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Preface

This technical report consists of three parts. The central problem
is the estimation of three-dimensional motion parameters of a rigid planar
patch from image sequences (each frame is a central projection).

In Part I, we show that given two image frames one can determine
uniquely (by solving linear equations) eight 'pure parameters' which are
nonlinear functions of the actual motion parémeters. In Part II, a method
is presented for determining the motion parameters from the eight pure para-
meters. The method requires the singular value decomposition of a 3 x 3
matrix. It is also shown that generally there are two distinct solutions
for the motion parameters. Two results are given in Part I1II. First, four
point correspondences between two image frames are necessary and sufficient
to determine the eight pure parameters., Second, with three image frames,

the motion parameters are unique.
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ABSTRACT

" We present a new direct method of estimating the three-dimensional
motion parameters of a rigid planar patch from two time-sequential perspec-
tive views (image frames). First, a set of 8 pure parameters are defined.
These parameters can be determined uniquely from the two given image frames
by solving a set of linear equations. Then, the actual motion parameters
are determined from these pure parameters by a method which requires the
solution of a 6th-order polynomial of one variable only, and there exists a
certain efficient élgorithm for solving a 6th-order polynomial. Aside from
a scaling factor for the translation parameters the number of real solutions
never exceeds two. In the special case of three-dimensional translationm,
the motion parameters can be expressed directly as some simple functions

of the 8 pure parameters. Thus only a few arithmetic operations are needed.



I. INTRODUCTION

In the past, most work on motion estimation has been restricted to
two-dimensional translation. Recently, Roach aﬁd Aggarwal [1] and Huang
and Tsai [2,3,4] presented methods of estimating three-dimensional motion
parameters of rigid bodies based on image-space shifts. The method of
Roach and Aggarwal requires the solution of a set of 18 simultaneous non-
linear equations; that of Huang and Tsai 5 simultaneous nonlinear equations.
Huang and Tsai [4,5] also described a direct method of estimating three-
dimensional motion parameters of rigid planar patches based on the relation-
ship between temporal and spatial differentials of image intensity. This
method results in the solution of 8 simultaneous nonlinear equations. In
none of the above works was the question of the uniqueness of the solution
to the nonlinear equations investigated.

In this paper, we present a new direct method of estimating three-
dimensional motion parameters of rigid planar patches. We define a set of
eight pure parameters and demonstrate using the theory of Lie Transformation
Group that given two pictures, these pure parameters are unique. As for
the estimation procedure, we first show using the converse of the 2nd
Lie theorem [10-13] that these 8 pure parameters can serve as the coordinate
system of a certain Lie Transformation Group. Then, we use the result in
[10-15] to show that these 8 pure parameters must satisfy a set of linear
equations. Furthermore, the real motion parameters can be computed from
these pure parameters by solving a six-order polynomial.

Our new direct method has several advantages. First, it requires the
solution of a single sixth-order polynomial of one variable only. Second,

it demonstrates that more than one solution may exist and therefore answers
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the uniqueness question. Third, in the special case of three-dimensional
translation, the motion parameters can be expressed directly as some simple
functions of the eight pure parameters. Therefore, only a few arithmetic

operations are needed.

II. THE BASIC MOTION EQUATIONS

We are interested in estimating three-dimensional motion parameters
of rigid and deformable bodies from time-sequential perspective views
(frames). Throughout this paper, we shall assume that we work with only

. < )
two frames at times tl and t2 (t1 tz)
The basic geometry of the problem is sketched in Fig. 1. Consider a

particular point P on an object. Let

(%,y,2z) = object-space coordinates of a point P at time t

1
x',y',2') = object-space coordinates of P at time t2.
(X,Y) = image-space coordinates of P at tl.
(X',Y') = image-space coordinates of P at t

¢

It is obvious from Fig. 1 that

x=FZ2 X' =F >
®

1

y=F1 Y =F Ly

Assume that from time tl to t2 the three-dimensional object has under-

gone translation, rotation, and linear deformation [8]. Then, we have

x' % X Ax
y'| =8y| +Ry|+|A4y 2)
Lz’ | |z lz| Az

where



S11 815 8y3
§ =151, 5,, 8y ()
513 Sp3 833
0 =93 9
R=| 9, 0 -p; 4)
'CPZ (Pl 0
©p =08 9y = M8, @5 =np ©)
2 2 2
nl + nz + ny = 1 ®)

Note that (Ax,Ay,Az) is the amount of translation S in the linear deforma-
tion matrix, and (R+1I), where I is a 3X3 unit matrix, is the rotatiom
matrix. The rotation is around an axis through the origin and with

directional cosines (nl,n The amount of rotation is 6. Therefore,

22730+
the P15 95 95 defined in (5) are the x, v and z components of the rotation
vector with length 8 and directional cosines (nl,nz,n3).

Clearly, Eq. (2) represents an afine transformation

1]
x bll b12 b13 X Ax
1 -
vy = b21 b22 b23 yi +|Ay (7
1 !
Lz' | LP31 b32 b33 z_ | Az

Conversely, any afine transformation can be decomposed as in Eq. (2).



III. MOTION OF PLANAR PATCHES

We now restrict ourselves to points om a planar patch with equation

ax + by + ¢z =1

at time t.. Then, it is readily shown from Egs.

1

F

2 = X+bY+cF
and from Egs. (1), (9), and (7) that
o - a1X+a2Y+a3 é )
a_ X+a ¥Y+1 ¥
7 8
o = a4X+a5Y+a6 é -
a_X+a,¥+1 22
7 8
where
. b11+an .. b21+aAy
1 b33+cAz 4 b33+cAz
. b12+b/_\.x .. b22+bAy
2 b33+cAz 5 b33+cAz
. (b13+ch)F .. (b23+cAy)F
3 b33+cAz 6 b33+cAz
b31+aAz

a, = —rm——
7 (bB3+cAz)F

. . b32 +bAz
8 (b33+cAz)F

We now specialize to the case of a rigid planar patch.

become

(1) and (8) that

Then Egs.

(11

(8)

9

(10)

(1L



1+ alx 9y +aly
81 % T+caz & = 1 ¥ ¢z
-0, +bAx
R . = Ltbay
2 1+cAz 5 1+cAz
(@2~FCAX)F G@1+-cAy)F
83 = “T1chz 3% = TTtchz (12)

-(pz-i-aAz
7~ (I +chz)F

cp1+bAz
8 - (L+chz)F

Eq. (10) defines- 2 mapping from the 2-space (X,Y) onto the 2-space (X',Y').
It will be shown in Section III that corresponding to any specified mapping
between the two 2-spaces, there can be only one set of values for the

parameters @yse0058g. We call them the 8 pure parameters. In Section III,

we shall also describe a method of determining these pure parameters from
the two given image frames.

Once we have determined the pure parameters al,az,...,as, we can
attempt to find the actual motion parameters; Ax,Ay,Az,cpl,cpz,cPB,a,b, and c
by using Eqs. (12). It is obvious first of all from looking at the right-
hand sides of Eqs. (12) that Az is a scale factor which cannot be determined.

We therefore let

a" ! ajfz b

= bAz c e chAz
(13)
n & Ax nd Ay
hx Az By Az

The unknown motion parameters are now:

(Pla CPZs c~P33 Axll’ AY", a", b”, and E_.
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Thus we have 8 nonlinear equations with 8 unknowns. This, however, does

not mean that the solution is necessarily unique. In fact, it turns out

it is not.

After some tedious manipulations, we get from Egs.

6 5 4 3 2
1" " . 1 15} 1" - i
d6Ax + dSAx - d4Ax + d3Ax + dzAx + dle)

where
d = a.h> - b (hoh, - hoa )
6 = 2503 " B (Bghy - Bga,

_ 2 .2 2
d. = h3(h2 -+ h6 + h3 l+a10a50

2 2 2
d4 = -h3(a50 + Salo) + a10(2h6 - h2)
- 3h2h3h6 + 4a10a50

_ 2 2 2 2
d3 = 2h3(h2 + h6 h3 + 4alo)

_ 2 2 2 2 2 2
d2 = (-h3 + 4alo)a50 + (6h3 - 4310 - 2h2 + h6)a10

-3h2h3h6
2 2 2 2

dl = h3(h2 + h6 + h3 - Aalo + 4a10a50)

— 2-
dg = (85 = apdhy - hy(hya;q + hyho)

and

2T 5T A
h3 = ;? + a7F
h6 = ;? - a8F

281072 - 1
3gg = 25 - 1

(12)

+dg =0 (14)

(13)

(16)



and furthermore

b Ax"™ & thx"z - BAx" +h
AY” = =
<h Aslt® 1"
hax' 4 2a Ax' 4 by
" LI
- hifwoaly  Roy"-ag,

n2 - " uz - "oy
Ax h3Ax +a,; Ay hsAy +aq

B! = E(h - Ay") +h
6 6 (17)

1 B - ]
a c(h3 L.x)+h3
- - 3 -
@, =b" - (c-#l)aSF = (c-&l)?; - Ay'e
- - &3 -
g, = =a" + (c-#l)a7F = -(c+1) T + Ax''e

¢q = Ay"a" - 34(3-1-1) = -Ax'b" + 32(2+1>

To find the motion parameters, we f£irst solve Eq. (14) for Ax". Then
the others ars obtained £rom Eqs. (17). Since Eq. (14) is a sixth-order
polynomial equation, we can have potentially 6 real roots which give us 6§
solutions for the motion parameters. For all the numerical examples we
have tried, only two real roots are found for Eq. (14). OCne such numerical

example follows:

a, = .976 2, = ,058 33 = 059
34 a ,Q27 a5 = 976 a6 = ,059



Solution 1 — Ax = ,9 Ay = .9 Az = 1
g = 1° n, = cos ?0° n, = cos $Q° ny = cos Q°
a/A = cos 60° b/A = cos 60° c/A = cos 45°
A =Ja2+b2+c2 = 1/10
Solution 2 = Ax = ,707 Ay = .707 Az = 1
g = 1.59° n, = cos 58.4° n, = cos 121.6° ng = cos &7
a/A = cos 56.2° b/a = cos 36.2° c/A = cos 51.8°

