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Abstract

An estimate is given for the support of each component function
of a compactly supported scaling vector satisfying a matrix refinement
equation with finite number of terms. The estimate is based on the
highest and lowest degree of each polynomial in the corresponding
matrix symbol. Only basic techniques from matrix theory are involved
in the derivation.

1 Introduction

In this paper we are interested in measurable functions from the reals R
to the complex C; two functions are equal if they are identical almost ev-
erywhere. Let r be a positive integer and F = [f1 . . . fr]T be a complex
vector-valued function on R, where T denotes the transpose of a matrix. A
point t ∈ R is called a support point of F if the measure of the intersection
{x : F (x) 6= 0} ∩ (t − ε, t + ε) is not zero for any ε > 0. The support of
F , denoted by supp(F ), is defined as the convex hull of the set of support
points of F . Hence equal functions have same supports; and the support
of a nonzero function is always a close interval with positve length. Note
that, in the literature of wavelet theory with r = 1, the support of a scaling
function is always taken to be a closed interval because of the result in [5]
(also see [1, pg 252]).

Recent interests in multiwavelets lead to the study of scaling vector Φ =
[φ1 . . . φr]T which is a vector-valued function satisfying a matrix refinement
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equation (MRE) with finite number of terms

Φ(x) =
N∑

k=0

CkΦ(2x− k) (1)

where Ck’s are r × r matrices. In applications, shortly supported multi-
wavelets are always desired. Support of multiwavelets can be obtained eas-
ily from the support of the corresponding scaling vectors. Hence it is useful
to estimate the support of scaling vectors from the defining MRE. However
the determination of the support of a scaling vector is not straightforward.
In [3], Heil and Colella observed that supp(Φ) ⊂ [0, N ] if Φ is compactly
supported. But this estimate is too crude as the following example, due to
Geronimo, Hardin, and Massopust [2], shows.

Example. Let Φ = [φ1 φ2]T be a scaling vector satisfying the MRE (1)
with matrix coefficients:

C0 =
1
20

[
12 16

√
2

−√2 −6

]
, C1 =

1
20

[
12 0

9
√

2 20

]
,

C2 =
1
20

[
0 0

9
√

2 −6

]
, C3 =

1
20

[
0 0

−√2 0

]
.

Note that supp(φ1) = [0, 1], supp(φ2) = [0, 2] and so supp(Φ) = [0, 2] 6=
[0, 3].

An explanation is the existence of nilpotent matrices. Note that C3 in the
above example is nilpotent. In [6], Massopust, Ruch and Van Fleet showed
that supp(Φ) ⊂ [0, N − 1

2r−1 ] if CN is nilpotent, and supp(Φ) ⊂ [ 1
2r−1 , N ] if

C0 is nilpotent. However such improved estimates are still not good enough
to explain the above example.

In this paper, we give an estimate for each componentwise support
supp(φi) and hence the global support supp(Φ). Sufficient conditions are
given for these estimates to be acheived. The rest of the paper is organized
as follows. Our main results are stated in §2 with an illustration. Proofs
are given in §3. §4 is devoted to the study of the global support of a scaling
vector.
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2 Componentwise support of a scaling vector

For the rest of the paper, let Φ = [φ1 . . . φr]T be a compactly supported
scaling vector satisfying the MRE (1). In this section we are interested in
estimating the support supp(φi) for 1 ≤ i ≤ r. To this end, we define the
associated matrix symbol by

P (z) =
N∑

k=0

Ckz
k,

which is a r× r matrix with polynomial entries. Let h(i, j) (resp. l(i, j)) be
the highest (resp. lowest) degree of the (i, j)-entry of P (z). We adopt the
convention that the highest (resp. lowest) degree of the zero polynomial is
−∞ (resp. ∞).

Ik denotes the k × k identity matrix and ek denotes the k-th column of
the identity matrix whose dimension is determined from the context. For
positive integers a, b, Eab denotes the matrix eae

T
b .

Let J be the set of all integer sequences J = (j1, . . . , jr) where 1 ≤
j1, . . . , jr ≤ r. For each J = (j1, . . . , jr) ∈ J , define

EJ = 2Ir −E1j1 − · · · − Erjr ,

hJ = [h(1, j1) · · · h(r, jr)]T and lJ = [l(1, j1) · · · l(r, jr)]T .

Note that EJ is always invertible (see Lemma 3.2).

Theorem 2.1. For 1 ≤ i ≤ r, the support of φi is a finite closed interval
[Li, Ri] where

Ri ≤ max
{
eT
i E−1

J hJ : J ∈ J
}

and
Li ≥ min

{
eT
i E−1

J lJ : J ∈ J
}

.

