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ABSTRACT
We introduce a new approach to characterizing the unob-
served portion of a distribution, which provides sublinear–
sample estimators achieving arbitrarily small additive con-
stant error for a class of properties that includes entropy
and distribution support size. Additionally, we show new
matching lower bounds. Together, this settles the longstand-
ing question of the sample complexities of these estimation
problems, up to constant factors.
Our algorithm estimates these properties up to an arbi-

trarily small additive constant, using O(n/ log n) samples,
where n is a bound on the support size, or in the case of
estimating the support size, 1/n is a lower bound on the
probability of any element of the domain. Previously, no ex-
plicit sublinear–sample algorithms for either of these prob-
lems were known. Our algorithm is also computationally
extremely efficient, running in time linear in the number of
samples used.
In the second half of the paper, we provide a matching

lower bound of Ω(n/ log n) samples for estimating entropy or
distribution support size to within an additive constant. The
previous lower-bounds on these sample complexities were

n/2O(
√
logn).

To show our lower bound, we prove two new and natural
multivariate central limit theorems (CLTs); the first uses
Stein’s method to relate the sum of independent distribu-
tions to the multivariate Gaussian of corresponding mean
and covariance, under the earthmover distance metric (also
known as the Wasserstein metric). We leverage this central
limit theorem to prove a stronger but more specific central
limit theorem for“generalized multinomial”distributions—a
large class of discrete distributions, parameterized by matri-
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ces, that represents sums of independent binomial or multi-
nomial distributions, and describes many distributions en-
countered in computer science. Convergence here is in the
strong sense of statistical distance, which immediately im-
plies that any algorithm with input drawn from a gener-
alized multinomial distribution behaves essentially as if the
input were drawn from a discretized Gaussian with the same
mean and covariance. Such tools in the multivariate setting
are rare, and we hope this new tool will be of use to the
community.

Categories and Subject Descriptors: F.2 [Analysis of
Algorithms and Problem Complexity]: Miscellaneous

General Terms: Algorithms, Theory.

1. INTRODUCTION
Given samples from an unknown discrete distribution, what

can we infer about the distribution? The empirical distri-
bution of the samples roughly captures the portion of the
distribution which we have observed, but what can we say
about the unobserved portion of the distribution? Answers
to this question are, at least implicitly, central to many es-
timation problems fundamental to statistics. Despite much
research from both the statistics and computer science com-
munities (originating, coincidentally, in independent work of
Fisher [20], and Turing [21]—arguably the founding fathers
of modern statistics and computer science), this question is
still poorly understood. For the two important problems of
estimating the support size, and estimating the entropy of a
distribution, basic questions, such as the sample complexity
of these tasks, have not been resolved. And this is not solely
a theoretical question: in contrast to many tasks for which
existing algorithms or heuristics perform well in practice (in
some cases despite poor worst-case performance), for these
two problems, there seems to be no approach that is fully
embraced by practitioners [13]. Despite this, much of the re-
cent theoretical work on these problems analyzes properties
of existing heuristics. A new, practical algorithm for these
tasks may, potentially, have widespread immediate applica-
tions in the many fields for which these problems arise, in-
cluding Database Management, Biology, Ecology, Genetics,
Linguistics, Neuroscience, and Physics (see the discussion
and extensive bibliographies in [12, 33]).

We introduce a new approach to characterizing the unob-
served portion of a distribution, which provides sublinear–
sample additive estimators for a class of properties that in-
cludes entropy and distribution support size. Together with
our new lower bounds, this settles the longstanding open
question of the sample complexities of these estimation prob-



lems (up to constant factors). Our algorithm estimates these
properties up to an arbitrarily small additive constant, us-
ing O(n/ log n) samples. Our lower bounds show that no
algorithm on o(n/ log n) samples can achieve this. Here, n
is a bound on the support size, and is a natural param-
eterization of the difficulty of estimating entropy.1 Previ-
ously, no explicit sublinear-sample algorithms for either of
these problems were known.2 The previous lower–bounds

on these sample complexities were n/2Θ(
√
logn), given by

Valiant in [41], and a prior slightly weaker bound of

n/2Θ(
√
logn·log logn) for support size given by Raskhodnikova

et al. [35]. Finally, we note that our algorithm runs in time
linear in the number of samples used.
The algorithm we exhibit estimates any statistical prop-

erty which is independent of the labeling of the elements
(“symmetric”) and sufficiently smooth. Rather than directly
trying to estimate a specific property of the distribution, we
instead take the canonical approach and return to the orig-
inal question “what can we infer about the true distribution”
given a sublinear number of samples? Our algorithm returns
a distribution that is, with high probability, “close” in some
sense to the true distribution. Specifically, we return a dis-
tribution D with the property that if we had taken our sam-
ples from the hypothetical D instead of from the unknown
true distribution, then with high probability the number of
support elements occurring once, twice, etc. in this sample
will closely match the corresponding parameters of the ac-
tual sample. How does one find such a distribution? Via
linear programming, the computer scientist’s battle-axe—
bringing this powerful tool to bear on these problems opens
up results that withstood previous approaches to construct-
ing such estimators. Given the distribution D returned by
our algorithm, to obtain an estimate for some property, we
may simply evaluate the property on D. Unsurprisingly, this
yields a very good estimate; surprisingly, one can actually
prove this.

1.1 Central Limit Theorems and Lower Bounds
The matching lower bounds hinge upon our two new mul-

tivariate central limit theorems; the first relates the sum of
independent distributions to the multivariate Gaussian of
corresponding mean and covariance, under the earthmover
distance matric (also known as the Wasserstein metric). Our
proof of this central limit theorem is via Stein’s method. We
leverage this central limit theorem to prove a stronger but
more specific central limit theorem for “generalized multino-
mial” distributions—a large class of discrete distributions,
parameterized by matrices, that generalize binomial and
multinomial distributions and describe many distributions
encountered in computer science (for example, [18, 19, 37,
41]).
Despite the increasing understanding of the various set-

tings for which central limit theorems apply, most of the
attention has been on univariate formulations. And as one
might expect, the number of useful formulations of the cen-
tral limit theorem seems to grow with the dimension; it is,
perhaps, not surprising that the particularly natural and

1For the problem of estimating the distribution support size,
it is typically assumed that all elements in the support occur
with probability at least 1/n, since without such a lower
bound it is impossible to estimate support size.
2See [33] for a nonconstructive proof of the existence of a
o(n)-sample entropy estimator.

useful versions we prove here seem absent from the statis-
tics literature [16].

