals in the sample:

(α̂i, γ̂i) = argmin
(αi,γi)

T∑

t=1

(yit − αi −
N∑

j=1
j 6=i

γijxjt)
2 + λi

∑

j 6=i

|γij | (4)
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where

Qi(αi, βi, γi, θ, δ) =
T∑

t=1

(yit − αi −
N∑

j=1
j 6=i

γijxjt)
2.

The Pooled Lasso estimator delivers sparse structures of interactions, and is globally convex, as

Lasso. However, it differs from Lasso in two aspects: First, individual-specific penalization parameters,

λi, capture differences in the number of sources of spillovers for each individual. Secondly, in the pooled

regression framework the presence of common parameters naturally arise, such as the time dummies

parameters δt. This requires modifications on the computation method.

4 Practical Aspects

In this section I discuss several important practical aspects of the Pooled Lasso estimator. In the first

place, I propose a computation method. Following, I discuss the choice of the penalization parameters

λi for i = 1 . . . , N .

4.1 Computation

The Pooled Lasso estimation problem is a convex optimization problem. I propose a method of

computation that boils down to two well known estimation steps: an OLS regression and N different

Lasso estimations on the times series of each individual. I make use of existing very efficient routines

of optimization in order to solve the Lasso problems. In particular, I use the LARS algorithm (Efron

et. al, 2004) to compute the time-series Lasso. The LARS algorithm is able to calculate the Lasso

estimates according to all relevant values of the penalization parameter λi in a very efficient way.26

I propose the following iterative algorithm to compute the Pooled Lasso estimator:

1. Choose θ0, β0, δ0. Set m = 1.

2. Obtain α(m) and γ
(m)
i by solving the Lasso estimator for each i:

(
α
(m)
i , γ

(m)
i

)
= argmin

(αi,γi)



Qi(αi, β

(m)
i , γi, θ

(m), δ(m)) + λi

∑

j 6=i

∣∣γij
∣∣




where Qi(αi, βi, γi, θ, δ) =
∑T

t=1(yit − αi − βixit −
∑N

j=1
j 6=i

γij − θwit − δt)
2

3. Update the values of θ, β and δ by OLS

(
β(m+1), θ(m+1), δ(m+1)

)
= argmin

(β,θ,δ)

{
Q(α(m), β,Γ(m), θ, δ)

}
.

26In the case that the number of regressors is smaller than the sample size computing the whole sequence of Lasso

estimators involves the same number of operations as computing an OLS estimation.
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4. Set m = m+ 1. Go to Step 2 until convergence.

The final estimators can be defined as : α̂i = α̂i

(
θ̂, β̂i, δ̂

)
, γ̂i = γ̂i

(
θ̂, β̂i, δ̂

)
, β̂ = β̂

(
α̂, Γ̂

)

θ̂ = θ̂
(
α̂, Γ̂

)
, and δ̂ = δ̂

(
α̂, Γ̂

)
.

Notice that in each of the steps the objective function is non-increasing. As a consequence, since

(3) is globally convex, this iterative algorithm attains the global minimum.

4.2 Choice of penalization parameter λi

The penalization parameter λi determines the sparsity level in the structure of interactions of each

individual. When λi is large, the Pooled Lasso estimator is likely to estimate 0 sources of spillovers

for i. On the other hand, when λi is small, the estimated number of sources of spillovers for i is likely

to be larger. In order to provide a more formal intuition consider the optimization problem (4). It is

easy to see that any solution of the optimization problem (α̂i, γ̂i) satisfies the following condition:27

{
|Gj(γ̂i)| = −λi sign(γ̂ij) if γ̂ij 6= 0,

|Gj(γ̂i)| ≤ λi if γ̂ij = 0,
(5)

where

Gj(γ̂i) = 2
T∑

t=1

(yit −
∑

k 6=i

γ̂ik)xjt.

In words, (5) are the analogous of the first order conditions of a differentiable optimization problem,

and Gj is the derivative of Qi in (4) with respect to characteristic of individual j, xjt. Then, the larger

λi, the more γ̂ij set to zero.

One way of choosing the penalization parameter is using cross-validation and some criterion of

prediction optimality. However, prediction optimality might not be necessarily useful in recovering

the true number of sources of spillovers. In particular, it seems that cross-validation tends to deliver

higher levels of sparsity than the true ones.

Another way of choosing the penalization parameter, more closely related with the recovery of

the sources of spillovers, is related to the noise in estimation, 1
T

∑T
t=1 xjtǫit. In particular, as already

pointed out in Bickel, Ritov Tsybakov (2009) a sensible choice of λi is one where the noise in estimation

is uniformly bounded by the penalization parameter λi (see e.g. Chernozukov (2009).28 With this

choice, the inclusion of regressors in the model that are not in the true model is limited. However, it

is necessary that the penalization parameter is not too big either so that important regressors are not

set to zero.

Finally, as will be seen later in the next section, the noise in estimation, depends on σi, the

standard deviation of the errors, ǫit. Hence, the choice of penalization parameter is not feasible, since

27See for example Lemma 2.1. in Bulhmann Van der Geer (2011)
28The particular distribution of the noise in estimation depends on the errors and characteristics.
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in general the standard deviation of the error is unknown. In step 2 of the computation algorithm, I

use a feasible variation of the Lasso estimator, the iterative Lasso, proposed by Belloni et. al (2011).

This estimator follows an iterative strategy in which the penalization parameter, and the parameters

of the model are estimated iteratively until convergence.

5 Statistical properties

In this section I discuss statistical properties in a setting where N , the number of individuals, T , the

number of time periods and si, the number of sources of spillovers for each individual, tends to infinity.

The relative rates of convergence of these three quantities will be made more explicit in the following

section. I distinguish between two different cases: when the structure of interactions is known, and

when the structure of interactions is unknown and is estimated from the data with the rest of the

parameters of the model.

I restrict the analysis to the study of rates of convergence of different estimators in different models.

Inference in the Lasso-type estimators is a very active area of researcher nowadays and I don’t cover

it in this discussion. At the end of the paper, in the conclusions, I get back to this very important

question.

5.1 The structure of interactions is known

Consider the following model of spillovers:

yit = αi + βixit +
∑

j∈Si

cijxjt + w′
itθ + δt + ǫit. (6)

In this model, the identity of the sources of spillovers to i is known to the researcher. The structure

of interactions is specified with Si, that contains the index of the sources of spillovers for each i. The

number of sources of spillovers for each i, si, is small relative to the time dimension T , as in the baseline

model (1). The outcome of individual i depends on own characteristics, xit, and on the characteristics

of the few individuals in Si. The cij captures the spillover effect of individual j on individual i when

j is a source of spillover for i (i.e. j ∈ Si).

The number of sources of spillover grows with the sample size. This assumption reflects that more

spillovers arise if the number of individuals in the sample grows. For simplicity, I assume that the

number of sources of spillovers of all individuals is bounded for each sample (N,T ), si < sN,T , and

stays small relative to T .29

29The data generating process changes with the sample when the number of sources of spillovers grows with the sample

size. A rigorous statistical analysis of this model requires an asymptotic experiment considering sequences of samples

and dgp’s. Belloni et. al, (2013) or Buhlmann and Van der Geer (2011), provide conditions under which the limiting

distribution of the data is well defined even when the dgp changes with the sample size. The intuition is that the number

of sources of spillovers grows very slowly in comparison with the speed of growth of the sample size.
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OLS provides consistent estimates of all the parameters of the model in several interesting cases.

For instance, when all characteristics of individuals, x1t, . . . , xNt, and wit, are strictly exogenous, and

errors are strongly mixing. Also, when regressors are lagged outcomes and more generally predeter-

mined, OLS is still consistent when T tends to infinity.30 Finally, when regressors are endogenous,

OLS is inconsistent.

The rate of convergence of the estimates is different depending on he type of parameter of the model.

Moreover, rates of convergence also depend on regularity conditions on the matrix of regressors, as I

discuss below. However, under regular conditions, the spillover effects, cij , are estimated at a rate of

convergence of
√

T
sNT

. The denominator reflects the loss in the rate of convergence due to the number

of sources of spillovers growing with the sample size. The more sources of spillovers, the slower the

rate. Common parameters converge at the rate of
√

NT
sNT

, which is
√
N times faster than the rate on

individual-specific parameters. The increase in the rate is given by the assumption that the parameter

is the same for all individuals and through time. Average marginal effects, as in Chamberlain (1992),

also enjoy the same gain in the rate of convergence, provided the noise in estimation is independent

across individuals. This is likely to be true also under limited spatial dependence.

The convergence results break down when regressors are collinear or the variability over time of

some of them is low, given that I have fixed effects in the model. For instance, when xit is zero

throughout the period of observation, βi is not identified. Similarly, when xit is constant over time,

αi and βi are not identified either. In limiting cases, where xit varies little over time, Graham and

Powell (2012) suggest trimming observations with little variation in order to gain efficiency on the rate

of convergence of average marginal effects. Finally, if two or more sources of spillovers share the same

evolutions of their characteristics over time, say xjt and xkt, their spillover effects cij and cik are not

separately identified.

