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Abstract

This paper describes a simple method for estimating the surface radiance function from sin-

gle images of smooth surfaces made of materials whose reflectance function is isotropic and

monotonic. The method makes implicit use of the Gauss map between the surface and a unit

sphere. We assume that the material brightness is monotonic with respect to the angle be-

tween the illuminant direction and the surface normal. Under conditions in which the light

source and the viewer directions are identical, we show how a tabular representation of the

surface radiance function can be estimated using the cumulative distribution of image gra-

dients. Using this tabular representation of the radiance function, surfaces may be rendered

under varying light source direction by rotating the corresponding reflectance map on the

Gauss sphere about the specular spike direction. We present a sensitivity study on synthetic

and real-world imagery. We also present two applications which make use of the estimated

radiance function. The first of these illustrates how the radiance function estimates can be

used to render objects when the light and viewer directions are no longer coincident. The

second application involves applying corrected Lambertian radiance to rough and shiny

surfaces.

1 Introduction

The modeling of surface reflectance is a topic that is of pivotal importance, and has

hence attracted considerable effort in both computer vision and computer graphics.

In graphics, the problem is of interest since it allows physically realistic images of

synthetic surfaces to be generated. In computer vision, if a bidirectional reflectance

distribution function (BRDF) is at hand then a number of surface analysis tasks may

be addressed. For instance, Nayar and Bolle [1] have used photometric invariants

derived from the BRDF to recognise objects with different reflectance properties.
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This work builds on that reported in [2], where a background to foreground re-

flectance ratio is introduced. In a related development, Dror et al. [3] have shown

how surfaces may be classified from single images through the use of reflectance

properties. Moreover, although shape-from-shading usually relies on the assump-

tion of Lambertian reflectance [4], if a BRDF is at hand then photometric correction

or specularity subtraction may be applied as a preprocessing step to improve the re-

sults obtained. Alternatively, the BRDF can be used to compute a reflectance map,

to which a number of shape-from-shading methods may be applied [5,6].

The reflectance distribution is determined not only by the light source and viewer

directions, but also by the material properties of the surface under study. There are

a number of ways in which reflectance can depart from the Lambertian case. How-

ever, most of the effort in the literature is devoted to modeling the effects encoun-

tered on shiny or rough surfaces. For shiny surfaces, there are specular spikes and

lobes which must be modelled. There have been several attempts to remove spec-

ularities from images of non-Lambertian objects. For instance Brelstaff and Blake

[7] use a simple thresholding strategy to identify specularities on moving curved

objects. Ragheb and Hancock [8] have developed a probabilistic framework for

specularity subtraction which uses the Torrance and Sparrow model to account for

the distribution of image brightness. The main limitation of these methods is that

they rely on the use of the closed form of the BRDF to characterise the specular

spike and lobe. As a result, they lack the generality required to process real-world

imagery in an unsupervised or automatic way. Turning our attention to rough sur-

face reflectance, here the main departure from the Lambertian case is due to limb

brightening. This results in a loss of contrast at the object limbs and an apparent

flattening of perceived relief. There has been recent interest in describing texture as

a surface relief phenomenon process using ideas from physics to model the BRDF

[9,10]. However, the accurate modeling of rough surface reflectance has proved

to be extremely elusive, and is still an active area of research in applied optics

[9,11,12].

1.1 Related Literature

The methods used to model or approximate the BRDF can be divided into those

that are physics-based, semi-empirical or empirical in nature. Although the litera-

ture from physics is vast, it is perhaps the work of Beckmann on smooth and rough

surface reflectance that is the best known in the vision and graphics communities

[13]. While it is based on physically meaningful surface parameters, the Beckmann

theory is both, intractable for analysis problems since it relies on the evaluation of

the Kirchoff wave scattering integral and breaks down when the surface roughness

is large or the scattering angle is large. However, recently, Vernold and Harvey [14]

have overcome this latter problem by developing a model which accounts for self

shadowing on rough surfaces. Ragheb and Hancock [15] have exploited this mod-
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ification of the Beckman-Kirchoff theory to develop a means of measuring surface

roughness parameters using reflectance measurements. By contrast, in the graphics

community it is the development of computationally efficient tools for the purposes

of realistic surface rendering that is of primary interest, and, hence, it is empirical

models that have been the focus of activity [16,17]. One of the most popular models

is that developed by Phong [17]. Torrance and Sparrow [18] have developed a more

physically realistic account of specular reflectance that models the angular distri-

bution of surface microfacets. Lewis [19] has also derived a more physically plau-

sible variant of the Phong model. Additionally, Schlick [20] has presented a useful

numerical simplification of Phong’s model. A survey of reflectance and shading

models can be found in [21].

However, neither the models developed in physics nor the computational models

developed in graphics are well suited for surface analysis tasks in computer vision.

It is for this reason that Wolff [22], and, Nayar and Oren[23] have developed phe-

nomenological, or semi-empirical, models that account for departures from Lam-

bertian reflectance. The contribution of Nayar and Oren [23] has been to develop

a semi-empirical model for rough surface reflectance that results in limb brighten-

ing. Wolff, on the other hand, has a physically-based model for reflectance from

shiny surfaces which uses the Fresnel term to model refractive attenuation for in-

cident light [22]. Recently, Wolff et al. [24] have suggested a combination of these

two separate models for surfaces with intermediate roughness. However, although

these models provide a more accurate account of reflectance from rough and shiny

surfaces, there is no real methodology for estimating their underlying parameters.

Moreover, due to their dependence on both, viewer and light source direction, the

task of approximating the BRDF from a single image is under-constrained.

Despite these efforts, the physical and phenomenological modeling of the BRDF

remains an elusive task. An alternative is to make empirical estimates, or learn,

the BRDF under controlled lighting and viewing conditions. There have also been

attempts to model the reflectance properties of human skin from real-wold imagery

[25,26]. Hertzmann and Seitz [27] have shown how the BRDF can be recovered

making use of a spherical reference object and multiple views of the scene.

The main obstacle to estimating the BRDF is that it has four degrees of freedom,

that correspond to the zenith and azimuth angles for the light source and the viewer.

As a result, the tabulation of empirical BRDFs can be slow and labour intensive,

and the results are not easily reproduced. Notwithstanding these difficulties, the

distribution of reflectance with respect to the four angles can be parameterized or

represented in a number of alternative ways. These alternatives include spherical

harmonics [28], splines [29] and wavelets [30]. The parameterisation can be cho-

sen to reflect the anticipated shape of the BRDF and can embody some simple

physics. For instance, Ward [31] has shown how to simplify matters by approxi-

mating the BRDF using a Gaussian lobe. Lafortune and co-workers [32] at Cornell

have developed an approximation method that employs a set of reciprocal, energy-
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preserving functions with non-linear parameter dependence. Finally, Dana and Na-

yar [33] have provided a method for collecting and cataloguing empirical BRDFs

for a large number of surfaces of different physical properties.