The connection between our central limit theorem for gen-
eralized multinomial distributions, and estimating symmet-
ric properties of distributions, such as entropy and support
size, is that generalized multinomial distributions capture
the distribution over vectors (m1,m2, . . .), where mi is the
number of domain elements for which we see i representa-
tives in a sample. Our central limit theorem allows us to
cleanly reason about the statistical distance between these
distributions of summary statistics. Specifically, this will
allow us to argue that there are pairs of very different distri-
butionsD,D′—different in terms of entropy, or support size,
for example—such that there is small statistical distance be-
tween the distribution of what we will see given k samples
from D and the distribution of what we will see given k
samples from D′; thus we can conclude that no algorithm
can distinguish a set of k samples from D from a set of k
samples from D′ with high probability, which, in particular,
implies that no estimator for entropy, when given k samples
from D, can accurately return H(D), rather than H(D′).

Finally, we note that the construction and analysis of the
distributions D,D′ requires considerable effort, and involve
two polynomial constructions that may be of independent
interest, one involving Laguerre polynomials, one involving
Hermite polynomials.

1.2 Historical Background
The problem of estimating an unknown discrete distribu-

tion from “too few” samples has a very rich history of study
in both statistics and computer science, with early contri-
butions from both R.A Fisher, and Alan Turing. In the
early 1940’s, R. A. Fisher was approached by a naturalist,
Corbet, who had just returned from two years of collecting
butterflies in the Malay peninsula. Corbet presented Fisher
with data on his butterfly collections—specifically, he in-
dicated the number of species for which he had only seen
a single specimen (118 species), the number of species for
which he had two specimens (74 species), three specimens
(44 species), and so on. Corbet hoped that from this data,
the great statistician Fisher would be able to deduce some
properties of the true distribution of butterflies in Malay,
and in particular, he wanted an estimate of the number of
new species he might discover if he were to return to the
Malay jungle for another 2 years. Using basic properties of
the Poisson distribution, Fisher provided a partial answer to
these questions in [20].

At roughly the same time, at the height of WWII, Alan
Turing and I.J. Good were working on a similar problem in
the rather different context of the pivotal British war–effort
to analyze the statistics of the German Enigma Machine
ciphers. After the war, the results of their work, the Good-
Turing frequency estimation scheme were published [21]. In
addition to many practical applications of the Good-Turing
estimates, there has been considerable recent work from the
computer science community analyzing variants of these es-
timation schemes [29, 31, 32, 42, 43]. While the high–level
goals of these estimators are related to our own, the analysis
typically fixes a distribution and considers the behavior as
the number of samples taken approaches infinity, and thus
is somewhat orthogonal to the questions considered here.

The specific problem of estimating the support size of an
unknown distribution (also referred to as the problem of es-



timating the number of species in a population, or the “dis-
tinct elements problem”) has a very long history of study
and arises in many contexts (see [12] for several hundred
references). Because arbitrarily many species can lie in an
arbitrarily small amount of probability mass, analysis of the
sample complexity of this problem is generally parameter-
ized in terms of n, where elements of the distribution are
restricted to have probability mass at least 1/n. Tight mul-
tiplicative bounds of Ω(n/α2) for approximating the entropy
to a multiplicative factor of α are given in [4, 15] though
they are somewhat unsatisfying as the worst-case instance
is distinguishing a distribution with support size one from a
distribution of support size α2. The first strong lower bounds
for additively approximating the support size were given
in [35], showing that for any constant δ > 0, any estimator
that obtains additive error at most (1/2−δ)n with probabil-

ity at least 2/3 requires at least n/2Θ(
√
logn·log logn) samples.

To the best of our knowledge, there were no improvements
upon the trivial Ω(n) upper bound for this problem.
For the problem of entropy estimation, there has been

recent work from both the computer science and statistics
communities. Batu et al. [6, 7, 8], Guha et al. [23], and
Valiant [41] considered the problem of multiplicatively es-
timating the entropy; in all these works, the estimation al-
gorithm has the following basic form: given a set of sam-
ples, discard the species that occur infrequently and return
the entropy of the empirical distribution of the frequently–
occurring elements, adjusted by some function of the amount
of missing probability mass. In particular, no attempt is
made to understand the portion of the true distribution con-
sisting of infrequently occurring elements—the “unseen”, or
little–seen, portion. In a different direction, Paninski gave
a simple though non–constructive proof of the existence of
a sublinear sample estimator for additively approximating
the entropy to within a constant; the proof is via a direct
application of the Stone-Weierstrass theorem to the set of
Poisson functions [33, 34]. The best previous lower bounds

were n/2Θ(
√
logn), given in [41].

Additionally, there has been much work on estimating
the support size (and the general problem of estimating fre-
quency moments) and estimating the entropy in the setting
of streaming, in which one has access to very little memory
and can perform only a single pass over the data [2, 3, 10,
14, 25, 26, 27, 44].
Teleologically, perhaps the work most similar to our own is

Orlitsky et al.’s investigation into what they term “pattern
maximum likelihood” [1, 30]. Their work is prompted by
the following natural question: given a set of samples, what
distribution maximizes the likelihood of seeing the observed
species frequencies, that is, the number of species observed
once, twice, etc? (What Orlitsky et al. term the pattern of
a sample, we call the fingerprint, as in Definition 3.) While
it seems unclear how to prove that such a likelihood maxi-
mizing distribution would, necessarily, have similar property
values to the true distribution, at least intuitively one might
hope that this is true. From a computational standpoint,
while Orlitsky et al. show that such likelihood maximiz-
ing distributions can be found in some specific settings, the
problem of finding or approximating such distributions in
the general setting seems daunting.