In Theorem 2.1, both maximization and minimization are with respect
to the set J which has rr elements. In order to reduce the complexity
we introduce the following concepts. For each J = (j1, . . . , jr) ∈ J and
1 ≤ i ≤ r, define a new integer sequence γ = (γ0, γ1, . . . , γt) satisfying the
following conditions:

1. 1 ≤ t ≤ r,

2. γ0 = i,
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3. γk = jγ(k−1)
for k = 1, . . . , t,

4. γ0, . . . , γt−1 are distinct,

5. γt = γs−1 for some 1 ≤ s ≤ t.

The existence of γ, s and t is clear and they are uniquely determined by
the sequence J = (j1, . . . , jr) and the integer i. As examples, take r = 4.
If J = (3, 2, 4, 3) and i = 1, then γ = (1, 3, 4, 3) t = 3, and s = 2. If
J = (3, 2, 4, 3) and i = 2, then γ = (2, 2), t = 1, and s = 1.

For fixed i, let Γi be the collection of all such γ’s. Let s and t be the
numbers corresponding to a given γ ∈ Γi. Define a t× t matrix by

Aγ = 2It − E12 −E23 − · · · − E(t−1)t − Ets.

Note that Aγ = EJ for J = (2, 3, . . . , t − 1, s) and so Aγ is invertible (see
Lemma 3.2). Define

hγ = [h(γ0, γ1) h(γ1, γ2) . . . h(γt−1, γt)]T

and
lγ = [l(γ0, γ1) l(γ1, γ2) . . . l(γt−1, γt)]T .

Theorem 2.2. For 1 ≤ i ≤ r, the support of φi is a finite closed interval
[Li, Ri] where

Ri ≤ max
{
eT
1 A−1

γ hγ : γ ∈ Γi

}

and
Li ≥ min

{
eT
1 A−1

γ lγ : γ ∈ Γi

}
.

In Theorem 2.2, both maximization and minimization are with respect

to the set Γi. The number of elements in Γi is
∑r−1

k=0

(
r − 1

k

)
(k + 1)!

which can be proved to be equal to the integral part of the positive number
(r − 1)!(r − 1)e + 1, where e is the base of natural logarithm. Hence the
complexity of the optimization is reduced to (r − 1)!(r − 1)e + 1 from rr in
Theorem 2.1.

Using the classical adjoint formula for matrix inverse [4, pg 20], it is not
hard to see that the first row of A−1

γ is

eT
1 A−1

γ =

[
1
2

· · · 1
2s−1

(
2t

2t − 2s−1
)

1
2s

· · · (
2t

2t − 2s−1
)
1
2t

]
.

Therefore Theorem 2.2 can be restated explicitly as follows.
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Theorem 2.3. For 1 ≤ i ≤ r, the support of φi is a finite closed interval
[Li, Ri] where

Ri ≤ max
γ∈Γi

{
s−1∑

k=1

1
2k

h(γ(k−1), γk) +
2t

2t − 2s−1

t∑

k=s

1
2k

h(γ(k−1), γk)

}
,

and

Li ≥ min
γ∈Γi

{
s−1∑

k=1

1
2k

l(γ(k−1), γk) +
2t

2t − 2s−1

t∑

k=s

1
2k

l(γ(k−1), γk)

}
.

A family {fi} of functions on R is locally linearly independent if
∑

i cifi(x) =
0 on any nontrivial interval (a, b) then ci = 0 for those supp(fi)∩ (a, b) 6= ∅.
Φ = [φ1, . . . , φr]T is called a locally linearly independent scaling vector if
the family {φj(x− k) : 1 ≤ j ≤ r, k ∈ Z} is locally linearly independent. In
this case, the family {φj(2x− k) : 1 ≤ j ≤ r, k ∈ Z} is also locally linearly
independent. This fact will be used in Lemma 3.4.

Theorem 2.4. If Φ is a locally linearly independent scaling vector then all
inequalities become equalities in Theorems 2.1, 2.2, and 2.3.

Choosing r = 2 in Theorem 2.3, it yields

R1 ≤ max
{

h(1, 1),
2
3
h(1, 2) +

1
3
h(2, 1),

1
2
h(1, 2) +

1
2
h(2, 2)

}
,

R2 ≤ max
{

h(2, 2),
2
3
h(2, 1) +

1
3
h(1, 2),

1
2
h(2, 1) +

1
2
h(1, 1)

}
,

L1 ≥ min
{

l(1, 1),
2
3
l(1, 2) +

1
3
l(2, 1),

1
2
l(1, 2) +

1
2
l(2, 2)

}
,

and

L2 ≥ min
{

l(2, 2),
2
3
l(2, 1) +

1
3
l(1, 2),

1
2
l(2, 1) +

1
2
l(1, 1)

}
.