4 =aleplic? = 1/8.70

We mention in passing that an efficient iterative method for £inding the
real roots of a sixth-order polynomial equation is givenm in Ref. 7.
For the special case of three~dimensional tramnslatiom, the results
are considerably simpler. From Egqs. (12), we get
a, (a,aF - a
1813

1+ L+ (ala8 - aza7)F

375(31385 -3 + 1)

Ax" =

Ay = as(asa7F - ag + 1) + (asa7 - 4aa)F

aSF(aSaTF - ag + 1)

_Bs3F - ag t Da; (3137 - 5 + Day

a” 3.3, = a,a a.a, - a,a (18)
577 478 178 277
- (asa7F - a2 - 1)38 . (alasf -2 + l)a8
) aga, - a,3g 3,35 - 2,3,
- a,a.F - 2, +1 _ 2,8F - a; +1

Therefore, only a few simple arithmetic operations are needed.
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IV. DETERMINING THE 8 PURE PARAMETERS

We now go back and examine Eqs. (10). For a particular set of values
for the parameters (al,az,...,as), the equations represent a transformation
which maps the 2-space (X,Y) (the coordinate space of our image frame at
time tl) onto the 2-space (X',Y') (the coordinate space of our image frame
at time tz). Let us consider the collection G of transformation correspond-

ing to all (al,a ,...,as) € Rg. We shall show that it is a continuous (Lie)

2
group of dimension eight and that to any given mapping from the (X,Y)-
space onto (X',Y')-space corresponds only one set of values for
(al,az,...,aS). Furthermore, we shall describe a method of determining

the pure parameters (al,a .,a8) from a given pair of image frames at

I

times tl and tz.

In classical continuous group theory, it is known [13] that G satisfies
the four group axioms, namely, closure, existence of inverse and identity,
and associativity. Furthermore, the composition function for the group
parameters ai's are continuous. It is also known [13] that the ai's in (10)
are essential parameters in the sense that the ai's are functionally in-
dependent. However, it is not known whether the ai‘s in (10) are unique, i.e.,
whether there can be two different sets of values of ai's such that (10) gives
the same mapping (X,Y¥)— (X',Y¥'). Because of this reason, it is not easy to
verify whether G is a Lie group according to the modern definition since in
modern definition, in addition to the properties satisfied by the classical
continuous group according to the classical definition [12,13], several
topological properties have to be satisfied, and these properties can not be
easily verified unless we are ceréain that the group parameters ai's are

unique. In the following, we prove that G is strictly a Lie group and that

the ai's are unique.
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Before we give the proof, we motivate it by the following considera-
tions. Let us assume that G is indeed a Lie group and that (al,az,...,as)
is a coordinate representation for the group G. The identity element of
the group is obviously e = (1,0,0,0,1,0,0,0). Then the operators of the

Lie algebra associated with the group G are given by:

3T aT
1 3 2 2

X, =530 s *Eal 5% (19)
j g=e j g=e

where g is used to represent a member of G. From Egs. (10) we get readily

(20)

[y+]
ale o

Now we start our proof, Comnsider the set of vector fields on the
differentiable manifold (X,¥) as given by Egs. (20). It can be eésily
verified that none of the Xj can be expressed as a linear combination of
the others, i.e., {Xj: j=1,2,...,8} are linearly independen:; and further-

more for amy i,i

A e b
{xi,xj] = XX, - KX, E et % (21)
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where clzj are constants. From these two properties of {Xi} we conclude
from the converse of Lie's second fundamental theorem [10-13] that thereisa
unique Lie group of transformation of order 8 which has {Xi} as its Lie
algebra. We proceed now to show that G is that group.

From [15,10,11], one can generate the finite equations of a Lie group
of transformation with the ki's as the canonical coordinates of the

second kind as follows:

¥ =
X expo.sxs)exp (k7X7) cee exp(}\lxl)X

(22)
¥ o= exp@\e}{s)exp(}.7x7) exp(llxl)Y
It is proved in [6] that (22) is equivalent to the following:
< = a1X+a2Y+a3 ¢ = aZ{_}(-l-a53{+a6 23)
a7X+a8Y+l a7X+38Y+l
where
A
al = a ]7\ 32 = ;\.27\.
A A A
_ 1 - 5
a3—&3e +}.K)?\. aq_—e]la_e?\
As | A A A
a; = (l+7\.27\.4)k a, = [7\6e +h,e TQqe +?~. M )]?\. (24)
}"l A A A

- . 5 _ 5
a; = (}\.7e +A.8e 17\4e )1 ag = [)\77&2 + e 7\8(l+}\.2?\4)]7\.

?\. A
?\=[1-?\.7(t\,3 +}.K) ?\.e

A 7\

5 )

Comparing (10) and (23) shows that G is indeed a Lie Group of trans-

formation, and that since the }\.i's are the canonical coordinates, they are

unique, and therefore from (24), the pure parameters 4, »..2gare also unique.
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Let f be any function defined on the 2-space (X,Y) (in our case, f will
be the intensity of the picture elements), then from Lie Group Theory

[10-15], we have

3
= )
Af .Z piXif 25)
i=1
where B, = a, = e,
i i i
e, = ith component of the group parameters at the identity
Af = £EX',Y"') - £(X,Y) = frame difference

(The implicit assumption here is that the intensities of the picture
elements in the image frames corresponding to the same physical object

point are the same.) C(Clearly,

a; = Bl + 1
ag = 55 + 1
a, = Bi’ 1i=2,3,4,6,7,8

Eq. (25) is used to determine the Bi’s and therefore the 8 pure parameters
ai's. We pick 8 or more points (X,¥), calculate at each point Af and
Xif (i=1,2,...,8), and substitute into Eq. (25) to obtain 8 or more

equations which are linear in the 8 unknowns Bi's. Then we find the least-

square solution.

V. DISCUSSIONS
In this paper we have iavestigated the problem of estimatdng thrae-
dimensional motion parametars of a rigid planar patch from two image frames,

The following rasults have been established:
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1) The fact that we can define 8 purs parametars 3153855000529 which are
unique for any given mapping from the 2-space (X,Y) (the coordinate
space of the inage frame at tl) onto the 2-space (X',¥') (the coordinate

space of the image frame at tz).

2) A method of determining the actual motion parametars P11 Foo Py Ax',
Ay", a", b", and ¢ from the purs parameters 315 35 ecoy dg which

requires the solution of a 6th-order polynomial of one variable

only. Aside from a scaling factor in the translation parameters,

the number of real solutions never exceeds two.

3) A method of detarmining the 8 purs parameters 315 3y, e0e dg from

the two given image frames. This requires the solution of a set of

linear equations only.

It is to be notad that 1) and 2) are independent of 3). The pure
parameters can be determined by other methods. For example, ionne can
identify 8 or more corresponding point pairs in the two image frames [2],

then the ai's can be determined £rom Eqs. (10) by solving a set of linear

equations.

Recently, an alternative way of analyzing the uniqueﬁess problem and
estimating the three-dimensional motion parameters has been developed which
stems from the results contained in this paper, and requires computing the
singular value decomposition (SVD) of a certain 3X3 matrix only. The eight
pure parameters defined by the authors in this work will again be used.

It is Briefly mentioned in [6], and the detailed paper will be submitted

soon.
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Furthermore, the conclusion that the motion parameters are generally
not unique is of course independent of the method of determining these
parameters. The question arises: Are the motion parameters unique, aside
from the scaling factor, if the rigid patch is nonplanar? We have solved

this problem recently [7], and will publish it in the near future.
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Abstract

We show that the three-dimensional motion parameters of a rigid planar
patch can be determined by computing the singular value decomposition (SVD)
of 2 3 x 3 matrix containing the eight so called "pure parameters'. Further=-
more, aside from a scale factor for the translation parameters, the number of
solutions is either onme or two, depending on the multiplicity of the singular

values of the matrix.






I. INTRODUCTION

The processing of image sequences involving motion has become increas-
ingly important. Because of the key role motion estimation plays in image
sequence processing, a considerable amount of effort has been devoted to this
topic, fof example, seeARef. [1-17]. However, except for [1-8][16][17], most
past work considers only2-D motion, especially translation. Ref. [1-8][16][17]
were among the first to coqsider 3-D motion and [1][3][17] were among the
first to comsider the problem of uniqueness of solutions. In [1][3], the
eight "pure parameters" were introduced for the case of a rigid planar patch
undergoing general 3-D motion, and proved to be unique given two successive
(in time) perspective views. The proof makes use of the theory of Lie Group
of transformations. It was also shown that these 8 pure parameters can be
computed by solving a set of linear equations. Furthermorg, once the pure
parameters are determined, the actual motion parameters c;h be computed by
solving a 6-th order polynomial equation of one variable if the motion is
small, Theoretically, the number of solutions cannot exceed six aside from
a common scale factor for the translation parameters; experimentally, the
maximum number of solutions has been found to be two. In this paper, we show
that whether the motion is small or not, once the eight pure parameters are
computed using the method described in [1][ 3], the actual motion parameters
can be estimated by computing the SVD of a 3 x 3 matrix consisting of the
eight pure parameters. Also, by using the rigidity constraint and the fact
that a plane in 3-space can b? oriented in at most two possible ways in order
to intercept an ellipsoid at a circular cross-section, we prove that the
number of solutions is either one or twe, depending on the multiplicity of the

singular values. Physical description of the motion is stated and justified.
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II. THE EIGHT PURE PARAMETERS AND THE MOTION OF PLANAR PATCHES
The basic geometry of the problem considered in [1][3] is repeated
here in Fig. 1. Throughout this paper, we shall assume that we work with
only two frames at time tl and t2 (t1 < tz). Consider a particular point P

on the object. Let

(%,¥,2) = object-space coordinates of a peint P at time tln
(x',¥',2") = object-space coordinates of P at time tz.
(X,Y) = image-space coordinates of P at tl.
(X',Y¥') = image-space coordinates of P at £,

