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ESTIMATING THE TRACE-FREE RICCI TENSOR
IN RICCI FLOW
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Abstract. An important and natural question in the analysis of Ricci flow
behavior in all dimensions n ≥ 4 is this: What are the weakest conditions
that guarantee that a solution remains smooth? In other words, what are the
weakest conditions that provide control of the norm of the full Riemann cur-
vature tensor? In this short paper, we show that the trace-free Ricci tensor is

controlled in a precise fashion by the other components of the irreducible de-
composition of the curvature tensor, for all compact solutions in all dimensions
n ≥ 3, without any hypotheses on the initial data.

1. Introduction

It is common and indeed expected that the solutions of Ricci flow will encounter
finite-time singularities. For example, a solution of Ricci flow on a compact manifold
whose scalar curvature is bounded from below by r > 0 at t = 0 must become
singular at or before the formal vanishing time Tform = n

2r . Consequently, the
following is a natural and important question:

Question 1.1. What is the simplest quantity that, when controlled, guarantees
that a solution of Ricci flow will remain smooth up to time T?

A solution (Mn, ω(·)) of Kähler–Ricci flow remains smooth until the volume of
an analytic subvariety goes to zero. Indeed, work of Gang Tian and Zhou Zhang
[11] proves that a smooth solution exists as long as the cohomology class [ω] remains
Kähler, while results of Jean-Pierre Demailly and Mihai Paun [4] show that this
can happen only if there exists an analytic subvariety whose volume is forced to
vanish.

For general (i.e., non-Kähler) solutions of Ricci flow, the picture is less clear.
Standard short-time existence results imply that a solution (Mn, g(·)) of Ricci flow
on a compact manifold becomes singular at T < ∞ if and only if

lim
t↗T

(
max
x∈Mn

|Rm(x, t)|
)

= ∞.

Thus the question posed above can be recast more precisely as follows:

Question 1.2. What are the weakest conditions that provide control of the norm
of the full Riemann curvature tensor on a solution of Ricci flow?
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In any dimension, it is true that a finite-time singularity occurs on a compact
manifold if and only if

lim sup
t↗T

(
max
x∈Mn

|Rc(x, t)|
)

= ∞.

Nataša Šešum has given a direct proof [9]. The result also follows from independent
results of Miles Simon [10] by a short argument, which we reproduce here for the
convenience of the reader. Assume that g(t) is smooth for t ∈ [0, T ), where T < ∞.
If lim supt↗T (maxx∈Mn |Rc(x, t)|) < ∞, then [5, Lemma 14.2] guarantees existence
of a complete C0 limit metric g(T ). One may then apply [10, Theorem 1.1], choosing
a background metric ḡ := g(T −δ) such that (1−ε)ḡ ≤ g ≤ (1+ε)ḡ, where ε = ε(n)
and δ = δ(ε). Let K̄ = maxx∈Mn |Rm(ḡ)|ḡ. Simon’s theorem implies that there
exists η = η(n, K̄) such that for any θ ∈ [0, δ], a solution ĝ(s) of harmonic-map-
coupled Ricci flow exists for 0 ≤ s < η and satisfies ĝ(0) = g(T − θ); moreover, ĝ(s)
is smooth for 0 < s < η. Because harmonic-map-coupled Ricci flow is equivalent to
Ricci flow modulo diffeomorphisms, the result follows by taking θ = η/2.

In dimension three, an eminently satisfactory answer to Question 1.2 is given
by the important pinching theorem obtained independently by Thomas Ivey [7]
and Richard Hamilton [6]. Their estimate implies in particular that the scalar
curvature dominates the full curvature tensor of any Ricci flow solution on a com-
pact 3-manifold with normalized initial data. (As is well known, the Hamilton–Ivey
pinching estimate implies the much stronger result that any rescaled limit of a finite
time singularity in dimension three must have nonnegative sectional curvature.)

Xiuxiong Chen has conjectured that an appropriate bound on scalar curvature
alone might be sufficient to rule out singularity formation in all dimensions. Partial
progress toward this conjecture was made recently by Bing Wang [12]. He proves
that if the Ricci tensor is uniformly bounded from below on [0, T ) and if an integral
bound ∫ T

0

∫
Mn

|R|α dµ dt < ∞

holds for some α ≥ (n + 2)/2, then no singularity occurs at time T < ∞. This is
optimal in the sense that the example of a shrinking round sphere suggests that
no smaller value of α can suffice. However, Wang’s result requires the restric-
tive hypothesis that infMn×[0,T ) Rc ≥ −A > −∞. Ricci flow does not in general
preserve nonnegative Ricci curvature in dimensions n ≥ 4. See [8] for examples
starting in dimension n = 4 and work of Christoph Böhm and Burkhard Wilking
[2] for compact examples starting in dimension n = 12. Moreover, examples of
local singularity formation [1] show that one cannot expect a bound like Rc ≥ −A
to be preserved in general. For these reasons, one is strongly motivated to study
the extent to which the scalar curvature may control the trace-free Ricci tensor in
general.

