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ABSTRACT
Precision analysis of galaxy-galaxy strong gravitational lensing images provides a unique way of characterizing small-scale dark
matter halos, and could allow us to uncover the fundamental properties of dark matter’s constituents. Recently, gravitational
imaging techniques made it possible to detect a few heavy subhalos. However, gravitational lenses contain numerous subhalos
and line-of-sight halos, whose subtle imprint is extremely difficult to detect individually. Existing methods for marginalizing over
this large population of sub-threshold perturbers to infer population-level parameters are typically computationally expensive, or
require compressing observations into hand-crafted summary statistics, such as a power spectrum of residuals. Here, we present
the first analysis pipeline to combine parametric lensing models and a recently-developed neural simulation-based inference
technique called truncated marginal neural ratio estimation (TMNRE) to constrain the warm dark matter halo mass function
cutoff scale directly from multiple lensing images. Through a proof-of-concept application to simulated data, we show that our
approach enables empirically testable inference of the dark matter cutoff mass through marginalization over a large population
of realistic perturbers that would be undetectable on their own, and over lens and source parameters uncertainties. To obtain our
results, we combine the signal contained in a set of images with Hubble Space Telescope resolution. Our results suggest that
TMNRE can be a powerful approach to put tight constraints on the mass of warm dark matter in the multi-keV regime, which
will be relevant both for existing lensing data and in the large sample of lenses that will be delivered by near-future telescopes.
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1 INTRODUCTION

Over the past several decades, numerous astrophysical probes in-
cluding rotational curves of spiral galaxies (Rubin et al. 1980),
galaxy-cluster dynamics (Zwicky 1933), cosmic microwave back-
ground (Ade et al. 2016), gravitational lensing observations (Taylor
et al. 1998), have established dark matter (DM) as one of the major
components of theUniverse. However, up to the present time, the fun-
damental nature of DM is still an unresolved puzzle. For many years,
the cold darkmatter (CDM) paradigm (Peebles 1982) has been able to
accurately reproduce vastly disparate large-scale observations across
all epochs. In this model, DM is massive, neutral, non-relativistic,
and collisionless. The main prediction of the CDM paradigm is that
structure formation is due to a hierarchical clustering process, guided
by gravitational instability of DM density perturbations, originated
from quantum fluctuations during inflation.
Despite providing a stunning description of the observed distribu-

tion of matter on large scales (> O(Mpc)), the agreement between
CDMpredictions and observations at galactic and sub-galactic scales
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has been less clear. One of the most well-known small-scales dis-
crepancies of CDM is the missing satellites problem (Moore et al.
1999). Numerical CDM simulations predict that a large population
of DM subhalos, spanning a wide range of masses, should be orbiting
around all main DM halos. However, we have observed a lot fewer
small galaxies in the Local Group than the predicted subhalos below
109 M� (Klypin et al. 1999).

Solutions to this tension include the impact of baryonic processes
or alternativeDMphysics. Baryonic processes from supernovae feed-
back and reionization processes suppress star formation in low-mass
galaxies (Bullock 2010). As a result, most DM subhalos would not
contain sufficiently bright galaxies and thus are more difficult to de-
tect. The other approach requires an alteration ofDMparticle physics,
such that large-scale predictions remain unaffected, but the number
of small-scale substructures is suppressed. One of the alternative
models that has been proposed is warm dark matter (WDM) (Colin
et al. 2000; Lovell et al. 2014). Moreover, its main particle candi-
dates, sterile neutrinos (Boyarsky et al. 2019) and gravitinos (Bond
et al. 1982), arewell-motivated from a particle physics perspective. In
WDM models DM particles have non-negligible thermal velocities
that allow them to free-stream out of density perturbations, effec-
tively preventing small-scale structure formation. The scale at which
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this happens depends onmodel parameters and is parametrised by the
half-mode mass Mhm in the halo mass function (HMF). Therefore,
one of the viable way to discriminate between CDM and alternative
DM models is to constrain the low-mass end of the HMF by probing
small-scale DM halos which are completely devoid of stars and truly
dark, whose only signature is then gravitational.

Strong lensing images analysis. In strong gravitational lensing, the
gravitational field of a mass distribution acts as a lens by distort-
ing and magnifying the light flux coming from a background source
(Kochanek 2004). This effect is sensitive only to how matter is dis-
tributed, regardless of its physical nature (baryonic/DM). Hence, it
provides a direct way of probing the distribution of DM at small
scales, by means of the distortions to the images due to substructures
on top of the main lens mass distribution. Therefore, gravitational
lensing provides a pristine probe of small-scale structures and can in
principle distinguish between CDM and WDM scenarios.
Various different methods have been suggested to analyse the ef-

fects of small-scale structures on lensing images (Drlica-Wagner et al.
2019). These methods usually target two different types of lensing
systems that differ in the lensed source: extended background galax-
ies that get lensed into extended arcs or complete Einstein rings,
and almost point-like quasars that get lensed into multiple point-like
projections.
Quasar lensing was first used in Mao & Schneider (1998) to con-

strain the amount of DM substructures by analysing the deviations in
the relative fluxes of the multiple source projections from a smooth
lens model. Later, Dalal & Kochanek (2002) derived a statistical
constraint on the substructure fraction in the lensing galaxies using
a small sample of seven lensed quasars. Nierenberg et al. (2014)
showed that flux-ratio anomalies can also be used to detect individ-
ual low-mass subhalos. Several studies derived upper limits on the
half-mode mass Mhm (Nierenberg et al. 2017; Gilman et al. 2018),
also including perturbations due to line-of-sight (LOS) halos (Gilman
et al. 2019a,b). Further investigations (Hsueh et al. 2016, 2017, 2019)
pointed out the importance of correctly modeling baryonic structure
in the main lens, in order to avoid systematic errors while constrain-
ing DM substructure abundance with flux-ratio anomalies.
On the other hand, in strong-lens systems where the background

source is a galaxy, massive substructures can leave a signature in
the form of percent-level variations in the shape of the predicted
lensed light based on a smooth lens model. The gravitational imaging
technique, which models these distortions, was first introduced in
Koopmans (2005) and further developed in Vegetti & Koopmans
(2009a,b). Its application to real data has lead to several detections
of individual heavy (> 108M�) subhalos (Vegetti et al. 2010a,b,
2012; Hezaveh et al. 2016a). Moreover, samples of gravitational
lens systems have been analyzed in Vegetti et al. (2014, 2018), and,
including LOS halos modeling, in Ritondale et al. (2019), in order to
derive constraints on the HMF using detections and non-detections
of individual substructures.
A population of low-mass halos can collectively cause perturba-

tions to images that can be detected statistically in order to constrain
the HMF. In reality, constraining collective substructure properties
from gravitational lensing images is an extremely difficult problem.
In fact, inferring marginal posteriors for the HMF cutoff requires
marginalizing over all source, lens, and substructures parameters to
get the marginal likelihood for the population-level parameter of
interest, thus involving a time-consuming exploration of a very high-
dimensional parameter space for complex realistic models. There-
fore, Markov chain Monte-Carlo (MCMC) or nested sampling meth-

ods would imply an intractable sampling from the high-dimensional
joint posterior.
To partially overcome traditional likelihood-based methods’ chal-

lenges, Brewer et al. (2015) and Daylan et al. (2018) performed in-
ference on subhalos using a likelihood-based method called transdi-
mensional Bayesian inference. This approach uses transdimensional
MCMC sampling over the union of different models, with different
numbers of subhalos, to infer a probability for the subhalos catalog.
In order to reduce the dimensionality of the problem and enable