It was shown in [1][3] that for a rigid planar patch undergoing 3-D
motion (& rotation with a small angle 6 around an axis through the origin
with directional consines Nys Ty, n3, followed by a translation with trans-
lation véctor (&x, Ay, Az)),fhe image-space coordinates before and after the

motion are related by the following equations:

alx + a2Y + a3

X' o= aX +agy + 1
8
(1)
e - a4X + asY«+ 36
a7x + a8Y + 1
where
. o Ltanx L, . ithYy
1 1 + c-Az 5 L+ ceAz
,-n39 + b-Ax (-nle + C.Ay)F
2 "T1 ¥coaz %6 ° 1+ cdz @
(nze + ¢c-AX)F -n29 + a-Az
% 71 ¥ <Az % T T+ conF
’n3e + a.Ay 0,8 + b-Az
% % 1T ¥ciz %8 T T+ c-ba)F
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Image _
Space ¥
, o

(X,Y) = Image-space
coordinates of the

Y//
(x,Y")

=Image-space
cocrdinates of the
point P at fime 1,

Fig. 1

point P at time t;

(AX,AY)=Image-
space shifts from
time t; to t, for
the point P

Object\Space

(x,y,2)=Object space
coordinates of a physical
paint P on the object

at time t;
(x"y’ z’ )= Object-space

- coordinates of the same
point P af time t5

Basic geomecry for three-
dimensional mocion
estimacion.
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where a, b, ¢ are the parameters that appear in the following equation:
ax + by +cz =1 (3)

which describes the surface of the object in the object space coordinate
system at time £

Eqs. (2) are applicable when the rotation angle is small. For general
3-D motion, it is well known in mechanics and computer graphics [18] that any

3-D rigid body motion is equivalent to a rotation followed by a translation

x! X Ax
y' = Rly| + Ay (4)
z! z . Az

where R is a 3 x 3 orthonormal matrix

2
n1+(l-n§)cose nlnz(lvcose)-nssine nln3(1-cose)+nzsin6
_ i 2, 1.2 - casfym
R = nlnz(l cose)+nssin6 n2+(l nz)cose , n2n3(1 cose),nlsine (5
. 2 2
nlnB(l-cose)vnzsine n2n3(1-cose)+n151n6 n3+(l-n3)cose

Following exactly the same procedure as in [1][3], one can show that

(1) is again valid if (2) is replaced by

ni + (1-n§)cos§ + a-.dx nlnz(l-cose) - nssine + b.Ax
3 = ﬁé + (l-ng)cose + c-Az 8y =7 ﬁ% + (1- g)cose + ceAz
) [nln3(1~cose)+nzsine+c-Ax]F ] nlnz(l—cose)+n351n6 + a.Ay
83 T RZ ¥ (1-nd)cosé + c-Az 24 né + (1-ng)cosd + c-Az
3 3 3 3 ) 6
n% + (1-t5)cosd + bedy [n,04(1-cos8)+n, sinb+c-Ay]F
a5 = n§'+ (l-ng)cosﬁ + c-Az gg = ng + (l-ng)cose + c-lz
nln3(l—cose)—nzsin6+a-Az n2n3(l-cose)+nlsin6+b-Az
a; = ng + (l—ng)cose + c-Az ) ag = n% + (l—n%)cose + c-Az

where for simplicity we have set F = 1.
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It was shown in [1][3] using Lie Group Theory that given two perspective
views at t1 and tz, the eight pure parameters ays 8ps eve s ag are unique,

and they can be estimated by solving a system of linear equations.

-



ITI. COMPUTING ACTUAL MOTION PARAMETERS FROM PURE PARAMETERS

By using the rigidity constraint and the fact that a plade in 3-space
can be oriented in at most two possible directions in order to cut a circle
in an ellipsoid, we shall prove that the number of possible solutioms for
the motion parameters can never exceed two aside from a scale factor for the
translation parameters. The number of solutions depends upon the multiplicitj
of the singular values of the following matrix A consisting of the eight

pure parameters ai’s:

A = 2, ag ag (7)

The SVD of A is given by

A = 0 2 V = UAV (8)

where Xi's are the singular values of A, and U,V are 3 x 3 orthonormal

matrices.

Let k = n% + (l—n%)c059+ c-Az; then it can be readily shown that

Az (9)

or ) ~ Ax ] [a b c]

AZ
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From (3) and (4), it can be seen that

x! X Ax [a b c] X
VA = R y + Ay y
z! z Az 2
Ax {a b c] X
= R + Ay 'y y
Az 2
X
= kA y (10)
2z

1f we transform the original coordinate system with the orthonormal matrix
V in (8) as depicted in Fig. 2, where (xn, Yo zn) is the new coordinate

system after transformation, we have

x FX i
, n
y | = v .|y (11)
z 2z
» - n_
and
[ <t ]
] - B ' -
y v T (12)
z! z!
N - n
ke -l

Substituting (1l), (12) into (10) gives



Xn
(e}
X
Yn FP-7274
Fig. 2 The relationship between the (x,y,z) and
(xn,yn,zn) coordinate systems.
e - r -
x! b4
n n
i =
v v, kAV ' (13)
z! z
n L n

By taking the Euclidean norms of the vectors on both sides of (13),

we obtain

' ' t T R = T.,T
[xn A zn] vVt v x! K2 {xn v, zn] VA AV [x
Ya v, | 4
z! 2
| n | n

Since V is orthonormal, VT-V on the left hand side can be replaced

by an identity matrix. Substituting (8) into (14) gives
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x'2 + y'" + z'2 = k2 [x v z ] VTVAUTUAVTV X ]

n n n n
Y (13)
z
n

Replacing UTU in (15) by an identity matrix gives
12 2 12 _ 2,22 2.2 22
x ty, tz k (klxn + kzyn + k3zn) (16)

This is the key equation that will lead us to the solution of the
uniqueness problem, as will be seen hersafter,.

In the following, we state and prove three theorems regarding the
uniqueness and computation of the motion parameters given the pure parameters,
and the physical characterizations of the motion in the object space for

different multiplicities of the singular values of the matrix A.

THEQREM 1

If the multiplicity of the singular values. of A is two, e.g., kl =
kz # k3, then the solution for the motion and geometrical parameters is unique
aside from a common scale factor for the translation parameters, and

1 k

= v L 3. T

Ax a
-1 M3
Ay = w (= -5)T and bl = wV
A1 3

Az c

where s = det(U)det(V)
w 1is a scale factor

a,b,c are the parameters in (3) which is the planar equation of the
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object surface at time tl

U3,V3 are the third columns of U and V respectively.
Furthermore, a necessary and sufficient condition for the multiplicity of

the singular values of A to be 2 is that the motion can be realized by
rotating the object .around the origin and then translating it along the normal

direction of the object surface.

[Proof]
The two sides of (16) can be equated to a collection of positive
values corresponding to the range of values for x, y, z and x', y', 2'. Let

d be one such value, Then we have

= w12 12 12
d Xty tz (17
and
2,.2.2 2.2 2 2
d = k (Xlxn + kzyn + k3zn) (18)

Clearly, (17) defines a sphere in the (x;, y;, z;) spéce, while (18)

defines an ellipsoid in the (xh, Yo zn) space., Since A, = A,, two of the

1 2?
three principal axes of the ellipsoid are equally long. Since the object
surface is assum;d to be planar, the collection of the points on the
object surface that also sétisfy (17) must be the circle which lies on the
intersection of the sphere and the object surface at time t, (see Fig. 3).
Because of (16), (17) and (18), all the points on this circle at time £,
must also satisfy (18) at time tl’ i.e. they must lie on the intersection
of the object surface and the ellipsoid. Due to the rigidity constraint,

this intersection should also be a circle. But the only possibility for a

plane to cut a circle out of an ellipsoid with two of the three principal
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Xn FP-7275
(&) 4 ch)

Vﬂ?éjvj»TA;“gggectugurf;;;‘always intercepts the sphere detined
by (17) at a circular cross=section.

(b) . Tne object surface intercepts the ellipsoid defined by

(l8) at a clircular cross=section only if it is properly

oriented.
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axes equally long is that the plane be perpendicular to the major axis (the
longest one) of the ellipsoid, as depicted in Fig. 4. That is to say, there
is only one possible orientation for the object surface befofe the motion.
This is the key step that will lead us to the conclusion that the motion
parameters are unique, as will be seen shortly.

Note that kl (and kz) can never beﬂzero since were this to be true,
the ellipsoid defined by (18) would have degenerated into two parallel planes,
and there is no way the object surface can intercept two parallel planes at

a circular cross-section.