1.2.1 Stein’s Method
Since Stein’s seminal paper [38], presented in 1970, de-

scribing an alternative proof approach—what became known
as “Stein’s method”— for proving Berry-Esseen-style central
limit theorems, there has been a blossoming realization of
its applicability to different settings. In particular, there
have been several successful applications of Stein’s method
in multivariate settings [17, 22, 36].

To prove our first central limit theorem, we closely fol-
low the treatment for the multivariate limit theorem given
by Götze in [22] (see also [11] for an exposition). The dis-
tinction between our first central limit theorem (which is
in terms of earthmover distance), and that of Götze, lies
in the distance metric. Götze’s result shows convergence
in terms of the discrepancy between the probabilities of any
convex set. Applying this result, intuitively, seems to require
decomposing some high-dimensional set into small convex
pieces, which, unfortunately, tends to weaken the result by
exponential factors. It is perhaps for this reason that, de-
spite much enthusiasm for Götze’s result, there is a surpris-
ing absence of applications in the literature, beyond small
constant dimension.

2. DEFINITIONS AND EXAMPLES
We state the key definitions that will be used throughout,

and provide some illustrative examples.

Definition 1. A distribution on [n] = {1, . . . , n} is a
function p : [n] → [0, 1] satisfying

∑
i p(i) = 1. Let Dn de-

note the set of distributions over domain [n].

Throughout this paper, we will use n to denote the size of
the domain of our distribution, and k to denote the number
of samples from it that we have access to.

We now define the notion of a symmetric property. Infor-
mally, symmetric properties are those that are invariant to
renaming the domain elements.

Definition 2. A property of a distribution is a function
π : Dn → R. Additionally, a property is symmetric if, for all
distributions D, and all permutations σ, π(D) = π(D ◦ σ).

Definition 3. Given a sequence of samples X = (x1, . . . , xk),
the associated fingerprint, denoted FX , is the “histogram of
the histogram” of the samples. Formally, FX is the vector
whose ith component, FX(i) is the number of elements in the
domain that occur exactly i ≥ 1 times in sample X. In cases
where the sample X is unambiguous, we omit the subscript.

Throughout, we will be dealing exclusively with symmet-
ric properties. For such properties, the fingerprint of a sam-
ple contains all the useful information about the sample: for
any estimator that uses the actual samples, there is an es-
timator of equal performance that takes as input only the
fingerprint of the samples (see [6, 9], for an easy proof). Note
that in some of the literature the fingerprint is alternately
termed the pattern, histogram, or summary statistics of the
sample.

Throughout, we will be representing sets of samples via
their fingerprint, and analogously, we will be representing
distributions by their histogram.

Definition 4. The histogram of a distribution p is a
mapping h : (0, 1]→ N ∪ {0}, where h(x) = |{i : p(i) = x}|.
Additionally, we allow generalized histograms, which do not
necessarily take integral values.



Any symmetric property is clearly a function of the his-
togram of the distribution. Since h(x) denotes the number of
elements that have probability x, it follows that

∑
x:h(x) �=0 h(x)

equals the support size of the distribution. The probability
mass at probability x is x ·h(x), thus ∑x:h(x) �=0 x ·h(x) = 1,
for any histogram that corresponds to a distribution.
We now define what it means for two distributions to be

“close”; because the values of symmetric properties depend
only upon the histograms of the distributions, we must be
slightly careful in defining this distance metric so as to en-
sure that it will be well–behaved with respect to the prop-
erties we are considering. In particular, “close” distributions
will have similar values of entropy and support size.

Definition 5. For two distributions p1, p2 with respec-
tive histograms h1, h2, we define the relative earthmover dis-
tance between them, R(p1, p2) := R(h1, h2), as the minimum
over all schemes of moving the probability mass of the first
histogram to yield the second histogram, of the cost of mov-
ing that mass, where the per-unit cost of moving mass from
probability x to y is | log(x/y)|.

Note that statistical distance is upper bounded by relative
earthmover distance.
The structure of the distribution of fingerprints intimately

involves the Poisson distribution. Throughout, we use Poi(λ)
to denote the Poisson distribution with expectation λ, and

for a nonnegative integer j, poi(λ, j) := λje−λ

j!
, denotes the

probability that a random variable distributed according to
Poi(λ) takes value j.
We provide two clarifying examples of the above defini-

tions:

Example 1. Consider a sequence of fish species, found as
samples from a certain lake, X = (trout, salmon, trout, cod,
cod, whale, trout, eel, salmon). We have FX = (2, 2, 1), in-
dicating that two species occurred exactly once (whale and
eel), two species occurred exactly twice (salmon and cod),
and one species occurred exactly three times (trout).
Suppose that the true distribution of fish is the following:

Pr(trout) = 1/2, P r(salmon) = 1/4,

P r(cod) = Pr(whale) = Pr(eel) = Pr(shark) = 1/16.

The associated histogram of this distribution is h : R+ → Z

defined by h(1/16) = 4, h(1/4) = 1, h(1/2) = 1, and for
all x �∈ {1/16, 1/4, 1/2}, h(x) = 0. If we now consider a
second distribution over {a, b, c} defined by the probabilities
Pr(a) = 1/2, P r(b) = 1/4, P r(c) = 1/4, and let h′ be its
associated histogram, then the relative earthmover distance

R(h, h′) = 1
4
| log 1/4

1/16
|, since we must take all the mass that

lies at probability 1/16 and move it to probability 1/4 in order
to turn the first distribution into one that yields a histogram
identical to h′.

