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Numerical and computational analyses surrounding the behavior of the bearing capacity of soils near or adjacent to slopes have
been of great importance in earthwork constructions around the globe due to its unique nature.*is phenomenon is encountered
on pavement vertical curves, drainages, and vertical infrastructure foundations. In this work, multiple data were collected on the
soil and footing interface parameters, which included width of footing, depth of foundation, distance of slope from the footing
edge, soil bulk density, slope and frictional angles, and bearing capacity factors of cohesion and overburden pressure determined
for the case of a foundation on or adjacent to a slope. *e genetic programming (GP), evolutionary polynomial regression (EPR),
and artificial neural network (ANN) intelligent techniques were employed to predict the ultimate bearing capacity of footing on or
adjacent to a slope. *e performance of the models was evaluated as well as compared their accuracy and robustness with the
findings of Prandtl. *e results were observed to show the superiority of GP, EPR, and ANN techniques over the computational
works of Prandtl. In addition, the ANN outclassed the other artificial intelligence methods in the exercise.

1. Introduction

Building substructures are often constructed on or adjacent
to slopes owing to the nonavailability of level ground, es-
pecially in hilly dominant topography encountered in
highway vertical curves, embankments, erosion watersheds,
etc. *e study of the bearing capacity of loaded slopes is vital
because they are more prone to fail than other types of earth
structures [1–5]. Shallow foundations on slopes are mainly
used for small- to medium-rise buildings. In frictional soils,
the bearing capacity is mainly governed by foundation
failure, while in cohesive soils, the bearing capacity of the
foundation is controlled by the stability of the soil structure
[6–9]. Recently, methods proposed by the researchers
available to find the bearing capacity of shallow foundations
on or near slopes include limit equilibrium analysis [10, 11],
slip line analysis [12], variational calculus [13], the method of
rigorous characteristics [14], improved movement

optimization [15], finite element analysis [16, 17], and
multiblock analysis [9]. Determining the bearing capacity of
a shallow substructure is a very important component of
geotechnical engineering study and practice. Prandtl [18] is
generally credited with some pioneer work in bearing ca-
pacity theory, having tried to establish the punching failure
mechanism for thick metals based on the theory of plasticity.
*is theory gave rise to Terzaghi’s [19] work, where the
effects of soil internal angle of friction, soil cohesion, and
surcharge (overburden pressure) were taken into consid-
eration, giving rise to the bearing capacity factors (Nc, Nc,
and Nq). Meyerhof [20] improved on Terzaghi’s super-
imposed theory to account for soil strength, footing size and
shape, and slope. Vesic later considered the effects of shallow
foundation shape on the ultimate bearing capacity [21].
Nevertheless, despite studies into the effects of foundation
shape and depth [19], Meyerhof (1957 and 1974) [20–23],
there has been few research works on the bearing capacity of
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footings on and/or adjacent to slopes made of c′−v′ soils.
Meyerhof studied general failure mechanisms for bearing
capacity on purely cohesionless or cohesive soils adjacent to
slopes using an assumed failure pattern based on the em-
pirical observation from model footing tests in the labora-
tory. However, actual quantifiable results were not available
for model verifications. Graham et al. [24] derived an
analytical model for bearing capacity and stress distribu-
tion for footings placed upon slopes for cohesionless soils
that was validated by experimental results. However, his
work did not expand to soils with both cohesion and in-
ternal friction. Raj and Bharathi reported that Bowles
provided a set of revised bearing capacity factors for c′−v′
soils based on an the assumed failure mechanism resem-
bling that from Terzaghi, but limited to set of strength
values. Griffiths [25] used the finite element analysis (FEA)
to determine the bearing capacity of c′−v′ soils on slopes
attaining considerable results. However, his Nc factor
recorded pitfall due to a convergence issue. Applying upper
bound limits analysis, Kusakabe et al. [26] presented a
series of design charts with dimensionless factors showing a
reduction in bearing capacity compared to the conven-
tional bearing capacity approach for footings placed on the
level of the ground for soils with and without cohesion. A
better analysis of the complex, complicated failure mech-
anism associated with the ultimate bearing capacity of strip
footings on slopes requires use of tools that can account for
the complex failure kinematics related to the soil-structure
interaction and nonintuitive behavior of the soil collapse
mechanism [27, 28]; in this case, artificial intelligence (AI)
looks a better tool.