As an illustration, we use these formulas to estimate the support of the
scaling vector mentioned in the example of §1. The highest and lowest

degree matrices are respectively h =

[
1 0
3 2

]
and l =

[
0 0
0 0

]
. Hence

0 ≤ L1 ≤ R1 ≤ 1 and 0 ≤ L2 ≤ R2 ≤ 2. Furthermore, Φ is known to be
locally linearly independent [2] and so we have supp(φ1) = [L1, R1] = [0, 1]
and supp(φ2) = [L2, R2] = [0, 2].
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3 Proofs

We need two lemmas for the proof of Theorem 2.1.

Lemma 3.1. Let {fi} be a family of functions on R. Then

supp

(∑

i

cifi

)
⊂ conv (∪isupp(fi))

where ‘conv’ denotes the convex hull of a set.

Lemma 3.2. For J ∈ J , the matrix EJ is invertible and its inverse has
nonnegative entries.

Proof. Let E = E1jr + · · · + Erjr . Note that ‖E‖ = 1 where ‖ · ‖ is the
maximum row sum norm. Then EJ = 2Ir−E is invertible and actually

E−1
J =

∞∑

k=0

1
2k+1

Ek

which has nonnegative entries because E has nonnegative entries. 2

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1. For each 1 ≤ i ≤ r, using the MRE (1), we have

φi(x) =
N∑

k=0

r∑

j=1

Ck(i, j)φj(2x− k)

=
r∑

j=1

N∑

k=0

Ck(i, j)φj(2x− k)

=
r∑

j=1

h(i,j)∑

k=l(i,j)

Ck(i, j)φj(2x− k)

where Ck(i, j) is the (i, j)-entry of the matrix Ck. Since φi has compact
support, we let supp(φi) = [Li, Ri]. By Lemma 3.1, we have

[Li, Ri] ⊂ conv


∪r

j=1supp




h(i,j)∑

k=l(i,j)

Ck(i, j)φj(2x− k)







= conv
(
∪r

j=1

[
1
2
(Lj + l(i, j)),

1
2
(Rj + h(i, j))

])
.
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Hence we have

2Ri ≤ max {Rj + h(i, j) : 1 ≤ j ≤ r} ,

and
2Li ≥ min {Lj + l(i, j) : 1 ≤ j ≤ r} .

For each 1 ≤ i ≤ r, there exist integers 1 ≤ j1, . . . , jr ≤ r such that

2Ri ≤ Rji + h(i, ji).

In matrix form,

EJ




R1
...

Rr


 = (2I −

r∑

t=1

Etjt)




R1
...

Rr


 ≤




h(1, j1)
...

h(r, jr)


 = hJ

where J = (j1, . . . , jr). By Lemma 3.2, E−1
J is nonnegative matrix and

so 


R1
...

Rr


 ≤ E−1

J hJ .

Hence
Ri ≤ eT

i E−1
J hJ ≤ max

J∈J
eT
i E−1

J hJ .

Similarly, the lower bound for Li is obtained. 2

Lemma 3.3. Let p be a permutation on {1, . . . , r} and P be the r × r
matrix associated with p. Then P−1 = P T , eT

k P = eT
p−1(k), P

T EabP =
Ep−1(a)p−1(b), and [v1 v2 . . . vr]P = [vp(1) vp(2) . . . vp(r)].

Finally we give the proof of Theorem 2.2.

Proof of Theorem 2.2. Given J ∈ J and 1 ≤ i ≤ r, let γ, s, t be the
corresponding sequence and numbers defined in §2. It suffices to prove
that

eT
i E−1

J hJ = eT
1 A−1

γ hγ .

Take a permutation p on {1, . . . , n} such that p(k) = γ(k−1) for k =
1, . . . , t. Such permutation exists because the integers γ0, . . . , γt−1 are
distinct. Using Lemma 3.3, we have P T eγ(k−1)

= ep−1(γ(k−1))
= ek for
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k = 1, . . . , t. It follows that eT
i P = eT

p−1(i) = eT
1 because p(1) = γ0 = i,

P T hJ =

[
hγ

∗

]
, and

P T EJP = P T

(
2Ir −

r∑

k=1

Ekjk

)
P

= 2Ir − P T




t∑

k=1

Eγ(k−1)γk
+

∑

k 6∈γ

Ekjk


 P

= 2Ir −
t∑

k=1

Ep−1(γk−1)p−1(γk) −
∑

k 6∈γ

Ep−1(k)p−1(jk)

= 2Ir −
t∑

k=1

Ek (k+1) −
∑

k>t

Ekjk

=

[
Aγ 0
∗ ∗

]
.