Example 2. Consider the uniform distribution on [n],
which has histogram h such that h( 1

n
) = n, and h(x) = 0 for

x �= 1
n
. Let k ← Poi(5n) be a Poisson-distributed random

number, and let X be the result of drawing k independent
samples from the distribution. The number of occurrences
of each element of [n] will be independent, and distributed
according to Poi(5). Note that FX(i) and FX(j) are not
independent (since, for example, if FX(i) = n then it must
be the case that FX(j) = 0, for i �= j). A fingerprint of a

typical trial will look roughly like F(i) ≈ n · poi(5, i), for all
i ≥ 1.

Throughout, we will restrict our attention to properties
that satisfy a weak notion of continuity, defined via the rel-
ative earthmover distance.

Definition 6. A symmetric distribution property π is (ε, δ)-
continuous if for all distributions D1, D2 with respective his-
tograms h1, h2 satisfying R(h1, h2) ≤ δ it follows that |π(D1)−
π(D2)| ≤ ε.

We note that both entropy and support size are easily
seen to be continuous with respect to the relative earthmover
distance.

Fact 1. For a distribution p ∈ Dn, and δ > 0

• The entropy, H(p) := −∑
i p(i)·log p(i) is (δ, δ)-continuous,

with respect to the relative earthmover distance.

• The support size S(p) := |{i : p(i) > 0}| is (nδ, δ)-
continuous, with respect to the relative earthmover dis-
tance, over the set of distributions which have no prob-
abilities in the interval (0, 1

n
).

2.1 Property Testers
A property tester takes as input k independent samples

from a distribution, and is considered good if it correctly
classifies the distribution with probability at least 2

3
.

In this paper, we consider the very related notion of a
“Poissonized” tester, which, for a distribution p receives in-
put constructed in the following way:

• Draw k′ ← Poi(k).

• Return k′ samples from p.

The reason why Poissonized testers are substantially eas-
ier to analyze, is the fundamental fact, illustrated in Exam-
ple 2, that the numbers of samples drawn from each element
of the support of p will be independent of each other, and,
specifically, distributed as independent (univariate) Poisson
processes.

Further, we note that these two notions of testing—“regular”
testing, and Poissonized testing—have sample complexities
within a constant factor of each other, since one can sim-
ulate each with the other, with high probability (via tail
bounds). The criteria that testers succeed with probability
2
3
is arbitrary, and, indeed, may be amplified exponentially

by repeating the tester and returning the majority answer.

3. MAIN RESULTS
We introduce a novel approach to creating estimators for

symmetric distribution properties. We hope (and believe)
that variants of our proposed estimator will prove useful in
practice.

Our main technical result is a canonical estimator for
relative-earthmover continuous properties. We stress that
our estimator is truly canonical in that it is agnostic to the
choice of property that one is trying to estimate. In par-
ticular, the estimator works by first constructing a distribu-
tion completely independently of the property in question,
and then simply returning the evaluation of the property on



this distribution. Even if the property in question is com-
putationally intractable to evaluate, the first stage of our
estimator still runs in time linear in the number of samples,
returning a distribution capturing the value of the property.

Theorem 1. For sufficiently large n, and any constant
c > 1, given c n

logn
independent samples from D ∈ Dn, with

probability at least 1 − o( 1
poly(n)

) over the random samples,

our algorithm returns a distribution D′, representable as
an O(c n

logn
)-length vector, such that the relative-earthmover

distance between D and D′ satisfies

R(D,D′) ≤ O

(
1√
c

)
.

Furthermore, our algorithm runs in time O(c n
logn

).

For entropy and support size, Theorem 1 together with
Fact 1 yields:

Corollary 1. There exists a constant c such that for
any positive ε < 1 and sufficiently large n, given c

ε2
n

logn

independent samples from D ∈ Dn, in time O( c
ε2

n
logn

) our

estimator will output a pair of real numbers (h, s) such that
with probability 1− o( 1

poly(n)
)

• h is within ε of the entropy of D, and

• s is within nε of the support size of D, provided none
of the probabilities in D lie in (0, 1

n
).

Our lower bound is the following:

Theorem 2. For any positive constant φ < 1
4
, there ex-

ists a pair of distributions p+, p− that are O(φ| log φ|)-close
in the relative earthmover distance, respectively, to the uni-
form distributions on n and n

2
elements, but which are in-

distinguishable to k = φ
32
· n
logn

-sample testers.

That is, estimating entropy to any constant error less than
log 2
2

requires Θ( n
logn

) samples, as does estimating support
size to any constant error less than n

4
.

Further, by choosing a positive ε < 1 and then construct-
ing the distributions p+ε , p

−
ε that, with probability ε draw

samples from p+, p− respectively and otherwise return an-
other symbol, ⊥, we note that the entropy gap between p+ε
and p−ε is an ε fraction of what it was originally, and further
that distinguishing them clearly requires a factor 1

ε
more

samples. That is,

Corollary 2. For large enough n and small enough ε,
the sample complexity of estimating entropy to within ε grows
as Ω( n

ε logn
).

We note that while the positive results of Theorem 1
match these lower bounds in their dependence on n, there is
a gap in the dependence on the desired accuracy, ε, with a 1

ε

dependence in the lower bounds and a 1
ε2

dependence in the
upper bound. Phrased differently, for an optimal entropy
estimator, as the number of samples increases, does the er-
ror decay linearly, or with the square root of the number of
samples?

0 5 10 15
0

0.05

0.1
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0.2

Figure 1: The binomial distribution with p = 0.1 and 50

samples (red bars), compared with the Gaussian distri-

bution of matching mean and variance (blue curve). The-

orem 3, implies that the earthmover distance between

these distributions is at most 0.9(2.7 + 0.83 log 50).

3.1 Two Multivariate Central Limit Theorems
The proof of our lower bound hinges on our multivariate

central limit theorems. We suspect that these fundamental
limit theorems will have many applications beyond property
testing. Our first central limit theorem, proved directly via
Stein’s method, applies to the very general setting of sums
of bounded independent random variables, and is in terms of
the earthmover distance, also referred to as the Wasserstein
distance metric.