5.2 The structure of interactions is unknown

The longitudinal dimension of the data allows to consistently recover the identity of the sources of

spillovers for each individual. In the next subsection I provide an intuition on consistency of model

selection in a simplified case.

I study now the rate of convergence of the estimates of the parameters of the model when the

structure of interactions is unknown. The goal is to asses the difference in the rate of convergence of

the parameters when the structure of interactions is known and when the structure of interactions is

unknown. Consider the following simplified model of spillovers:

yit =
∑

j 6=i

γijxjt + ǫit, (7)

30When T is fixed, OLS suffers from an asymptotic bias, the Nickel bias, if regressors are predetermined. When T is

small, this bias can be substantial. See Arellano (2003).
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where
∑

j 6=i I
{
γij 6= 0

}
= si = o(T ). I assume ǫit are N (0, σ2

i ), i.i.d in the time series, and i.n.i.d

in the cross section. I normalize the regressors such that 1
T

∑T
t=1 xkt = 0 and 1

T

∑T
t=1 x

2
kt = 1 for all

k = 1 . . . N .

The Pooled Lasso estimator of (7) is equal to the Lasso estimator on each individual time series

regression:

γ̂i = argmin
γi

T∑

t=1


yit −

∑

j 6=i

γijxjt




2

+ λi

∑

j 6=i

|γij |.

I denote Xi the T × (N − 1) matrix containing the vector of characteristics, xjt for j = 1, . . . , i−
1, i+ 1, . . . , N . That is, the vectors of characteristics of all individuals in the sample except the ones

from i. The Gram matrix Ci is defined as:

Ci = X ′
iXi.

The following definition is useful in order to state conditions on the Gram matrix:

Definition 1 Sparse Eigenvalues (Meinhausen and Yu (2009))

Let 1 ≤ u ≤ N − 1. Let C be a squared positive definite matrix. Define:

Φmin(u)[C] = min
δ∈R(N−1) 1≤‖δ‖0<u

δ′Cδ

‖δ‖2

Φmax(u)[C] = max
δ∈R(N−1) 1≤‖δ‖0<u

δ′Cδ

‖δ‖2

where ‖δ‖0 =
∑N−1

k=1 I {δi 6= 0}.

The u-sparse minimal eigenvalue is the miminal eigenvalue of any u× u- dimensional submatrix of C.

If (N−1) is larger than T , Φmin(N−1)[Ci] = 0, since regressors are necessarily colllinear in that case.

The Lasso estimator crucially depends on the behavior of the smallest m-sparse eigenvalue, where m

is of the same order of magnitude si.

The following condition appears in Belloni et. al (2011):

Assumption 1 As N , T go to infinity:

κ′′ ≤ Φmin(si log T )[Ci] ≤ Φmax(si log T )[Ci] ≤ κ′

where 0 < κ′′ < κ′ < ∞ do not depend on N or T .

This condition states that the collinearity among the different x1t, . . . , xNt cannot grow too much when

the number of individuals grow. In particular, as the dimension of the submatrices grow at the rate

si log T , the minimum si log T - eigenvalue has to remain above κ′.

Under the above condition, and under a particular choice of λi ∝ σi

√
T logN31, the Pooled Lasso

estimator satisfies:
31This choice of λi is suggested in Bickel, et. al (2009).
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∑

j 6=i

(
γ̂ij − γ0ij

)2
= Op

(
si
logN

T

)
.

The rate of convergence of the spillover effects is slower when the structure of interactions is

unknown. The cost associated to estimating the structure of interactions is proportional to
√
logN .

This cost reflects that there are N potential sources of spillover.32 However, in practice, the loss in

rate of convergence can be mild even when there are many potential sources of spillovers, since logN

is small relative to N . In particular, the Pooled Lasso estimator is consistent when logN
T

goes to zero,

and si, the number of sources of spillovers, grows mildly at the rate si = op

(
T

logN

)
. Notice that this

includes the case when the number of potential spillovers, N , substantially exceeds the number of time

periods of observations.

When the number of potential sources of spillovers is fixed, the rate of convergence of γ̂i is the

same when the structure of interactions is known and when the structure of interactions is unknown.33

An example of this situation is when N is fixed. Another example is when the set of individuals

potential sources of spillovers is not the rest of individuals in the sample but a fixed subset of them.

For instance, in a context of spillovers in a sample of school kids, the potential sources of spillovers

are restricted to arise in the class and the size of the class is fixed. N can still grow if I think that I

am adding more classes in the sample.

Estimation of the structure of interactions can be costly in terms of the rate of convergence, but

this cost can be relatively mild even if N is quite large. However, the conditions on the Gram matrix

under which the rate of convergence of the Pooled Lasso estimator is close to the OLS estimator with

knwon structure of interactions are substantially more demanding when the structure of interactions

is unknown. In particular, when the structure of interactions is known, it is enough that collinearity

among characteristics of the actual sources of spillovers is limited. In contrast, when the structure of

interactions is unknown the paths of the characteristics of all potential sources of spillovers need vary

differently over time. Unless this is the case, the Pooled Lasso estimator cannot recover the structure

of interactions.

When the number of periods of observations is small, each of the γij is poorly estimated, even

when the structure of interactions is known. Next, I study convergence rates of average marginal

effects. I consider an average marginal effect where spillovers are weighted by a generic weight ωij .

The following assumption ensures average out of the noise in estimation across individuals. More

primitive conditions are still work in progress:

Assumption 2 The noise in estimation is independent across individuals:

E
((
γ0ij − γ̂ij

) (
γ0kl − γ̂kl

))
= 0

32See the next subsection for further intuition of the rate of convergence.
33The Lasso estimator is said to achieve the oracle rate of convergence, that is, the rate of convergence as if the true

model was known.
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Proposition 1 Under Assumptions 1 and 2, and provided that Op (supi,j |ωij |) = Op(1):

∣∣∣∣
1

N

N∑

i=1

∑

j 6=i

γ̂ijωij −
1

N

N∑

i=1

∑

j 6=i

γ0ijωij

∣∣∣∣ = Op

(
sup
i

si
logN

NT

)
.

The proof of this proposition can be found in the appendix.

This result is specially useful when N is large with respect to T . The averaging out of the noise

allows to estimate aggregate marginal effects at a much better rate than individual spillover effects.

This result also implies that aggregate marginal effects, as the ones presented in section 2.2, are

estimated at the same rate of convergence as individual spillover effects, in spite of adding N different

spillover effects parameters.

Reaching the gap between the analysis of this simplified model and the analysis of the baseline

model (1) is work in progress. Some aspects are more difficult to overcome than others. For instance,

including individual intercepts and individual slopes is in principle easy. Individual intercepts can

be differentiated out transforming the data in deviations to the mean. Including the effect of own

characteristics (βi) is also easy. Projection arguments as in standard linear regression models can

be used to separately estimate own characteristics effects, not subject to penalization, from spillover

effects.34 When including common parameters (θ) in the model, the rate of convergence of spillover

effects is likely to remain unchanged but the θ’s are likely to enjoy the same gain in the rate of

convergence as average marginal effects. In contrast, allowing for time dummies is presumably hard.35

Finally, relaxing gaussianity and time-series seems feasible. In a recent paper, Lam and Souza

(2013), make use of Nagaev - Type inequalities to bounds the noise in estimation when errors have

sufficiently thin tails and dependence is limited.

5.3 Consistent model selection: An intuition

In this subsection I give intuition on model selection using the simplified model (7). I further assume

that each individual only has one source of spillover, which I denote as j(i), and γij(i) is its spillover

effect:

yit = γij(i)xj(i)t + ǫit. (8)

Moreover, I assume that regressors are normalized: 1
T

∑T
t=1 xit = 0 and 1

T

∑T
t=1 x

2
it = 1 for all i =

1, . . . , N .

There are N − 1 potential sources of spillovers. Only one is the actual source of spillover to i. I

denote R2
j the R-squared of the time series regression of the outcome on characteristics of individual

34See Bulhmann van der Geer (2011) for more details.
35Time dummies cannot be “differenced” out as individual fixed effects because after the transformation the model is

not sparse anymore.
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j. An estimator of the source of spillover to i is the following:

ĵ(i) = argmax
k 6=i

R2
k.