1.2 Contribution

In this paper, we confine our attention to the simpler problem of estimating the sur-

face radiance function from single images. The surface radiance function captures

the reflectance properties of the surface for fixed illuminant direction and variable

viewer direction, and may be viewed as a “slice” of the more complicated BRDF.

Our procedure does not involve complex calibration procedures, and, hence, pro-

vides a computationally cheap alternative to the complicated setups employed by

measurement-intensive approaches. Of course, acquiring a reflectance model for

the purposes of photorealistic rendering from a single image is experimentally dif-

ficult and time consuming.

We present an essentially non-parametric method for estimating the surface radi-

ance function from image data that avoids using basis functions or using a pre-

determined model to characterise the specular spike and limb. Our method makes

implicit use of the Gauss map, i.e. the projections of the surface normals onto a unit

sphere. We map image brightness values from the surface to locations on the unit

sphere which have identical surface normal directions. Under conditions in which

the light source direction and the viewer direction are identical, we show how the

reflectance function can be represented by a polar function on the unit sphere. We

pose the problem of recovering the reflectance function as that of estimating a tab-

ular representation of this polar function. To overcome the problem that we do not

have the surface normal correspondences at hand, under conditions of isotropic

reflectance, we show how to estimate the zenith angles on the unit sphere using im-

age brightness gradients. A simple analysis shows how the tabular representation of

the reflectance function can be obtained using the cumulative distribution of image

gradients.

We also provide a sensitivity study and investigate two applications of the esti-

mated reflectance distribution function. The first of these is to show the method

can be used for purposes of forward rendering. The second application involves

Lambertian radiance re-mapping. This is an important task since it allows both

specularities to be removed from shiny surfaces and the compensation of boundary

“flattening” effects for rough surfaces. As mentioned earlier, in computer vision,

the identification of specularities plays an important role in shape-analysis. For in-

stance, the apparent movement of specularities provides an important shape-cue

[34]. If specularities can be subtracted from images, then shape-from-shading may

be applied more effectively to recover accurate surface shape [35]. In particular,

if not removed then specularities manifest themselves as high curvature “pimples”
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on the surface. Similarly, if boundary flattening effects can be compensated, then

shape-from-shading may be applied to rough surfaces and more accurate boundary

shape recovered. Here we show how to back project a Lambertian reflectance model

onto the imaged surface using the inverse mapping between the Gauss sphere and

the image.

The outline of the paper is as follows. Section 2 introduces some of the background

to the study by defining the BRDF and the geometry of the reflectance process. In

Section 3, we describe the critical component of the work reported in this paper,

namely how to estimate the zenith angle on the unit sphere using the distribution of

image brightness gradients. We examine the practical considerations underpinning

the algorithm in Section 5. Section 6 provides an experimental evaluation of the

method. This includes an algorithm sensitivity study and results which show how

the estimated radiance function can be used for the purposes of forward rendering

and extracting corrected Lambertian reflectance. Finally, Section 7 offers conclu-

sions and suggests directions for future investigation.

2 Preliminaries

In this section, we provide the background for our method. Our overall aim is to

make an estimate of the reflectance distribution function from a single image of a

piecewise smooth surface. We limit our study to those surfaces whose reflectance

function is isotropic and monotonically decreasing with respect to the angle be-

tween the viewer and the light source. Surfaces of this kind are those of shiny and

moderately rough objects. Examples of the materials that satisfy this requirement

are porcelain, smooth terracotta and plastics.

We work with images collected using a digital camera. We are interested in a sur-

face illuminated by a parallel beam of light and viewed by a camera which is suffi-

ciently distant from the surface so that perspective effects may be ignored. Let the

illuminated surface under study be denoted by S ∈ ℜ3. Consider the orthographic

projection of the surface S onto the image plane Π. We are interested in the inter-

action of the light with the surface at a location s. The geometry of the reflectance

process can be expressed in terms of unit vectors in the light source �L, viewer �V
and surface normal �N directions. The unit vectors have elevation and azimuth an-

gles (θL, αL), (θV , αV ) and (θN , αN) respectively. We use the surface normal vector
�N as a reference and define the elevation and azimuth angle offsets for the light-

source and viewer directions, i.e. αi = αN −αL, αr = αN −αV , θi = θN − θL and

θr = θN − θV . Suppose that the incident irradiance at the point s on the surface is

fI(θi, αi) and that the outgoing radiance from the point is fO(θr, αr). The BRDF is
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defined to be the ratio of the emitted surface radiance to the incident irradiance, i.e.

ρ(θi, αi, θr, αr) =
fO(θr, αr)

fI(θi, αi) cos(θi)dω
(1)

where dω is the element of solid angle in the viewer direction. The geometry of

the reflection process is shown in Figure 1. Suppose that the surface is imaged with

a camera whose lens has diameter D, and that the image plane is at a distance z′

behind the lens. Further, suppose that the location s with area A on the surface is

imaged by a sensor element u of area A′, and that the angle subtended by the sensor

element to the axis of the camera is βu. Based on the conservation of radiant flux,

the irradiance at the sensor element is Iu = fo(θr, αr)
π
4

(

D
z′

)2

A′ cos4 βu. Hence,

the brightness of the pixels in the image are proportional to the radiance from the

corresponding surface location. When the image covers only a narrow angle of the

scene, one can assume that cos βu = 1 and we can write

Iu = τfO(θr, αr) = τρ(θi, αi, θr, αr) cos θidω

where τ = π
4

(

D
z′

)2

A′.

Our aim in this paper is to present a method for estimating the surface radiance

function fO(θr, αr) from single images of an illuminated surface. We confine our

attention to the case where the light source direction is fixed to be the same as that of

the viewer, and we have that θ = θi = θr and α = αi = αr. Under these conditions,

the angular dependence of the BRDF is determined solely by the direction of the

surface normal. Moreover, we assume that the light source is a point at infinity, and

hence the irradiance is constant, i.e. fI(θ, α) = k. As a result, we can estimate the

reduced reflectance function

ρ̂(θ, α) = k
fO(θ, α)

cos(θ)dω
(2)

As a result the measured image brightness is proportional to

fO(θ, α) =
1

k
ρ(θ, α) cos(θ) (3)

Hence, estimating the radiance function fO(θ, α) of the surface illuminated under

conditions in which the light source and viewer directions are identical provides a

means of recovering the reflectance function for the object under study.