’ \/

-

X

¥n FP-7276

Fig. 4. The object surface must be perpendicular to the z, axis
to intercept the ellipsoid at a circular cross-section
when %, =1}, # Az
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Since, as depicted in Fig. 4, the object surface must be perpendicular

to the z, axis, and since the z, axis is obtained by rotating the z axis

with the orthonormal matrix V as in Fig. 2, it is seen that

a 0
b = V 0 = w V3
c w

where a,b,c are the parameters in (3),

V, is the third column of V in (8), and

3

w is an arbitrary constant.
Substituting (19) and (8) into (9) gives

R + | Ax [o 0 w]-VT=kUAVT

Ay

Az

Premultiply (20) by UT and postmultiply (20) by V to give

UR V + UT | ax [o 0 w] vy = kA
Ay
Az
or
] H r
R' + [ ax [o 0 w1= k| 2y
Ay
Ay
Az' X
where
R' = UgRYV

1%

(20)

(21)

(22)

(23)



r -
Ax! Ax
ay'| = Ut | a
Y y (24)
Az! Az
(22) gives
k),.l 0 =weAx'
R! = 0 kll =weAy’ (25)
. - " i
0 0 kk3 weAz

It will be shown now that Ax' and Ay' in (25) are zero, therefore R!
is diagonal.
Since U, V and R in (23) are all orthonormal, R' is also. Taking the

inner product of the 2nd and 3rd columns of R', and equating it to zero gives
kklw s Ay' = O (26)

kl and k cannot be zero since were kl or k to be zero, the lst and 2nd
columns of (25) would be zero, which contradicts the fact that R' is
orthonormal. Obviously, w cannot vanish either, otherwise, a, b and ¢ would
vanish, which contradicts (3). Therefore, (26) implies that Ay' = 0,
Similarly, -one can show that Ax' = 0. Thus, (25) is diagonal, which,

when combined with the fact that R' is orthonormal, gives the following:

kkl = +1 or -1 27)

kkB - wAz' = +1 or -1 (28)

We show that k has to be positive:
From (10), we have

z' = k(a7x + agy + z) 29)
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For x = 0 and y = 0, 2' = kz. Since the object must be in front of
the camera, z and z' are both positive, which implies that k is positive.
Since kl is nonnegative by definition, the right hand side of (27) can

not be =1, Therefore,

ko=
1
and :
- 1
1
R' = 1 (30)
s
L 4

where s is either +1 or -1.
Since R' = URVT, we have det(R') = det(U)det(R)det(V) = det(U)det(V).

Thus s = det(U)det(V). (28) gives the following:

A
Az' = w-l(-):é - 8) (31)
) |

From (24), (31) and the fact that Ax' = Ay' = 0, we have

Ax Ax! o ]
Ay = U Ay! = U - 0
A
bz bz 13y
L Ay ]
Y
= vl -9 v (32)
* 3

(19), (20) and (32) imply that

R = xilA - Tax] [a b c]

Ay
Az



2= 17
A
=1 3 T
kl A (Al - 8) U3 V3 (33)
In the following, it will be shown that the solutions for the rotation
matrix R in (33) is unique, and that aside from a scaling factor, the trans-
lation parameters Ax, Ay, Az in (32) and the geometrical parameters a, b, ¢
in (19) are also unique.

The first thing to show is that, once A is given, U3 is fixed except

for the sign. From (8),

A ATy, =22

3 = %3 U3 (34)

Let Q be any orthonormal eigenvector matrix of A-AT. Then

= 2 5
A
aal =qT x§ Q (35)
2
From (34) and (35), we have
r =
2
M
T 2 2
Q Kz Q - k3 I U3 0
2
A *3 |
QT
where

2 .2

rkl‘ks

A T 2 T 2 .2 )
P2as’ -all Q A1A3 Q (36)
0
X ]

P has rank 2 since ki - kg on the diagonal of the diagonal matrix in
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(36) is nonzero. Also, P is fixed once A is given since P = AAT - kgl.

Therefore, U3 is fixed except for the sign.

The next thing to prove is that (33) is unique, i.e,

A
3 T _r .
(kl - &) Uvy = [k [a b c]
by
Az

L

is unique once A is given. Two cases are to be discussed. The first is

when Ay # 0. 1In this case, s = sgn(det(A)) since A =U A VT and thus

s = det(U)det(V) = (klk2k3)‘1det(A) = sgn(det(@)). Thereforé, given A,
T . . .

3V3 in (33) is unique.

3 and V3 are fixed except for the sign, all one has to show

is that when V3 changes its sign, U3 must also.

s is fixed. The next thing to prove is that U

Since U

From (8) we have

AV = UA = [x U A0, x3U3]

171
thus
- V3 = 13U3
Since A and k3 are fixed given two perspective views, we see that when
V3 changes its sign, U3 must also. Therefore, U3V§ has fixed sign. We have

thus proved that the product

Ax [a b c]
Ay
Az

and therefore R in (33) are all unique.

For the second case for which k3 = 0, we have from (33) that
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-1 T
R = )\.lA+SU3V3
= 27lA 4 det(U) - UL - det(v) - VT 3
1 E() 3 E()' 3 (7)

If U3 changes»its sign, det(U) will also. Thus the sign of det(U) U3 in
(37) remains unchanged. Similarly, the sign of det(V) Vg also is fixed when
V3 changes its sign. Therefore, the uniqueness of (37) is not shaken by

the ambiguity of the signs of U3 and V3.

Since ATA have double eigenvalues, the eigenvectors Vl and V2 that
correspond to the multiple eigenvalues kl (= kz) are orthonormal to each
other but may be anywhere in a certain fixed plane perpendicular to V3 Note
that we are now interpreting eigenvectors geometricaily as some vectors in
3-space.) If the order of Vl and V2 on the plane are interchgnged while
keeping V3 fixed, the sign of det(V) will change. We are now to prove that
when this does happen, the sign of det(U) will also change, thereby keeping
(37) fixed. 1It is obvious from (8) that |

-1
(kl A) V1 = U1

-1
(ll A) V2 U2

1 and V2 are interchanged, Ul and U2

will also. Therefore, when det(V) changes sign, det(U) will also. Thus for

Since X, and A are fixed, when V

the case when k3 = 0, the product

Ax [a b c]
Ay

Az

as well as R in (33) are unique,
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We are now to prove that a necessary condition for kl = kz # 13 is

that the translation vector Ax is parallel to the normal direction
Ay
Az
of the object surface at time t2.
Since before the motion, i.e. at tl’ a is normal to the object
¢ a
surface, this vector is rotated by R at time t2 and becomes R |Db
c

It is only necessary to prove that there exists a scalar q such that

r -

Ax a

Ay = qR b (38)
Az (el

From (19), (32), (33) and (38), we have

A >
-1.73 - -1 3 _ T
W (kl - 8) U3 = q[kl A (kl s) U3 V3] W V3
-1 M T
= q wkl A V3 -q W’(iz - 5) U3 V3 V3 (39)
But
A=2U VT + A, U VT‘ + 2, U VT thus A V., in (39) becomes
1 71 1 272 2. 373 3 3
AV, =AU VT V, + AU VT Vy, + AU VT v
3 1171 3 272 "2 '3 373 '3 '3
= 0 + 0 + XBUB - (40)
Substituting (40) into (39) gives
A A A

-1.73 - 3 3 -
w (k1 s) U3 qw (kl k] + 8) U3 q W s U3 .
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A
Therefore, if we take q as w-zs-lcxé - s), then (38) will be satisfied. We

1
have thus proved that the necessary condition for Al =VA2 # A3 is that the
motion can be realized by first rotating the object around an axis passing

through the origin, and then translating it along the normal direction of

the object surface at time t2'

In the proof of Theorem II, it will be shown that if the translation
is along the normal direction of the object surface at tz, then the singular
values of A can not be all distinct. This fact, together with Theorem III,

provide the sufficiency part. Q.E.D.

THEOREM II

If the singular values of A are all distinect, e.g., Al > Az > AB’
then there are exactly two solutions‘for'the motion and geometrical param-
eters aside from a scale factor for the translation and geometrical param-

eters, and that

Ax
i A
-1 A3
Ay = w [Buli{(——XZ sa) U]

Az



Y
1 2
where 6 = + -
AS - A
2 3
2
‘ xl-+sx35
o = 2
A1+ 89

B= +y1l-~- az

s = det(U)det(V)
(in each of the two solutions, sgn(8) =-sgn(§).)

Furthermore, a necessary and sufficient condition for distinct singular
values is that the motion can be decomposed into rotation around an axis
through the origin followed by tramslation along a direction different from

the normal direction of the object surface at time t2'

[Proof]:
Since the three singular values are distinct, the three principal
axes of the ellipsoid defined by (18) are of different lengths. By using
the same argument as in Theorem I, the object surface at tl must be oriented
in such a way that it cuts a circle out of this ellipsoid. It is easy to
verify using bésic analytical geometry that a plane can be oriented in only V
two possible directions (see Fig. 5) in order to cut a circle out of an
‘ ellipsoid’whose three principal axes are of differen; lengths.Since Al > Az > A3

,the longest principal axis is aligned with z, axis,and the vector normal to

the object surface is

° A% - xz s
. 1 2
w 0}, where § =+
2 2
Ay = A3
1l e

in the (xn, AP zn) coordinate system.and w is some constant.
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Fige S fhe object suriace can pe oriented in exactly two possibl:

directions in order to intercept an ellipsoid defined DY

at a circular cross=-section when A A,,>A3 »




Since, as shown in Fig. 2,the(xn, Yy zn) axes are obtained by rotating

the (x, y, z) axes with the orthonormal matrix V, we see that

a §
b = wV 0 (41)
c 1
where w is some constant. Substituting (41) into (9) gives
Ax
T T
KA = KUAVE = R+w |Ay [a 0 1} v (42)
Az

Premultiplying (42) by UT and postmultiplying (42) by V give

Ax
KA = ULRV + wU |4y [5 0 1] vTy
Az
Thus
Ax'
R' = kA- |2y [s 0 1] (43)
| Az'
where ' 20T RV (44)
Ax' Ax
iyt 8wt | gy (45)
Az' Az

From (43),
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e oy

R' = -5 by ka, -ay' (46)
-§-Az' 0 kA3—Az'

Since U, R and V are orthonormal, (46) implies that R' is alsoc orthonormal.