That is, the estimator of the identity of the source of spillovers is the individual whose characteristic,

x
ĵ(i)t, has the highest explanatory power on the outcome of i, yit. Under this estimation rule, and

given that regressors are normalized, maximizing the R2 is the same as maximizing the absolute value

of the sample covariance between y and x. The probability that the estimated source of spillover, ĵ(i),

does not coincide with the true source of spillovers, j(i), is:

P

(
ĵ(i) 6= j(i)

)
= P

(∣∣∣∣ Ĉov
(
yit, xj(i)t

) ∣∣∣∣ < sup
k 6=j(i)

∣∣∣∣ Ĉov (yit, xkt)

∣∣∣∣

)

= P

(∣∣∣∣∣ γij(i) + T−1
T∑

t=1

xitǫit

∣∣∣∣∣ < sup
k 6=j(i)

∣∣∣∣∣ T
−1

T∑

t=1

xktǫit

∣∣∣∣∣

)
.

This is, the probability that the estimated source of spillovers is not the true source of spillover is

equal to the probability that the maximum sample covariance between the output and all regressor is

not attained using regressor xj(i)t.

Consistency of model selection as N and T grows thus depends on the behavior of the following

quantity:

sup
k 6=j(i)

∣∣∣∣ T−1
T∑

t=1

xktǫit

∣∣∣∣.

In words, the noise in estimation is equal to the sup of the noise in estimation of time series

regressions of outcome i on the characteristics of each individual in the sample. On the one hand, each

of the T−1
∑T

t=1 xitǫkt vanish at the typical
√
T rate. However, since the identity of the influencing unit

is unknown, the noise in estimation grows with the potential sources of spillovers. In particular there

are N − 1 potential sources of spillovers, and as a consequence N − 1 different noise T−1
∑T

t=1 xitǫkt,

with k = 2 . . . , N to control. Given that regressors are normalized, and that they are independent of

ǫit, T
−1
∑T

t=1 xktǫit is distributed as N(0, σ
2

T
). The following statistical result is informative on how

the noise in estimation grows when the structure of interactions is unknown. Let ςk be distributed as

N(0, σ2), then:

sup
1≤k≤N

|ςk| = Op

(
σ
√
logN

)

Applying this result to T−1
∑T

t=1 xktǫit:

P

(
ĵ(i) 6= j(i)

)
≈ P

(∣∣∣ γij(i)
∣∣∣ < Op

(
σ

√
logN

T

))
.

Hence, consistent model selection requires logN
T

−→ 0 .
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Remark 1 The estimation rule in the above simple model, coincides with the Lasso estimator for a

suitable choice of the penalization parameter λi (see Efron et al., 2004). More generally, the Pooled

Lasso estimator can be seen as a convexification of another penalized estimator, where the penalty is

in terms of the sum of the number of spillover effects parameters that are different from zero for each

individual. This estimator searches among all potential structures of interactions and selects the one

that minimizes the residual variance. These combinatorial-type estimators are natural estimators in a

setting with sparse structures of interactions, however their computational properties are poor.
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6 Empirical Application

I use my methodology to study R&D spillovers in a production function framework.

6.1 Background and Motivation

R&D investments enhance firm’s knowledge, which in turn increase firm’s productivity. Knowledge

spillovers are likely to arise between firms since firms might not be able to keep every aspect of their

production process secret. As a consequence, firms might take advantage of each other’s knowledge.

There is a large empirical literature devoted to quantifying the returns to R&D investments, both

from the private perspective (i.e. returns enjoyed by the firm investing in R&D) and the social

perspective (i.e. returns enjoyed by the firms in the economy plus spillover effects).36 This literature

is partly motivated by the policy implications that the presence of R&D spillovers can have for the

productivity of the whole economy: If social returns are high, the policy maker might be interested

in promoting R&D investment among firms. On the other hand, policies meant to increase spillovers

might destroy firm’s incentives to innovate if it gets too hard to appropriate the benefits of their

innovations.

In order to quantify R&D spillover effects one would like to measure the impact that a firm’s

investment in R&D has on the productivity of another firm. However, this empirical strategy might

be hard to implement for several reasons. In general, theory does not provide with a clear guidance on

which firms generate spillovers on others. Spillovers might need not be tied to any single geographic

and or input market (Syverson, 2011). If there are many firms, searching for spillover effects among

all the potential pairs of firms might be costly.37

Given that interactions are unobservable, the literature has used several between-producer dis-

tance definitions to account for potential spillovers between firms. The literature has documented

the importance of spillovers by adding these proxies as additional inputs in a production function

framework (Griliches, 1979). The Jaffe measure (Jaffe, 1986), which takes into account the overlap

in historical patenting behavior of firms, is the preferred measure of technological spillovers in the

literature (Bloom, et al. 2013).

In this empirical application I use my methodology to uncover actual spillovers between firms. For

a given firm, my methodology is well suited to recover the identity of the firms whose R&D has an

effect on productivity, even if the number of firms is large. In addition, my methodology captures

asymmetries in spillovers, which are ruled out by construction when using distances as proxy for

spillovers between firms. Allowing for asymmetric spillover effects is important since, as stated in

Syverson (2011) page 349: “Firms are likely to attempt to emulate productivity leaders in their own

36See Hall, Mairesse and Mohnen (2011) for a review on the literature of measuring returns to R&D.
37Other problems associated to this strategy are the presence of correlated productivity shocks that can be confounded

with spillovers (Manski, 1993), and the exogeneity of R&D.
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and closely related industries”. That is, spillovers are likely to originate in high productive firms and

cascade down to less productive firms.

6.2 Data and Sample Selection

I use the NBER match of the USPTO patent database with the Compustat Accounting database (see

Hall et al., 2001). The first dataset contains information on patenting behavior of firms and citations,

while the second one contains information on firm-level accounting data (sales, employment, capital,

etc.).

I take as starting point the selected firms in Bloom, Schankerman and Van Reenen (2013) (BSV

from now on): 715 firms for which there is patenting history as well as availability of data on their

segments of sales. Time span from 1980 to 2000. I first consider a balanced panel of firms between

the years 1985 to 2000. The R&D activity of these firms is heterogeneous both in the intensive and

the extensive margin. Out of the 463firms, 168 firms (36.3%) do not invest in R&D at all throughout

the whole period, or start investing in R&D at some point between the years 1980 - 2000. I keep the

firms whose R&D stock is positive throughout the whole period of time. Using the entire sample of

firms in estimation is work in progress.

In Table 6 I compare the mean and the median values of a list of descriptive statistics for the

whole sample and the selected sample. Firms in the restricted sample are, in mean and median, larger

in terms of real market value, sales, capital, labour and R&D expenditures. Moreover, firms in the

restricted sample show higher ratios of R&D stock over capital stock. Overall the restricted sample

contains larger firms with larger R&D stocks relative to capital stocks.

In Table 7 I show the distribution of firms in the sample across industries in terms of the SIC2

industry classification index. The most prevalent industries coincide with industries that are more

intensive in R&D expenditure, as is the Chemical Industry (28), that contains the Pharmaceutical

Industry, the Electronic Industry (36), or the Industrial Machinery industry (35), that contains the

computer industry. Table 8 shows descriptive statistics by industry of the selected sample. The most

prevalent industries also tend to have high investment and high stocks of R&D. Moreover, they also

have large ratios of R&D stocks to capital stocks (above 50%). However, the industry with the largest

ratio (on average) is industry (73): Business Services. This industry contains firms in the business

of Software, Computer programming, etc. Moreover this same industry is the highest in patent per

years and also patent citation.
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6.3 Production Function

I assume firms produce according to a Cobb Douglas production function augmented with the stock

of R&D or knowledge capital (K):

Yit = AitL
θl
itC

θc
it K

βi

it

∏

j 6=i

K
γij

jt eǫit . (9)

Y denotes output, L is labor, C is capital, and ǫ is an idiosyncratic error.38 The technological

progress component, Ait, is a firm-specific shock to productivity. It has a firm-specific time invariant

part and an aggregate part at the industry level. The firm-specific productivity level captures persistent

differences in productivity across firms. It can be interpreted as time-invariant characteristics of the

firm that determine its productivity level (e.g. specific corporate governance practices). The common

shock or time effects capture determinants of productivity at the industry level:

Ait = AiDI(i)t

where I(i) indicates the industry to which i belongs.

The Total Factor Productivity (TFP) in this model is defined as:

Yit

Cθc
it L

θl
it

= AiDI(i)tK
βi

it

∏

j 6=i

K
γij

jt eǫit .

There are two sources of spillovers in the TFP. The first source of spillovers is explicitly modeled

by including the rest of the firms R&D as additional inputs in the production function.39 The second

(potential) source of spillover is captured through the aggregate time-industry effects in DI(i)t. These

time-industry aggregate effects contain any aggregate shocks, including spillover effects, at the industry

level. As a consequence, the γij ’s are spillover effects in deviation to an aggregate industry spillover

effect.

In order to capture heterogeneity in the effect of knowledge across firms, I allow for firm-specific

output elasticities to own knowledge , βi, and pair-specific spillover effects γij . In particular, I allow

for asymmetric spillover effects: when the knowledge of firm i has an impact on the productivity of

firm j, the reverse is not necessarily true.