inference of the collective effects of a large number of low-mass
substructures at the statistical level, Hezaveh et al. (2016b) proposed
to use the power spectrum (PS) of the lensed deflection field. Sub-
sequently, Diaz Rivero et al. (2018) developed a theoretical general
formalism to compute the convergence PS for different subhalo pop-
ulations from first principles, which was adopted in Díaz Rivero et al.
(2018) and Brennan et al. (2019). This formalism has been recently
expanded to account for LOS halos in Çaǧan Şengül et al. (2020).
However, this approach is not directly applicable to observations, be-
cause we do not have access to the true displacement field from the
data. Chatterjee & Koopmans (2017), Bayer et al. (2018) and Cyr-
Racine et al. (2019) developed statistical formalisms to relate PS of
the surface brightness fluctuations in strong lens images to the lens
potential fluctuations arising from DM distribution, that contribute
to the convergence PS. And Bayer et al. (2018) applied it to a real
observation.
Instead, Birrer et al. (2017) andHe et al. (2020) employed the resid-

ual PS summary statistic, given by the subtraction of a smooth lens
model from the data, to constrain the half-mode mass Mhm. For the
analysis they used approximate Bayesian computation, a likelihood-
free inference method based on a rejection algorithm (Grazian & Fan
2019).
Another class of methods that has developed in recent years uses

neural networks to measure lens parameters (Hezaveh et al. 2017;
Perreault Levasseur et al. 2017; Morningstar et al. 2019), quanti-
fying the structure of gravitational lens potential (Vernardos et al.
2020), detect individual subhalos (Diaz Rivero & Dvorkin 2020),
and distinguish different types of DM substructure (Alexander et al.
2020). Still, these methods need lots of data to amortize over all
possible variations in lensing systems. In fact, amortized methods
learn the posterior for any data, generated by any parameter over the
whole range of the prior (Cranmer et al. 2020). But learning an amor-
tized posterior is unnecessary if only a small range of parameters are
consistent with a target observation.

In this work we present the first analysis pipeline that combines
parametric lensing models with recent neural simulation-based in-
ference developments (Cranmer et al. 2020) to infer the DM mass
cutoff scale from a set of realistic simulated galaxy-galaxy strong
lenses, by combining their signal. In fact, there are currently around
a hundred strong lensing observations suitable for substructure in-
ference, most of which come from the SLACS (Bolton et al. 2006)
and BELLS (Brownstein et al. 2011) surveys. In the near future, new
and future telescopes like JWST (Gardner et al. 2006), ELT (Simon
et al. 2019), Euclid (Refregier et al. 2010; Laureĳs et al. 2011), SKA
(Koopmans et al. 2004), and LSST (Abolfathi et al. 2021) will de-
liver thousands of very high precision galaxy-galaxy lensing images
(McKean et al. 2015). It is then extremely important to be able to
combine the information coming from different observations in the
statistical analysis.
For the statistical analysis we employ truncated marginal neural

ratio estimation (TMNRE). Developed by Hermans et al. (2020) and
Miller et al. (2020), marginal neural ratio estimation (MNRE) is a
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neural simulation-based inference method that makes it possible to
learn the marginal posterior approximation for a specified subset of
model parameters of interest directly from the full input data that,
in our case, corresponds to the observed lensed images, without the
need for hand-crafted summary statistics. This method improves the
simulator efficiency and the quality of inference. Moreover, MNRE
is amortized, which enables important statistical consistency tests,
which would have been extremely expensive with likelihood-based
inference, like the expected coverage test we employ in subsec-
tion 4.5. Up to now, this approach has been applied in simplified
modeling frameworks: Hermans et al. (2020) focuses on recover-
ing the Einstein radius of a gravitational lens marginalizing over
15 source and lens mass distribution parameters, whereas Brehmer
et al. (2019) estimates the slope and normalization of a CDM sub-
halo mass function. Simulation-based inference using neural pos-
terior density estimator and hierarchical inference have also been
employed in Wagner-Carena et al. (2022) to infer the CDM subhalo
mass function normalization from a set of strong-lensing images,
generated using real galaxy images as a source model, including
realistic observational noise effects from Hubble Space Telescope
(HST) and accounting for the mean expected convergence from LOS
halos.
TMNRE is able to target the inference to a specific observation at

hand rather than amortize over all possible parameters combinations,
by successively focusing simulations on the parameter regions that
are most relevant for the inference problem (Miller et al. 2021). This
targeted approach is more efficient when most posterior density is
concentrated compared to the prior density, which is the case for lens
and source parameters. This truncation method applied to strong-
lensing images was proposed in Karchev et al. (2021) and used in
Coogan et al. (2020, 2022) to learn marginal posterior approxima-
tions for individual subhalo parameters, marginalizing over lens and
source uncertainties given an observation. It has also been recently
applied to analysis of the CMB (Cole et al. 2021).
The main goal of this work is to demonstrate that our TMNRE

approach is sensitive to the HMF half-mode mass Mhm given a
set of HST resolution observations, and it is able to efficiently and
accurately infer its statistic.
The paper is structured as follows. In section 2 we describe how

we model strong-lens observations with analytic source, lens, and
substructure population that accounts for both subhalos and LOS
halos. In section 3 we discuss the inference methodology employed
in the statistical analysis: TMNRE. Finally, we show our results
in section 4 and conclude in section 6. This work paves the way
for combining the presented statistical analysis with more realistic
strong lensing source models and for future applications to real high-
resolution data in upcoming works.

2 STRONG-LENSING MODEL

In this section, we review how we model strong lensing images.
In strong-lensing systems the mass distribution of a foreground
galaxy gravitationally lenses the light rays coming from a background
source, resulting in an arc-like image in the case of an extended
galaxy source. Under the assumptions of the thin-lens formalism
(Meneghetti 2016), the lens-plane and source-plane coordinates of a
light ray, respectively ®b and ®𝑥, are related by the simple ray-tracing
equation:

®𝑥 = ®b − ®𝛼( ®b). (1)

The displacement field ®𝛼 can be computed as

®𝛼( ®b) = 4𝐺
𝑐2

𝐷𝑙𝑠

𝐷𝑙𝐷𝑠

∫
d2 (𝐷𝑙

®b ′)
®b − ®b ′

| ®b − ®b ′ |2
Σ( ®b ′), (2)

where we have introduced the angular diameter distance from the
observer to the lens 𝐷𝑙 , from the observer to the source 𝐷𝑠 , and
from the lens to the source 𝐷𝑙𝑠 . The projected mass density is given
by the integral of the 3D lensing mass density 𝜌:

Σ( ®b) =
∫
d𝑧 𝜌( ®b, 𝑧), (3)

where 𝑧 is the coordinate perpendicular to the lens plane. It is also
useful to define the convergence ^ in terms of the critical surface
density Σcr,𝑙 on the lens plane as:

^( ®b) =
Σ( ®b)
Σcr,𝑙

, Σcr,𝑙 ≡
𝑐2

4𝜋𝐺
𝐷𝑠

𝐷𝑙𝐷𝑙𝑠
, (4)

where 𝑐 is the speed of light and 𝐺 is the gravitational constant. It
can be shown that the convergence ^ is related to the trace of the
Jacobian of the lensing transformation, and it represents the lens
mass distribution.
Strong-lensing systems are then represented by two main ingredi-

ents: the lens model, which describes the total mass distribution of
the lens, and the source model, which describes the surface bright-
ness profile of the background source. It is common to split the lens
model into a macroscopic smooth component (main lens and exter-
nal shear) and a substructure1 component, due to subhalos and LOS
halos. Each ingredient can be directly superimposed by summing
their respective displacement fields in the lens plane:

®𝛼 = ®𝛼lens + ®𝛼ext +
𝑁sub∑︁
𝑖=1

®𝛼sub,i +
𝑁los∑︁
𝑖=1

®𝛼los,i. (5)

In the following subsections, we will describe each component of
the model, which we summarize in Table 1.