Taking the inner product of columns 2 and 3 and equating the result to zero

glves
klZ . Ay' = 0 (47)
Since Al > AZ > >‘3-2- 0, we have kz > 0. Therefore, (47) implies that
Ay' = 0. Thus (46) becomes
kAl-G-Ax' 0 -Ax'
R' = 0 kX, Q (48)
-3-4z° 0 ki,-Az'

The normality of column 2 implies that kAZ =+ 1. But since k > 0 and
AZ > 0, we have kkz =1, or k = 1/12. Furthermore, from the fact that
columns 1 and 3, as well as rows 1 and 3 of R' are mutually orthogonal, and

that the norms of the rows and columns of R' are unity, it can be shown that

R' = 0 1 0 (49)
-sSR 0 so
where @ = — « §Ax" = s(kir, - Az") (50)
XZ 3 .
g = -Ax' = ssaz' =+l -o’ (51)
s = det(U)det(V) (52)
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Since U and V are orthonormal, from (52), s is either +1 or ~1. It is to
be shown that although det(U) and det(V) may be +1 or -1 for a particular A,
s is unique once A is given.

Recall that U,, U, and U, are the eigenvectors of AAT corresponding to

1’ 72 3
eigenvalues Ai, k%, and Ag respectively. Since ll, Az and A3 are distinct,
Ul’ UZ’ U3, Vl’ V2 and V3 are all fixed except for the signs. However, as

was seen in the proof of Theorem I, we have

AV, = AU

1 171
A V2 = XZUZ
A V3 = ASUB

Therefore, when Ul changes its sign, Vi will also, where 1 = 1, 2, 3.

Hence the sign of det(U)det(V) remains fixed. Thus, s is unique.

From (50) and (51), we have

A
a-=t = B+ § (53)
2
. A3 \
sarsy) = 8 (54)
: 2

Cancelling 8 in (53) and (54) gives

2
k1+8l36
@ = —3
kz(l + 87)
2 2 K
AT Ay
where § = +
Az - Az
\ 2 3

From (50) and (51), and the fact that Ay' = 0, we have
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Ax! -8
Ay = o (33)
A
Az! )\—3 - S¢
. 2, -d
From (45), (47) and (55),
Ax Ax* ‘”5
Ay = wly INA = w iy 0
A3
Az Az! T - s«
- - "2 N
= 'l[- U, + (i?i - sa) U,] (36)
TR, 3
From (44) and (49),
o 0 8
T
R = U 0 1 0o |v (37)
—sB’ 0 s¢

From (41), (56), (57), and the fact that s is fixed, we see that there
are exactly two solutions aside from a scaling factor for the translation
and geometrical parameters,

It is to be shown that a necessary and sufficient condition for the
singular values to be distinct is that the translation vector is not aligned
with the normal direction of the object surface after rotation (or at time
tz).( The sufficiency part was proved in Theorem I. The necessity part is
proved by contradiction. We shall show that if the translation vector is
along the normal direction of the object surface at t2, then the singular
values cannot be distinct,

It was indicated in the proof of Theorem I that the normal direction
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a Ax |
of the object surface at t2 is aligned with R| b |, Suppose | Ay | is
a c Az
parallel to R|{b |, then
c
Ax a
Ly = hR b (58)
Az c

for some constant h. With (41), (56), (57) and (58), we have

-f 1 o 0 8 8
— 0 = huy | 0 1 o (viv]o
k3
T - s¢ -sg O sy 1
kz -
or i
- -] e 0 8
0 = wh 0 1 0 0
X
-3 . sa -sg O su 1
L A2 d
which implies that
-3 = wh (¢ - & +8) (59)
and
A3
ol s = wWh (~sB -+ § + sa) (60)
2

Substituting (50) and (51) into (59) and (60) gives

Ax' = th z\l A
V 1 + wh(l + 82) AZ

(61)

and



A
Az' = wh = (62)

1 + wh(l + 62) >‘2

But from (51),

-Ax' = s 6§ A 2! (63)

Substituting (61) and (62) into (63) gives

whd ﬁi - whd CSXB
L+wh(l+8%) %2  1+wn(l+s? A2
which implies that Al = -SXB. Since kl and K3 are nonnegative by definition,

we have Al = X3. But this contradicts the assumption that kl # AS. There-

fore, the necessity part is proved. Q.E.D.

Theorem III

The necessary and sufficient condition for the multiplicity for the
singular values of A to be three, i.ef, Kl = Xz = X3, is that the motion consist
of rotation around an axis through the origin only, i.e. Ax = Ay = Az = O.

Also, the rotation matrix is unique, and R = XILA. The object surface can

be anywhere.
Proof
If Ay = A, = A5, then (16) gives

2 42, 32 _ 22,2 2 (64)
X' % ¥t z, k A,l(xn + s :

2
n + zn)

Since any 3-D rigid body motion can be decomposed into rotation followed

by translation, we first rotate the object such that (xn,yn,zn) becomes

(x;,y;,z"n). Then we carry out the translation which changes (x5 y;, z;)
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into (xé, yé, Z;). That is,

B X" T x 7
n n
] = t ‘
Yo R Yo (85) .
Z" z
n n B
and
X;- X Ax!
Ya | = ||t (66)
w] o La] Le

where R', Ax', Ay' and Az' are the motion parameters in the (Xn’ Yo zn)

space as defined by (23) and (24). (65) gives
"% & y"2 + 2" = [x y. z ] R'TF x
n n n n “‘n n :
2 2 2
=Rt tE
This, when combined with (66), gives

2 2 2 _ v ,2' ' 112 . .2
x vy, +tzo= (x] =~ &7+ (y = AyD)T + (2 az*)

-
(67)
From (64) and (67), we have
2 2- '2 2 2- |2 2 2_ '2 - LA | | QS |
(k Ay 1)xn + (k A l)yn + (k73 l)zn (28x'+x  + 24y 7n
+ 2Az"z; - Ax'z - Ay'z - Az'z] kzki = 0 (68)

Since (68) is true for all xé, yé and zg, by equating the coefficients of
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all powers of x', y' and z' to zero, we have
n’ ‘n n

and

Therefore, from (24),
A}‘ = Ay = AZ = 0 °
Then, (9) gives

R+0 = kA, or R = A\

14

Therefore, we ahve proved that if Al = Az = A3, then the motion consists
of rotation around an axis through the origin only, and the solution for
the rotation matrix is unique. The object surface can be anywhere. This
proves the necessity part.,

We now proceed to prove the sufficiency part. If the motion consists
of rotation around an axis through the origin only, i.e., Ax = Ay = Ax = O,

then from (9),

A = kR (69)

-}

Let UA = R, VA = T and AA = kI Then (69) becomes

.

T
A = U AT,
!
-1 T
= UA k VA (70)



2-32

Since UA and VA are orthonormal, (70) gives the SVD of A, with singular

-1 and k-l. Then from the fact that the singular values of

-1
values k 7, k
any matrix are unique, we see that A has three identical singular values.

This proves the sufficiency part. Q.E.D.

IV. CONCLUSIONS

Three theorems have been stated and proved regarding the uniqueness
and the computation of the motion parameters, and the physical descriptions
and classificatioos of the actual three-dimensional motion for a rigid planar
patch, The motion parameters are unique aside from a scale factor for the
translation parameters if the singular values of the 3 x 3 matrix consisting
of the 8 pure parameters are not all distinct; otherwise, the number of
solutions is two. The distinction between the cases of multiplicity 1 and 2
lies in whether or not the translation vector coincides with the normal
direction of the object surface at t,- If there is no translation at all,
then the singular values are all identical. In any case, once the eight
pure parameters are estimated, which can be done by solving a system of
linear equations, computing the singular value decomposition ofa3x3
matrix is all thot it takes to obtain the 3-D motion parameters and the

directional cosines of the normal direction of the planar patch.
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Estimating Three-Dimensional Motion Parameters
of a Rigid Planar Patch, III: Finite Point Correspondences

and the Three-=View Problem

R, Y., Tsai and T. S. Huang

Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801

ABSTRACT

Two results are presented in this paper. First, it is shown

that in estimating three-dimensional motion of a rigi& planar patch, the
eight pure parameters used in [1l] and [2] are uniquely determined from
the image correspondences of four points, no three colinear, and can be
estimated by solving a set of linear equations. The second result con-
cerns the three-view problem. It is proved that given four image point
correspondences in three perspective views of a planar patch undergoing
general three-dimensional rigid body motion, the number of solutions for
the motion parameters is one, as opposed to two [2] when only two perspec-

tive views are given.
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I. Introduction

The interest in motion estimation using image sequences has been growing
rapidly in many fields of research in the past few years. The efforts in the
70's were primarily focused upon two-dimensional motion estimation [11-18].
Recently, attention has been gradually shifted toward three-dimensional motion
estimation [1'10’.19-21]' The difference between 2-~D and 3-~D métion estimation
is not juét the degree of difficulty or complexity in solving the motion equations.
The issues of uniqueness, the minimum information required to ensure uniqueness
and the 3-D structure interpretation, which are not present in the study of 2-D
motion estimation, make the study of 3-D motion estimation more challenging and
interesting. Furthermore, due to the nonlinearity an& the increase of the
number of unknowns of the motion equations for 3-D motion estimation, the
development of more clever and efficient ways of solving the motion equations
becomes also extremely important.

For the case of estimating 3-D motion of rigid curved surfaces, [3] presen=-
ted an efficient algorithm for detérmining the motion parameters exactly without
having to solve nonlinear equations, and was the first to analyze the problem
of how many image point correspondences are required to ensure the uniqueness
of motion parameters.

For the case of 3-D motion estimation of a rigid planar patch, a brief
introduction is given in Sec. II. 1In this paper, it is proved that the eight
pure parameters [1,2] in the two-view problem are unique given the image
correspondences of four points no three colinear, and can be estimated by
solving a set of linear equations. For the three-view problem, it is proved
that given four image point correspondences in three (distinct) perspective

views, the solutions for the motion parameters are unique.