6.4 Taking the model to the data

Taking logs in (10) I obtain the following regression model:

yit = αi + βixit +
∑

j 6=i

γijxjt + w′
itθ + δt + ǫit, (10)

38I abstract here from intermediate inputs, such as materials or energy.
39An early paper with the same modeling approach is Bernstein and Nadiri (1988) where the authors sutdy inter-

industry spillovers amongst five important technological industries allowing for each industry to be a potential source of

spillovers to other industries.
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where log(Ait) = αi + δt and wit = (lit, cit). Lower case letters denote the log of the capital letters in

(10).

Estimation of returns to R&D in a production function framework is known to be challenging in

several dimensions.40 In what follows I outline each of these issues and the fixes I propose.

6.4.1 Measurement

I follow the extensive literature in measuring returns to R&D, in particular BSV, in order to construct

measures for output, labor, capital, and knowledge. When applicable, all variables are deflated by the

CPI in 1994.

I measure output as real sales. The use of sales as output introduces measurement error since

differences in revenue due to demand shocks cannot be disentangled from productivity shocks (e.g.

see Foster et al., 2008 for a detailed discussion on the problem).41 In the absence of information on

firm prices, and if firm-specific market power is persistent within industry, this issue can be addressed

by including industry price index. Unfortunately, this approach is not successful if industry price

index do not fully incorporate changes in prices due to differences in quality arising from R&D, as

Hall et al. (2011) document. The inclusion of time-industry dummies solves the problem. However,

the time-industry dummies might also be capturing part of the spillover effects between firms. In

particular, the common spillover effects at the industry level. I will take this fact into account when

interpreting the spillover effects that I estimate.

The empirical counterpart of labour is number of employees and capital is measured as in book

values.

Knowledge is proxied with a capital stock of R&D constructed using real R&D expenditures (e.g.

Griliches, 1979). The conceptual framework underlying the use of this measure is that R&D creates

a firm-level stock of knowledge that yields returns into the future. I use lagged stock of R&D as a

measure of the knowledge of the firm today since it is unlikely that the latest addition to R&D stock

becomes productive immediately. The distribution of returns to R&D over time can be motivated on

the basis of the lag from expenditure to innovation.

The common approach to construct the R&D capital stock is to use a perpetual inventory method

with depreciation rate 15%. The initial benchmark stock is measured assuming a a 5% growth in

R&D expenditures.42

40For an exhaustive review of the challenges in this literature see Hall, Mairesse and Mohnen (2010).
41Hall et. al (2011) suggest modeling the demand side in order to be able to distinguish between the two. At this

point this is out of the scope of this project
42See more details in the Appendix B of BSV.
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6.4.2 Inputs as choices

Current choices of inputs are likely to be correlated with contemporaneous firm-specific productivity

shocks. Given the panel dimension of the data I can use lags to instrument current levels of capital

and labour.43 However, our methodology so far does not cover instrumental variables. In order to

preserve the regression framework, and given that our main interest is on the estimates of spillovers

and the elasticity to R&D, I substitute capital and labour by their respective lags in the production

function (10). TFP is now proxied as the residuals of the reduced form regression:

yit = αi + βirdit−1 +
∑

j 6=i

γijrdjt−1 + θ̃ccit−1 + θ̃llit−1 + δI(i)t + ǫ̃it. (11)

θ̃c and θ̃l are the coefficients of lagged log capital and lagged log labour, which can not be interpreted

anymore as elasticities.

In a large T perspective, and if the structure of interactions is known, OLS estimates of (11) are

consistent as long as: lagged expenditures in R&D are uncorrelated with current productivity shocks,

and there is no time-series dependence on the shocks.44 If errors are serially correlated further lags

in time of capital and labour can be used to proxy TFP consistently. However, if there is correlation

between past R&D investments and current productivity shocks instruments are needed. BSV makes

use of tax credit combined with Federal rules in order to construct exogenous demand shifters of R&D

at the firm level. At this point, since my framework does not allow for endogenous regressors, I plan

to explore the extent of this issue using the reduced form, where I substitute the stock of R&D by the

demand shifters.

Correlated Shocks Identification of spillover effects can be challenged by the presence of correlated

shocks (Manski, 1993) even in the absence of endogenous effects.45 I illustrate this problem with the

following example provided in BSV: If firm i and j receive the same productivity shock they both

enjoy an increase in output. If additionally firm j increases its R&D expenditure as a consequence

of the shock, the output of firm i correlates with the increase in R&D stock of firm i. This increase

generates a positive correlation between the output of firm i and the R&D stock of firm j. This

correlation can then be wrongly interpreted as an spillover effect from firm j to firm i.

Nonetheless, given that I am using lagged expenditures in R&D as input in the production function,

as long as lagged R&D expenditures do not correlate with current productivity shocks, spillover effects

are correctly identified in (11). When lagged R&D expenditures correlate with current productivity

shocks, as for instance when errors show dependence, instrumental variables are needed.

43This approach has been used in instrumental variables or GMM settings by e.g. Blundell and Bond (2000).
44See chapter 8 of Arellano (2003) for more details.
45In Manski’s terminology, endogenous effects arise if there is strategic output decision of the firm in terms of the

output of other firms. Given the production function framework this is unlikely once I allow for spillovers in R&D.
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6.5 Quantities of interest

Let

Y =

N∑

i=1

Yi

be the aggregate output in the economy in an unspecified point in time (no t dependence). An

informative quantity to assess the return to investment in R&D is the elasticity of aggregate output

to a given firm’s knowledge. For instance, the increase in output of the economy (in percentage terms)

after an increase of 1 percentage points of firm k’s R&D is:

∂Y

∂Kk

Kk

Y
=

N∑

i=1

∂Yi

∂Kk

Kk

Y

=
N∑

i=1

γik
Yi

Y
+ βk

Yk

Y
.

The elasticity has two parts. The first part takes into account the spillover effect that the knowledge

of firm k produces on the rest of the firm’s output. The second part reflects the increase in the output

of firm k due to an increase in its own knowledge. This second part is the private return to R&D,

while the sum of both parts is the social return to R&D.

Given that in our framework there is no interaction between firms in their decision to invest in

R&D, the elasticity of aggregate output to the knowledge of all firms in the economy is the sum of

the elasticities of the whole output to the knowledge of each firm. I denote it as M̃ :

M̃ =
N∑

k=1

∂Y

∂Kk

Kk

Y
=

N∑

k=1

N∑

i=1

∂Yi

∂Kk

Kk

Y

=

N∑

k=1

N∑

i 6=k

γik
Yi

Y
+

N∑

k=1

βk

Yk

Y

=
N∑

i=1




N∑

k 6=i

γik + βi


 Yi

Y
.

6.6 Assessment of conditions for consistent model selection and Implications

The conditions for consistent model selection of the Pooled Lasso estimator in this empirical application

are related to the amount of colinearity between R&D paths of firms. Figure 5 in the appendix shows

the distribution of the absolute value of the pairwise correlation between paths of R&D.46 The

distribution has substantial mass close to 1, which means that consistent model selection is potentially

threaten.

46This distribution provides with informal evidence on the collinearity between R&D paths, and is not a formal test

of any condition stated in section 5.
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Moreover, the effect of own R&D can be contaminated by the spillover effect of firms in the sample

whose R&D path is colinear to that of the firm. This implies that, in this application, the private

effect and the spillover effects are not separately identified. However, the social effect, the sum of both

the private and the spillover effect, is indeed identified.

I provide additional intuition on the challenges of identification of the model with colinearity on

the regressors in Example 2 in Appendix B.

6.7 Results

In this section I present results of the baseline empirical model (10). I analyze differences in charac-

teristics of firms according to their role in the structure of interactions: receivers of spillovers, sources

of spillovers or none of the two. Then, I look at the estimated structure of interactions at the industry

level. Finally I provide results on elasticities of output to R&D in order to give a sense of the social

returns of R&D investment in this data and under these adopted assumptions. Further results are in

progress.

Making sense of the structure of interactions: characteristics of receivers and sources of

spillovers One of the features of my methodology is that it recovers the structure of interactions

endogenously from the data. Moreover, given the fixed effects approach in estimation, I can relate

the estimated structure of interactions with firms observables and unobservables. In what follows I

relate the different types of the firms in the structure of interactions: sources of spillovers, receivers of

spillovers, or none of the former, with firms observable characteristics and productivity levels.

In Table 1 I report average firms characteristics for the three different types of firms mentioned

above. In order to make the comparison easier I mornamlize the mean of each characteristic to the

overall mean in the sample. In this way, when a value is above 1 it indicates that firms in that category

has an above average value in terms of that characteristic . The contrary happens when a value is

below 1.