Recent discoveries in the field of artificial intelligence
(AI) applications have risen in the development of accurate
and dependable models for solving engineering problems
[29–32]. Advances in the field of AI made it possible to
produce models to adapt to difficulties associated with
modelling soil and foundation behavior [33–36]. AI has
been considered in the field of civil engineering for more
than one and a half decade [37]. *ese models involve a
simple black-box model to complex distributed physics-
based models. Although there are numerous AI modelling
algorithms, namely, genetic algorithm (GA), ant colony
(AC), differential evolution (DE), particle swarm (PS),
artificial neural network (ANN), genetic programming
(GP) [35], and gene expression programming [32], artificial
neural network (ANN) [36], genetic programming (GP),
and gene expression programming have been widely used
[29, 35].

2. Methodology

2.1. Preamble, Data Collection, and Statistical Study.
Prantdl [18] proposed a mathematical formula for the
ultimate bearing capacity of strip footing in a semi-infinity
soil model with a horizontal ground surface based on an
experimentally observed failure shape below footing as
shown in equation (1). For strip footing near or within the
slope, Prantdl suggested modified parameters N′c�Nc
(L1/L0) andN′q�Nq (A1/A0), where L0, L1,A0, andA1 are

illustrated in Figure 1 and could be calculated from the
geometry.Nc is still the same because the triangular wedges
below the footings are the same in all cases. *e aim of this
research is to develop mathematical formulas for the
modified N′c and N′q based on slope geometry and soil
proprieties using different artificial intelligence (AI)
techniques.

qult � CNc + qNq + cBNc, (1)

where qult: ultimate bearing capacity of strip footing, C: soil
cohesion, q: overburden pressure at foundation depth, c:
bulk density of soil below the footing, B: strip footing width,
Nc, Nq, and Nc are parameters based on the soil internal
friction angle ϕ, Nq: e π tan ϕ. tan 2 (45 + ϕ/2), Nc: (Nq− 1)
cot ϕ (Nc� 5 for ϕ� 0), and Nc: (Nq− 1) tan ϕ.

From the foregoing, the methodology was to generate a
database of 300 records; each record contains slope angle (β),
angle of internal friction of soil (ϕ), ratio between the dis-
tance to the slope edge and footing width (b/B), and the ratio
between foundation depth and footing width (Df/B) besides
the calculated values for both N′c and N′q. Table 1 includes
the complete dataset, while Tables 2 and 3 summarize their
statistical characteristics and the Pearson correlation matrix.
Finally, Figure 2 shows the histograms for both inputs and
outputs.

2.2. Research Program. *ree different artificial intelligent
(AI) techniques were used to predict the values of both N′c
and N′q. *ese techniques are genetic programming (GP),
artificial neural network (ANN), and polynomial linear
regression optimized using genetic algorithm which is
known as evolutionary polynomial regression (EPR). All the
three developed models were based on the generated da-
tabase. Each model of the three developed models was based
on different approaches (evolutionary approach for GP,
mimicking biological neurons for ANN, and an optimized
mathematical regression technique for EPR). However, for
all developed models, prediction accuracy was evaluated in
terms of sum of squared errors (SSE).

*e following section discusses the results of eachmodel.
*e accuracies of the developed models were evaluated by
comparing the SSE between the predicted and calculatedN′c
and N′q values.

3. Predictive Model Results

3.1. Prediction of N′c and N′q

3.1.1. Model (1)—Using the GP Technique. *e developed
GP model started with the one level of complexity and
settled at five levels of complexity. *e population size,
survivor size, and number of generations were 10000,
30000, 50000, 75000, and 100000, respectively. Equations
(2) and (3) present the output formulas for N′c and N′q,
while Figures 3(a) and 4(a) show their fitness. *e average
errors (%) of the total set are 20.7% and 31.6%, respec-
tively, while the corresponding (R2) values are 0.951 and
0.949.