If the surface normal directions are known, then the estimation of the radiance

function fO(θ, α) can be easily effected. If I is the brightness at the surface location

where the surface normal has elevation and azimuth angles θ and α, then fO(θ, α) =
I
τ
. The radiance function estimation process can be conveniently represented by the
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Gauss map of the surface under study onto a unit sphere. For an orientable surface

S ∈ ℜ3, the Gauss map G : S �→ Ŝ maps points on the surface S onto locations

on the unit sphere Ŝ which have identical surface normal directions. The surface

normal directions can hence be used to map brightness values from the image onto

the unit sphere. The normalised polar distribution of brightness values on the unit

sphere Ŝ is the radiance function fO(θ, α) for the surface. To avoid ambiguities,

we assume that points on the surface with identical surface normal directions have

identical brightness values.

Fig. 1. Geometry of the

reflection process

Here we are interested in the situation where only a

single image is at hand, and the surface normal direc-

tions are unknown. Now the mapping of the bright-

ness values from the image of the surface onto the

unit sphere is not straightforward. In fact, the task

of estimating surface normal directions from mea-

sured brightness values is an under-constrained one,

which has preoccupied researchers in the field of

shape-from-shading for several decades. Even for sur-

faces which exhibit simple Lambertian reflectance, the

problem is not tractable in closed-form. However, it is

interesting to note that in the case of Lambertian re-

flectance, the angle between the light source direction and the surface normal vec-

tor is recoverable [36]. If the viewer and the light source directions are identical,

then the zenith angle θ of the surface normal is recoverable in closed form (it is

simply the inverse cosine of the normalised image brightness). The Gauss map of

the brightness onto a unit sphere is also very simple in this case. If the axis of the

unit sphere is taken to be parallel to the viewer direction, then circles of latitude

have constant brightness, and the “latitude” itself is determined by a function of the

brightness. Hence, on the unit sphere, the brightness falls away from its maximum

value at the visible pole to zero at the equator.

However, for non-Lambertian reflectance the situation is more complex. In the case

of non-Lambertian reflectance, provided that the reflectance properties of the sur-

face are isotropic and homogeneous, the problem is again simplified considerably

if the viewer and light source directions are identical. The isotropy assumption will

ensure that circles of latitude on the unit sphere will still have constant brightness.

However, if the surface normal directions are not at hand then, if we wish to es-

timate the radiance function fO(θ, α), i.e. the distribution of the brightness with

latitude, we require a means of estimating the zenith angle θ.
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List of symbols

S Surface under study

Ŝ Sphere in ℜ3

I(x, y) Brightness of the surface S

on the image plane.

Î(sin(θ) cos(α), Brightness of the reflectance

sin(θ) cos(α)) sphere on the image plane.

�N Surface normal

F (θ) Parametric function

Fig. 2. Structure of the mapping process

3 Radiance Function Estimation

Our main contribution in this paper is to show how the distribution of image-

gradients can be used to estimate the zenith angle θ and hence recover the radiance

function fO(θ, α).

3.1 Theory

To commence, consider a unit sphere where the brightness at the point with el-

evation angle θ and zenith angle α is fO(θ, α). We construct the image of the

unit-sphere under projection onto the image plane. The point p on the unit sphere

with coordinates (θ, α) maps to the location with Cartesian coordinates (x, y) =
(sin(θ) cos(α), sin(θ) sin(α)) on the image plane. The brightness at the point (x, y)
in the image is

Î(sin(θ) cos(α), sin(θ) sin(α)) = τfO(θ, α)

At the location (x, y), the image-gradient of the projection is related to the radiance

function fO(θ, α) by

∇Î(sin(θ) cos(α), sin(θ) sin(α)) =

⎡

⎢

⎣

∂Î
∂x

∂Î
∂y

⎤

⎥

⎦
=

τ

Det(J)

⎡

⎢

⎣

∂fO(θ,α)
∂θ

∂fO(θ,α)
∂α

⎤

⎥

⎦
(4)
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where the Jacobian matrix for the transformation from the unit sphere to the image

plane is

J =

⎡

⎢

⎣

∂x
∂θ

∂x
∂α

∂y
∂θ

∂y
∂α

⎤

⎥

⎦ =

⎡

⎢

⎣

∂(sin(θ) cos(α))
∂(θ)

∂(sin(θ) cos(α))
∂(α)

∂(sin(θ) sin(α))
∂(θ)

∂(sin(θ) sin(α))
∂(α)

⎤

⎥

⎦ (5)

We exploit this relationship between the image gradient and the derivatives of the

radiance function to establish mappings between the brightness values of the im-

aged surface and the unit sphere. To do this we assume that locations on the surface

can be locally approximated by a sphere that has been rendered using the radiance

function fO(θ, α). Points on the surface and the sphere that are in correspondence

under the Gauss map will have identical image gradients. The measured image gra-

dient ∇I can be computed using the formula

∇I(x, y) =
1

2δ

⎡

⎢

⎣

I(x + δ, y) − I(x − δ, y)

I(x, y + δ) − I(x, y − δ)

⎤

⎥

⎦ (6)

where δ is the spacing of sites on the pixel lattice. Correspondences between the

unit sphere and the observed surface can be established by identifying the location

(x, y) in the projected image of the unit sphere where ∇I(x, y) = ∇Î(sin(θ) cos(α),
sin(θ) sin(α)). The radiance function can be estimated by mapping the measured

intensity I(x, y) onto the required location (θ, α) on the unit-sphere, and fO(θ, α) =
I(x, y)/τ .

However, here we consider a simplified version of this process and restrict ourselves

to the case of recovering the zenith angle dependence alone. The reason for this is

that accurate estimation of image gradient direction is an elusive task, that is not

easily accomplished on the discrete pixel lattice unless either support masks of

large extent or significant image smoothing is used. Hence, we restrict ourselves to

the case where the radiance function is assumed isotropic, i.e.