Definition 7. Given two distributions A,B in R
k, then,

letting Lip(Rk, 1) denote the set of functions h : R
k → R

with Lipschitz constant 1, that is, where for any x, y ∈ R
k we

have |h(x)− h(y)| ≤ ||x− y||, then the earthmover distance
between A and B is defined as

dW (A,B) = sup
h∈Lip(Rk,1)

E[h(A)]− E[h(B)].

Theorem 3. Given n independent distributions {Zi} of
mean 0 in R

k and a bound β such ||Zi|| < β for any i and
any sample, then the earthmover distance between

∑n
i=1 Zi

and the normal distribution of corresponding mean (0) and
covariance is at most βk(2.7 + 0.83 log n).

Figure 3.1 provides a simple illustration of Theorem 3, in
the univariate setting (k = 1); of course, in the univariate
setting, such central limit theorems are standard (see [5]).

We note the parameters of Theorem 3: as samples from
more and more distributions are added in, the performance
of the approximation only gets very mildly worse, increasing
with the logarithm of the number of samples, n. In fact, we
strongly suspect that, in analogy with univariate results,
there should be no dependence on n in the theorem. The
linear dependence on k, the dimension, is more fundamental;
it is not hard to show that this dependence must be of order
at least

√
k, so one might conjecture a tight form of the

theorem’s bound to be Θ(β
√
k).

We note that it is somewhat more standard for central
limit theorems of this type to be stated in terms of third
moments, instead of a bound β on each random variable.
In the full version of this paper we do indeed proceed in
this way, and Theorem 3 is derived as a clean special case,
sufficient for our applications.



3.1.1 A CLT for Statistical Distance
To provide algorithmic lower-bounds, we must work with

a much more stringent distance metric than earthmover dis-
tance. In our second central limit theorem, we work with
statistical distance (sometimes referred to as total variation
distance, DTV , or L1 distance). Fundamentally, if distribu-
tions A and B have statistical distance 0.1, then any algo-
rithm taking an input drawn from A must behave identically
at least 90% of the time to the algorithm run on an input
drawn from B.
We first note that the conditions of Theorem 3 are not

strong enough to imply any sort of statistical distance bound:
the discrete distribution illustrated in Figure 3.1 has (maxi-
mal) statistical distance 1 from its Gaussian approximation.
However, the intuition for our second central limit theorem
is the observation that the statistical distance between the
two distributions of Figure 3.1 is in fact very small if we first
round the Gaussian distribution to be supported on the lat-
tice points. We now define the class of distributions to which
our limit theorem will apply.

Definition 8. The generalized multinomial distribution
parameterized by a nonnegative matrix ρ each of whose rows
sum to at most 1, is denoted Mρ, and is defined by the fol-
lowing random process: for each row ρ(i, ·) of matrix ρ, in-
terpret it as a probability distribution over the columns of
ρ—including, if

∑k
j=1 ρ(i, j) < 1, an “invisible” column 0—

and draw a column index from this distribution; return a
row vector recording the total number of samples falling into
each column (the histogram of the samples).

The“invisible”column is used for the same reason that the
binomial distribution is taken to be a univariate distribution;
while one could consider it a bivariate distribution, counting
heads and tails separately, it is convenient to consider tails
“invisible”, as they are implied by the number of heads.

Definition 9. The k-dimensional discretized Gaussian
distribution, with mean μ and covariance matrix Σ, denoted
N disc(μ,Σ), is the distribution with support Zk obtained by
picking a sample according to the Gaussian N (μ,Σ), then
rounding each coordinate to the nearest integer.

Our second central limit theorem, that we leverage for this
paper’s lower bounds, is the following:

Theorem 4. Given a generalized multinomial distribu-
tion Mρ, with k dimensions and n rows, let μ denote its
mean and Σ denote its covariance matrix, then

Dtv

(
Mρ,N disc(μ,Σ)

)
≤ k4/3

σ1/3
· 2.2 · (3.1 + 0.83 log n)2/3,

where σ2 is the minimum eigenvalue of Σ.

We overview some of the key ideas of the proof. Note that
even among distributions over the lattice points, bounds on
the earthmoving distance do not necessarily translate into
bounds on statistical distance—consider a distribution sup-
ported on the even integers, versus one supported only on
the odd integers, or some much worse high-dimensional ana-
logue. However, one elementary and completely general way
to convert earthmover distance bounds, such as those of The-
orem 3, into statistical distance bounds is to convolve the
distributions by a smooth distribution that is ”wide enough”.

Thus the statistical distance between convolved versions
of these distributions is small. We must, however, “decon-
volve” to achieve the desired result. Deconvolution, in gen-
eral, is very poorly behaved and can blow up badly. The
saving grace in our setting is the fact that any multinomial
distribution is in fact unimodal in each coordinate direction.
(Intuitively, at least for the one-dimensional case, unimodal-
ity is what prevents one distribution from being supported
on, say, only the even integers.) Specifically, we prove a “de-
convolution lemma” that has good bounds when the result
of deconvolution is unimodal.

While binomial distributions are trivially unimodal, the
analysis rapidly gets complicated. The general result for the
univariate case is known as Newton’s inequalities. The mul-
tivariate case, which we rely on in our proof of Theorem 4,
was proven only recently in a 2008 work of Gurvits—see Fact
1.10:2 of [24].

4. THE ESTIMATOR
In this section we describe the algorithmic portion of this

work: how to estimate entropy or support size—or indeed
any relative-earthmover continuous property—in k = O( n

logn
)

samples and time.
Given the fingerprint F derived from a set of Poi(k) sam-

ples, we will construct a linear program that has no objective
function, and whose feasible polytope corresponds, roughly,
to a set of “plausible” histograms. Each of these plausible
histograms, h′ has the property that with reasonable prob-
ability, the fingerprint derived from taking Poi(k) samples
from h′ will be quite similar to F . Intuitively, such a his-
togram is a natural guess for the true histogram. We prove
that this intuition is, in fact, correct, in the sense that for
well-behaved properties such as entropy and support size,
with high probability, h′ and the true distribution will have
similar property values. See Figure 4 for several examples
of fingerprints and their corresponding histograms.