2 Journal of Engineering



N′c � e(5+ϕ)/11 + 7 +
b

B
+
Df

B
( ) − 7 + β

7 +Df/B
( ), (2)

N′q � e ϕ−11/7+Df/B( )
−

β

11 3 −Df/B( )  + 3b/B( ) Df
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3.1.2. Model (2)—Using the ANN Technique. A back-prop-
agation ANNwith one hidden layer andHyper Tan activation
function was used to predict the values of N’c and N’q. *e
used network layout is illustrated in Figure 5, and its con-
nation weights are listed in Table 4. Since the used ANN has a
nonlinear activation function, the equivalent equation is very
complicated to be presented mathematically. *e average
errors in % of this network are 6.9% and 13.0% for N′c and

N′q, respectively, while the corresponding R2 values are 0.995
and 0.991. *e relation between the calculated and predicted
values is shown in Figures 3(b) and 4(b). *e summation of
connection weights of each input parameter is a good indi-
cation for its importance; accordingly, it was found that ϕ was
themost important parameter with 78.6% of the total weights.
β came in the second place with 10.1% and then b/B and Df/B
with 7.7% and 3.6%, respectively.
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Figure 1: Shear failure mechanism for soil below strip footing after Prantdl [18]. (a) Case of strip footing with a horizontal ground surface.
(b) Case of strip footing near the slope. (c) Case of strip footing within the slope.
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Table 1: *e used database.

(b/B) (Df/B) β ϕ N′c N′q
0.0 0.0 0.0 0.0 5.14 1.03
0.0 0.0 0.0 10.0 8.34 2.47
0.0 0.0 0.0 20.0 14.83 6.40
0.0 0.0 0.0 30.0 30.14 18.40
0.0 0.0 0.0 40.0 75.31 64.20
0.0 0.0 5.0 0.0 5.01 1.03
0.0 0.0 5.0 10.0 8.07 2.47
0.0 0.0 5.0 20.0 14.19 6.40
0.0 0.0 5.0 30.0 28.43 18.40
0.0 0.0 5.0 40.0 69.67 64.20
0.0 0.0 10.0 0.0 4.89 1.03
0.0 0.0 10.0 10.0 7.80 2.47
0.0 0.0 10.0 20.0 13.57 6.40
0.0 0.0 10.0 30.0 26.80 18.40
0.0 0.0 10.0 40.0 64.42 64.20
0.0 0.0 20.0 0.0 4.63 1.03
0.0 0.0 20.0 10.0 7.28 2.47
0.0 0.0 20.0 20.0 12.39 6.40
0.0 0.0 20.0 30.0 23.78 18.40
0.0 0.0 20.0 40.0 55.01 64.20
0.0 0.0 30.0 0.0 4.38 1.03
0.0 0.0 30.0 10.0 6.77 2.47
0.0 0.0 30.0 20.0 11.28 6.40
0.0 0.0 30.0 30.0 21.05 18.40
0.0 0.0 30.0 40.0 55.01 64.20
0.0 0.0 60.0 0.0 3.62 1.03
0.0 0.0 60.0 10.0 5.33 2.47
0.0 0.0 60.0 20.0 8.33 6.40
0.0 0.0 60.0 30.0 14.34 18.40
0.0 0.0 60.0 40.0 28.56 64.20
0.5 0.5 5.0 0.0 5.14 0.83
0.5 0.5 5.0 10.0 8.34 1.85
0.5 0.5 5.0 20.0 14.83 4.41
0.5 0.5 5.0 30.0 30.14 11.67
0.5 0.5 5.0 40.0 75.31 37.38
0.5 0.5 10.0 0.0 5.14 0.94
0.5 0.5 10.0 10.0 8.34 2.03
0.5 0.5 10.0 20.0 14.93 4.73
0.5 0.5 10.0 30.0 30.14 12.17
0.5 0.5 10.0 40.0 74.12 37.80
0.5 0.5 20.0 0.0 5.14 1.03
0.5 0.5 20.0 10.0 8.34 2.34
0.5 0.5 20.0 20.0 14.83 5.19
0.5 0.5 20.0 30.0 29.79 12.66
0.5 0.5 20.0 40.0 65.74 36.91
0.5 0.5 30.0 0.0 5.14 1.03
0.5 0.5 30.0 10.0 8.34 2.47
0.5 0.5 30.0 20.0 14.83 5.36
0.5 0.5 30.0 30.0 27.64 12.40
0.5 0.5 30.0 40.0 58.32 34.02
0.5 0.5 60.0 0.0 5.14 1.03
0.5 0.5 60.0 10.0 8.07 2.13
0.5 0.5 60.0 20.0 12.37 3.92
0.5 0.5 60.0 30.0 20.74 7.83
0.5 0.0 5.0 0.0 5.14 1.03
0.5 0.0 5.0 10.0 8.25 2.47
0.5 0.0 5.0 20.0 14.45 6.40
0.5 0.0 5.0 40.0 70.40 64.20
0.5 0.0 10.0 0.0 5.14 1.03
0.5 0.0 10.0 10.0 8.15 2.47

Table 1: Continued.