∂fO(θ, α)

∂α
= 0

To make this simplification explicit we consider the generating function g(θ) which

describes the zenith angle dependence of the radiance function. Provided that the

radiance function fO(θ, α) is monotonically decreasing for θ ∈ [0, π
2
], the generat-

ing function is given by

g(θ) =
1

2π

∫ 2π

0

(

fO(0, α) +
∫ θ

0

∂fO(θ, α)

∂θ
dθ

)

dα (7)

In other words, the generating function g(.) on the unit sphere can be expressed

in terms of the cumulative distribution of the derivatives of the surface radiance
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function. In particular, the magnitude of the image gradient is given by

|∇Î| =
τ

cos(θ)

∂g(θ)

∂θ
= τ

∂g(θ)

∂ sin(θ)
(8)

Solving the differential equation, we find that

sin θ =
∫ τ

|∇Î|
dg(θ) (9)

Since Î = τg(θ), we can write

sin θ =
∫ I

0

1

|∇Î|
dÎ (10)

Hence, we can use the cumulative distribution of reciprocal gradients to index the

zenith angle on the unit sphere.

To recover θ from the expression above we perform numerical integration. To do

this, we sort the image gradients according to the associated image brightness val-

ues. Accordingly, let ∇Il be the image gradient associated with the brightness value

l. This allows us to compute the function

F (l) = sin(θ(l)) =
l

∑

m=0

τ

| ∇Im |
+ κ (11)

that returns an estimate of the value of sin(θ(l)) corresponding to the measured

brightness value l, where κ is the integration constant. Provided that the brightness

decreases monotonically with zenith angle, then the inverse function F−1(sin(θ(l))) =
l returns the brightness associated with the zenith angle θ(l). Hence, the estimate

of the generating function g(θ) for the surface radiance function fO(θ, α) is

g(θ) =
1

τ
F−1(sin θ)

3.2 Numerical Implementation

To pursue this idea, in principle, we only require a single image gradient corre-

sponding to each of the distinct brightness levels in the image. In practice, we make

use of the cumulative distribution of image gradients in order to minimise the ap-

proximation error by averaging. Let Ql = {(x, y) | I(x, y) = l} be the set of pixels

with brightness value l. For the brightness value l, the average gradient is given by

h(l) =

∑

(x,y)∈Ql
| ∇I(x, y) |

| Ql |
(12)
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The distribution of average gradients is then stored as a vector�h = (h(0), ......, h(ν))T

where ν is the maximum brightness value. Zero entries of the vector, which cor-

respond to brightness values that are not sampled in the image, can cause divide-

by-zero errors when the radiance function is computed. To overcome this problem,

we smooth the components of the vector by performing piecewise linear interpola-

tion of the adjacent non-zero elements. The resulting vector is denoted by ĥ. With

the average image gradient at hand, the value of sin θ corresponding to the image

brightness value l is given by the function

F̂ (l) = τ
l

∑

i=0

ĥ(i)−1 + κ (13)

All that remains is to compute the constants τ and κ. Since the minimum value of

sin(θ) is zero, κ = 1, and hence

τ = −

(

ν
∑

i=0

ĥ(i)−1

)−1

(14)

Since the brightness values are quantised, our representation of the generator func-

tion will also be discretely sampled. In practice, the sampled representation is stored

as a vector whose element indexed j is given by

U(j) = F̂−1

(

sin(j
π

2ν
)

)

Provided that the normalisation constant τ is known, the vector U can be used as a

look-up table for the generator function g(θ).

4 Applications of the Radiance Function

There are clearly a number of applications which can be addressed using an esti-

mate of the surface radiance function. Here we focus on the problems of rendering

objects under variable light source direction and mapping rectified Lambertian re-

flectance onto rough or shiny surfaces. In related work we have investigated more

complex tasks including surface material classification [37] and over-exposed im-

age correction [38].
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4.1 Variable Illumination Direction

In practice, we will be interested in rendering objects observed from a variety of

viewpoints and lighting directions for which the condition �V = �L does not hold.

Hence, we need to relax the restrictions imposed when estimating the radiance

function from the surface S. To do this, we note that the viewer direction �V is

related to the specular spike direction �L′ using the rotation

�V = Rxyz
�L′ (15)

where Rxyz is a rotation matrix. The rotation matrix is given by

Rxyz =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

L′
z + L′

x
2c −L′

zs + L′
xL

′
yc L′

ys + L′
xL

′
zc

L′
zs + L′

xL
′
yc L′

z + L′
y
2c −L′

xs + L′
yL

′
zc

−L′
ys + L′

xL
′
zc L′

xs + L′
yL

′
zc L′

z(1 + L′
zc)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where �L′ = [L′
x, L

′
y, L

′
z]

T is the unit direction-vector for the specular spike, c =

1 − L′
z and s = sin

(

arccos(L′
z)

)

. With these ingredients, we can use the matrix

Rxyz to rotate the surface normal �N as follows

�Nt = Rxyz
�N (16)

Hence, when the point t is illuminated from the direction �L′ �= �V then the bright-

ness at the point t is given by

It = τg(arccos(Rxyz
�N · �V )) (17)

This rendering process can be achieved by performing simple vector operations.

Further, since the function g(θ) can be stored in memory as a floating-point vector

of order nmax, the rendering can be done in a fast, memory-efficient way.

4.2 Lambertian Re-mapping

In this subsection, we take our study one step further by showing how our method

can be used for re-mapping a Lambertian reflectance model onto an imaged surface.

This re-mapping may be used either to remove specularities from shiny surfaces,

or to correct for reduced boundary contrast for rough surfaces.

The idea underpinning our method is to re-map the image brightness using the in-

verse Gauss map from the unit sphere onto the original image. The radiance func-

tion may be modified in a number of ways. For instance, we could exchange the
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1 For j = 1, 2, . . . , ncols − 1
2 For k = 1, 2, . . . , nrows − 1
3 | ∇I(j, k) |=

√

(I(j + 1, k) − I(j − 1, k))2 + (I(j, k + 1) − I(j, k − 1))2;

4 Blank vectors Q and h;

5 For j = 1, 2, . . . , ncols − 1
6 For k = 1, 2, . . . , nrows − 1
7 h(I(j, k)nmax) = h(I(j, k)nmax)+ | ∇I(j, k) |;
8 Q(I(j, k)nmax) = Q(I(j, k)nmax) + 1;

9 For j = 0, 1, . . . , nmax

10 If Q(j) �= 0 then h(j) = h(j)
Q(j) ;

11 else h(j) = 0;
12 h(0) = ǫ;

13 ĥ =Piecewise-linear interpolation using vector h;

14 F̂ (0) = 0;

15 For j = 1, 2, . . . , nmax

16 If ĥ(j) ≥ ς then hold = ĥ(j);

17 F̂ (j) = F̂ (j − 1) + hold
−1;

18 For j = 0, 1, . . . , nmax

19 F̂ (j) = 1 − F̂ (j)

F̂ (nmax)
;

20 Blank vector U ;

21 For j = 0, 1, . . . , ν

22 U(floor(2ν
π

arcsin(F̂ (j)))) = j;

23 U =Piecewise-linear interpolation using vector U ;

Fig. 3. Pseudocode for our method

tabular representations acquired from images of different surfaces. Alternatively,

an analytic reflectance model can be back-projected. However, here we confine our

attention to a simple Lambertian reflectance model.