Recall that in any dimension n ≥ 3, the Riemann curvature tensor admits an
orthogonal decomposition

Rm = U + V + W

into irreducible components

U =
1

2n (n − 1)
R (g � g) , V =

1
n − 2

(F � g), W = Weyl tensor,
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where � denotes the Kulkarni–Nomizu product of symmetric tensors and F denotes
the trace-free Ricci tensor. The purpose of this short paper is to observe that V is
always dominated by the other components in the following sense:

Main Theorem. If (Mn, g(·)) is a solution of Ricci flow on a compact manifold of
dimension n ≥ 3, then there exist constants c(g0) ≥ 0, C1(n, g0) > 0, and C2(n) > 0
such that for all t ≥ 0 such that a solution exists, one has R + c > 0 and

|V |
R + c

≤ C1 + C2 max
s∈[0,t]

√
|W |max (s)
Rmin(s) + c

.

This result educes further questions about the relationship (if any) between R
and |W | along solutions of Ricci flow. In this direction, Böhm and Wilking have
recently announced [3] that the condition R ≥ cn |W | defines an invariant curvature
cone for Ricci flow in all sufficiently high dimensions, where cn =

√
2(n − 1)(n − 2)

if n is even and cn =
√

2(n − 1)(n − 2) + o(1) as n → ∞ if n is odd. This is a
strong hypothesis: for example, if (Mn, g) is an Einstein manifold of positive scalar
curvature with R ≥ cn |W |, the Böhm–Wilking results imply that its universal cover
is isometric to one of Sn, S n

2 × S n
2 (n even), or S n−1

2 × S n+1
2 (n odd), with their

canonical metrics.
Whether the scalar curvature controls the norm of the Weyl tensor in some

general sense under Ricci flow (i.e. for solutions whose initial data lie outside the
R ≥ cn |W | cone) remains a highly interesting open question.

2. Proof of the main theorem

Define

a = |F | =
√

n − 2
2

|V | ,

noting that a is smooth wherever it is strictly positive. Choose c ≥ 0 large enough
so that Rmin(0) + c > 0 and define

b = R + c,

noting that b > 0 for as long as a solution exists.
In any dimension n ≥ 3, one has

∂

∂t
|F |2 = ∆ |F |2 − 2 |∇F |2 +

4(n − 2)
n(n − 1)

R |F |2 − 8
n − 2

trF 3 + 4W (F, F ),

where tr F 3 = F j
i F k

j F i
k and W (F, F ) = Wijk�F

i�F jk. It follows from Cauchy–
Schwarz that a obeys the differential inequality

at ≤ ∆a +
2(n − 2)
n(n − 1)

a(b − c) − 4
n − 2

a−1 trF 3 + 2a−1W (F, F ).

The positive quantity b evolves by

bt = ∆b + 2a2 +
2
n

(b − c)2.

To prove the theorem, it will suffice to bound the scale-invariant nonnegative
quantity

ϕ =
a

b
.
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Because ∆ϕ = b−1(∆a − ϕ∆b) − 2 〈∇ϕ,∇ log b〉, one has

ϕt ≤ ∆ϕ + 2 〈∇ϕ,∇ log b〉 + 2ρϕ,

where the reaction term is

ρ =
n − 2

n(n − 1)
(b − c) − 2

n − 2
tr F 3

a2
+

W (F, F )
a2

− (b − c)2

nb
− aϕ.

There exist positive constants c1, c2 depending only on n ≥ 3 such that∣∣∣∣ 2
n − 2

trF 3

∣∣∣∣ ≤ c1a
3 and |W (F, F )| ≤ c2 |W | a2.

Hence

ρ ≤ n − 2
n(n − 1)

(b − c) + c1a + c2 |W | − (b − c)2

nb
− aϕ.

Define constants α, β, γ by α2 = c1, β2 = n−2
n(n−1) , and γ2 = c2. Fix ε > 0 and

choose C1 = max{α2 + β, ϕmax(0) + ε} and C2 = γ. Consider the barrier function

Φ(t) = C1 + C2 max
s∈[0,t]

√
|W |max (s)

bmin(s)
,

noting that Φ is monotone nondecreasing. If ϕmax(t) ≥ Φ(t) at some t > 0, then at
any (x, t) where ϕ attains its spatial maximum, one has

a ≥ (α2 + β)b + γ
√

b |W |,
which implies that

a2 ≥ α2ab + β2b2 + γ2b |W |

≥ n − 2
n(n − 1)

(b2 − bc) + (c1a + c2 |W |) b − 1
n

(b − c)2,

hence that ρ ≤ 0, hence that ϕt ≤ 0, hence that d+

dt ϕmax(t) ≤ 0, understood in the
usual sense as the lim sup of difference quotients. It follows that ϕmax(t) ≤ Φ(t) for
as long as a solution exists.
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