II1. The Eight Pure Parameters and the A Matrix

The basic geometry of the problem considered in [1] and [2] is
repeated here in Figure 1. Consider two frames at time t1 and t2 (tl < tz)o
For a particular point P on the object, let

(x,y,2) = object-space coordinates of & point P at time ¢

10

(x',v',2') = object-space coordinates of P at time t,.

X,Y) = image-space coordinates of P at t1°

X',Y') = image-space coordinates of P at t,.
It is obvious from Figure 1 that

X== ¥ z

' x' v 2'
X = Y = z! ©

where the focal length is normalized to one £for convenience. It was shown
in [1] and {[2] that for a rigid planar patch undergoing 3-D motion (a rota-
tion with an angle € around an axis through the origin with directional

cosines Ny, D,5 Dg, followed by a tramslation with translation vector (Ax,

by,bz))

o ~ P e — oy

x' p's Ax

v’ = R v + Ay

z! z Az : ¢))
L vl -3 ot — C

where R is a 3 x 3 orthonormal matrix of the first kind



Z

Image
Space | X

® o
(X,Y) = Image-space
coordinates of the

(X'Yh) -~
=Image-space
coordinates of the
point P at time 1

Fig. 1

A\

Y

point P at time 1,

(AX,AY)=Image-
space shifts from’ .
time f; fo t, for
the point P

Object\Space

(x,y,2) = Object space
coordinates of a physical
point P on the object

at time 1,

(x"y’ 2’ }= Object-space

, coordinates of the same
pOiﬂT P at time T2 FR-7086

Basic geometry for three-
dimensionzl motion
estimatiomn.



oy

240y

By,

2 2
n, +(1-n1 Jeos®

(l-cose)+n3

(l-cosQ)-n2

sin®

siné

2%

2 2.
n, +(1-n2 dcos8

(l-cosB)-n

3

sin@

n2n3(1—c039)+n1sin9

n1n3

(l-cos@)+n

2

3-5

sin®

n2n3(1-cose)wnlsin9

n32+(l°n32)cose

the image-space coordinates before and after the motion are related by

X' =

Y' =
}a7X + aSY + 1

where the ai's are such that if we define R to be such that

n

aX+a Y+ a

1 2

3

a7x <+ a8Y + 1

aX<+a¥Y+ a

4 )

6

2
3

+ (1-n32)cosg + ¢c.AZ

and let ax + by + ¢z = 1 be the equation describing the object surface

before motion (at

[ &,

g

The eight a

tl), then
2, a;—
as ag
ag 1

%,

[2 b

's in A are called the pure parameters [1].

cl

7

Given A, the

actual motion parameters can be obtained by simply computing the SVD of

the matrix A and the number of solutions for the motion parameters is

Lo

-

3)

@)

either one or two depending on the multiplicity of singular values of A [2].

As for the uniqueness of the pure parameters given the image motiom, it

was shown either using Lie Group Theory [1l] or elementary algebra [20]
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that given the image point correspondences of the whole plane, the pure
parameters are unique. It is the purpose of Section III to show that

it takes only four image point correspondences, no three colinear to deter-
mine ﬁhéApure parameters uniquely. The algebraic proof in SectionIIIL.1

is direct in the sense that the coefficient matrix of the set of linear
equations that the eight pure parameters must satisfy given four image

point correspondences is proved to be nonsingular, which directly leads

to the conclusion on the uniqueness of the pure parameters.' The geometrical
proof in Section III.2 is indirect in the sense that the pure parameters

are not directly shown to be unique, but rather the image point correspon-
dences of the whole image plane are proved to be fixed given four image
point correspondences. In order to ultimately prove that the eight pure
parameters are unique, two more results are needed. [1] and [20] proved
that given the image point correspondences of the whole plane, the eight
pure parameters are unique if the 3 x 3 A matrix is nomsingular. This is
the first result needed. The second one is Lemma II for the algebraic proof
in Section III.l. With these two facts and the geometrical proof in Section
III.2, one can conclude that the eight pure parameters are unique given

four image point correspondences, noncolinear both before and after the

motion.



III.1  Algebraic Proof for the Uniqueness of the Eight Pure Parameters

Given Four Image Point Correspondences.

From (3), we have

where X

n>

X%

- 1
X%

XX,

- [
XY,

U]
“X3%q

- '
X3¥4

- 1
XX,

- 1
X3,

-¥,X,"

)

®)



In order to prove that given four image point correspondences, the pure
parameters are unique, we take the following approach. Let (Xi',Yi') be
transformed from (Xi’Yi)’ i=0,..., 3, with some reference pure para-

(0
meters aé )s' such that

(O)X + a (O)Y + a (0)

T B Sl B S
i (o) (o)
a7 Xi <+ 38 Yi + 1
(o) (o) (o)
v = g, X *+ag Y; +ag
i (o) (o)
ag X fag Y, + 1 ()

Then the elements of the matrix M in (6) contain the image coordinates
before motion (i.e., Xis' and Yis') and the reference pure paramters a§°)'s.

Let A, be defined as

5@ @ O
po= |a,@ o @ @
:7<o> ORI ~ @

It is to be shown that i1f Ao containing the reference pure parameters is
nonsingular, then give four image point correspondences with no three co-
linear, (5) yields only one set of solutions for the aifs, namely the refer-
ence pure parameters ai(o)'s.

In order to simplify the analysis, let the origin of the image

coordinate system at t1 be located at one of the image points, say CXO,YO),

at tl' It will be shown at the end of this section why this simplification

3-8



3-9

does not result in any loss of generality.

By setting Xo and YO in (3) and (7) to zero, we have

,Yl=a sa(o) (9)

with (89), the number of unknowns now becomes six. 1Ilet G be defined as

e1 e, e3
G = £ £ £ A AH
- 1 2 3 =
d1 d2 d3 (10)
- _—
where
[~ =
Xl X2 X3
A
H = Yl YZ Y3
1 1 1 (1)
_7 ——

(12)




where

Note that B does not contain the unknowns

if D is nonsingular, the solution for the

unique.

He

e

d2X2

d4X4

—

Lemma I, below, gives the exact conditions for D to be singular,

d,%, 0
4,Y, 0
d,%, 0
0 d,X,
0 d X,
0 d X,

Yy 33(9)37(0)
1, 2, a, ©
| .

T,

1
Y:—‘ _;6 ©, ©)
v, 2, @, ©
Y, |

4%

d,Y,

dg¥q

L

a,'s, 1 =1,2,4,5,7,8.

¢¥

fin

£

373

unknowns, a,,a

e3iy

lel

f2Y2

2,a4,a5,a7,a8, is

3-10

(13)

(14)

Therefore,



Lemma I:

let D be given by (13). Then

det (D) = d.d,_d, det (Ao) det(H)(Xle-XzYl)(XZY -X YZ)(X3Y1"X1Y3)

17273 373

where
Ao is defined in (8)
H is defined in (11)
are given in (10)

dy»d;5dy

[Proof] The cofactor of the (1ll)th element of (13) is given by

| ézYz 0 0 e2X2 ezYz

d3Y3 0 0 e3X3 e3Y3

cof (lel) = 0 lel dlYl flxl lel
0 d2x2 dZYZ f2X2 szZ

0 d3x3 d3Y3 f3X3 f3Y3

After some straightforward derivations, the above becomes

cof (dlxl) d2d3 (X2Y3-X3Y2) [e2 (d3f1-dlf3)Y3-e3 (dzfl-dlfz)Yzj

Similarly,
cof(dzxz) = d1d3(X1Y3-X3Y1)[el(d3f2-d2f3)Y3-e3(dlfz-dzfl)Yl]

d,£,-d_f

and cof(d3X3) = dzdl(X2Y1-X Y. ) [e 18374, 1)Yl

1Y) e, -el(d £, -d. £ )Y?_]

273 372

3-11



Therefore,

det (D) = dlxlcof(dlxl)-dzxzcof(d2x2)+d3x3§of(d3x3)

= d;d,d,les (45,74, E,) (X,¥,-X,7,) (X

1993 Y. =-X.Y

1527958 p) Kp¥a=X ¥, ) (X ¥ =X, ¥q) (XY, "X, Yq)

= €5 (d1857d5F ) XY, =X, ¥ ) Ry ¥3-X3Y,) (XY -Xy¥5)

Y,-X,Y.)

+ el(dzf -4,.£ ) (X,Y,=-X Yl)(XZY -X.¥,) X 17%1%5

3 372°Y172 2 3 737273

(d,£4-d, 8, )+, (4,5, -4 £ )]

did,d4[e 1£3743 15,74

17273

i

(. £.-d_f )-e

1273 3727 "2

F1¥p-Xy¥y) Kp¥5=Xg¥y ) (XY =Xy ¥s)

dyd,d,.det (&) (X, ¥, X, ¥,) (K,¥3-X Y, ) (XY, =X ¥,)

0.E.D.,

It is obvious from Lemma I that if dl’ d2 and d3 are never zero

(to be shown later), the D is singular and only if

"

(i) det(Ao) 0 (i.e., Ao is singular)

(ii) det (H)

0 (i.e., point 1, 2 and 3 are colinear)

(iii) XlYZ-XZY1 =0 (i.e., point 0, 1 and 2 are colinear)

(iv) X2Y3-X3Y2 =0 (i.e., point 0, 2 and 3 are colinear)

) X3Y1-X1Y3 =0 (i.e., point 0, 1 and 3 are colinear)

Note that (ii), (iii), (iv) and (v) exhaust all the possibilities for any

three among the four points to be colinear. We now show that dl’ d2 and d3

are strictly positive.
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It was shown in [2] that

x,' X (
i i

! = I =

yi kvo v , 1 1, 2,3 (15)
L4

z, zg

N — b v

From (15),
LI (o) (o)
zi ko(a7 Xi + a8 yi + zi)

Substituting (o) into the above gives

Voo (©) (o)
zg ko(a7 ziXi + a8 ziYi + zi)
or

(o) (o) 2"

o o =.—i—- { = 16
a UK +agt Y+ 1 z ko ,1i=1,2,3 (16)

Since the object points must be in front of the camera, z_,' > 1 (the normalized

i
focal length) and z, > 1. [2] shows that ko < 0 corresponds to the case that
the object points move to the back of the camera. ko obviously cannot be zero,

otherwise (15) would imply that all the object points move to the origin.