2.1 Main lens model

Wemodel the lensmass distribution smooth component with a singu-
lar power-law ellipsoid (SPLE) lens (Suyu et al. 2009) plus external
shear. The latter accounts for matter in the lens surroundings and de-
scribes large-scale effects constant across the image. For a detailed
description of these two ingredients, we refer the reader to Karchev
et al. (2021). We end up with eight parameters in total that we col-
lect in the vector θ𝑙 ≡ {𝑟Ein, b0,𝑥 , b0,𝑦 , 𝑞𝑙 , 𝜙𝑙 , 𝛾, 𝛾1, 𝛾2}, the first six
from the SPLE for the main-lens mass distribution and the last two
for external shear.
When simulating data (see subsection 4.1), we always use the same

SPLE slope that produced the mock observation2 we are analysing
(as fixed in Table 1) instead of inferring it for simplicity.3

1 Throughout our work, we use the terms ‘small-scale structures’, ‘substruc-
tures’, and ‘low-mass halos’ when considering both subhalos of the main lens
and LOS halos.
2 Throughout our work, we use the terms “simulated data” for data used
during inference and “mock observations” for the simulated data that we
analyse.
3 In principle, inferring the slope is possible, but it requires more training
data and leads to increased uncertainties in both lens and source parameters.
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Table 1. Summary of model parameters used for the simulated images in this
work. When a prior distribution is not specified, the parameter is fixed to the
true value.

Parameter True value Prior Description

Main lens SPLE
𝑟Ein [′′] U(1., 2.) Einstein radius
b0,𝑥 [′′] U(−0.2, 0.2) lens center x axis
b0,𝑦 [′′] U(−0.2, 0.2) lens center y axis
𝑞𝑙 U(0.1, 1.) axis ratio
𝜙𝑙 [rad] U(0, 2𝜋) rotation angle
𝛾 2.1 - slope
𝑧lens 0.5 - lens redshift

External shear
𝛾1 U(−0.05, 0.05) 1st component
𝛾2 U(−0.05, 0.05) 2nd component

Source Sérsic
𝐼𝑒 U(0., 4.) surface intensity
𝑟𝑒 [′′] U(0.1, 2.5) effective radius
𝑥0 [′′] U(−0.1, 0.1) source center x axis
𝑦0 [′′] U(−0.1, 0.1) source center y axis
𝑞𝑠 U(0.1, 1.) axis ratio
𝜙𝑠 [rad] U(0, 2𝜋) position angle
𝑛 U(0.1, 4.) index
𝑧src 2 - source redshift

Subhalos tNFW
®𝑝 [′′] ∈ [−2.5, 2.5] U2D (−2.5, 2.5) position
𝑚200 [M�] ∈ [107, 1010 ] Giocoli et al. (2010) virial mass
𝑐200 15. - concentration
𝜏 6. - truncation

LOS halos projected tNFW
®𝑝 [′′] ∈ [−2.5, 2.5] U2D (−2.5, 2.5) position
𝑚200 [M�] ∈ [107, 1010 ] Tinker et al. (2008) virial mass
𝑧LOS ∈ [0, 𝑧src ] Tinker et al. (2008) LOS redshift
𝑐200 15. - concentration
𝜏 6. - truncation

WDM
Mhm [M�] logU(107, 1010) half-mode mass

2.2 Source model

To model the surface brightness of the source galaxy, we adopt a
Sérsic profile (Sérsic 1963). The surface brightness distribution is
given by

𝛽(𝑥, 𝑦) = 𝐼𝑒 exp
−𝑘𝑛


(
𝑟 (𝑥, 𝑦)
𝑟𝑒

)1/𝑛
− 1


, (6)

where 𝐼𝑒 is the surface intensity at the half-light radius 𝑟𝑒, 𝑟 (𝑥, 𝑦) =√︃
𝑟2𝑥 + 𝑟2𝑦 is the elliptical radial coordinate, and the normalization 𝑘𝑛
depends on the index 𝑛. We give more details about the Sérsic profile
modeling and parameters in appendix A. In total, the analytic source
is parametrised with seven variables that we collect in the vector
θ𝑠 ≡ {𝐼𝑒, 𝑟𝑒, 𝑥0, 𝑦0, 𝑞𝑠 , 𝜙𝑠 , 𝑛}.

2.3 Small-scale structures model

Substructures can be divided into two categories: subhalos that orbit
around the main halo at the lens redshift, and LOS halos distributed
between the source and the observer. LOS halos are a more direct
probe of free-streaming-induced small-scale structure suppression,
because they are less affected by baryonic processes and environ-
mental effects, such tidal stripping interactions with the main halo
(Despali et al. 2018). For this reason and the fact that they are expected
to be more abundant than subhalos in a lensing system (Despali et al.

Figure 1. Convergence map for a CDM subhalo population in the adopted
mass range. The convergence map shows how the deflecting mass from all
the subhalo lenses is distributed. The full map size is 1 × 1 Mpc. We mark in
red the virial radius of the main lens halo, in blue its Einstein radius, and in
orange the 5 × 5 arcsec lensing image area.

Figure 2. LOS halos distribution in redshift for our source and lens redshifts
configuration, described in Table 1.

2018; He et al. 2021), it is very important to model them as well, in
order to correctly estimate the collective effects of all substructures
on the lensing image.

2.3.1 Density profile

To model the density profiles of small-scale DM halos we adopt
the smoothly truncated universal 3D mass density profile from Baltz
et al. (2009):

𝜌tNFW (𝑟) =
𝜌𝑠

𝑟/𝑟𝑠 (1 + 𝑟/𝑟𝑠)2
1

1 + (𝑟/𝑟𝑡 )2
. (7)

Here 𝑟 is the three-dimensional distance from the center of the halo,
𝜌𝑠 and 𝑟𝑠 are respectively the scale density and scale radius that
specify anNavarro-Frenk-White (NFW) profile (Navarro et al. 1997),
and 𝑟𝑡 ≡ 𝜏𝑟𝑠 is the tidal truncation radius that depends on the history
of the subhalo. Typical values of the truncation scale 𝜏 range from
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4 − 10 for spherically symmetric lenses (Gilman et al. 2019b; Cyr-
Racine et al. 2019); we fix 𝜏 = 6 for simplicity. Compared to the
standard NFW form, which has an infinite total mass, the truncated
NFW (tNFW) contains an additional truncation term that makes the
profile decay as 𝑟−5 for large radii, resulting in a finite total mass
given by:

𝑚𝜏 = 4𝜋𝜌𝑠𝑟3𝑠
𝜏2

(𝜏2 + 1)2
[(𝜏2 − 1) ln 𝜏 + 𝜏𝜋 − (𝜏2 + 1)] . (8)

With a fixed truncation scale, the tNFW profile is fully determined
by the same parameters that determine the NFW profile: the virial
mass 𝑚2004 and the concentration 𝑐200 = 𝑟200/𝑟𝑠 of the halo. The
latter measures how concentrated the mass of a halo is and fixes the
density normalization; in principle, it varies from one subhalo to the
next and shows dependencies on mass and redshift of the main halo.
In this paper, instead of adopting a concentration-mass relation, we
fix 𝑐200 = 15 in accordance with Richings et al. (2021). We would
like to note that accounting for the scatter in the mass-concentration
relation might boost the expected lensing signal from a low-mass
halo (Amorisco et al. 2021).
LOS halos are also modeled with a tNFW profile following the

prescription by Çaǧan Şengül et al. (2020), which shows how to treat
halos along the line-of-sight as effective subhalos on the main-lens
plane, with a modified scale radius and mass. We give more details
on this procedure in appendix B. For LOS halos we adopt the same
concentration and truncation scale values used for subhalos.
The equations for calculating the displacement field of a tNFW

halo, given its mass and position, are fully elaborated by Baltz et al.
(2009, Appendix A).