Before proceeding, it will be helpful to gain some intu-
ition for the distribution over fingerprints yielded by taking
Poi(k) samples from some histogram h. Since the number
of occurrences of different domain elements are independent
(because we are taking k′ ← Poi(k) samples, instead of ex-
actly k), the probability that some domain element � occurs
exactly i times is simply poi(kx�, i), where x� is the proba-
bility of �. Thus the random variable F(i) can be expressed
as the sum of n independent boolean random variables, and

E[F(i)] =
∑

x:h(x) �=0

h(x)poi(kx, i),

and because of independence, F(i) must be tightly concen-
trated about this expectation.

At this point we can also see why the desired task of
finding a plausible histogram h′ can be represented as a
linear program: the expected fingerprint entries are lin-
ear functions of the histogram values h(x), with coefficients
poi(kx, i). For the sake of clarity we outline a linear program
that illustrates the intuition behind our estimator. Given
input F , the linear program will return a histogram h with
the property that the expected fingerprint of taking Poi(k)
samples closely matches the actual fingerprint entries F .



Intuition. Discretize the histogram support; choose 0 <
x1 < . . . < xm < 1. The LP variables are v = v1, . . . , vm,
where vi is thought of as h(xi). Given a set of k samples
having fingerprint F :
Find v1, . . . , vm ≥ 0 satisfying:

1.
∑m

i=1 xivi = 1 (total probability is 1)

2. ∀j, ∑m
i=1 vi · poi(xik, j) ∈ [F(j)− k.6,F(j) + k.6].

(expected fingerprints are close to F)
There is one slight complication: assume that there is

some element � that occurs very frequently—say with prob-
ability 1/2, thus h(1/2) = 1. Thus E[F(k/2)] ≈ 1/

√
k,

though F(k/2) will not be concentrated about this expecta-
tion since F(k/2) will either be zero, or one. The number of
times � occurs in the sample will be tightly clustered about
its expectation of k/2, however this type of concentration is
quite different from having F(i) tightly concentrated about
its expectation, as is the case in the infrequently occurring
portion of the fingerprints.
To capitalize on these two types of concentration—the

concentration about E[F(i)] for small i, and concentration
in the number of occurrences of frequently occurring elements—
we deal with these two regimes separately. For the frequently-
occurring elements, say elements whose probabilities are at
least k−1+a, for some small constant a ∈ (0, 1), we can sim-
ply let the returned histogram, h′, agree with the empirical
distribution, namely setting h′(j/k) = F(j). For the por-
tion of h′ below probability k−1+a, we would like the fin-
gerprint expectations for samples from h′ to roughly agree
with the observed fingerprints F(j) in this regime (roughly,
for j ≤ k · k−1+a = ka).
To avoid the issues which may arise near the threshold be-

tween the “low probability” and “high probability” regimes ,
we choose the location of this threshold so as to have rela-
tively little probability mass in the nearby region.
Given a k-sample fingerprint F , choose c ∈ [1, 2] such that

the total“mass”in F between frequencies cka and cka+4k.6a

is at most 4k−.4a. Namely,
∑�cka+4k.6a�

j=�cka� jF(j) ≤ 4k1−.4a.

Note that such a choice of c can be found, for otherwise the
total number of samples accounted for by fingerprint entries
in the interval [ka, 2ka] would exceed k.
We now formally define our linear program. Let a = 1/50.

Linear Program 1.
Given a k-sample fingerprint F;
Let A := ck−1+a, B := 4k−1+.6a, and γ := k−3/2,
the LP variables vx ≥ 0 for all x ≤ A+B/2 in the

set X := {γ, 22γ, 32γ, 42γ, . . . , A+B/2}.
Find vx satisfying:

1.
∑

x∈X:x≥A xvx ≤ 16k−. 4a

2.
∑

x∈X xvx +
∑

j≥k(A+B)
j
k
F(j) = 1

3. For all integers i ≤ k(A+B/4),∑
x∈X

vxpoi(kx, i) ∈
[F(i)− 4k.6+a,F(i) + 4k.6+a] .
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Figure 2: Three fingerprints (left column) derived from

10,000 samples, together with the corresponding his-

tograms (right column) from which the samples were

drawn. Intuitively, our estimator is solving the inversion

problem: given a fingerprint, it finds a histogram from

which the samples could, plausibly, have been taken.

We consider a solution of this linear program to be the low-
probability portion of a generalized histogram. In words, the
first condition guarantees that there is relatively little prob-
ability mass near the “threshhold” probability A ≈ k−1+a.
The second condition guarantees that if we adjoin the empir-
ical distribution from F above the threshhold probability to
the linear program solution, the total probability mass will
be 1. The third condition guarantees that if we let Y be a
set of Poi(k) samples from the distribution corresponding to
this “histogram”, for each positive integer i ≤ k(A+B/4) ≈
ka, E[FY (i)] ≈ F(i), up to a slight margin of error.

We remark that we carefully chose the set X of proba-
bilities for which we solve. If we instead take the set X to
be a very fine mesh—for example { 1

k2 ,
2
k2 , . . . , 1}—several

of the proofs would simplify, but then the computation time
to solve the resulting linear program would be O(k7). We
instead opt to take a coarse quadratically-spaced mesh so
as to minimize the number of variables for which we solve.
Perhaps coincidentally, while our approach seems to require

at least k1/4 variables in the LP, we use |X| = Θ(k
1
4
+a) ≤

k1/3.5 variables, and thus the LP can be solved in time linear
in k, the number of samples [28].