Formally, our aim is to use the function F̂ to retrieve the Lambertian radiance at a

given point on the surface S illuminated from a light source with direction vector

(0, 0, 1)T . For a given value of image brightness, the function returns the sine of the

elevation angle of the surface normals, i.e. sin(θ). For Lambertian reflectance, the

observed radiance is proportional to the cosine of the angle of light incidence, i.e. to

cos(θ). Hence, we can perform Lambertian re-illumination by noting the observed

brightness lp at a pixel p and identifying the associated value of sin(θ); the corre-

sponding corrected Lambertian radiance is cos(θ). Hence, if the pixel brightness at

a pixel is lp then the remapped Lambertian brightness is

T (lp) = cos

(

arcsin

(

τ
lp

∑

i=1

ĥ(i)−1 + κ

))

(18)
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5 Practical Considerations

Having presented the theoretical basis for our method, in this section we note a

number of important practical considerations underpinning the implementation of

the algorithm.

In Figure 3, we present the pseudocode for the algorithm. There are a number of

features of the pseudocode that deserve comment. First, the sequence of operations

has been slightly altered in order to reduce the number of floating point opera-

tions. The complexity of the algorithm, when processing an image of nrows by ncols,

whose format can hold nmax distinct brightness values, is 3ν+8nrowsncols+5nmax.

The algorithm requires ν + nrowsncols + 4nmax memory locations. Second, recall

that for θ = π
2

the quantity ∇I is, ideally, infinity. Hence, in Line 12 of the pseu-

docode, we have set h(0) to ǫ >> 1. Third, as the brightness tends to unity, the

inverse of the image intensity gradient tends to infinity. Numerically, this is unde-

sirable since it leads to an unstable estimate of sin(θ). To overcome this problem,

we require the values h(·) (i.e. the magnitude of the image intensity gradient) to be

greater than or equal to the threshold ς . For the cases in which h(·) < ς , we use the

adjacent values of the vector h so as to satisfy the condition in Line 16 of our pseu-

docode. In our implementation, the length of the vector U has been fixed to 158,

which implies a resolution in θ of approximately 0.56o. We have set the variables ǫ
and ς to 3 max(h) and 0.1 respectively.

Finally, we note the following. The vector U is used a lookup-table represen-

tation of the inverse of τg(θ). As a consequence of the discrete nature of the

approximation used to compute F̂ , there is no guarantee that all the values of

l = {0, 1, . . . , ν}, which correspond to values of θ are captured by the instruc-

tion floor(2ν
π

arcsin(F̂ (j))), which returns the largest integer not greater than
2ν
π

arcsin(F̂ (j)). To overcome this problem, we interpolate the missing coefficients

of the vector U making use of its non-zero elements.

6 Experiments

In this section, we provide experimental evaluation of the new method for esti-

mating the radiance function. This study is divided into four parts. We commence

by illustrating the qualitative properties of the method on synthetic and real-world

data. Second, we explore the accuracy of the method against ground truth on both

synthetic and real-world imagery ground-truthed using range data. Third, we show

results for forward rendering. Finally, we present results on the use of Lamber-

tian correction for specularity removal from shiny surfaces and limb-correction for

rough surfaces.
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Fig. 4. Step-sequence of the method. Top row, from left-to-right: Input image; plot of the

vector h; vector U before being interpolated. Bottom row, from left-to-right: rendering of

the surface using the radiance function recovered by our method; plot of the vector ĥ; vector

U delivered by our pseudocode.

6.1 Radiance Function Estimation

In this section we demonstrate some of the features of the radiance function esti-

mation. To this end, we commence by illustrating how the algorithm behaves on

synthetic data. Next, we illustrate the method on a variety of real world data.

6.1.1 Algorithm Behaviour

In this section, we illustrate the step-sequence of the algorithm making use of an

example synthetic surface. We have generated a surface of a torus with an elliptic

dome superimposed. We have rendered the surface making use of the BRDF of

Cook and Torrance [39] and set the average microfacet-slope to 0.3 with a diffuse

component of Lambertian nature whose magnitude is 0.5. The rendering of the

surface, which we have used as input image to our algorithm, is shown in Figure

5(a). Our input image is 510 × 510 pixels and is quantised into 256 gray levels.

In Figure 5(b), we show the elements of the vector h used for the piecewise-linear

interpolation. The elements of the vector ĥ returned by the piecewise-linear in-

terpolation routine are shown in Figure 5(e). It is clear that the discontinuities in

the vector h have been corrected by the piecewise-linear interpolation step and the

estimate of ĥ is smooth. The elements of the vector U are shown in Figure 5(c).

We have plotted its piecewise-linear interpolation, together with the ground-truth
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curve for the Cook and Torrance’s BRDF, in Figure 5(f). There are a number of

features to note from this plot. First, the specular structure of the radiance func-

tion is clearly visible as a spike near the origin. Second, there are small differences

when sin(θ) ≃ 0, and sin(θ) ≃ 1, i.e. as the coefficient indexes tend to the extrema,

but these are not significant. In Figure 5(d), we show the rendering of the surface

making use of the radiance function recovered by the algorithm.

6.1.2 Qualitative Properties of the Radiance Function

Using imagery from a variety of surfaces, we now explore some of the qualitative

properties of the radiance functions estimated when our algorithm is applied to a

variety of real-world images. The images used in our study are shown in the top row

of Figures 5, 6 and 7. The objects studied a porcelain mug, a terracotta urn, a gilt

mask, a machined steel part, a pile of billiard balls, a single billiard ball, a terracotta

bear, a terracotta teapot and a rough cylinder. They hence have a variety of surface

characteristics, and include both shiny and rough surfaces, and also metals and

dielectrics. Our images are 24-bit color of size 340 by 340 pixels. We have edited

the images so that the background is black and only the object under study is visible.

This is a preprocessing step that has no serious implications for the applicability of

the method.