2.3.2 Mass and spatial distributions

We sample subhalo masses from the CDM mass function of Giocoli
et al. (2010):

1
𝑀

d𝑛sub (𝑚200, 𝑧)
d log𝑚200

∝ (1 + 𝑧)1/2𝑚𝛼
200 exp

[
−𝛽

(𝑚200
𝑀

)3]
, (9)

where 𝑀 is the main halo’s mass and 𝑚200 the subhalo mass 5. We
use the normalization, slope and exponential cutoff of the subhalo
mass function from Despali & Vegetti (2017). The expected number
of subhalos in a given mass interval for the lens halo system can be
computed by integrating the mass function over that interval.
For LOS halos masses we use the Tinker et al. (2008) CDM halo

mass function assuming an overdensity with respect to the critical
density of the Universe at the epoch of analysis of Δ = 200. For both
subhalos and LOS halos we adopt the following mass range, with
𝑚200,min = 107 M� and 𝑚200,max = 1010 M� . The upper limit is
chosen based on the assumption that more massive halos would be
visible and could therefore be modeled independently. The lower one

4 We parameterize subhalos by what would be their mass up to the virial
radius 𝑟200 using the untruncated profile, with the same central density 𝜌𝑠
and scale radius 𝑟𝑠 as the truncated one.
5 The total mass of the lens galaxy is described by the Einstein radius of the
system, a very well-constrained parameter in lensing inference analyses. For
the purpose of describing subhalos, we need to be able to map the measured
properties of the lens (the Einstein radius 𝑟Ein) onto the properties of the host
halo (the mass 𝑀 ). For simplicity, we compute the mass of the host halo
transforming the Einstein radius distance measure into a mass measure. We
would like to point out a similar approach from Brehmer et al. (2019), where
they relate the central velocity dispersion of a singular isothermal ellipsoid
lens mass distribution profile to the virial mass of the host halo.

is fiducial, and we plan on investigating more the sensitivity of our
inference in the future.
The spatial distribution of subhalos has been shown to follow an

Einasto profile (Springel et al. 2008). However, since the virial radius
of a typical main lens halo is much larger than its Einstein radius, and
hence, than the image plane, we approximate the distribution to be
uniform in the lensing image area. Still, we derive the total number of
expected subhalos within the image via the Einasto fit of Despali &
Vegetti (2017). We find that on average �̄�sub = 4 subhalos fall within
the lensing image area in our adopted lensing configuration and mass
range. When generating a simulated image, we draw the number of
subhalos from Poisson(�̄�sub), we then sample their masses from the
subhalo mass function in Equation 9 and sample their projected
positions uniformly over the lensing image area. In Figure 1 we show
the convergence map for one realization of our subhalo population.
LOShalos are rendered in a double-cone geometrywith the lensing

image area as an opening angle, and closing angle such that the cone
closes at the source redshift, as described in Çaǧan Şengül et al.
(2020, Figure 3). We infer the number of detectable LOS halos by
integrating their mass function in the mass range adopted for the
analysis and within the double-cone volume

�̄�los =

∫ 𝑧src

0

∫ 𝑚200,max

𝑚200,min

𝑛los (𝑚200, 𝑧) d𝑚200
d𝑉
d𝑧
d𝑧. (10)

On average we get �̄�los = 260 LOS halos projected in our lens
plane. Similarly to what we do with the subhalo population, when
generating simulated images, we draw the number of LOS halos
from Poisson(�̄�los), we then sample their masses and redshift from
the Tinker et al. (2008) halo mass function and sample their projected
positions uniformly over the lensing image area. In Figure 2 we show
the distribution of LOS halos in redshift for our lens and source
redshifts configuration.
Finally, we label the vector of all substructure parameters with

θℎ ≡ {𝒎200,sub, ®𝒑sub,𝒎200,los, ®𝒑los, 𝒛los}, wherewe use bold letters
to denote arrays (e.g. 𝒎200,sub is an ordered set of masses, one for
each simulated subhalo) and bold letters with an arrow to indicate
arrays of vectors (e.g. ®𝒑sub is an ordered set of positions in the lens
plane, one for each simulated subhalo).

2.4 Modelling free-streaming effects in WDM

The free-streaming effects ofWDMarewell described in terms of the
half-mode wavelength _hm, which corresponds to the scale at which
the DM transfer function falls to half the CDM transfer function. We
can define the half-mode mass as the mass contained within a radius
of the half-mode wavelength:

Mhm =
4𝜋ΩM𝜌crit

3

(
_hm
2

)3
, (11)

where ΩM is the matter density parameter and 𝜌crit is the critical
density of the Universe. Following Schneider et al. (2012), the half-
mode wavelength,

_hm = 2𝜋𝛼hm
(
2a/5 − 1

)−1/(2a)
, (12)

is the scale below which the initial density perturbations are com-
pletely erased, with a = 1.12 and, assuming that all DM is warm,

𝛼hm = 0.049
(𝑚WDM
keV

)−1.11 (
ΩDM
0.025

)0.11 (
ℎ

0.7

)1.22
ℎ−1Mpc.

(13)
We then have a one-to-onemapping between themass of theWDM
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Figure 3. Top: Convergence maps for a population of LOS halos with masses sampled from the CDM HMF in the adopted mass range (Table 1) and projected
in the lens plane following the prescription from Çaǧan Şengül et al. (2020). In the second to fourth columns, we imitate the effect of WDMwith different cutoff
masses (as labeled in the titles) via our smoothing scheme. Bottom: We show the probability with which LOS halos do not get smoothed, equal to the ratio
between the WDM and the CDM HMF (Equation 14). The smoothing is stochastic, so for each realization of the smoothing different halos are smoothed.

particle and the half-mode mass. For strong lensing, the half-mode
mass can be thought of as an effective cutoff mass below which the
DMmass function is strongly suppressed. To model this suppression
in the WDM mass function we adopt for both subhalos and LOS
halos the functional form from Lovell (2020):

𝑛WDM
𝑛CDM

=

(
1 +

(
𝛼
Mhm
𝑚200

)𝛽)𝛾
, (14)

with best fit parameters 𝛼 = 4.2, 𝛽 = 2.5, and 𝛾 = 0.2 for subhalos,
𝛼 = 2.3, 𝛽 = 0.8, and 𝛾 = 1 for central halos.

2.4.1 Smoothing substructures

The observational signature of WDM is, thus, the absence of small-
scale structures. However, in the current parameterization, this is
accompanied by the removal of the corresponding mass enclosed
in them, whereas in reality the mass will still be present but will be
diffused throughout the smoothmain halo. This effect ismanifested in
a correlation between the half-modemass and the main-halo Einstein
radius: suppressing more substructure leads to an increase in the
inferred Einstein radius since the total mass of the system (within
the image) is tightly constrained by the size of the observed ring (or
arcs).
We introduce a prescription for dealing with this degeneracy,

which well captures the physical reality of structure suppression due
to free streaming. Halos that should be suppressed are not present be-
cause the DM particles that should make them up are freely stream-
ing, and their mass is therefore more diluted throughout the main
halo. Therefore, rather than removing or adding substructures as a
response to a changing cutoff, we still sample substructures from the
CDM mass function, but we smooth the displacement field gener-
ated by halos that should be suppressed based on the aforementioned

prescription by Lovell (2020) to hide their lensing signature. In other
words, each sampled small-scale halo has a probability equal to the
ratio between the WDM and the CDM HMF (Equation 14) of not
being smoothed.
We then effect the smoothing by convolving the deflection field of

each individual sub-/LOS halo with a radially-symmetric filter

𝑓 ∝ 1 − exp
(
−

(
𝑟

𝑟smooth

)𝑛smooth )
. (15)

This filtering preserves the far-field lensing signature of the halo,
which is only determined by its total mass. By default, we choose the
smoothing scale to be equal to the halo virial radius: 𝑟smooth = 𝑟200,
and the smoothing exponent 𝑛smooth = 2.
In the top row of Figure 3 we visualize the convergencemaps in the

lens plane for the same realization of LOS halos drawn from CDM
distributions (panel 1), and with different cutoffmasses implemented
with our smoothing scheme (panels 2-4). In the bottom row, we show
howwe decide to smooth the lensing signature of certain halos based
on the ratio between the WDM and the CDM HMF (Equation 14).