Finally,

eT
i E−1

J hJ = (eT
i P ) (P T E−1

J P ) (P T hJ)
= (eT

i P ) (P T EJP )−1 (P T hJ)

= eT
1

[
Aγ 0
∗ ∗

]−1 [
hγ

∗

]

= eT
1 A−1

γ hγ . 2

Lemma 3.4. Let {f1, . . . fn} be a family of locally linearly independent
functions on R such that supp(fi) = [ai, bi] where ai < bi. Then

supp

(
n∑

i=1

cifi

)
= [a, b]

where a = min {ai : ci 6= 0} and b = max {bi : ci 6= 0}.
Proof. Let al = min {ai : ci 6= 0} and bh = max {bi : ci 6= 0}. By Lemma

3.1,
∑n

i=1 cifi is compactly supported and

supp

(
n∑

i=1

cifi

)
= [a, b] ⊂ [al, bh] = conv (∪isupp(fi)) .
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It remains to show that a = al and b = bh. Assume the contrary that
b < bh. Then

∑n
i=1 cifi(x) = 0 on (bh− ε, bh) for 0 < ε < mini

{
bi−ai

2

}
.

Note that [ah, bh]∩(bh−ε, bh) 6= ∅. By the local linear independence of
{fi} , ch = 0 which is impossible by the definition of bh. The argument
for a = al is similar. 2.

Proof of Theorem 2.4. It suffices to give the proof involving Theorem
2.1. For each 1 ≤ i ≤ r, using the MRE (1), we have

φi(x) =
N∑

k=0

r∑

j=1

Ck(i, j)φj(2x− k)

=
r∑

j=1

N∑

k=0

Ck(i, j)φj(2x− k)

=
r∑

j=1

h(i,j)∑

k=l(i,j)

Ck(i, j)φj(2x− k)

where Ck(i, j) is the (i, j)-entry of the matrix Ck. Since φi has compact
support, we let supp(φi) = [Li, Ri]. By Lemma 3.4, we have

[Li, Ri] = conv


∪r

j=1supp




h(i,j)∑

k=l(i,j)

Ck(i, j)φj(2x− k)







= conv
(
∪r

j=1

[
1
2
(Lj + l(i, j)),

1
2
(Rj + h(i, j))

])
.

The rest of the proof is exactly the same as the proof of Theorem 2.1
with the modification that all inequalities are changed to equalities.
2

4 Global support of a scaling vector

In this section we are interested in the global support supp(Φ) of Φ satisfying
the MRE (1). From the last section, we know that supp(φi) = [Li, Ri] for
1 ≤ i ≤ r. Hence supp(Φ) = [L, R] where R = max{Ri : 1 ≤ i ≤ r} and
L = min{Li : 1 ≤ i ≤ r}. Theorem 2.3 gives the estimates as

R ≤ max
1≤i≤r

max
γ∈Γi

{
s−1∑

k=1

1
2k

h(γk−1, γk) +
2t

2t − 2s−1

t∑

k=s

1
2k

h(γk−1, γk)

}
,
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and

L ≥ min
1≤i≤r

min
γ∈Γi

{
s−1∑

k=1

1
2k

l(γk−1, γk) +
2t

2t − 2s−1

t∑

k=s

1
2k

l(γk−1, γk)

}
.

Theorem 4.1. (i) If CN is a nilpotent matrix of index m i.e. (CN )m = 0,
then R ≤ N − 1

2m−1 .

(ii) If C0 is a nilpotent matrix of index m i.e. (C0)m = 0, then L ≥
1

2m−1 .

Proof. Using Lemma 3.1, it is not hard to see that supp(Φ) = supp(AΦ)
for any invertible matrix A.

(i) Without loss of generality, we can assume that CN is reduced to
the Jordan form Jm(0)⊕ · · · where Jm(0) is a lower triangular Jordan
block with largest size. Hence the highest degree matrix satisfies

h ≤ (N − 1)One(r) + CN

where One(r) is a r × r matrix with all entries equal to 1. Now
it is not hard to see that the maximum is attained at i = m and
γ = (m,m− 1, . . . , 1,m). Actually, the maximum is equal to

2m

2m − 1

m∑

k=1

1
2k

h(γk−1, γk) ≤ N − 1
2m − 1

.

(ii) Without loss of generality, we can C0 is reduced to the Jordan
form Jm(0)⊕ · · · where Jm(0) is a lower triangular Jordan block with
largest size. Hence the lowest degree matrix satisfies

l ≥ One(r)− C0.

Now it is not hard to see that the minimum is attained at i = m and
γ = (m,m− 1, . . . , 1,m). Actually, the minimum is equal to

2m

2m − 1

m∑

k=1

1
2k

l(γk−1, γk) ≥ 1
2m − 1

. 2

Setting m = r, we obtain the result of Massopust, Ruch and Van Fleet
mentioned in the introduction.

Corollary 4.2. (i) If CN is nilpotent, then supp(Φ) ⊂ [0, N − 1
2r−1 ].

(ii) If C0 is nilpotent, then supp(Φ) ⊂ [ 1
2r−1 , N ].
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