In the second row of the figures we show plots of the vector of the average im-

age gradient ĥ(l) versus the brightness l. The third row of each figure shows the

interpolated vector ĥ used to compute the tabular representation of the radiance

function. Finally, the function F̂−1 is shown as a function of sin θ in the fourth row

of each figure. The process is applied identically for the three RGB colour-channels

comprising the image. Hence, the different curves in the plots in the second, third

and fourth rows show the results corresponding to the RGB channels (coloured

according to band). The black curve in each plot is the Lambertian radiance curve.

There are a number of features to note from these plots. First, it is clear that the

discontinuities in the vector ĥ have been corrected by the piecewise-linear interpo-

lation step and the estimate of F̂ is smooth. Secondly, the shapes of the reflectance

functions are very different for the different objects. Moreover, the radiance curves

are different for the different colour bands. Of all the objects studied, it is the red

band, for those composed of terracotta (the urn, the bear and the teapot), that pro-

duces the radiance curve that is closest to the predictions of Lambert’s law. In the

case of the porcelain mug, the curves are close to the predictions of Lambert’s law,

however there is a clear specular spike where sin(θ) ≃ 0. For the metallic objects

(e.g. the gilt mask and the machined steel part) the departures from Lambert’s law

are most significant.
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Fig. 5. Input images and plots of the variables computed through the radiance function

approximation process.

6.2 Sensitivity Study

We now turn our attention to the accuracy of our radiance function estimation

method. For this sensitivity study, we have used synthetic and real-world imagery.

Our synthetic data consists of a series of tori and teapots rendered using the BRDFs

of Phong [17], Oren and Nayar [40] and Cook and Torrance [39]. Our real-world

data is provided by images of samples of sandpaper rolls of different grades, and

images of rough terracotta objects and shiny porcelain objects. Our experimen-
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Fig. 6. Input images and plots of the variables computed through the radiance function

approximation process.

tal procedure is as follows. Using as input a single image that satisfies the condi-

tion �V ≈ �L, we have estimated the surface radiance function for each object. For

the different objects under study, we have investigated the effect of variable light

source direction. To do this we have acquired surface height data. In the case of

the synthetic tori and teapots, the images were generated by rendering a synthetic

surface mesh. In the case of the real-world objects, the height data was acquired

using a range-sensor and a surface mesh fitted to the range data. Using the esti-

mated radiance function, we have rendered the synthetic and real world surfaces

under variable illuminant directions. We have compared these synthesised images
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Fig. 7. Input images and plots of the variables computed through the radiance function

approximation process.

with real-world ones acquired under similar illumination conditions. We align the

synthetic and acquired real-world images, and compute the mean-absolute error be-

tween the rendered surface meshes and the real-world imagery. The error for the

pair of images with dimensions ncols by nrows with a set of foreground pixels Ω is

given by

e =
1

| Ω |

∑

q∈Ω

| IM(u) − ID(u) | (19)

where IM(u) and ID(u) are the respective brightness values at the pixel u in the

real-world and synthesised images.
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Fig. 8. Top row: Input images; Bottom row:

Reflectance map on the Gauss sphere com-

puted using the radiance function recovered

by our algorithm.

Fig. 9. Top row: Input images; Bottom row:

Reflectance map on the Gauss sphere com-

puted using the radiance function recovered

by our algorithm.

6.2.1 Synthetic Data

For our synthetic data, we have used a series of tori and teapots rendered using

isotropic and monotonic BRDFs. We have generated the images by setting �L =
[0, 0, 1]T and with the viewer direction �V = [− sin(θV ), 0, cos(θV )]T , varying so

that the angle θV increments from 0o to 50o in 10o steps. The first model considered

is that of Phong, where the radiance function is

gPhong(θ) = 0.5 cos(θi) + 0.5 cos(θi)
η

where θi = arccos( �N · �L). For each of the different viewing directions we have

generated synthetic images with the three values of shininess η = 10, 100 and

1000. The second model used is that of Oren and Nayar whose radiance function is

gON(θ) = E0 cos(θi)
(

A+B max{0, cos(θr−θi)} sin(max{θi, θr}) tan(min{θi, θr})
)

where E0 is a constant, θr = arccos( �N · �V ) and the dimensionless parameters

A and B depend on the surface roughness σ. These are given by A = 1.0 −
0.5σ2/(σ2 + 0.33) and B = 0.45σ2/(σ2 + 0.09). We have generated synthetic im-

ages using the roughness values σ = 0, 0.05, 0.10, 0.15, 0.20 and 0.25. The third

model studied is that comprised by the linear combination of a diffuse and Cook

and Torrance’s specular components. Hence, the model becomes

gCT = 0.5( �N · �H) + 0.5
DGF

π( �N · �V )( �N · �L)

where �H is the half-way vector and the terms D, G and F are the microfacet-slope

distribution, geometric factor and Fresnel term, respectively, and are given by
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Fig. 10. Top row: Ground-truth renderings of

the torus; Bottom row: Tori rendered making

use of the radiance function recovered by our

algorithm.

Fig. 11. Top row: Ground-truth renderings

of the teapot; Bottom row: Teapots rendered

making use of the radiance function recov-

ered by our algorithm.

D=

exp

{

− tan
(

arccos( �N · �H)
mp

)2
}

4m2
p(

�N · �H)4

G = min

{

1,
2( �N · �H)( �N · �V )

(�V · �H)
,
2( �N · �H)( �N · �L)

(�V · �H)

}

F = 0.5
sin

(

(�L · �H) − arcsin( sin(�L· �H)
mp

)
)2

sin
(

(�L · �H) + arcsin( sin(�L· �H)
mp

)
)2

where we have denoted the microfacet-slope by mp. Here, we have generated im-

ages by varying the microfacet-slope parameter mp from 0.20 to 0.40 in increments

of 0.05. In our experiments, we have set �L′ = �V when synthesising images using

the Phong and Oren and Nayar model. For the series of images rendered using the

Cook and Torrance’s BRDF, we have set the specular spike direction in the direc-

tion of the half-way vector �H between the light source and viewer directions, i.e.
�L′ = �H .

In the top row of Figures 8 and 9, from left-to-right, we show three example input

images of tori and teapots rendered by setting θV = 0o and using the Phong model

for η = 1000, the Oren and Nayar model for σ = 0.25 and the Cook and Torrance

model for mp = 0.40. The bottom row shows unit spheres rendered using the

generator function g(θ) estimated using our algorithm. In the top row of Figures 10

and 11, we show the ground-truth for the input images in the top row of Figures 8

and 9 rendered by setting θV = 50o. The bottom row of the figures shows the tori

and teapots rendered using the reflectance functions recovered by our algorithm for

the input images in Figures 8 and 9. From the images in the figure its clear that

the renderings of the 3D data using the recovered reflectance functions are in close

accordance with those obtained using the relevant model.