(b/B) (Df/B) β ϕ N′c N′q
0.5 0.0 10.0 20.0 14.08 6.40
0.5 0.0 10.0 30.0 27.62 18.40
0.5 0.0 10.0 40.0 65.87 64.20
0.5 0.0 20.0 0.0 5.12 1.03
0.5 0.0 20.0 10.0 6.96 2.47
0.5 0.0 20.0 20.0 13.40 6.40
0.5 0.0 20.0 30.0 25.39 18.40
0.5 0.0 20.0 40.0 57.86 64.20
0.5 0.0 30.0 0.0 5.10 1.03
0.5 0.0 30.0 10.0 7.77 2.47
0.5 0.0 30.0 20.0 12.75 6.40
0.5 0.0 30.0 30.0 23.40 18.40
0.5 0.0 30.0 40.0 51.07 64.20
0.5 0.0 60.0 0.0 4.86 1.03
0.5 0.0 60.0 10.0 7.07 2.47
0.5 0.0 60.0 20.0 10.89 6.40
0.5 0.0 60.0 30.0 18.40 18.40
0.5 0.0 60.0 40.0 35.81 64.20
1.0 0.5 5.0 0.0 5.14 0.86
1.0 0.5 5.0 10.0 8.34 1.95
1.0 0.5 5.0 20.0 14.83 4.70
1.0 0.5 5.0 30.0 30.14 12.53
1.0 0.5 5.0 40.0 75.31 40.33
1.0 0.5 10.0 0.0 5.14 1.01
1.0 0.5 10.0 10.0 8.34 2.26
1.0 0.5 10.0 20.0 14.83 5.35
1.0 0.5 10.0 30.0 30.14 13.94
1.0 0.5 10.0 40.0 75.31 43.57
1.0 0.5 20.0 0.0 5.14 1.03
1.0 0.5 20.0 10.0 8.34 2.47
1.0 0.5 20.0 20.0 14.83 6.40
1.0 0.5 20.0 30.0 30.14 16.29
1.0 0.5 20.0 40.0 68.61 47.76
1.0 0.5 30.0 0.0 5.14 1.03
1.0 0.5 30.0 10.0 8.34 2.47
1.0 0.5 30.0 20.0 14.83 6.40
1.0 0.5 30.0 30.0 29.80 17.81
1.0 0.5 30.0 40.0 62.51 48.90
1.0 0.5 60.0 0.0 5.14 1.03
1.0 0.5 60.0 10.0 8.34 2.47
1.0 0.5 60.0 20.0 14.83 6.40
1.0 0.5 60.0 30.0 24.80 15.66
1.0 0.5 60.0 40.0 47.25 35.82
1.0 0.0 5.0 0.0 5.14 1.03
1.0 0.0 5.0 10.0 8.34 2.47
1.0 0.0 5.0 20.0 14.71 6.40
1.0 0.0 5.0 30.0 29.25 18.40
1.0 0.0 5.0 40.0 71.13 64.20
1.0 0.0 10.0 0.0 5.14 1.03
1.0 0.0 10.0 10.0 8.34 2.47
1.0 0.0 10.0 20.0 14.60 6.40
1.0 0.0 10.0 30.0 29.43 18.40
1.0 0.0 10.0 40.0 67.33 64.20
1.0 0.0 20.0 0.0 5.14 1.03
1.0 0.0 20.0 10.0 8.34 2.47
1.0 0.0 20.0 20.0 14.41 6.40
1.0 0.0 20.0 30.0 26.99 18.40
1.0 0.0 20.0 40.0 60.74 64.20
1.0 0.0 30.0 0.0 5.14 1.03
1.0 0.0 30.0 10.0 8.34 2.47
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Table 1: Continued.