Therefore, from (16),

(0) (o) - i -
a; %y + ag Yi + 1= z, ko >0, 1 1, 2, 3.
From (10),
-, (©) (o) . o
d; a, Xi + ag Yi +1,41i=1, 2, 3.
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Thus

di >0 fori=1, 2, 3.

We have proved that D in (12) is nomsingular if, and only if, Ao is nonsinguiar
and no three points among the four are colinear. It is shown in the following
Lemma that the restriction on Ao being nonsingular need not be imposed if

none of the three points are colinear both before and after the motion.
Lemma II:

Given the fact that the image points before motion (at tl)Aare not
colinear (or equivalently, at least three points are noncolinear), then the

following three statements are equivalent;

@ Ao is sungular

(ii) The object surface passes through the origin at tz.

(iii) All the image points after motion (at tz) are colinear.

[Proof] We prove that (i) iff (ii) and (ii) iff (iii).
[(1) = ({11)]

Let the SVD of Ao be given by

M

A, =T A v 1n

where *1’ kz and k3 are the singular values of Ao' If A is singular, then

one of the singular values must be zero, since from (17) we have



and therefore, if det(Ao) = 0, then one of the Ais' must be zero. Substi-

det (A ) = det(U) A

ih2h3

tuting (17) into (15) gives

oT

where

xll

1

=%k U

ne
C:H

ne>

A
1
A,
A
A
Ay VlTJ
T
A, U,
13 V3TJ
xl
yl
zl
X
¥
Zz
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(18)

(19
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Vj ﬁ the ith column of V,j = 1,2,3. Since UT is orthonormal, (19)
can be regarded as a rotation of the object-space coordinate system around

an axis through the origin at time t From the fact established earlier

2.
that one of the lis' must be zero if Ao is singular, we see from (18) that
by rotating the coordinate system around an axis through the origin, the

object surface coincides either with the x'y" plane or x"z' plane or y"z"

plane. This implies that before rotating the coordinate system using (19),

the object surface must be passing through the origin.
[ (1) == (1)]

Since the object surface passes through the origin at t2, by

assumption, (18) becomes

po - _ T _1
0 MooV J
T
0 =k Ay vy J
, : T
0 B LEERE J (20)

at the origin., Were Ao to be nonsingular, kl, 12 and K3 would be nonzero.

Then (20) would give

~1 —
T
0 Vl
0 = V2T J = VTJ or
T
bone nd s —
ey v e ey = o -l
0 0 X FO
T
v 0 = [0 =3 or- J= |y| = 0
0 0 2 0
hew oo o and s aund s ed




which implies that the object surface at tl passes through the origin.

The there exists &, B € R such that
z=ax +By

From Equation (0) and the above,
z=0Xz+B Yz

Thus
X+ByYy=1

which implies that all the image points are colinear at tl’ contradieting

the premise of the lemma. Thus Ao has to be singular.
[(1ii) === (i1)]
From (iii), there exists @, B —> R such that
Y'=ao X'+ 8

From Equation (0) and the above,

z' z
or aox'-y'+Bz2z' =0, which implies (ii)
[ Gi)===p(11i1)]

From (ii), there exists @, B € R such that

3-17



z=Qx+By=0Xz+BYz
or

¢X+ByY=1
which implies (iii).
* End of Proof for Lemma II *

Up to this point, we have proved that given four image point
correspondences no three points colinear both before and after the motionm,
the pure parameters are unique, if the origin of the image coordinate
system coincides with one of the image points at tl' It is shown now
that the latter assumption does not cause any loss of generality.

First, we shall show that given four image point correspondences
in two frames, one can derive from this the image correspondences of the
same four object points in two frames taken by the camera in the same posi-
tion, but oriented differently such that one of the object points coincides
with the 6ptical axis, i.e., the z axis. Since it has been shown earlier
that the pure parameters are unique given four image point correspondences
with one of the image point at frame 1 at the origin, we see that the 3 x 3
matrix containing the pure parameters for this new configuration designated
as Ap, is unique. Next, we shall show that the A matrix for the original
configuration is similar to A,, and can be determined uniquely from Apn.

The proof would then be completed. Now we furnish the details.

Since rotating the camera is equivalent to rotating the object

points, we now look for a rotation matrix Ro’ which can rotate the point

(xo, Vo» zo) to the z axis, i.e.,



g oy

or

where @ is some constant.

Then, from (21)

o
Ro3

Since Rb3 is normalized, we have

Thus

Z
ke 9

Let Roi be the ith column of Ro’ i=1,2,3.

ol 02

3-19

(21)

(22)
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where s = (on f Y02 + lf%and Rol’ Ro2 are two arbitrary column vectors
such that Rb is orthonormal. Note that although Rb is not unique, any
arbitrary choice of Ro will lead to the desired conclusion, as to be seen
later.

It is to be shown that the image coordinates of the four points
at tl and tz for the new configuration (all the points are rotated by Ro)
can be derived from the image coordinates for the original configuration.

Let ani’ Yni® zni) be the object coordinates of the ith point

after being rotated with Ro and (xni, yni) be its image corrdinates. Then

xni xi Rol xi
- T - T
Yai R Y3 Ro2 Yy
zni zi on sYo 8 zi
by q—— [ SO— B SRR N — S —J
pren om—y - - g— —1
T
Rol J *
- T a
= R02 J where J = ¥g
:[XOYOH L _.—zi—“
Thus T
X R J
X = —nt _ ol ~
ni z s s[XOYOI] J
T -1 T 4
Y _ By J
-1

s[xoyol] J z, s[XoYOl] J! (23)
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where
E (%]
1/zi i
§ 3 -
J yi/zi Yi
Similarly,
T s
¢ . R02 J
ul s[x ¥ 1] J' (24)
and
T "
X 1 = RO]. J
nL. S[XQ'YOB]'] Jv ) (25)
T .u
¢ ' = RoZ J
niL s [XoiYoi 1] J" (26)
where
7]
Xs
A
1= 1
J Yi
1

- 1] 13
From (23) (26), we see that Xni’ Yni’ Xni" Yni are functions of Xi’ Yi’

Xi', Yi' only. Therefore, the image point correspondences for the new con-

figuration can be determined directly from those for the original configufation.



From

and

Since

[21,

and

(28) becomes

k A

=k AR
°
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27)

(28)
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= =3 - s
x ! z
n 7
T
! =

In k Ro A Ro n

z ! 4

n n 29)

Since it was proved earlier in this section that the pure parameters are
unique given four image point correspondences with one of the point at the

origin; An is unique. Therefore, comparing (27) and (29),

A =R AR
n =) e}
or
T
A=R_A_R (30)
0O n o

Al:hough Ro in (22) is not unique, A is still unique since for any arbitrary
choice of Ro in (22). (Note that different Rb would result in a different An),
(30) is the necessary condition for all possible A'S. Therefore, the pure
parameters for the original configuration are unique. |

We have proved that given four image point correspondences, no three
image points colinear both before and after the motion, the pure parameters

are unique.
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II1.2  Geometrical Proof for the Uniqueness of the Point Correspondences

of the Whole Image Plane Given Four Point Correspondences

It is worth noting that the geometrical proof presented in this
section does not lead to the conclusion on the uniqueness of the pure para=-
meters directly; As explained at the end of Section II, it takes Lemma II
in Section III.1 and the results in [Lj[ZO] to complete the proof.

It is to be proved that given éhe correspondences of four image
points in two perspective views no three colinear, the image correspondence
of any other point can be determined uniquely. In particular, let A, B,

C, D and E be five arbitrary points in frame 1, such that no three are
colinear, and let A', B', C', D' be the given corresponding points of A,
By, C, D in frame 2, as depicted in Figure 2. We would like to show that

the corresponding point E' of E in frame 2 is uniquely determined.

A .B .A’
[ ° BI
e E c’ e
" N
E
L J ® ®
C » o’
Frame 1 (at t;) Frame 2 (at ta)  reres
Figure 2 Five point correspondences in two perspective views.

It is easy to see that if a set of points in the image space are

colinear, the corresponding points on the planar patch in the object space
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must also be colinear and vise versa., In fact, let (X,,Y¥.);, 1 =1, . . . ,
i’ i

n, be the image coordinates of n colinear points on the image plane and

(xi,yi;zi), i=1, - ,n, be the corresponding points on the planar patch.

Then there exist a, b € R such that

Xi = aYi + b

Substituting (o) into the above gives

x, =ay, + bzi ' L)

which indicates that the object points are on a plane passing through the
origin. Since A, B, C, D are not colinear, from Lemma II of Sectiomn III.1,
the object surface cannot pass through the origin. Therefore, the object
surface must lie on the intersection of the object surface and the plane
described by (21). Thus, the object points must be colinear. The converse
is obviously true since we can regard the object surface as the image plane
and vise versa and then repeat the above argument.

Next, it is to be showm that given the correspondences of three
colinear points, the correspondences of all the other points on the line
passing through these three points are determined.