We present more quantitative results in Figure 12. Here, we have plotted the mean-

absolute error between the images rendered using the three reflectance models and
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Fig. 12. Error plots for the reflectance models of Phong, Oren-Nayar and Cook-Torrance.

Top row: Plots for the tori. Bottom row: Plots for the teapots.

those rendered using the reflectance functions recovered from the input images.

From these plots, we draw the following conclusions. First, we note that our method

behaves better with the Cook and Torrance model than it does with those of Phong

or Oren and Nayar. Second, the errors are greater as the magnitude of the parame-

ters and the angle θV increase, i.e. near the occluding boundary and extreme points

of the plots. This is because the gradient distortion is greatest where the intensity is

zero.

6.2.2 Real-world Data

Our real-world data consists of imagery of sandpaper rolls of different grades, and

terracotta and porcelain objects. The imagery was captured using the procedure

described in the previous subsection. The viewer direction is offset from the light

source direction by about 2o. For each object, we have kept fixed the illuminant

direction �L = [0, 0, 1]T and rotated the camera by 0o, 25o and 50o with respect to

the light source direction �L. We have also set the vector �L′ to the half-way vector �H .

We have edited the images so that the background is black and only the object under

study is visible. This is a preprocessing step that has no serious implications for the

applicability of the method. All our imagery is true-color and has been captured at

a resolution of 2240 by 1680 pixels and resampled to 840 by 630 pixels. A diagram

illustrating the imaging setup is shown in Figure 13.

Our first set of images are of four sandpaper rolls with grades: 100, 150, 180 and

240. In the top row of Figure 14 we show, from left-to-right, in increasing grade, the

input images for the four sandpaper rolls. In the bottom row of Figure 14, we show

the projection of the reflectance functions onto Gaussian spheres. In the top row of
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Fig. 13. Left-hand panel: Side-view diagram of our capture setup; Right-hand panel:

Top-view diagram.

Figure 15, we show the images for θV = 50o. In the bottom row, we show the result

of rendering the surface height data of the sandpaper rolls using the reflectance

functions approximated from the input images in the top row of Figure 14. The

images are in good agreement with one another. This implies that our method has

accurately estimated the structure of the reflectance function from a single image.

Next, we turn our attention to images of rough terracotta and shiny porcelain ob-

jects. The top row of Figure 16 shows the input images. The second row shows the

surface height data for each object. The unit sphere representations of the surface

radiance function g(θ) are shown in the bottom row of the figure. In the top row

of Figure 17, we show the images obtained when θV = 50o. In the bottom row of

the figure we show the images obtained when the surface height data is rendered

using the recovered surface radiance function. Again, the two sets of images are

very similar in appearance.

Finally, we provide a quantitative analysis of the image data. In Tables 1 and 2 we

show the mean-absolute error between the real-world and synthesised images. The

error is greatest for the extreme values of θV (i.e. θV = 50o). We also note that the

error is in average larger for the sandpaper rolls. The reason for this is due to the

specular limb, which makes the object appear “flatter”.

Fig. 14. Top row: Input images; Bottom row: Recovered reflectance spheres.
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Fig. 15. Top row: Images captured with a θV = 50o; Bottom row: Renderings of the 3D

meshes using the reflectance function delivered by our algorithm.

6.3 Forward Rendering

In this subsection, we show how our method can be used for the purposes of for-

ward rendering. Here, we have taken computer-generated surface models and have

rendered them using radiance functions acquired from real-world imagery.

In Figure 18 we display the radiance functions for the sample objects as rendered

spheres viewed from a number of different directions. In the left-hand column of the

figure, we show the raw images. The second column shows the view of the sphere in

the light source direction. The remaining columns show views of the spheres from

different directions. Again, there are a number of features worth noting. Perhaps the

most important of these is the difference of the specular component. In the case of

the shiny dielectrics (the billiard balls and the porcelain mug), the specular structure

Table 1

Mean-Absolute Error for the Sandpaper Rolls

Roll Grade Error as a Function of the Angle

Between the Illuminant and the Viewer

0o 25o 50o

100 0.0376 0.0397 0.0418

150 0.0308 0.0385 0.0394

180 0.0354 0.0369 0.0419

240 0.0348 0.0376 0.0396
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Table 2

Mean-Absolute Error for the Real-wold Objects

Object Name Error as a function of the Angle

Between the Illuminant and the Viewer

0o 25o 50o

Porcelain Hand 0.0267 0.0299 0.0319

Porcelain Bear 0.0100 0.0187 0.0195

Porcelain Mug 0.0259 0.0396 0.0429

Porcelain Vase 0.0110 0.0217 0.0304

Terracotta Bear 0.0418 0.0419 0.0422

Terracotta Teapot 0.0197 0.0211 0.0213

Terracotta Jug 0.0161 0.0192 0.0199

Terracotta Watering Can 0.0150 0.0130 0.0223

is highly localised. In the case of the rough terracotta objects, the specular structure

is weak and dispersed. In the case of the metallic objects, the specular structure is

strong and dispersed. Of the objects studied, it is the blue billiard ball which gives

the most realistic appearance.

We now take this study one step further by rendering a more complex object. In

the top row of Figure 19, we again show the real-world images used to estimate

the radiance function. The second row shows a view of a sphere rendered us-

ing the radiance functions estimated from the different objects. In the two bottom

rows we show the results of performing forward rendering of a computer model of

Fig. 16. Top row: Input images; Middle row: Renderings of the ground-truth depth data

acquired using a range scanner; Bottom row: Projection of the recovered reflectance maps

onto Gaussian spheres.
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Fig. 17. Top row: Images captured with a θV = 50o; Bottom row: Renderings of the 3D

meshes using the reflectance function delivered by our algorithm.

“Yoda” downloaded from the Avalon public 3D-model archive and a 3D-model of

a “Teapot” generated in-house. The radiance function estimation process took in

average 0.2 secs on a 2.0 GHz., dual-Xeon workstation.

Finally, to illustrate the utility of the method for purposes of forward rendering, we

have rendered a torus, a teapot and a sphere using the radiance functions shown

in Figures 5 and 6. The renderings for these objects, when positioned in a simple

environment with two omnidirectional lights, is shown in Figure 20.

From our experiments, it is clear that the rendered surfaces have an appearance

that resembles closely that of the input object material. Furthermore, the algorithm

has also shown to be able to cope well with small angular differences between the

viewer and light source directions by recovering the radiance function of complex

objects under a variety of reflectivity conditions.