(b/B) (Df/B) β ϕ N′c N′q
1.0 0.0 30.0 20.0 14.23 6.40
1.0 0.0 30.0 30.0 25.74 18.40
1.0 0.0 30.0 40.0 55.26 64.20
1.0 0.0 60.0 0.0 5.14 1.03
1.0 0.0 60.0 10.0 8.34 2.47
1.0 0.0 60.0 20.0 13.43 6.40
1.0 0.0 60.0 30.0 22.46 18.40
1.0 0.0 60.0 40.0 43.06 64.20
0.0 1.0 0.0 0.0 5.14 1.03
0.0 1.0 0.0 10.0 8.34 2.47
0.0 1.0 0.0 20.0 14.83 6.40
0.0 1.0 0.0 30.0 30.14 18.40
0.0 1.0 5.0 0.0 5.14 0.99
0.0 1.0 5.0 10.0 8.34 2.13
0.0 1.0 5.0 20.0 14.83 4.92
0.0 1.0 5.0 30.0 30.14 12.55
0.0 1.0 5.0 40.0 75.31 38.59
0.0 1.0 10.0 0.0 5.14 1.03
0.0 1.0 10.0 10.0 8.34 2.19
0.0 1.0 10.0 20.0 14.83 4.91
0.0 1.0 10.0 30.0 30.14 12.16
0.0 1.0 10.0 40.0 75.31 36.24
0.0 1.0 20.0 0.0 5.14 1.03
0.0 1.0 20.0 10.0 8.34 2.17
0.0 1.0 20.0 20.0 14.83 4.63
0.0 1.0 20.0 30.0 30.14 10.88
0.0 1.0 30.0 0.0 5.14 1.03
0.0 1.0 30.0 10.0 8.34 1.89
0.0 1.0 30.0 20.0 14.83 4.04
0.0 1.0 30.0 30.0 29.17 9.05
0.0 1.0 30.0 40.0 61.39 24.02
0.0 1.0 60.0 0.0 5.06 0.45
0.0 1.0 60.0 10.0 7.33 0.77
0.0 1.0 60.0 40.0 36.93 6.27
0.0 0.5 0.0 0.0 5.14 1.03
0.0 0.5 0.0 10.0 8.34 2.47
0.0 0.5 0.0 20.0 14.83 6.40
0.0 0.5 0.0 30.0 30.14 18.40
0.0 0.5 5.0 0.0 5.14 0.79
0.0 0.5 5.0 10.0 8.34 1.69
0.0 0.5 5.0 20.0 14.83 4.03
0.0 0.5 5.0 30.0 30.14 10.65
0.0 0.5 10.0 0.0 5.14 0.79
0.0 0.5 10.0 10.0 8.34 1.70
0.0 0.5 10.0 20.0 14.83 3.94
0.0 0.5 10.0 30.0 30.14 10.15
0.0 0.5 20.0 0.0 5.14 0.79
0.0 0.5 20.0 10.0 8.34 1.62
0.0 0.5 20.0 20.0 14.83 3.58
0.0 0.5 20.0 30.0 28.19 8.79
0.0 0.5 30.0 0.0 5.14 0.72
0.0 0.5 30.0 10.0 8.34 1.43
0.0 0.5 30.0 20.0 13.83 3.03
0.0 0.5 30.0 30.0 25.11 7.09
0.0 0.5 60.0 0.0 4.34 0.28
0.0 0.5 60.0 10.0 6.33 0.50
0.0 0.5 60.0 20.0 9.81 0.95
0.0 0.5 60.0 30.0 16.68 1.98
0.5 1.0 5.0 0.0 5.14 1.03
0.5 1.0 5.0 10.0 8.34 2.25

Table 1: Continued.