3 STATISTICAL ANALYSIS

Constraining the fundamental properties of DM by characterizing
the population of DM halos in a strong lensing image is an extremely
difficult problem since the signal we are interested in has a sub-
percent level influence on images dominated by statistical noise.
The problem is further complicated by the large differences between
images of different lensing systems.
Our ultimate goal is to compute the marginal posterior 𝑝(𝜗 |𝒙) for

a single parameter of interest 𝜗 = Mhm, the half mode mass, given
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an observation 𝒙, for which we have the generative model

𝑝(𝒙, θ𝑠 , θ𝑙 , θℎ , 𝜗) = 𝑝(𝒙 |θ𝑠 , θ𝑙 , θℎ , 𝜗)𝑝(θ𝑠)𝑝(θℎ |θ𝑙 , 𝜗)𝑝(θ𝑙)𝑝(𝜗).
(16)

The first factor on the right-hand side is the simulator, while the
other factors denote the priors on the various source, lens, and DM
substructures parameters as listed in Table 1.
Therefore, in order to derive 𝑝(𝜗 |𝒙) we need to marginalise over

all the nuisance parameters η ≡ {θ𝑙 , θ𝑠 , θℎ}:

𝑝(𝜗 |𝒙) = 𝑝(𝒙 |𝜗)
𝑝(𝒙) 𝑝(𝜗) =

∫
dη 𝑝(η)𝑝(𝒙 |𝜗,η)

𝑝(𝒙) 𝑝(𝜗). (17)

This is a very high-dimensional and multi-modal integral, even for
simple analytical lens and source models, due to the large population
of interchangeable substructures. Therefore, it is intractable, which
renders likelihood-based inference infeasible in this case.
Instead, we approximate 𝑝(𝜗 |𝒙) using simulation-based inference

with amortized approximate ratio estimators (Hermans et al. 2020).
In particular, we employ the TMNRE algorithm developed by Miller
et al. (2020, 2021) and implemented in the package swyft 6.

3.1 Marginal neural ratio estimation

MNRE (Miller et al. 2020) sets up a classification problem which
produces an estimate 𝑟 (𝒙, 𝜗) of the marginal likelihood-to-evidence
ratio:

𝑟 (𝒙, 𝜗) ≡ 𝑝(𝜗 |𝒙)
𝑝(𝜗) =

𝑝(𝒙 |𝜗)
𝑝(𝒙) =

𝑝(𝒙, 𝜗)
𝑝(𝒙)𝑝(𝜗) . (18)

Given the prior 𝑝(𝜗), the ratio estimator 𝑟 (𝒙, 𝜗) may then be used
as a surrogate model to draw samples from an approximate posterior
𝑝(𝜗 |𝒙) = 𝑟 (𝒙, 𝜗)𝑝(𝜗). In order to estimate the ratio, the strategy is
to train a neural network 𝑑𝜙 (𝒙, 𝜗), where 𝜙 are the network weights,
via stochastic gradient descent. The network is parameterised as
a binary classifier to discriminate between two hypotheses labeled
by the binary variable 𝐶. In the first one, with class label 𝐶 = 1,
the observation 𝒙 and the parameter of interest 𝜗 are drawn jointly
from the parameter prior and model: 𝒙, 𝜗 ∼ 𝑝(𝒙, 𝜗). In the second
one, with class label 𝐶 = 0, they are sampled marginally: 𝒙, 𝜗 ∼
𝑝(𝒙)𝑝(𝜗). We sample from the two classes with equal probability,
enforcing the outcome of the binary variable 𝐶 to be random. To
train the network we use the binary-cross entropy loss function:

ℓ[𝑑𝜙 (𝒙, 𝜗)] = −
∫
d𝒙 d𝜗

{
𝑝(𝒙, 𝜗) log 𝑑𝜙 (𝒙, 𝜗)

+𝑝(𝒙)𝑝(𝜗) log
[
1 − 𝑑𝜙 (𝒙, 𝜗)

]}
.

(19)

The loss functional defined in Equation 19 is minimized when the
output of the neural network 𝑑𝜙 (𝒙, 𝜗) corresponds to the probability
of the class with label 𝐶 = 1:

𝑑𝜙 (𝒙, 𝜗) = 𝑝(𝐶 = 1|𝒙, 𝜗) = 𝑝(𝒙, 𝜗)
𝑝(𝒙, 𝜗) + 𝑝(𝒙)𝑝(𝜗) ≡ 𝜎[log 𝑟 (𝒙, 𝜗)] ,

(20)
so we can express the ratio estimator 𝑟 (𝒙, 𝜗) in terms of the binary
classifier 𝑑𝜙 (𝒙, 𝜗) using the sigmoid function 𝜎(𝑦) ≡ 1/(1 + 𝑒−𝑦).
Marginalization over nuisance variables η is done implicitly since

the data will incorporate the variance from the nuisance parameters,
but the inference procedure estimates only the marginal likelihood-
to-evidence ratio. In other words, parameters to be marginalized
over are sampled during training data generation, but not shown

6 https://github.com/undark-lab/swyft.

to the binary classifier 𝑑𝜙 (𝒙, 𝜗). As a result, the trained network
effectively learns an estimate of the marginal likelihood-to-evidence
ratios 𝑟 (𝒙, 𝜗), which we can use to evaluate the marginal posterior
for the parameter of interest directly (if the prior PDF is known) or
obtain samples otherwise.

3.2 Truncated marginal neural ratio estimation

Formally, inferring the marginal posterior for the substructure pop-
ulation parameter of interest would require marginalizing over all
the source, lens, and substructure realizations compatible with all
possible strong lensing images. However, sampling lens and source
parameters from their priors would require a very large amount of
training data and a more complex network architecture when using
neural ratio estimation. This has been attempted only in Brehmer
et al. (2019) to infer the slope and normalization of the HMF. In
order to reduce the complexity of the problem and fully exploit avail-
able information in the data with limited computational resources,
we propose to target one image at a time, focusing simulations and
the network training on a specific observation of interest. Thanks to
swyft , we implement this with a truncation scheme.
TMNRE generates a sequence of likelihood-to-evidence ratio es-

timators on both nuisance and parameters of interest for a specific
observation 𝒙. In multiple inference rounds, the proposal distribu-
tion for nuisance parameters is updated and constrained, based on
these ratio estimators, in order for the training data to match each
round more closely the observation of interest 𝒙 (this can be visually
appreciated in Figure 7, which will be discussed in more details in
subsection 4.3).
The procedure for the truncation scheme is the following. In the

first inference round, we generate training data sampling the nuisance
parameters from the initial prior 𝑝(η). Then, in each round, we
constrain the proposal distribution 𝑝Γ (η) for the parameters we want
to marginalize over to a region Γ where the nuisance parameters are
more likely to have generated 𝒙 based on the ratio estimator trained
in that round. In particular, we estimate the new region Γ by very
conservatively truncating the previous proposal distribution 𝑝Γ (η)
in the region where the ratio estimator exceeds a predetermined
threshold. We set the threshold hyperparameter to 𝜖 = 10−5, which,
in case of a Gaussian posterior, corresponds to truncating at∼ 4.78𝜎
(Miller et al. 2021). We obtain the final proposal distribution for our
nuisance parameters when the region Γ does not change significantly
anymore between rounds.

In this work we target with TMNRE a restricted set of the nuisance
parameters η: namely, those of the analytic smooth lens and source
models, θ𝑙 and θ𝑠 , while leaving halo parameters, θℎ unconstrained.

To summarize, thanks to TMNRE, the overall analysis strategy
splits into the following steps:

1. Train an inference network on an image 𝒙 to constrain the
source and lens parameters, θ𝑠 and θ𝑙 , within ranges consistent with
the observation.We then generate targeted training data based on this
constrained model.
2. Train an inference network to learn the marginal likelihood-

to-evidence ratio for our parameter of interest, the half mode mass
Mhm, on the targeted training data.