Firms sources of spillovers and receivers of spillovers are different on average according to several

characteristics. First, sources of spillovers (3rd column) are on average small firms: they have low

expenditures and stock on R&D and low averages of employment and capital. At the same time,

they also generate smaller amounts of output. Second, firms sources of spillovers seem to be more

productive than firms receivers of spillovers, where productivity is measured as the fixed effect.47 This

finding supports the idea that less productive firms adopt best practices in production from more

productive firms. Finally, firms sources of spillovers have, on average, more citations in their patents

than firms receiving spillovers, reflecting the idea that their innovations have a high quality.

47In order to make this statement I am relying on the fact that each category has sufficient number of firms so that

the average of fixed effects is sufficiently well estimated.
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Table 1: Comparison of firms characteristics for the restricted sample

Normalized mean to overall mean

not linked receivers senders

expenditure in R&D .99 1.42 .22

stock of R&D .98 1.44 .26

stock R&D / stock capital .94 1.21 1.01

patent cite 1.18 .56 .61

output 1.04 1.25 .23

capital 1.12 1.04 .19

labor 1.05 1.15 .37

productivity 1.09 .60 1.09

firms % 71% 19% 11%

In order to jointly assess the effects of the different characteristics, Table D in the Appendix

presents results of multinomial logit regressions. I find that, firms receiving spillovers tend to have

higher market values, lower productivity, and lower patent citation, compared to to the non-linked

firms. On the other hand, firms sources of spillovers have lower market values and marginally significant

(at the 10% level) higher patent citation rates than non-linked firms. Also, sources of spillovers seem

to have highest ratios of stock R&D to capital R&D (at the 10% level), after controlling for stock of

R&D and productivity levels.

To conclude, there is evidence that firms generating spillovers are more productive, its patents are

more highly cited, and have highest stocks of R&D to capital. This seems to be consistent with the

idea that spillovers arise from technological leaders and are enjoyed by less productive firms.

Structure of interactions at the indsutry level I now present results on the estimated structure

of interactions. I present results at the industry SIC2 level for two reasons: First, it allows to better

interpret the results. Second, given that the conditions for identification of the structure of interactions

are not fulfilled in this data, looking at an aggregate of the structure of interactions might be more

robust. I define an induced estimated structure of interactions at the industry level using the estimated

structure of interactions at the firm level. I consider there is an spillover effect from industry a to

industry b if there is at least one firm in industry a that generates spillovers on a firm in industry b.

The results in terms of an adjacency matrix are shown in the upper panel of Figure 3.

Spillovers across industries are concentrated in few industries. The two industries generating

most spillovers are industries 35 and 36: Industrial Machinery and Computers and Electronic and

other Electrical Equipment except Computers. These industries generate spillovers to industries such
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as Transportation Equipments (37) or Measuring and Analyzing Instruments (38). Consistent with

this result industries (35) and (36) are among the highest industries in patent citations, as well as

expenditure on R&D (see Table 8 in the Appendix for descriptive statistics of the firms at the industry

level). On the other hand, industry (36) is the industry receiving most spillovers from other industries.

In particular it is influenced by the above mentioned industries, (37) and (38), but also industries (35)

and (34), that includes companies in the business of Electronic computers, computer storage devices

and others.

Another interesting source of spillovers arises from industry (73). This industry is named Business

Services and as opposed to industries (35) and (36) is not particularly represented in the sample

(the distribution of firms by industry in the sample can be seen in Table 7). Importantly, industry

(73) comprises firms in the business of Computer Programming Services, Prepackaged software and

others. This industry generates spillovers on industries such as (36) and (37) and receives influence of

these same industries. Interestingly, industry (73) also generates spillovers on industry (28), Chemical

and Allied Products. On the other hand the contrary is not the case. It seems likely that software

development might be important in order to produce chemical products, at the o

I capture asymmetries in spillovers between industries. For instance, while indsutry (28), Chemicals

and Allied Products, receives spillovers from industries (34), (35), (36), and (37), it only seems to

influence industry (36) and (37), but not the others. The chemical industry and the electronic industry

are connected due to innovation in semiconductors.48

The lower panel of Figure 3 shows an average across Monte Carlo simulations of the same estimated

structure of interactions at the industry level. The design on this Monte Carlo is tailored to the

empirical application (see more details in the following section). According to this results the estimated

structure of interactions at the industry level seems to be reasonably well estimated.

Elasticities I compute the elasticity of aggregate output to the knowledge of all firms in the economy,

M̃ . This elasticity is a measure of the social rate of return of R&D investment in the economy. Table

2 reports the results of the elasticities in the first column, while the second column shows the standard

deviation of the same quantities across monte carlo simulations.

The point estimate for the overall rate of return in the economy is 3.15%, which is low in relation

to the values obtained in the literature, even after considering the uncertainty in estimation of this

quantity, which is substantial. A low rate of return to R&D is consistent with the empirical fact that

differences in productivity across firms are persistent over time. If spillovers would be large I would

observe a convergence of the productivity levels of firms over time (Syverson, 2011). On the other

hand, this result masks considerable heterogeneity in the social returns of R&D. Computing the same

48“It is not an exaggeration to view semiconductor manufacturing facilities as large chemical factories. Chemistry has

played a role in the scaling of silicon circuits for the past 50 years” Extracted from The Chemistry Innovation Process:

Breakthroughs for Electronics and Photonics.
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Figure 3: Industry-level structure of interactions

0 13 14 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 50 51 52 59 73 99

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 0 0 0 0 0 0 1 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

36 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 4 3 1 4 0 0 0 0 0 1 0

37 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 1 0 0 2 0 0 0 0 0 0

38 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 2 0 0 0 0 1 0

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0

99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 13 14 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 50 51 52 59 73 99

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.4 2.5 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0.9 0 0 0 0.2 0 0 0 0.7 1.0 0.5 0.3 0.7 0.1 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0.5 0.2 0.0 0.3 0.1 0 0 0 0 0 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.2 1.1 2.1 1.0 0.1 0.2 0 0 0 0 1.1 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 1.0 0.0 0 0.0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.3 0 0 0 0 0 0 0 0.2 0

35 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 1 1.0 0.3 0 0 0 0 0 0 0 0.2 0

36 0 0 0 0 0 0 0 0 0 2 0 0.5 0 0.1 0.1 3.6 3.4 3.2 0.9 4.1 0.5 0.1 0 0 0 2.6 0

37 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0.0 0 0 3.0 0.8 0.0 1.4 1.6 0 0 0 0 0.8 0

38 0 0 0 0 0 0 0 0.0 1 0 0 0.0 0 0 0 0.5 0.4 3.9 0.1 0.3 1.4 0 0 0 0 0.5 0

39 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0.1 0.8 0 0 0 0 0 0 0 0.1 0

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.1 0.0 0.0 0.2 0.0 0 0 0 0 0 0.8 0

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

73 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 1 1.3 0 0.1 1.1 0 0 0 0 0.0 0

99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: The upper panel shows the estimated structure of interactions at the industry level. The bottom panel shows the

average across Monte Carlo simulations of the same matrix. The design of the Monte Carlo exercise is tailored to the

data. In particular, I fix the true parameters of the DGP as the estimated ones. Then, I generate data conditioning on

the true data and adding normal shocks with variance equal to the empirical individual variance.
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elasticity by size quartiles (in terms of output) I find that smaller firms obtain significantly higher

social returns of R&D investment than bigger firms.

In this data, smaller firms seem to be both the instigators of R&D spillovers, and the benefactors

of R&D investment in the economy. According to the results on the previous section, smaller firms

are more likely to generate spillovers, and at the same time, smaller firms obtain the highest rates

of return of additional investments in R&D. However, my results cannot contribute to the current

debate of whether small firms should be supported by the government in their R&D enterprises or not.

In particular, there are not enough “small” firms in my dataset (only 10%), according to the eligibility

of some of these programs, to assess these type of policies. 49 Second, the estimates of spillovers in

this model are “in deviations” to an aggregate industry spillover effect. It could be that bigger firms

benefit more from aggregate spillovers while smaller ones do so from particular innovations of other

firms.

Table 2: Social returns

Elasticity Monte Carlo Std

1st quartile 24.93% 5.91

2nd quartile 12.85 % 4.90

3rd quartile 8.70% 5.82

4th quartile 1.53% 12.94

All 3.15% 10.92

Note: The first column shows the elasticity of aggregate output to R&D investment. That is, the sum of the

elasticities of aggregate output to each firm’s R&D in the economy. When broken down by quartiles the elasticity

is the sum of elasticities of output of firms within the quartile to each firm’s R&D in the economy. The second

column shows the Monte Carlo standard deviation of the same quantity on a Monte Carlo experiment tailored

to the empirical application. See the details of the design in the next section.

6.8 Comparison with the Jaffe parametrization of technological spillovers

I conclude this section of results by comparing the obtained measure of spillovers with the measure

of technological spillovers introduced by Jaffe (1986). In particular, I use the measure of spillovers

constructed in BSV (2013). I start by providing some background on the Jaffe parametrization of

technological spillovers.