(b/B) (Df/B) β ϕ N′c N′q
0.5 1.0 5.0 20.0 14.83 5.19
0.5 1.0 5.0 30.0 30.14 13.22
0.5 1.0 5.0 40.0 75.31 40.59
0.5 1.0 10.0 0.0 5.14 1.03
0.5 1.0 10.0 10.0 8.34 2.44
0.5 1.0 10.0 20.0 14.83 5.47
0.5 1.0 10.0 30.0 30.14 13.52
0.5 1.0 10.0 40.0 75.31 40.14
0.5 1.0 20.0 0.0 5.14 1.03
0.5 1.0 20.0 10.0 8.34 2.47
0.5 1.0 20.0 20.0 14.83 5.80
0.5 1.0 20.0 30.0 30.14 13.56
0.5 1.0 20.0 40.0 73.61 37.73
0.5 1.0 30.0 0.0 5.14 1.03
0.5 1.0 30.0 10.0 8.34 2.47
0.5 1.0 30.0 20.0 14.83 5.77
0.5 1.0 30.0 30.0 30.14 12.81
0.5 1.0 30.0 40.0 65.57 33.55
0.5 1.0 60.0 0.0 5.14 1.03
0.5 1.0 60.0 10.0 8.34 2.04
0.5 1.0 60.0 20.0 14.83 3.63
0.5 1.0 60.0 30.0 23.09 7.01
0.5 1.0 60.0 40.0 44.19 15.55
1.0 1.0 5.0 0.0 5.14 1.03
1.0 1.0 5.0 10.0 8.34 2.34
1.0 1.0 5.0 20.0 14.83 5.41
1.0 1.0 5.0 30.0 30.14 13.81
1.0 1.0 5.0 40.0 75.31 42.45
1.0 1.0 10.0 0.0 5.14 1.03
1.0 1.0 10.0 10.0 8.34 2.47
1.0 1.0 10.0 20.0 14.83 5.95
1.0 1.0 10.0 30.0 30.14 14.75
1.0 1.0 10.0 40.0 75.31 43.83
1.0 1.0 20.0 0.0 5.14 1.03
1.0 1.0 20.0 10.0 8.34 2.47
1.0 1.0 20.0 20.0 14.83 6.40
1.0 1.0 20.0 30.0 30.14 16.11
1.0 1.0 20.0 40.0 75.31 44.80
1.0 1.0 30.0 0.0 5.14 1.03
1.0 1.0 30.0 10.0 8.34 2.47
1.0 1.0 30.0 20.0 14.83 6.40
1.0 1.0 30.0 30.0 30.14 16.11
1.0 1.0 30.0 40.0 69.76 43.38
1.0 1.0 60.0 0.0 5.14 1.03
1.0 1.0 60.0 10.0 8.34 2.47
1.0 1.0 60.0 20.0 14.83 6.36
1.0 1.0 60.0 30.0 27.14 12.28
1.0 1.0 60.0 40.0 51.44 27.10
0.5 1.5 5.0 0.0 5.14 1.03
0.5 1.5 5.0 10.0 8.34 2.47
0.5 1.5 5.0 20.0 14.83 6.02
0.5 1.5 5.0 30.0 30.14 14.95
0.5 1.5 10.0 0.0 5.14 1.03
0.5 1.5 10.0 10.0 8.34 2.47
0.5 1.5 10.0 20.0 14.83 6.33
0.5 1.5 10.0 30.0 30.14 15.26
0.5 1.5 10.0 40.0 75.31 43.94
0.5 1.5 20.0 0.0 5.14 1.03
0.5 1.5 20.0 10.0 8.34 2.47
0.5 1.5 20.0 20.0 14.83 6.40
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3.1.3. Model (3)—Using the EPR Technique. Finally, the
developed EPR models were limited to the pentagonal level,
for 4 inputs; there are 226 possible terms
(56 + 35+20 + 10+4 + 1� 126) as follows:

∑i�4
i�1

∑j�4
j�1

∑k�4
k�1

∑l�4
l�1

∑m�4
m�1

Xi.Xj.Xk .Xl.Xm +∑i�4
i�1

∑j�4
j�1

∑k�4
k�1

∑l�4
l�1

Xi.Xj.Xk.Xl

+∑i�4
i�1

∑j�4
j�1

∑k�4
k�1

Xi.Xj.Xk

+∑i�4
i�1

∑j�4
j�1

Xi.Xj +∑i�4
i�1

Xi +C.

(4)
*e GA technique was applied on these 126 terms to

select the most effective 6 terms to predict the values of N′c
and N′q. *e output is illustrated in equations (3) and (4),
and their fitness is shown in Figures 3(c) and 4(c). *e
average errors (%) and R2 values were 7.2%–0.994 for N′c
and 17.3%–0.984 for N′q. Both equations (5) and (6) show
that ϕ existed in each term and it got the highest power,
which indicated that it is the most effective parameter, and
other parameters almost had the same importance. Mean-
while, the results of all the developed models are summa-
rized in Tables 5 and 6.