Similarly to the reasoning behind the approximate Bayesian com-
putation rejection algorithm, which discards sampled parameters val-
ues if the generated data is too different from the observed data,
we justify this approach by noting that parameters that do not pro-
duce observations similar to 𝒙 will not contribute to the integral in
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Figure 4. We present a gallery of twenty mock strong-lensing images we
use as target observations. These mock observations have been generated
with arbitrary lens and source parameters drawn from the initial prior in
Table 1. Their peak SNR is ∼30, representative of HST data. We analyse
these images by first constraining their lens and source parameters proposal
distribution in subsection 4.3. Then, we combine them in order to infer the
cutoff mass scale in subsection 4.4. For the first one (upper left corner, framed
in orange) of these images we show our results of the first part of the pipeline
(subsection 4.3) in Figure 6, Figure 7, and Figure 8.

Equation 17. Restricting the input parameters in this way immensely
reduces the variability of simulated data, which allows us to use sim-
pler network architectures and fewer training examples in the next
step. As a result, the inference is now targeted to the specific obser-
vation at hand rather than amortized over all the possible lens/source
combinations from the full prior. We would like to point out that
the inference is still locally amortized in the constrained proposal
distribution region, and this enables empirical test of the inference
result (see subsection 4.5).

4 RESULTS

In this section, we show our results. First, we describe the simulated
data in subsection 4.1 and the inference network architectures in
subsection 4.2. We then show how we constrain the lens and source
parameters in subsection 4.3. Next, we show our results for the cutoff
mass and describe how we can combine the information from differ-
ent strong lensing images in subsection 4.4. In the same subsection,
we show our results on the DM mass. Finally, we directly assess the
statistical behaviour of the trained neural networks in subsection 4.5.

4.1 Mock data generation

We want our simulations to be representative of HST data, in order
to demonstrate that our pipeline is in principle able to extract the
signal of interest from them. We adopt a pixel scale of 0.05′′, being
slightly larger than the expected 0.04′′, which allows us to disregard
its point-spread function (PSF) (Gennaro 2018) for simplicity. The
size of the images is 100×100 pixels, so they cover an area of 5×5 ′′
on the sky. Initially, we generate the mock data with a resolution
10-times higher and then downsample it to the adopted resolution by

Figure 5. Illustration of the embedding CNN architecture used in the first
part of the pipeline to constrain lens and source parameters. The observation
𝒙 gets compressed into features: estimates of the best possible data summary
statistic, by the CNN. In describing the CNN layers we follow PyTorch
(Paszke et al. 2019) convention. To create the illustration we have used Iqbal
(2018).

local averaging, effectively simulating integration of the light across
the pixel areas.
We model the instrumental effects by simply assuming a Gaussian

and uncorrelated pixel noise. The noise level 𝜎 is set so that the peak
SNR ratio of the image is ∼30 (after downsampling), representative
of HST data. Then, given a modeled flux, our simulator is given by:

𝑝(𝒙 |θ𝑠 , θ𝑙 , θℎ , 𝜗) = N(𝒙 |obs(θ𝑠 , θ𝑙 , θℎ , 𝜗), 𝜎2). (21)

We leave to future works to account for the correct modeling of the
PSF and correlated pixel noise, which are fundamental in order to
correctly conduct substructure studies in strong gravitational lensing
images.
In Figure 4 we show a gallery of twenty mock strong-lensing

images we use as target observations. These mock observations have
been generated with arbitrary lens and source parameters drawn from
the initial prior in Table 1. Their peak SNR is ∼30, representative of
HST data.

4.2 Inference network architecture

The inference neural network used to perform TMNRE is split into
two different components: an embedding network 𝐶𝜙 (𝒙) and a bi-
nary classification network. The embedding network compresses data
into a low-dimensional feature vector, estimating the best possible
summary statistics from the full input image. The binary classifica-
tion network is the marginal classifier that performs the actual ratio
estimation. It passes the featurized observational data concatenated
with the parameter of interest into a multi-layers perceptron (MLP)
to estimate the marginal likelihood-to-evidence ratios. The network
architecture can be expressed as:

𝑑𝜙 (𝒙, 𝜗) = MLP𝜙 (features = 𝐶𝜙 (𝒙), 𝜗) = 𝜎[log 𝑟 (𝒙, 𝜗)] . (22)

For the embedding network, in both steps of the pipeline, we adopt
a simple convolutional neural network (CNN). In Figure 5 we show
the CNN architecture used to constrain lens and source parameters.
The one used to estimate the cutoff mass has a similar structure.
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Figure 6. Constrained proposal distribution. Visualization of the sequential truncation of the lens and source proposal distributions over the 6 rounds of training.
The particular target is the first mock image (framed in orange in Figure 4), whose parameters are depicted as black dashed horizontal lines.

Figure 7. Training data targeting the first mock observation (framed in orange
in Figure 4). In each row, we show five examples of training data for the first
five rounds. In the first round, we sample our data from the initial prior shown
in Table 1. For the following rounds, the lens and source parameters are
sampled from the constrained proposal distributions, obtained by evaluating
the network trained with the previous round dataset on our target observation
(see subsection 4.3). It is evident that with each round the training data more
closely resembles the target image 𝒙

4.3 Constraining lens and source parameters

We constrain lens and source parameters regions with TMNRE, as
described in subsection 3.2, with multiple sampling and training
rounds.
In total, we perform 6 sampling and training rounds. In each round,

we simulate 105 observations, of which 90% are used as the training
dataset, and the remaining 10% as the validation dataset. Evalua-
tions of the network on the mock target image are used to truncate
the training data proposal distribution after each round, so that the
region for lens and source parameters is targeted. The first training

round is performed on the dataset generated from the initial source
and lens parameters priors, shown in Table 1. In Figure 6 we show the
initial prior and the following constrained proposal distributions. It
can be seen that after the first round just a few of the parameters pro-
posal distributions get truncated, e.g. the Einstein radius. By having
truncated these initial parameters, in the following rounds the other
parameters can be better learned by the network and so constrained.
In Figure 7, we show samples from the first five training datasets,
which demonstrate that the constrained regions are indeed the ones
that are likely to produce data similar to the targeted image 𝒙. After
the sixth round of training, it is not possible anymore to truncate the
proposal distribution region based on the predetermined threshold,
as seen in Figure 8. The truncation scheme has then efficiently identi-
fied the constrained region for lens and source parameters consistent
with the targeted observation.
Using the last constrained dataset, it is then easier in the second step

of the pipeline to train a marginal neural ratio estimator to perform
the final inference on the cutoff mass, as explained in subsection 3.2.
We would like to stress that these constrained proposal distribu-

tions correctly account for lens and source parameters uncertainties.
In all our simulated data, the substructure parameters θℎ are ran-
domly sampled from their prior, in order to account for the presence
of substructure. This has the desirable outcome of approximately
accounting for the average effect that an additional mass component
has on the main lens parameters (e.g. inferring an unbiased Einstein
radius) and contributes to the source and lens uncertainties.