49According to the Small Business Innovation Research program (SBIR), small firms are those with less than 500

employees. This program had a budget of 1 Bn $ in the year 2010.
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6.8.1 Pool of Knowledge

The conceptual framework for technology spillovers was first introduced by Griliches in 1979. In his

seminal work, technological spillovers arise through a common pool of technological knowledge. Firms

make use of the pool of knowledge as an additional input in their production functions.

The technological pool of knowledge evolves over time: it grows when individual firms produce

technological advances, and it depreciates as knowledge becomes obsolete. Technological advances

affect productivity through two different channels: directly, on the productivity of the firm originating

the innovation, and indirectly, on the rest of the firms in the economy through the pool of knowledge.

In this way, innovations arising in one particular firm can affect the productivity of another firm.

Jaffe (1986) introduced heterogeneity in the pools of knowledge across firms to take into account

that different types of innovations might have different effects on the productivity of firms. In par-

ticular, Jaffe introduced a technological distance between firms in order to capture differences in the

likelihood that knowledge spillovers would arise between two firms. According to the Jaffe measure,

when two firms patent their innovations on the same technological disciplines, they are technologically

close, and hence more likely to experience technological spillovers one from each other. On the other

hand, when two firms patent in different technological categories they are technologically far, and

hence not likely to experience spillovers from each other.

Interestingly, Jaffe, in his original paper in 1986, acknowledges that this measure of spillover only

provides “indirect inference [of the spillover phenomenon] which is made necessary by the extreme

difficulty of observing the actual spillovers”.

6.8.2 Variance decomposition

In this subsection I compare the explanatory power of two different measures of spillovers, one based

on the Jaffe measure, and another one obtained using my methodology. I denote SJ the measure

based on Jaffe, and SE the estimated one. The two measures are functions of other firms R&D in the

economy:

SJ
it =

∑

j 6=i

ωijRDjt

SE
it =

∏

j 6=i

γ̂ijRDjt

where ωij denotes the Jaffe distance between firm i and firm j, and γ̂ij are the spillover effects obtained

in the estimation of (11).

Variance decomposition pooled regression The objective of this exercise is to compare the

explained variation in the data of each measure of spillovers. I first explore the variation explained in
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a pooled sense. To do so, I compare the variance of the residuals of the following model of spillovers:

yit = αi + βrdit−1 + γsit−1 + θ′wit + δI(i)t + ǫit,

where s is either sJ or sE , and as before lower case letters denote the log of capital letters, with the

variance of a model with no spillovers:

yit = αi + βrdit−1 + θ′wit + δI(i)t + ǫit.

The results, in table 3, show that the variance of the residuals when using SE as a measure of spillovers

is lowest. However, the decrease in variance of the residuals with respect to the the model with no

spillovers is mild (16%), but substantially larger than the decrease in the variance using SJ (0.4%).

Table 3: Variance decomposition - Pooled Regression

All None SJ SE

Variance Residuals 0.0359 0.0357 0.0301

Decrease Variance (%) 0.47% 15.99%

Variance decomposition time series I now turn to explore the variation explained of each mea-

sure of spillovers in the time series. To do so, I work with the residuals of the following regression:

yit = αi + βirdit−1 + θ′wit + δI(i)t + ǫit.

I allow now for individual-specific elasticities to R&D to capture more variability in the time series.

The results for the overall sample, shown in table 4, reveal that the estimated measure does a

better job also at explaining the time-series variation of productivity. This result is not evident ex

ante since there is a substantial part of firms that do not enjoy spillovers according to the estimated

spillover measure. For all those firms, the additional variation explained by the estimated measure is

0. On the other hand, the additional variability explained by the Jaffe measure is always positive.

The average additional variability explained in the time series by the estimated measure of spillovers

is close to 23%, while the average variability explained by the Jaffe measure of spillovers is 5%. When

I restrict the analysis to those firms that enjoy spillovers according to the estimated measure, the

additional variability explained by the estimated measure goes up to 71.5%, on average.

Table 4: Variance decomposition - Time series (I)

All None SJ SE

Average Variance Residuals 0.0234 0.0222 0.0181

Decrease Variance (%) 5.34% 22.74%
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Table 5: Variance decomposition - Time series (II)

Receivers None SJ SE

Average Variance Residuals 0.0364 0.0337 0.0104

Decrease Variance (%) 7.44% 71.49%

7 Finite sample properties

7.1 Simple DGP

I illustrate the result on the rate of convergence of average marginal effects stated in Proposition 1

with the following small Monte Carlo experiment.

In consider a sequence of DGPs as in (8) where N = T 2 and T = 3, . . . , 12. I consider si = 1 for all

i and for all sequences of DGPs. Moreover, xit is i.i.d. N (0,1) in both dimensions and ǫit is i.i.d. also

in both dimensions N (0, 0.1). The thick solid line in Figure 4 shows the average difference between

the estimated average marginal effect and the true average marginal effect for the first individual in

the sample across DGPs. Each average is taken over 100 Monte Carlo replications. The dashed line

is log(N)
NT

and the thin line is 1
NT

, which approach the difference in average marginal effect as N and T

grow.

Figure 4: Rate of Convergence Average Marginal Effect

3 4 5 6 7 8 9 10 11 12
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0.01

0.02
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0.06

0.07

0.08

0.09

Notes: The thick solid line plots the average of
∣∣∣ 1
N−1

∑
i6=j γ̂ij ,− 1

N−1

∑
i6=j γ

0
ij

∣∣∣ over 100 Monte Carlo replica-

tions, the dashed line is log(N)
NT

while the thin solid line is 1
NT

.
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7.2 Monte Carlo tailored to the empirical application

I generate data according to the following DGP:

yit = α0
i + α0

kkit + α0
l lit + α0

RDi
rdit−1 +

∑

j 6=i

γ0ijrdjt−1 + δ0I(i)t + ǫit.

and I set N = 200 and T = 16 and I consider ǫit i.i.d shocks N (0, σ0
i ) distributed. I set the parameters

0 equal to the obtained estimates using the original data. Finally regressors kit, lit and rdit−1 are kept

fixed. I perform S = 130 replications.

8 Conclusions

In this paper I present a methodology to estimate both the structure of interactions and the spillover

effects when the structure of interactions is not observable to the econometrician. This method is

useful when the structure of interactions is sparse and persistent over time. Both of these assumptions

can be partially relaxed: Sparsity can be relaxed by adding a priori information on the structure of

interactions. Persistence over time can be relaxed by splitting the sample, parametrizing the spillover

effects as a function of time, or by augmenting the number of regressors as explained in Appendix A.

Spillovers arise when characteristics have an impact on the outcome of other individuals in the

sample. This model is useful in at least two cases: First, in the context of randomized treatment

experiments, when the treatment is subject to generate externalities. Second, in production function

frameworks, where productivity generates spillovers.

I propose a new estimator, the Pooled Lasso estimator, that can be seen as a panel data counterpart

of the Lasso estimator. I provide an iterative computation method that combines the Lasso estimator

with OLS pooled regression. Computation is fast, in relation to the large number of potential structures

of interactions, given the global convex nature of the criterion.

I analyze the properties of the Pooled Lasso estimator in a simplified model with no common

parameters under assumptions of Gaussian and independent errors, both in the time and cross-sectional

dimension. Based on a recent paper by Lam and Souza (2013), these strong conditions on the errors

are likely to be relaxed. First, gaussianity can be replaced by conditions on the tail probability of

errors. Second, limited time-series dependence can also be incorporated using Nagaev-type inequalities.

Finally, mild cross-sectional dependence in the errors is also likely to be incorporated.

I study the rate of convergence of cross-sectional spillover effects and, more generally, aggregate

spillover effects. These quantities can be interpreted as relevant policy parameters depending on the

application. Under conditions of cross-sectional independence on the error in estimation of the spillover

effects, average spillover effects are estimated at a much better rate than individual spillover effects.

I use my methodology to study technological spillovers in productivity in a panel of US firms.

In my main specification I assume that R&D is predetermined and I include time-industry effects
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to account for correlated productivity shocks. These industry-specific shocks might be capturing

aggregate spillover effects at the industry level, and as a consequence my estimated spillovers have

to be interpreted in deviation to these aggregate spillover effects. I find evidence of asymmetry in

spillover effects. In particular, I find that less productive firms receive spillovers from more productive

firms, consistent with the idea that less productive firms try to enhance their productivity by acquiring

the knowledge of technological leaders (Syverson, 2011). Moreover, firms receiving spillovers seem to

be less successful at innovating since their patents, on average, seem to be less cited. Finally, my

estimated structure of interactions seems to do a better job at explaining the variation of the data

than other measures of spillovers.

Inference methods in the context of the Lasso are hard to derive due to the non-differentiability

of the criterion. However, recent works in econometrics and statistics show good progress in this

direction. For instance, Belloni et al.. (2013), show how to conduct inference in a post-lasso setting.