N′c �
ϕ4

45000
+

ϕ

4.1
+
b.β.ϕ

205B
+
Df.ϕ

3

8250B
−
β.ϕ3

98000
+ 5.165,

(5)

N′q �
ϕ4

43350
+

D2
f.ϕ

3

2140B2 +
Df.b.β.ϕ

2

4170B2 −
Df.ϕ

3

1335B

−
Df.β.ϕ

3

100 000B
+ 2.253.

(6)

Table 1: Continued.

(b/B) (Df/B) β ϕ N′c N′q
0.5 1.5 20.0 30.0 30.14 15.20
0.5 1.5 20.0 40.0 75.31 41.04
0.5 1.5 30.0 0.0 5.14 1.03
0.5 1.5 30.0 10.0 8.34 2.47
0.5 1.5 30.0 20.0 14.83 6.40
0.5 1.5 30.0 30.0 30.14 14.23
0.5 1.5 30.0 40.0 72.83 36.18
0.5 1.5 60.0 0.0 5.14 1.03
0.5 1.5 60.0 10.0 8.34 2.19
0.5 1.5 60.0 20.0 14.83 3.85
0.5 1.5 60.0 30.0 25.43 7.28
0.5 1.5 60.0 40.0 48.37 15.77
0.0 1.5 0.0 0.0 5.14 1.03
0.0 1.5 0.0 10.0 8.34 2.47
0.0 1.5 0.0 20.0 14.83 6.40
0.0 1.5 0.0 30.0 30.14 18.40
0.0 1.5 5.0 0.0 5.14 1.03
0.0 1.5 5.0 10.0 8.34 2.47
0.0 1.5 5.0 20.0 14.83 5.79
0.0 1.5 5.0 30.0 30.14 14.40
0.0 1.5 10.0 0.0 5.14 1.03
0.0 1.5 10.0 10.0 8.34 2.47
0.0 1.5 10.0 20.0 14.83 5.85
0.0 1.5 10.0 30.0 30.14 14.13
0.0 1.5 20.0 0.0 5.14 1.03
0.0 1.5 20.0 10.0 8.34 2.47
0.0 1.5 20.0 20.0 14.83 5.65
0.0 1.5 20.0 30.0 30.14 12.93
0.0 1.5 20.0 40.0 75.31 35.14
0.0 1.5 30.0 0.0 5.14 1.03
0.0 1.5 30.0 10.0 8.34 2.47
0.0 1.5 30.0 20.0 14.83 5.04
0.0 1.5 30.0 30.0 30.14 10.99
0.0 1.5 30.0 40.0 68.64 28.23
0.0 1.5 60.0 0.0 5.14 0.62
0.0 1.5 60.0 10.0 8.34 1.04
1.0 1.5 5.0 0.0 5.14 1.03
1.0 1.5 5.0 10.0 8.34 2.47
1.0 1.5 5.0 20.0 14.83 6.21
1.0 1.5 5.0 30.0 30.14 15.45
1.0 1.5 10.0 0.0 5.14 1.03
1.0 1.5 10.0 10.0 8.34 2.47
1.0 1.5 10.0 20.0 14.83 6.40
1.0 1.5 10.0 30.0 30.14 16.30
1.0 1.5 10.0 40.0 75.31 46.93
1.0 1.5 20.0 0.0 5.14 1.03
1.0 1.5 20.0 10.0 8.34 2.47
1.0 1.5 20.0 20.0 14.83 6.40
1.0 1.5 20.0 30.0 30.14 17.48
1.0 1.5 20.0 40.0 75.31 46.85
1.0 1.5 30.0 0.0 5.14 1.03
1.0 1.5 30.0 10.0 8.34 2.47
1.0 1.5 30.0 20.0 14.83 6.40
1.0 1.5 30.0 30.0 30.14 17.48
1.0 1.5 30.0 40.0 75.31 44.32
1.0 1.5 60.0 0.0 5.14 1.03
1.0 1.5 60.0 10.0 8.34 2.47
1.0 1.5 60.0 20.0 14.83 6.17
1.0 1.5 60.0 30.0 29.49 11.69
1.0 1.5 60.0 40.0 55.63 25.26

Table 2: Statistical analysis of the generated database.