Given a solution to the linear program v, the definition
below extends v to yield the histogram hv, which we refer
to as the histogram associated to the solution v. Roughly,
to obtain hv, we start with v and first adjoin the empirical
distribution for probabilities above A+B, then round each
value down to the nearest integer. Finally, to compensate for
the decrease in mass resulting from the rounding, we scale
the support by a factor of 1 + ε (while keeping the values of



the histogram fixed) thereby increasing the total mass in the
histogram by a factor of (1 + ε), where ε is chosen so as to
make the total probability mass equal 1 after the rounding.
We formalize this process below:

Definition 10. Let X = {γ, 22γ, 32γ, 42γ, . . . , A+B/2}
be the set of probabilities for which the linear program solves.
Given a k-fingerprint F and a solution v to the associated
linear program, the corresponding histogram hv is derived
from v according to the following process in which generalized
histogram h′ is constructed, then rounded to create hv.

1. set h′(∗) = 0 and hv(∗) = 0.

2. for all x ∈ X, let h′(x) := vx.

3. for all integers j ≥ k(A+B), let h′(j/k) := F(j).
4. for all probabilities x : h′(x) �= 0, set hv((1 + ε)x) :=

�h′(x)�, where ε :=
∑

x∈X x(vx−	vx
)
1−∑

x∈X x(vx−	vx
) .

Note that the recovered histogram hv is, in fact a his-
togram, since hv : (0, 1] → Z, and, because of the last step,∑

y:hv(y) �=0 yh
v(y) = 1.

Algorithm: 1. The Estimator
Given a set of k samples having fingerprint F:
• Construct the linear program of Definition 1
corresponding to F .
• Find a solution v to the the linear program.
If no solution exists, output FAIL.

• Output histogram hv associated to solution
v, as defined in Definition 10.

The correctness of our estimator is captured in the follow-
ing proposition, which implies Theorem 1:

Proposition 1. For a constant δ ∈ (0, 1], consider a
sample consisting of k independent samples from a distri-
bution h of support size at most δk log k. With probability

at least 1− e−k.04

, the linear program of Definition 1 has a
solution and furthermore, for any solution to the linear pro-
gram, v, the associated histogram hv constructed from v in
Definition 10 satisfies

R(h, hv) = O(
√
δ ·max{1, | log δ|}).

The proof of Theorem 1 has two parts. In the first part, we
show that, with the claimed probability, the linear program
has a feasible point v, whose associated histogram hv is close
in relative earthmover distance to the true distribution, h.
This part is straightforward—intuitively, as long as our grid
of probabilities X is sufficiently fine, the true histogram,
rounded so as to have support X, should be a feasible point.
In the second part of the proof we argue that for any

two solutions to the linear program v, w, their associated
histograms are close in relative earthmover distance. This is
the part of the proof where the benefit of our linear program
becomes apparent, and the n/logn sample complexity is ex-
posed. Unsurprisingly, nearly all of the technical challenge
of our positive results lie in this portion of the proof. Unfor-
tunately, in this extended abstract, we do not have space to
even set up the intuition behind this argument, though we
note that it hinges upon a Chebyshev polynomial construc-
tion, which may be of independent interest.

5. LOWER BOUNDS FOR PROPERTY ES-
TIMATION

In this section we outline the derivation of our lower bounds,
which rests crucially on the central limit theorem for gener-
alized multinomial distributions, Theorem 4.

We provide an explicit construction via Laguerre poly-
nomials of two distributions, p+, p− that are close—in the
relative earthmover metric—to uniform distributions respec-
tively on n and n

2
elements, for n = Θ(k log k). The crucial

and elusive property of the pair p+, p− which we will explain
over the course of this section is that the result of draw-
ing Poi(k) samples from p+ will be information-theoretically
indistinguishable, with high probability, from sampling in-
stead from p−.

Perhaps the most naive way to try to distinguish samples
from p+ versus from p− is via their fingerprint expectations.
So the first step to constructing indistinguishable distribu-
tions is to ensure that the corresponding vectors of finger-
print expectations are approximately equal. As we show,
this is essentially the only step, though proving that the
construction is this “easy” requires considerable work.

5.1 Fourier Analysis, Hermite Polynomials, and
“Fattening”

As introduced in Section 1.1, generalized multinomial dis-
tributions capture the distribution of fingerprints induced by
drawing Poi(k) samples from a given distribution. And thus
the final step of the proof that p+ and p− are indistinguish-
able in Poi(k) samples will be to apply the central limit the-
orem for generalized multinomial distributions (Theorem 4)
to the distributions of fingerprints of p+, p− respectively,
approximating each as a discretized Gaussian. This will be
sufficient provided a) the Gaussians are sufficiently similar,
and b) the statistical distance bound when Theorem 4 is
applied is suitably small. We analyze each part in turn.

5.1.1 Similar Expectations Induce Similar Covari-
ances

For two Gaussians to be statistically close, three things
should hold: the Gaussians have similar expectations; the
Gaussians have similar covariances; and the minimum eigen-
value of the covariance matrix must be large. This third
condition we defer to Section 5.1.2. In this section we argue
the intuition for the somewhat surprising fact that, in the
present setting, similar expectations induce similar covari-
ances.

Recall the effect of a single element of probability x on
the distribution of fingerprints: for each integer i > 0, with
probability poi(xk, i), that element will occur i times in the
sample and hence end up incrementing the ith fingerprint
entry by 1. Thus the contribution of this element to the
expectation of the ith fingerprint entry equals poi(xk, i).

Similarly, since covariance adds for sums of independent
distributions, we may compute the contribution of an el-
ement of probability x to the (i, j)th entry of the finger-
print covariance matrix, which we compute here for the
case i �= j. The covariance of random variables X,Y is
E[XY ]−E[X]E[Y ]; since in our case X represents the event
that the distribution element is sampled i times, and Y rep-
resents the event that it is sampled j times, E[XY ] = 0 as
they can never both occur. Thus the contribution to the



covariance is just

poi(xk, i)poi(xk, j) =
(xk)i+j

e2xki!j!
=

(
i+j
i

)
2(i+j)

poi(2xk, i+ j).