That is, after using Lasso as a model selection devise, an ex-post OLS regression is run conditional

on the estimated model. In particular, after using a Lasso-type estimator twice to select relevant

controls in a treatment effect framework, they derive the asymptotic distribution of the treatment

effect estimator and provide a formula for confidence intervals. One of the main features of their work

is that, even in spite of imperfect model selection, their results hold uniformly for a large class of

DGPs. Another recent work, by Lockhart et al., (2013) focus in developing a significance test of the

predictor variable that enters the current lasso model, in the sequence of models visited along the lasso

solution path of LARS (e.g. Efron et al., 2004). The Lasso solution path are the different solutions

that the Lasso delivers when the penalty parameter decreases.

I am currently working on an extension of the model that is particularly relevant in the study

of social and economic networks. In this extension the outcome of individuals directly depends on

the outcome of other individuals in the sample. In this case, technical difficulties arise due to the

simultaneous determination of the outcome of (some) individuals in the sample. This problem was

first described by Manski in his seminal work in 1993 as the “Reflection Problem”. I am exploring

recent advances on the properties of the Lasso in instrumental variable settings (e.g. Ying Zhu, 2013

or Gautier and Tsyvakov, 2013) to overcome this problem.

An interesting avenue for future research is exploring other types of penalization. For instance, a

combinatorial-type estimator where the number of sources of spillovers are restricted, as outlined in

the last subsection of section 5, is a natural alternative to the Pooled Lasso estimator. Moreover, in

this combinatorial setting imposing cross-section restrictions on the spillover effects could be easier

than in the Lasso setting. Combinatorial estimators are likely to have similar properties as the Pooled

Lasso estimator. In particular, in the case where the number of sources of spillovers is fixed, the time

dimension grows, and under separation conditions on the regressors, the Lasso and the combinatorial

estimator attain a rate of convergence equal to the rate of convergence of an infeasible OLS estimator
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where the structure of interactions is known (the so-called oracle property).50 However, computation

of combinatorial estimators is in general much more intensive than the Lasso estimator, due to the

non-convexity of the penalization.

Finally, a version of the Lasso, the Elastic Net (Zou and Hastie, 2005), introduces a penalty convex

combination of the sum of absolute values of the parameters and the sum of the squared values of the

parameters. This estimator has two interesting properties: First, it delivers sparsity, as the Lasso, but

the constraint on the number of possible regressors is milder than in the Lasso. In particular, it can

accommodate more sources of spillovers than periods of observations. Second, it is more robust to

colinearity than the Lasso. In particular, in the presence of a group of highly colinear regressors, the

Elastic Net selects the whole group. Contrarily, the Lasso tends to randomly select one among all of

them. Given the substantial colinearity between paths in R&D in this data, a panel data counterpart

of the Elastic Net estimator might seem a suitable alternative to the Pooled Lasso estimator. However,

at this point, the economic interpretation of this alternative estimator is still unclear to me.

50This result connects with other results in the literature on estimation of discrete heterogeneity (e.g. Bonhomme and

Manresa (2013) and Hahn and Moon (2010)).
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APPENDIX

A Extensions

In this appendix I show some extensions of the baseline model (1).

A.0.1 Spillovers occur due to more than one characteristics

So far in model (1) I have assumed that the characteristic susceptible of generating spillovers is one-

dimensional. The model is well defined too when I consider xit a vector of q characteristics susceptible

of generating spillovers. A particularly interesting example is one in which q = 2 and xit = (xit, yit−1).

That is, the outcome of individuals can be affected by both characteristics and lagged outcomes of

other individuals in the sample:

yit = αi + βixit + µiyit−1 +
∑

j∈Gi

γijxjt +
∑

j∈Si

ηijyjt−1 + θ′wit + δt + ǫit. (12)

The sparsity assumption in this model can be put in two different ways. The first way to impose

sparsity is analogous to the sparsity assumption imposed on the baseline model: I restrict the number

of different units that can have an effect through both xjt and yjt−1, where j 6= i. The second way

to impose sparsity is directly on the number of characteristics that can affect the outcome, either

xjt or yjt−1. Under this second sparsity framework different units can generate spillovers on other

units through different characteristics. When q = 1 there is no distinction among these two sparsity

conditions.

A.0.2 Relaxing time-invariant network structure and effects

I can extend the model to account for some dynamics in the structure of interactions as well as in the

intensity of their spillovers. Let us consider a certain point in time, specific to each unit, in which

there is a change in the structure of interactions. I denote it by T ∗
i where 1 < T ∗

i < T . I define the

following regressors after the original regressors {xjt}j 6=i:

x1jt = {t ≤ T ∗
i } · xjt , x2jt = {t > T ∗

i } · xjt.

That is, the x1jt new regressors contain, in the first T ∗
i positions, the values of xjt while in the bottom

T − T ∗
i positions contains 0. Conversely, the x2jt new regressors contain 0’s on the T ∗

i first positions

while in the T − T ∗
i positions are equal to xjt. I now consider the augmented model:

yit = αi + θwit + βixit +
∑

j 6=i

γ1ijx
1
jt +

∑

j 6=i

γ2ijx
2
jt + δt + ǫit. (13)
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where now the sparsity assumption comprises the vector
(
γ1ij , γ

2
ij

)
but I allow for twice as much

regressors to be different from 0.

This model is susceptible to capture a change in the influence (intensive margin) of one particular

unit j on i if γ1ij 6= γ2ij but γ1ij · γ2ij 6= 0. That is, there is no change in the extensive margin because

the selected regressor is essentially xjt but there is a change in the intensive margin when γ1ij 6= γ2ij .

This model, is also susceptible to capture a change in the structure of interactions if the influencing

unit changes from j1 to j2. This could be captured as follows: I could have γ1ij1 6= 0 but γ2ij1 = 0

and γ1ij2 = 0 but γ2ij2 6= 0 which would essentially mean that during the period from 1 to T ∗
i the

influencing unit is j1 while from the periods T ∗
i + 1 to T the influencing unit is j2. This model could

also capture any intermediate situation, such as for instance that unit j1 is influencing for the whole

period of observation but the unit j2 is only influencing during the last period.

The sparsity structure in the interactions could have also been imposed by groups, restricting

that if the xj1t is influencing during the first half, it has to be influencing during the second half

too, although not necessarily with the same intensity. This option is convenient if influences do not

disappear but rather attenuate or increase, since under this alternative specification it is unlikely that

exact zero are obtained as estimates in case the influence disappears.

Finally, it is left to discuss how to choose T ∗
i .

Remark 2 A similar insight can be used in order to account for unbalanced panels
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B Examples of Failure of Identification

Example 1 Lack of time series variation in characteristics xit

The model has lots of individual and pair-specific parameters the identification of which entirely

relies on the time-series variation of the characteristics xit. In particular, and in the context of the

empirical application, let us think that firm 1 R&D is constant over time. If that is the case, if

x1t = c1, where c1 is constant, then not only α1 and β1 are not identified, but also the spillover effect

of firm 1 (γi1 for i = 1, . . . , N), and the αi for i = 2, . . . , N are not identified either. This is due to

the fact that the R&D of firm 1, x1t, could (potentially) explain the output of all other firms in the

sample.

Example 2 Lack of independent time variation

Another important source of lack of identification for the structure of interactions γij’s, and for the

elasticities βi’s, arises when the characteristics of several units are colinear. If this is the case I might

not be able to distinguish in the data which is the influencing unit among those whose characteristics

are colinear. This is intuitive when 2 firms have the same exact path of R&D. Moreover, I might

not be able to identify the direct effect versus the spillover effect. To provide some intuition, let us

consider the following simplified model where there are only three firm:

y1t = α1 + β1x1t + γ12x2t + γ13x3t + ǫ1t

y2t = α2 + β2x2t + γ21x1t + γ23x3t + ǫ2t

y3t = α3 + β3x3t + γ31x1t + γ32x2t + ǫ3t.

Let us assume that : x2t = λ+ µx1t, where λ and µ are two arbitrary numbers and x3t is independent

of both x1t and x2t. That is, the R&D time evolution of firm 1 is perfectly colinear with the R&D

time evolution of firm 2, but the third one is independent of the former two.

Finally, let us assume that the true DGP is the following:

y1t = α1 + β0
1x1t + ǫ1t

y2t = α2 + β0
2x2t + ǫ2t

y3t = α0
3 + β0

3x3t + γ031x1t + ǫ3t.

According to this DGP, the only firm receiving spillovers from another firm is firm 3, who receives

spillovers from firm 1. However, since the R&D paths of firm 1 and firm 2 are colinear, the structure

of interactions is not identified. Indeed, it could be that firm 1 is generating spillovers on firm 3,

with influence γ031, but it could also be that firm 2 is generating spillovers on firm 3 with an effect of

µ−1γ031·0. Now, let us focus on firm 1 in order to illustrate a different identification failure. Again,

given that x1t and x2t are colinear, from the data I cannot distinguish whether it is the own R&D that
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is having an effect on output, with effect equal to β0
1, or if firm 1 is experiencing an spillover effect

from firm 2 with an effect of β0
1 · µ−1.
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C Proofs

Proof of Proposition 1 It is enough to study the following quantity:

E




 1

N

N∑

i=1

∑

j 6=i

(
γ0ij − γ̂ij

)
ωij




2
 .