Minimum Maximum Mean Std. deviation Variance

b/B 0.00 1.00 0.492 0.412 0.170
Df/B 0.00 1.50 0.735 0.561 0.315
β 0.00 60.00 23.217 19.403 376.491
ϕ 0.00 40.00 18.900 13.848 191.763
N′c 3.62 75.31 21.972 21.100 445.201
N′q 0.28 64.20 12.204 16.766 281.101

Table 3: Pearson correlation matrix.

b/B Df/B β ϕ N′c N′q
b/B 1.000
Df/B 0.023 1.000
β 0.119 −0.011 1.000
ϕ 0.069 −0.031 0.008 1.000
N′c 0.104 0.023 −0.090 0.867 1.000
N′q 0.105 −0.166 −0.044 0.787 0.889 1.000
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Figure 2: Distribution histograms for inputs (in blue) and outputs (in green).
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Figure 3: Continued.
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Figure 3: Relation between the predicted and calculated N′c values using the developed (a) GP, (b) ANN, and (c) EPR models.
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Figure 4: Relation between the predicted and calculated N′q values using the developed (a) GP, (b) ANN, and (c) EPR models.
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Figure 5: Layout for the developed ANN.

Table 4: Connection weights of the developed ANN model.

Predictor
Hidden layer 1 Output layer

H (1 :1) H (1 : 2) H (1 : 3) H (1 : 4) N′c N′q

Input layer

(Bias) −3.177 −0.836 −0.387 −3.987
b/B 0.085 −0.333 0.077 −0.177
Df/B 0.237 −0.185 0.035 −1.768
β −0.511 0.563 −0.187 0.415
ϕ 2.644 −0.109 −0.750 2.130

Hidden layer 1

(Bias) 0.365 0.592
H(1 :1) 2.027 0.730
H (1 : 2) −0.608 −1.372
H (1 : 3) −1.283 −1.470
H (1 : 4) 0.053 2.560
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4. Conclusions

*is research presents three models using three AI tech-
niques, namely, GP, ANN, and EPR, to predict the modified
bearing capacity parameters N′c and N′q using slope angle
(β), angle of internal friction of soil (ϕ), ratio between the
distance to the slope edge and footing width (b/B), and the
ratio between foundation depth and footing width (Df/B).
*e results of comparing the accuracies of the developed
models could be concluded in the following points:

(i) Although five levels of complexity (128 genes in the
chromosome) were used in the GP model, the
achieved accuracy was still low (79.3% and 68.4%
for N′c and N′q, respectively)

(ii) *e prediction accuracies of ANN and EPR models
are close, 93.1% and 92.8% for N′c and 87.0% and
82.7% for N′q, which gives an advantage to the EPR
model because its output is a simple equation and
could be applied either manually or implemented in
software unlike the complicated output of the ANN
which cannot be applied manually

(iii) *e importance analysis of both ANN and EPR
models indicated that (N′c and N′q) values were
mainly governed by ϕ, while other parameters are
minors

(iv) All developed models showed that N′c and N′q
values increase with increasing ϕ, b/B, and Df/B
values and with decreasing β value

(v) GA technique successfully reduced the 126 terms of
the conventional PLR quadratic formula to only 6
terms without a significant impact on its accuracy

(vi) Like any other regression technique, the generated
formulas are valid within the considered range of
parameter values; beyond this range, the prediction
accuracy should be verified

Abbreviations

AI: Artificial intelligence
C: Cohesion
q: Overburden pressure at foundation depth
c: Bulk density of soil below footing
B: Strip footing width

L0: Length of the failure wedge of normal footing
L1: Length of the failure wedge of slopy footing
A0: Area of a rectangular mass on normal footing
A1: Area of a triangular mass on slopy footing
b: Distance of the slope from the footing edge
β: Slope angle
ϕ: Friction
Nc: Bearing capacity coefficient of cohesion
Nq: Bearing capacity coefficient of overburden pressure
Nc: Bearing capacity coefficient of bulk density
N′c: Predicted bearing capacity coefficient of cohesion on

the slope
N′q: Predicted bearing capacity coefficient of overburden

pressure on the slope
ANN: Artificial neural network
GP: Genetic programming’
GA: Genetic algorithm
EPR: Evolutionary polynomial regression
PLR: Polynomial linear regression
SSE: Sum of squared errors
R2: Coefficient of determination.
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