Our claim that similar expectations imply similar covari-
ances may now be rephrased as: each ”skinny poisson” func-
tion poi(2xk, �) can be approximated as a linear combination
of “regular poisson” functions

∑
i αi,�poi(xk, i), with small

coefficients. Specifically, the coefficients αi,� allow one to ap-
proximate the fingerprint covariances as a linear function of
the fingerprint expectations; if one matches, then so does the
other. In fact, one can approximate such a “skinny poisson”
to within ε as a sum of regular poissons using coefficients of
total magnitude (roughly) no more than 1

ε
, indeed, for intu-

itively the same reasons that the analogous claim holds true
for Gaussians. As opposed to the relatively simple case of
Gaussians, proving our claim is perhaps the most technical
part of this paper, making heavy use of Hermite polynomials
in Fourier space.

5.1.2 CLT Performance
If we apply Theorem 4 to the distribution of the first m

fingerprint entries, and the covariance matrix of the distri-
bution of these fingerprint entries has minimum eigenvalue
σ2, then the resulting bound on the statistical distance is
m4/3

σ1/3 times logarithmic factors. Since σ2 is never going to
exceed order of k, we clearly cannot use m = k. That is, we
must apply the central limit theorem to only a small subset
of the fingerprints. Additionally, we must ensure that σ2

is big for this portion—intuitively that the distribution of
these fingerprints is “fat in every direction”.
Set m = log k. We assume that p+ and p− are constructed

so as to be supported on probabilities at most log k
8k

, and
have similar fingerprint expectations and covariances. This
bound of log k

8k
ensures that we will almost never see any ele-

ment of p+ or p− more than log k times; that is, the portion
of the fingerprint below m “captures the whole story”. How-
ever, if we were to try to apply the central limit theorem at
this stage, the bound would be horrendous because the vari-
ance in the higher fingerprints (say the mth), is tiny. Thus
we “fatten” the distributions of fingerprints by smearing a
small (1/polylog(k)) amount of the probability mass in p+

and p− uniformly among probabilities, up to m/k. Because
we fatten p+ and p− identically, their fingerprint expecta-
tions and covariances still closely match. Given the fattened
pair of distributions, we can now obtain satisfactory bounds
from our central limit theorem. To complete the argument,
we make use of the natural coupling of the portions of the
fingerprints above m, stemming from the identical fattened
portions of the distributions p+, p−.
Thus the Hermite polynomial argument guarantees match-

ing covariances; “fattening” in conjunction with our cen-
tral limit theorem for generalized multinomial distributions
guarantees all the rest. What remains is to construct p+, p−

with matching fingerprint expectations.

5.2 The Laguerre Construction
We will construct the pair of histograms, p+, p− explicitly,

via Laguerre polynomials. We begin by letting p+, p− be the
uniform distributions over support n and n/2, respectively.
We then modify p+, p− by transferring some of the probabil-
ity mass to make elements with higher probabilities, so as to

0 50 100
−0.4

−0.2

0

0.2

0.4

0.6
 Plot a

 Plot b
0 20 40 60

−15

−10

−5

0

5
x 10

−6  Plot c

Figure 3: a) The 10th Laguerre polynomial, multiplied

by e−x/2x1/4, illustrating that it behaves as a · ex/2x−1/4 ·
sin(b · √x) for much of the relevant range.

b) f(x), representing histograms p+(x), p−(x) respectively

above and below the x-axis.

c) The discrepancy between the first 40 fingerprint ex-

pectations of p+, p−; the first 10 expected fingerprint

entries almost exactly match, while the discrepancy in

higher fingerprint expectations is larger, though still

bounded by 2 · 10−5.

ensure that the fingerprint expectations of Poi(k) samples
from p+ and p− roughly agree.

The condition that the expected ith fingerprint entries of
p+ and p− agree is simply that

∑
x:p+(x) �=0 p

+(x)poi(kx, i) =∑
x:p−(x) �=0 p

−(x)poi(kx, i). Equivalently, define the function
f(x) : [0, 1] → R by f(x) = p+(x) − p−(x). The condition
that p+ and p− have the same expected first j fingerprints
can be expressed as

∑
x:f(x) �=0 f(x)poi(kx, i) = 0, for all in-

tegers i ≤ j. Since poi(kx, i) := e−kxkixi

i!
, this condition is

equivalent to the function g(x) := f(x)e−kx being orthogo-
nal to polynomials of degree at most j. The following easily
verified fact outlines an approach to creating such a function.

Fact 2. Given a polynomial P of degree j+2 whose roots
{xi} are real and distinct, letting P ′ be the derivative of P ,

then for any � ≤ j we have
∑j+2

i=1

x�
i

P ′(xi)
= 0.

To construct f(x), choose a polynomial P (x) = (x −
1/n)(x− 2/n)

∏j
i=1(x− ri), for some set of j distinct values

ri, with 2/n < ri < 1, then let g(x) be the function that is
supported at the roots of P , and takes value 1/P ′(x) for the
j+2 values of x for which P (x) = 0. To obtain f(x), simply
set f(x) = g(x)ekx.

If we interpret the positive portion of f(x) as p+ and the
negative portion as p−, we will, by Fact 2, have two his-
tograms whose first j fingerprint expectations agree. Addi-
tionally, p+ will have some probability mass at probability
1/n, and p− will have some probability mass at 2/n.

The tricky part, however, is in picking the ri so as to
ensure that most of the probability mass of h1 is on prob-
ability 1/n, and most of the mass of h2 is on probability
2/n. If this is not the case, then p+ and p− will not be close



(in relative–earthmover distance) to the uniform distribu-
tions over n and n/2 elements, respectively and thus may
have similar entropies, or support sizes, failing us as a lower
bound. Further complicating this task, is that whatever
weight is at x > 2/n in g(x), ends up being multiplied by
ekx. To offset this exponential increase, we should carefully
choose the polynomial P so that the inverses of its deriva-
tives, 1/P ′(x), decay exponentially when evaluated at roots
x of P . Such polynomials are hard to come by; fortunately,
the Laguerre polynomials have precisely this property.
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