6.4 Lambertian Re-mapping

We now turn our attention to the removal of specularities and the correction of

limb brightening effects for images of real-world objects. Our real-world imagery

consists of pictures of objects composed of white porcelain and of terracotta. The

porcelain is shiny and hence exhibits well colimated specularities. The terracotta is

rough. However, it does have a weak specular component and this results in a more

diffuse specular structure. We have performed experiments on real-world images of

three shiny porcelain objects and two rough terracotta objects. The rough objects

are a bear and a teapot. The shiny objects are two vases and an urn. We have ac-

quired the images under controlled lighting conditions in a dark room using an E10

Olympus digital camera. The objects are illuminated by a single colimated tungsten

light source of known direction. For our experiments, the estimated light source

vector is �L = (0.43, 0, 0.9)T . To ground-truth the specularity removal method, we

have used two polaroid filters. One filter is placed between the object and the light

source. A second filter is placed between the object and the camera. For each ob-

ject we collect two images. The first of these is with the polaroids aligned. The

second image is collected with the polaroids crossed. When the polaroid filters are
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Fig. 18. Left hand column: Input images; Right hand columns: Views of spheres rendered

using the recovered radiance functions for the input images.
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Fig. 19. Top row: input images for the radiance function approximation process; Second,

third and fourth rows: spheres, “Yoda” and “Teapot” rendered making use of the radiance

functions approximated from the input images.

crossed, then the specularities are extinguished since they correspond to coherent

reflectance from the object surface.

In Figure 21, we show the results obtained with the five objects used in our ex-

periments. In the top row from left to right the panels show the original images

of the two terracotta objects (i.e. the terracotta bear and the teapot) and the three

porcelain objects (i.e. the two vases and the urn). These images are collected with

aligned polaroids. In the second row we show the result of Lambertian re-mapping.

For comparison, in the third row, we show the images obtained using crossed po-

Fig. 20. Renderings of a torus, a teapot and a sphere using the radiance functions in Figures

5 and 6.
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Fig. 21. Results on real-world images.

laroids. In the bottom row of the figure, we show the gray-scale difference between

the cross-polaroid images and the images resulting from Lambertian re-mapping.

There are a number of observations that can be drawn from these examples. We

turn our attention first to the terracotta objects. Because of their intrinsic rough-

ness, these objects appear relatively flat. There is also some surface brightening

due to a weak and dispersed specular component. This effect is evident on the belly

and snout of the bear, and, the body of the teapot. After Lambertian re-mapping,

the image gradients across the two objects are enhanced, i.e. they appear less “flat”,

and the weak specular structure is removed. In the case of the three porcelain ob-

jects, there are sharp specularities on the surfaces. These are cleanly removed, with

no evident residual structure. In the case of both the terracotta and the porcelain

objects, the agreement with the crossed polaroid images is good. Finally, from the

difference images it is clear that the specularity subtraction is accurate.

7 Conclusions

In this paper, we have presented a novel approach for approximating the radiance

functions and hence the BRDF of possibly specular objects from a single image.

Although the new method is applicable only when the light source and viewer di-
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rections are approximately equal, it can be used to estimate the radiance function so

that inverse rendering may be performed. Furthermore, the method is a computa-

tionally efficient alternative to the approximation of the BRDF via basis functions,

which is the standard approach in the literature. We have also used the estimated

radiance function to perform Lambertian re-mapping. This allows us to remove

specularities from shiny objects and also to compensate for boundary “flattening”

effects for rough surfaces.

There are a number of advantages of the approach over competing ones. Firstly,

it provides a method for recovering the radiance function from a single image of a

rough or specular object without prior knowledge of its surface structure. Secondly,

the tabular representation of the recovered BRDF allows the use of floating-point

vectors for storing, in a memory efficient way, the approximated radiance function.

Thirdly, the computational cost of the algorithm is low since it makes use of a

non-iterative approach which is devoid of free parameters. Fourthly, the radiance

function estimated using the method can be used to render objects when the light

source and viewer directions are no longer identical. Finally, the rendering process

can be performed using simple vectorial operations in a computationally efficient

way.

There are a number of ways in which the work developed in this paper may be

further extended. Since the method provides a means of locating the Gauss-map,

it may also provide a route to shape-from-shading for non-Lambertian surfaces.

Second, the recovered radiance functions may be compared with theoretical mod-

els. This may provide a means of determining surface parameters. For instance, by

fitting the modified Beckman-Kirchoff model to our radiance functions, roughness

and correlation measurements could be made. Thirdly, it would be interesting to

extend the method to multiple light source or viewer directions and to determine

whether the method provides a new route to photometric stereo.
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[30] P. Schröder, W. Sweldens, Spherical wavelets: Efficiently representing functions on

the sphere, in: Siggraph 95 Conference Proceedings, 1995, pp. 161–172.

[31] G. J. Ward, Measuring and modeling anisotropic reflection, Computer Graphics 26 (2)

(1992) 265–272.

[32] E. P. Lafortune, Sing-Choong Foo, K. E. Torrance, D. P. Greenberg, Non-linear

approximation of reflectance functions, in: SIGGRAPH 97 Conference Proceedings,

1997, pp. 117–126.

[33] K. J. Dana, S. K. Nayar, Correlation model for 3d texture, in: Int. Conf. on Comp.

Vision, 1999, pp. 1061–1066.

[34] A. Z. P. Giblin, A. Blake, The information available to a moving observer from

specularities, Image and Vision Computing (7) (1989) 38–42.

[35] H. Ragheb, E. R. Hancock, Highlight removal using shape-from-shading, in: European

Conf. on Comp. Vision, no. 2351 in LNCS, 2002, pp. 626–641.

[36] P. L. Worthington, E. R. Hancock, New constraints on data-closeness and needle

map consistency for shape-from-shading, IEEE Transactions on Pattern Analysis and

Machine Intelligence 21 (12) (1999) 1250–1267.

[37] A. Robles-Kelly, E. R. Hancock, Radiance function estimation for object

classification, in: CIARP 2004, 2004, p. To appear.

[38] A. Robles-Kelly, E. R. Hancock, Correction of underexposed images using scene

radiance estimation, in: Proc. of the Int. Conf. on Image Processing, 2004, to appear.

32



[39] R. L. Cook, K. E. Torrance, A reflectance model for computer graphics, ACM Trans.

on Graphics 1 (1) (1982) 7–24.

[40] M. Oren, S. K. Nayar, Generalization of the lambertian model and implications for

machine vision, Int. Journal of Comp. Vision 14 (3) (1995) 227–251.

33