E




 1

N

N∑

i=1

∑

j 6=i

(
γ0ij − γ̂ij

)
ωij




2
 = E


 1

N2

N∑

i=1

N∑

l=1

∑

j 6=i

∑

k 6=l

(
γ0ij − γ̂ij

) (
γ0lk − γ̂lk

)
ωijωlk


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= E


 1

N2

N∑

i=1

∑

j 6=i

∑

k 6=i

(
γ0ij − γ̂ij

) (
γ0ik − γ̂ik

)
ωijωik




where the last equality holds after assumption 2. The last expression can be rewritten as follows:

E


 1

N2

N∑

i=1


∑

j 6=i

(
γ0ij − γ̂ij

)
ωij




2
 = E


 1

N2

N∑

i=1


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j 6=i

(
γ0ij − γ̂ij
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ωij

(
I{γ̂ij 6= 0}+ I{γ0ij 6= 0}
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2


≤ E


 1

N2
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i=1
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j 6=i

(
γ0ij − γ̂ij

)2
ω2
ij

∑

j 6=i

(
I{γ̂ij 6= 0}+ I{γ0ij 6= 0}

)2



where I have used the Cauchy - Schwarz inequality. Next I bound the ωij and use the fact that there

is sparsity by rows in the structure of interactions:

≤ E


K

2

N2

N∑

i=1

∑

j 6=i

(
γ0ij − γ̂ij

)2∑

j 6=i
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I{γ̂ij 6= 0}+ I{γ0ij 6= 0}

)2

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≤ E


K

2

N2

N∑

i=1

∑

j 6=i

(
γ0ij − γ̂ij

)2
Op (si)




I use now the result on the rate of convergence of
∑

j 6=i

(
γ̂ij − γ0ij

)2
= Op

(
si

logN
T

)
to obtain the final

rate of convergence:

E




 1

N
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γ0ij − γ̂ij
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ωij
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logN
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sup
i

s2i

)
logN

NT

)
.
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D Tables and Figures

Table 6: Descriptive Statistics

Final sample Full sample

Name variable Mean Median Mean Median

market value 5071.014 787.555 3833.266 406.283

R&D stock 1009.919 110.726 605.008 28.140

R&D stock/ capital stock .603 .347 .468 .175

expenditure R&D 182.294 655.103 102.169 4.122

patent count 25.349 2 18.480 1

patent cite 161.455 12 143.511 9

real sales 3720.508 739.083 2848.636 449.498

capital stock 1432.829 207.546 1348.402 120.761

labour 20.120 5.621 18.437 3.821

num of firms 295 715
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Table 7: Distribution of firms by industry

SIC2 Descripton Freq

13 Oil and Gas Extraction 1.0%

14 Miniming and Quarrying of Nonmetallic Minearls, Except Fuels 0.3%

20 Food and Kindred Products 3.1%

22 Textile Mill Products 0.7%

23 Apparel and Other Finished Products made from fabrics and similar materials 0.3%

24 Lumber and Wood Products, Except Furniture 0.7%

25 Furniture and Fixtures 3.4%

26 Paper and Allied Products 3.4%

27 Printing, Publishing, and Allied Industries 1.0%

28 Chemical and Allied Products 14.2%

29 Petroleum, Refining and Related Industries 1.4%

30 Rubber and Miscellaneous Plastic Products 2.7%

31 Leather and Leather products 0.7%

32 Stone, Clay, Glass, and Concrete Products 1.7%

33 Primary Metal Industries 4.1%

34 Fabricated Metal Products, Except Machinery and Transportation Equipment 4.4%

35 Industrial and Commercial Machinery and Computer Equipment 16.9%

36 Electronic and Other Electrical Equipment and Components, Except Computer 14.6%

37 Transportation Equipment 5.8%

38 Measuring, Analyzing and Controlling Instruments 11.5%

39 Miscellaneous Manufacturing Industries 1.7%

50 Wholesale Trade and Durable Goods 1.4%

51 Wholesale Trade and Nondurable Goods 0.7%

52 Building Materials, Hardware, Garden Supply, and Mobile Home Dealers 0.3%

59 Miscellaneous Retail 0.3%

73 Business Services 2.7%

99 Nonclassifiable Establishments 1.0%
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Figure 5: Pairwise absolute value of correlation between R&D paths
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Notes: Hisogram of the absolute values of the pairwise correlation between R&D paths in the sample.
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Table 8: Descriptives by Industry (average)

SIC2 capital labour rd exp rd stock ratio patents cites sales m value

13 2564.6 28.6 130.6 884.5 19% 18.3 108.1 4075.9 6973.7

14 535.3 4.3 3.8 24.3 2% 0.6 1.3 692.9 1235.2

20 1468.6 22.5 14.8 92.6 4% 3.2 16.2 3878.0 8685.0

22 251.0 7.4 2.2 10.0 6% 1.1 4.8 679.8 505.1

23 150.0 13.2 0.0 0.5 0% 0.1 0.4 949.2 968.3

24 1730.8 16.6 9.4 87.6 1% 3.4 23.1 2396.6 2767.2

25 249.6 10.1 19.1 83.0 20% 3.1 17.8 1018.4 832.6

26 2188.9 19.1 82.9 496.6 17% 29.0 234.6 3025.4 4265.0

27 563.9 12.6 5.7 30.3 4% 1.4 8.6 1401.1 2894.4

28 1943.4 19.6 298.0 1519.1 50% 41.3 232.2 3824.9 11750.6

29 6332.4 11.5 54.2 449.6 16% 8.7 48.0 6578.9 7727.8

30 684.8 13.9 46.7 322.4 25% 8.3 37.6 1788.6 1513.5

31 24.5 2.8 0.7 4.5 15% 0.4 3.2 212.8 204.5

32 823.6 11.0 15.5 121.1 8% 5.4 27.4 1520.2 904.0

33 1349.4 11.5 27.0 188.4 11% 6.5 35.0 1735.5 1749.1

34 307.2 7.8 14.1 79.1 13% 3.0 13.2 924.4 1526.2

35 532.0 13.5 121.9 678.6 66% 26.1 162.5 3061.5 2446.9

36 564.1 11.4 128.7 581.8 54% 28.4 191.5 1847.9 3030.4

37 3981.7 65.4 583.8 3536.8 33% 35.7 192.2 11351.0 5009.0

38 464.0 10.5 90.7 559.7 104% 28.9 174.6 1303.4 1984.3

39 156.0 6.1 22.9 120.3 29% 5.2 23.0 668.7 906.1

50 148.6 4.4 8.0 47.6 8% 2.9 15.0 1432.3 832.3

51 1189.1 12.2 4.0 31.0 2% 0.5 2.1 2345.4 741.0

52 475.6 19.3 20.2 127.4 11% 6.4 28.5 2764.6 2903.2

59 134.5 8.4 0.0 6.0 3% 0.3 1.5 1003.2 844.7

73 2291.2 37.6 527.9 3263.2 115% 103.0 798.9 6479.7 9028.8

99 5144.9 72.0 344.3 2347.4 12% 8.6 49.1 13586.3 31924.8
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Table 9: Explaining firms role

(1) (2) (3) (4) (5) (6)

receivers (vs non linked)

rmkvaf - 4.7E − 05
(2.4E−05)

5.7E − 05
2.48E−05

- - -

pat cite −0.0010
(0.0009)

−0.0029
(0.0017)

−0.0032
(0.0017)

- - -

log grd - - - - −0.1002
(0.1081)

−0.0716
(0.1111)

log grd k1 - - - 0.1895
(0.1699)

0.2407
(0.1781)

0.0981
(0.1885)

log capital - - - - - -

log labour - - - - - -

αi - - −0.1658
(0.0556)

- - −0.1435
(0.0518)

senders (vs non linked)

rmkvaf - −4.69E − 04
(2.44E−04)

−5.8E − 04
(2.61E−04)

- - -

pat cite −0.0007
(0.0010)

0.0019
(0.0013)

0.0021
(0.0013)

- - -

log grd - - - - −0.4784
(0.1649)

−0.5537
(0.1780)

log grd k1 - - - 0.0597
(0.2070)

0.2738
(0.2169)

0.3796
(0.2312)

log capital - - - - - -

log labour - - - - - -

αi - - 0.1071
(0.0675)

- - 0.0855
(0.0545)

Notes: Dependent variable is an indicator of type of firm: receiver of spillover (1), source of spillover

(2), or non linked (3), which is the reference category.
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