4.4 Dark matter inference

For the second step of the pipeline, we train an inference network to
learn the cutoff mass on the last constrained dataset.
From initial tests, we have found that features from a single image

are very hard to learn for the classifier, resulting in a very noisy
ratio estimator. In order to reduce the estimator uncertainty, we then
train the cutoff mass classifier on a dataset 𝑋𝑁 = {𝒙1, ..., 𝒙𝑁 } of
𝑁 different observations. For each observation, first, we constrain its
lens and source parameters as explained in subsection 4.3. Then, we
train the cutoff classifier on the concatenation of the features coming
from their embedding networks, effectively learning 𝑟 (𝑋𝑁 , 𝜗). Note
that the images in one dataset are sampled with the same cutoff mass
Mhm, but different lens, source, and substructures realizations. In
fact, our final goal is to apply the full pipeline to real data, which will
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Figure 8. Lens and source parameters posteriors. In solid blue we show the last round of constrained proposal distributions for the first (upper left corner, framed
in orange) target image in Figure 4. The dotted black lines correspond to the true lens and source parameters values with which we have generated the target
image. In orange, we show the estimated posteriors for lens and source parameters in the last training round. Based on the predetermined threshold, the new
bounding limits Γ (dashed blue) do not change significantly from the previous constrained proposal distribution region, so it is not possible to constrain the
proposal distribution more and we stop the truncation procedure.

all have different source, lens, and substructures configurations, but
will have encoded the same DM properties.
In the first row of Figure 9 we show the results from the inference

network on ten test sets of lenses generated with a Mhm value of
107, 108, 109 and, 1010 M� . Each curve is the posterior obtained for
a set of 𝑁 = 20 lenses. Each of the mock observations has lens and
source parameters sampled from their own final constrained proposal
distribution, and different substructure population.
Now that we have reduced the estimator noise, it is straightfor-

ward to perform inference on a group of sets of images by com-
bining their ratios. Given a dataset 𝑋𝑁 = {𝒙1, ..., 𝒙𝑁 } of im-
ages, the combined ratio for multiple 𝑀 datasets is simply given
by 𝑟 (𝑋𝑁

𝑀
, 𝜗) ∝ ∏𝑀

𝑖=1 𝑟 (𝑋
𝑁
𝑖
, 𝜗), where the proportionality is a ratio

of evidences, independent of the parameter value, so it only accounts
for a proper normalisation (Brehmer et al. 2019; Hermans et al.
2020). In the second row of Figure 9 we show the results for the
combination of the 𝑀 = 10 different posteriors shown in the first
column.
In the third row we show a combined posterior for the WDM

mass function from 200 images (𝑀 = 10 sets of 𝑁 = 20 images).
These plots show the uncertainty in the subhalo mass function under
the assumption that it has the functional form in Equation 14 with
parameters from Lovell (2020).
These first results show that ourmethod is sensitive to the low-mass

end of the HMF, and that we have unbiased results from combining
just 10 sets of 20 observations, given that in the second panel of Fig-
ure 9 the true input value for the half-mode massMhm is consistently
contained within the estimated posterior. In subsection 4.5 we will
show a more sophisticated method to assess the statistical behaviour
of our inference results.
Furthermore, we can translate the constraints we obtain on the

cutoff mass to constraints on the WDM mass given the mapping

between those two quantities defined in subsection 2.4. In Figure 10
we show our results for theWDMmass. Each column corresponds to
a different cutoff mass input value, so a different WDM mass. In the
first row, we plot five examples of the combined posterior density for
log10Mhm of𝑀 = 10 sets of 𝑁 = 20 observations. In the second row,
we show the corresponding color-coded five examples for 𝑚WDM.
In this case, we just transform the posterior from the first row using
the parameterisation shown in subsection 2.4, so we assume a flat
prior on log10Mhm. Finally, in the last row, we show the WDMmass
posterior densities assuming a flat prior on the latter. The posteriors
in the second and third row are not actually the same because a flat
prior log10Mhm is different from a flat prior on 𝑚WDM.

4.5 Credible interval testing

We would like to directly test and validate the statistical behaviour
of our inference results by determining the expected coverage of the
ratio estimator produced by the network. This can be easily done in
swyft thanks to local amortization (Miller et al. 2021). The goal is to
compare the nominal and empirical expected coverage probabilities
of estimated Bayesian credible intervals, which should coincide for
a well-calibrated estimator. For the statistical formalism and defini-
tion of credible region and expected coverage probability, we refer
the reader to Hermans et al. (2021). In brief, an ideal estimator has
matching empirical and nominal expected coverage, a conservative
one predicts lower credibility than empirically obtained, and an over-
confident one has higher nominal than empirical credibility. In plots
like Figure 11, the line for an ideal ratio estimator should perfectly
align with the diagonal, whereas for a conservative (overconfident)
estimator, it will lie above (below) the diagonal. In combination with
visually checking the posteriors, this test supports the accuracy of
the posterior estimator and is also particularly useful when one does
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Figure 9. Top: Approximate posteriors for the half-mode mass derived from 10 different sets of 20 images. The dotted black line represents the true value of the
half mode mass with which we have generated the images (107, 108, 109, 1010 M�).Middle:We show the approximate posterior resulting from the combination
of the 𝑀 = 10 different posteriors shown in the first column, as explained in the text (subsection 4.4). Bottom: Subhalo mass function constraints derived from
the cutoff mass posterior shown in the second column. The black solid line shows the CDM subhalo mass function according to Equation 9, whereas the black
dashed one shows the WDM subhalo mass function according to Equation 14, given the true cutoff mass shown in the label. The blue dashed line shows the
mean of the WDM subhalo mass function obtained by sampling 1000 samples from the cutoff mass posterior shown in the second panel and using this value in
Equation 14. We also show the central 68 and 95 percentiles as shaded bands. These plots show how uncertain the subhalo mass function is under the assumption
that it has the functional form in Equation 14 with parameters from Lovell (2020).

not have access to the ground truth against which to compare the
results. In Figure 11 we show the empirical versus nominal expected
coverage probabilities for the cutoff mass inference network. We can
see that the inference network for the half-mode mass has converged
with good expected coverage.

5 DISCUSSION

n this section, we discuss the improvements to the model and infer-
ence question which need to be addressed before we can safely apply
our pipeline to the analysis of real data.
First, we have neglected effects such as inadequate lens light sub-

traction and assumed the lens light to be known. Regarding the noise
model, we did not account for correlated pixel noise due to instru-
mental effects including the telescope’s PSF (e.g. seeWagner-Carena
et al. 2022).

In this work, we have employed an analytic parameterisation (the
Sérsic profile) as a lensed source light distribution model, which is
adequate to analyze low-resolution images. However, to accurately
model higher-fidelity lensing observations, such as those from on-
going (e.g. HST) and future (e.g. JWST, ELT, SKA) telescopes,
more complex source models need to be employed. Existing models,
in order of complexity, are regularised pixellation of the source plane
(see, e.g., Suyu et al. 2006; Karchev et al. 2021; Vegetti & Koopmans
2009a), source modelling through basis functions (e.g. shapelets
(Birrer & Amara 2018) or wavelets (Galan et al. 2021)) attached to
the source plane, and deep learning approaches (see, e.g., Adam et al.
2022;Morningstar et al. 2019). The ability to accurately and precisely
reconstruct the complex morphology of strong-lensing sources is of
the utmost importance, as to disentangle the source surface brightness
inhomogeneities from the percent-level fluctuations introduced by
substructures in the lens. We anticipate that using sources with more

MNRAS 000, 1–16 (2022)
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Figure 10. Top: We show five examples of combined posterior of 𝑀 = 10 sets of 𝑁 = 20 observations in terms of the cutoff mass (as the second row
in Figure 9). The dotted black line represents the true input value of the half mode mass with which we have generated the analyzed mock observations
(107, 108, 109, 1010 M�).Middle: Same results as shown in the first column but for the WDMmass. The dotted black line represents the true value of the WDM
mass with which we have generated the analyzed mock observations, given the mapping between DM cutoff and DM mass in subsection 2.4. The WDM mass
posteriors assume a flat prior on the cutoff mass. Bottom: Same results as shown in the first column but for the WDMmass and assuming a flat prior on the latter.
In the first plot of the row, we show for the five examples the expected 95% credible lower limit on the WDMmass for the highest value of our prior distribution.

complex morphologies will result in higher sensitivity to the DM
cutoff mass, provided that it is possible to model these sources. In
fact, the residuals between the image of an extended source lensed
by the total lens potential (accounting for substructures), and that
of the same source lensed only by the main lens component are
proportional to the gradient of that source evaluated in the image
plane (Cyr-Racine et al. 2019, Equation 16).
Regarding DM modelling, validation of our smoothing scheme

(subsubsection 2.4.1) is required to accurately account for DM free-
streaming effects. Moreover, we should account for uncertainties due
to the assumed halo density profile by considering different DM
distributions around galaxies (see, e.g., Salucci 2019 for a review).
Finally, we would like to draw the reader’s attention on the fact that

in our modeling we assume that the halo mass of the lens is known
exactly from its Einstein radius (see subsubsection 2.3.2). This is a
strong assumption that has as a consequence the separation of sub-
structure parameters θℎ and lens parameter θ𝑙 once we marginalize
the posterior probability over the halomass in Equation 16. The infer-

ence question we have addressed in this work, constraining the cutoff
mass of the subhalo mass distribution, is then a simplified version
of the real one, which is to simultaneously determine the halo mass
and subhalo mass distribution of the lenses from real data (see, e.g.,
Birrer et al. 2017).
We believe there are no major obstacles in incorporating all of

thesemodeling components in our frameworkwithout fundamentally
altering the inference procedure.

6 CONCLUSIONS

Strong gravitational lensing as a probe of the particle nature of DM
has sparked much interest over the last few years. Moreover, the de-
velopment of fast and accurate techniques to extract information from
strong lensing images is well motivated by the wealth of new high-
resolution strong lensing observations that will become available in
the near future.

MNRAS 000, 1–16 (2022)
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Figure 11. Empirical versus nominal expected coverage probabilities for the
cutoff mass inference network. In case the line lies above (below) the black
dashed diagonal line, the credible intervals are conservative (overconfident)
and contain the true value with a frequency higher (lower) than nominally ex-
pected.We show the empirical (nominal) probabilities as horizontal (vertical)
text.

In this work, we have presented the first step towards a new neu-
ral simulation based inference pipeline (see section 3) to analyse
present and future strong gravitational lensing systems in order to
constrain the cutoff in the DM HMF, and so the DM mass. To this
end, we have used a recent machine learning development, TMNRE,
that makes it possible to target the analysis to a specific observation
rather than amortize over all possible variations in lensing systems,
making inference more efficient and precise. Thanks to TMNRE,
we overcome the computational challenges of traditional MCMC,
nested sampling and trans-dimensional MCMCmethods, by directly
learning the marginal posterior for the parameter of interest from
the observation. TMNRE leverages neural networks to directly learn
the best summary statistic possible from the full input data, with-
out having to compress the observation into hand-crafted summary
statistics. This work is then a step forward towards making the anal-
ysis of strong lensing images for DM science faster, more efficient,
and more accurate. In addition, our inference results can be validated
with expected coverage tests (see subsection 4.5).
Our key results can be summarized as follows:

• Thanks to our targeted approach, we are able to correctly esti-
mate the lens and source parameters uncertainties, accounting for the
presence of substructures in the mass range [107, 1010]M� . We use
the final lens and source parameters truncated proposal distributions
(see subsection 4.3) to generate a targeted training dataset in order
to infer the DM cutoff.

• In the case that DM is warm, we are able to infer the location of
the cutoff in the HMF in the [107, 1010] M� mass range by combin-
ing up to 200 observations (see subsection 4.4). We show our results
in Figure 9. By construction, these results are correctly marginalized
over model uncertainties and have proper expected coverage (see
subsection 4.5).

• A cutoff mass posterior translates into a posterior on the WDM

mass, given the mapping in subsection 2.4. We show our results in
Figure 10 for a flat prior on the cutoff mass and a flat prior on the
WDMmass.We obtain an expected 95% credible lower limits around
6.5 keV in the case of the scenario closest to CDM (see the bottom
left panel in Figure 10), given the adopted prior and the various
assumptions of our simulation model that will be discussed below.

Throughout this study, we have made a number of simplifying
assumptions for the, halo mass of the lens, source light profile, and
substructure models. We have also neglected effects such as inade-
quate lens light subtraction, realistic PSF modeling, and correlated
pixel noise due to effects including the telescope’s PSF. Before this
analysis pipeline can be safely extended to real observations, these
assumptions need to be correctly addressed, as discussed in section 5.
In this work, we have demonstrated that, in principle, the DM

cutoff mass signal can be statistically extracted from a population of
small-scale dark matter halos by a neural network using TMNRE. In
future works, we plan on studying the correlation between different
subhalo mass function parameters (e.g. its normalization, slope, and
cutoff mass), and the one between the halo mass and subhalo mass
distribution of the lenses, using, on one hand, more advanced model-
ing techniques (as specified above) on multi-band observations, and,
on the other, better neural network architectures to target low SNR
scenarios.
Finally, we note that, thanks to its flexibility, our pipeline can

incorporate any arbitrary DM model, as long as it specifies the form
of the HMF and the density profiles of individual substructures.
We are optimistic that the presented Bayesian inference pipeline
will be able to constrain the amount of substructures, pinning down
DM nature, using both the strong lensing images that exist today
and the wealth of new strong lensing data coming from near-future
observatories.
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APPENDIX A: SÉRSIC SOURCE

Here we describe the elliptical coordinates (𝑟𝑥 , 𝑟𝑦), the normaliza-
tion 𝑘𝑛 and the index 𝑛 that enter in the modeling of the Sérsic profile
in Equation 6.
The transformation from Cartesian (𝑥, 𝑦) to elliptical coordinates

(𝑟𝑥 , 𝑟𝑦) is given by(
𝑟𝑥
𝑟𝑦

)
=

(√
𝑞 0
0 1/√𝑞

) (
cos 𝜙𝑠 sin 𝜙𝑠
− sin 𝜙𝑠 cos 𝜙𝑠

) (
𝑥 − 𝑥0
𝑦 − 𝑦0

)
, (A1)

where 𝜙𝑠 is the rotation angle, 𝑞𝑠 is the axis ratio, and (𝑥0, 𝑦0) is the
center of light position.
The normalization 𝑘𝑛 is related to the index 𝑛 by an implicit tran-

scendental equation in terms of the complete and lower incomplete
gamma functions 2𝛾(2𝑛, 𝑘𝑛) = Γ(2𝑛). We use the expansion in se-
ries from Ciotti & Bertin (1999), valid over a wide range of indices
𝑛, stopping at order O

(
𝑛−3

)
.

APPENDIX B: LINE-OF-SIGHT HALOS AS EFFECTIVE
SUBHALOS

Following Çaǧan Şengül et al. (2020), LOS halos at comoving dis-
tance 𝜒 can be treated as subhalos on the main-lens plane with an
effective projected mass density given by:

Σ𝜒,eff (𝐷𝑙 ®𝑥;𝑚200, 𝑟𝑠 , 𝜏) = Σ(𝐷𝑙 ®𝑥;𝑚200,eff , 𝑟𝑠,eff , 𝜏). (B1)

The effective scale radius 𝑟𝑠,eff and mass 𝑚200,eff are respectively

𝑟𝑠,eff =
𝐷𝑙

𝑔(𝜒)𝐷𝜒
𝑟𝑠 , (B2)

and

𝑚200,eff = 𝑓 (𝜒)
Σcr,𝑙
Σcr,𝜒

(
𝐷𝑙

𝑔(𝜒)𝐷𝜒

)2
𝑚200. (B3)

The piecewise functions 𝑓 (𝜒) and 𝑔(𝜒) are:

𝑓 (𝜒) =
{
1 − 𝛽𝜒𝑙 𝜒 ≤ 𝜒𝑙

1 − 𝛽𝑙𝜒 𝜒 > 𝜒𝑙
, (B4)

and

𝑔(𝜒) =
{
1 𝜒 ≤ 𝜒𝑙

1 − 𝛽𝑙𝜒 𝜒 > 𝜒𝑙
, (B5)

with 𝛽𝑖 𝑗 =
𝐷𝑖 𝑗𝐷𝑠

𝐷 𝑗𝐷𝑖𝑠
, where 𝐷𝑖 is the angular diameter distance from

the observer to plane i, and 𝐷𝑖 𝑗 is the angular diameter distance from
lens plane i to lens plane j, and 𝜒𝑙 is the comoving distance to the
main-lens plane. We have also introduced the critical surface density
at plane i

Σcr,𝑖 ≡
𝑐2𝐷𝑠

4𝜋𝐺𝐷𝑖𝐷𝑖𝑠
. (B6)
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