Consider an arbitrary 4th point on the line passing through the
given three points in frame 1. Since it was shown earlier in this section
that the points in the object space corresponding to a set of colinear
points in the image plane must also be colinear, we can see that the two
sets of four points, one set on the image plane, the other set on the planar
patch, are in perspective correspondence by definition [22]. Therefore,

the cross ratio [22,23] of the four points in the image plane is the same
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as the cross ratio of the four points on the planar patch at tl’ which
remains unchanged from tl to tz since the object undergoes rigid body
motion. Similarly, the two sets of points, one'on the image plane and the
other on the planar patch at tz, also have the same cross ratios. There-
fore, the cross ratios for the two sets of four points, one at t1 and the
other at t,, are the same. Then by definition [22], these ;wo sets of
image points are in projective correspondence. It is well kpown in
projective geometry (p. 83 [23]) that the projective correspondence between
two lines is fully established when three pairs of corresponding points
are given. Therefore, we can see that given the correspondences of three
colinear points, the correspondence of any other point on the line is
determined.

Since there always exist two straight lines not parallel to each
other such that one line passes through two points among the given four
points A, B, C, D and the second line passes through the other two points,
we can assume without losing generality that the line passing through
points A,D, denoted byfzs, is not parallel :o‘SE. Obviously, 275? is
also not parallel to‘gTE? in this case. Since none of the three among
A,B,C,D are colinear, the point lying on the intersection of Xsyand §E,
denoted by G, does not coincide with any one among A, B, C and D. Similarly,
the point lying on the intersection of XTE? and.%ﬁiﬁz denoted by G', does
not coincide with any one among A', B', C' and D'. If E lies on either
one of XB and'gz, say'XB, the corresponding point E' of E is fixed, since
the correspondences of the three points A, G, C, which are colinear with

— &~
E, are fixed. On the other hand, if E does not lie on either AD or BC, let



—>
L1 and L2 be two lines in frame 1 not parallel to any of AD and'gg'as
depicted in Figure 3, and let the points at the intersections of Ll’ L2
andige be denoted by H and J, respectively, and the points at the intersec-

. tioms of L,, L and'$3 be denoted by I and K, respectively.

1 =2

Frame 1 Frame 2 FR=7350

Figure 3. The point correspondence of E can be determined from the point

correspondences of A, B, C and D.

Since the correspondences of B, G and C are fixed, the correspondences
p

of all the points on the line BC can be uniquely determined. Therefore,

the correspondences of H anq J, denoted by H' and J' respectively, are

fixed. Similarly, the correspondences of I and K, denoted by I' and X'

respectively, are also fixed. Therefore, the corresponding point of E in
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frame 2, denoted by E', which lies on the intersection of TH® and Sﬁf?;

is fixed. We have thus proved that given the correspondences of four image
points with none of the three colinear, the correspondence of any other
point in the image plane can be uniquely determined. Therefore, the mapping
(x,y) — (x',y') is fixed for all (x,y) ¢ Rzo Since the image points are
not colinear, according the Lemma II in Section III.l, the matrix Ao is

nonsingular, Then, from [1][20], the pure parameters are unique.
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IV, Uniqueness of the Motion Parameters Given Four Point Correspondences

in Three Image Frames

Consider three distinct image frames, taken at three time instances
tl, tz ;ﬁd t3 (tl < tz < t3), of a rigid planar patch undergoing three-
dimensional motion. It was proved in Section III that given four image
point correspondences in two image frames, the pure parameters are unique,
and from [2], given the pure parameters, the number of solutions for the
real motion parameters is two in general, unless the A matrix in &) has
multiple singular values. In this section, it is proved that with four
point correspondences in three image frames, the solution for the motion
parameters is unique. ‘

Let Aij be the 3 x 3 matrix containing the eight pure parameters
for the motion from ti to tj’ where 1 = 1, 2, 3 and j =1, 2, 3 and let

kij be the associated constant k as used in (4). Consider a particular

point P on an object. Let

(x,y,2) = object-space coordinates of P at t2.

x';y's2z') = object-space coordinates of P at tlo
x",y",2") = object-space coordinates of P at t3,
X,Y) = image space coordinates of P at tz.

(X',Y') = image space coordinates of P at t;

X",Y") = image space coordinates of P at ts-

and k. = k7l m fact, from (15),

It can be shown that A.., = A.-1
1] J Ji

ji
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. - - -
x' x
' =
y %2141 y
I z' A z L. (32)
and
b4 x!
= 1
4 kiohy0 v
z . z' (33)

Since four image point correspondences with no three colinear are given,

according to Lemma II in Section III.1, Aij is nonsingular. Therefore,

(32) gives
- x'- . x-
-1, -1 ' -
ko181 y = y
|z z | (34)

Comparing (33) and (34) shows that

2 _ =1
A = Ay1 5 Ky = kyy (35)

is one possibility. Since it was proved in Section III.l that given four
image point correspondences, the matrix A is unique, this must be the only
possibility. We are now to verify the following composition rules for Ai.'s

and k, . K 's:

13



Ay = A5 A (36)
Ry = ks g (37)

where 1 = 1, 2, 3, j=1,2,3, n=1,2,3andn#4, 0 # j.

From (15), we have

= N P =
x x?
3 §
y klZ A12 y
§
i z | -Az i . (38)
and
i xn- " < 7
1] = ’
y ky3 423 y
L2 | 2 (39)

[~ 1] 3 %! ]
| = A '
y kpsfiofasbiy | Y
h_z"d ’ i z‘a ’ 0)

But by definition,
- - o =
x" x

n =
y Fisf3 |7

z" z?! (41)




From (40) and (41), we see that
413 = Ay3hpp

ki3 = kygkyy

is one possiblity. Since A13 is unique given four image point correspondences,
this must be the only possiblity. As for other values of i, j, n in (36) and

(37), the proof is the same except for the change of indices.

Since moving the object is equivalent to moving the camera so far
as the image point correspondences are concerned, the situation can be
depicted in Figure 4 whgre 01, O2 and O3 are the three focal points for
the three image frames when the planar patch is considered to be statiomery

while the camera is moving, for the purpose of showing the relationships

between Aij's and the three image frames. ()2
o O], A12 A23
(X,Y)

1
Aoy = Arp

(image at time t3)

(image at time 1) (image at time t,)

Az T AxzApp

/ \/ | Object Surface .

FR- 7351

Figure 4. The A 's and the three image frames of a rigid plamar patch.
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Since four image point correspondences are given, A12 and A23 are fixed.

Therefore, all A,,'s, for i = 1, 2, 3 and j = 1, 2, 3 are fixed. Then,

ij

from [2], for the motion from t, to t_. , there are two sets of solutions

2 1

for the motion parameters given Ay and for the motion from t, to t,, there
are also two sets of solutions for the motion parameters given A23. Since
these two motions, one from tz to ty and the other from tz to t3, can be
completely independent in general, the only possibility for the solution

of the motion parameters to be unique is that not both of the two solutions
for the orientations (i.e., the directional cosines of the ;ormal directions
of the object surfaée) of the planar patch corresponding to the two solutioms

of the motion parameters for the motion from tz to t1 coincide with those

for the motion from t, to t,. This is to be proved by contradiction.

2 3
Assume that there are indeed two solutions. Let the SVD of Aij be
Agg = gy By vg %2)
where |
R @ ]
by - X
‘ = @3)

The approach we shall take is outlined below:

(1) Prove that
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21 = V23

+
. i 1 |

(11) Prove that A21 =g A23 for some constant g.

(iii) Prove that Al3 = §' I. Then the three singular values for
the motion from tl to t3 are identical, which implies from
[2] that the solution of the motion parameters for the motion
from tl to t3 is unique, contradicting to the assumption

that there are two solutions.
The details for the above three steps are now given:

(1) Since the order of Xfi’j), Xéi’j), Kéi’j) can be rearranged

by parmutating the columns of Uij and V,, in (42), we can

i3

always assume that

l§2’1) > kézsl) > Kézsl) : ()
and

(2,3) (2,3) > , (2,3) '
xl 2 A, Mg , 45)

If any of the equality signs in (44) holds, i.e., A21 has multiple singular
values, then for the motion from tz to tl’ the solution for the motion

parameters and the orientation of the object surface at t, are unique

2

according to Theorem I in [2]. Then, for the motion from t, tot the

3’
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solution for the motion parameters must also be unique, since were this

false, the A,

solutions for the orientation of the object surface at t

3 must have distinct singular values and there would be two

2° Similarly,

if any of the equality éigns in (45) holds, the solutions of the motion

2 to tl and 1:z to t3o

-If only the inequality signs in (34) and (35) hold, then from Theorem II

parameters are unique for both the motions from t

in [2], the two solutions for the directional cosines of the planar patch

for the motion frothz to t1 are

- - ~ -
al é
A A. 5
dl = 1 = W V21 0
¢y i 1 i 46)
and
2, =8
-a-h A
2= [P =WV |0
..c2.. i 1 ] 47)
and for the motion from t:2 tO't3,
_alv- 6.'
=4 o4
di = bl w V23 0
°1 N “8)




and
2, '] [--6 ' -[
-r é_ 1 é. '
f12 = b2 = w V23 0

where w and w' are some normalizing comstants

2 2 1/2
@2,1) 2,1)
[hl ] ) [lz ,]
2 )
@,1) 2,1)
{*2 ] - [ls J

| 2
( (2 3) _ [,\,(2&)]
2
2
(2,3) 2,3)
[ - [

Since the two solutions for the directional cosines of the object surface

at t2 for the motion from t2 to tl are assumed to be the same as those for

the motion from tz to t3, either

a— —a —_— —_—
= ' =
4 s 9 4, (30)
or
— -— —— __}
o ! -
4, = 4, » 4, = d; (51)

Let Véi’J) be defined as the nth columm of Vij for n =1, 2, 3. Then,

-

from (46) and (47),



3 7 = - .

) ) 3=-37
- — 0
dl + d2 = w V21 + w V21 0

1 B 1 ]

0

= - @,1)
w le 0 w V3
1

Since the norm of Véz’l) is unity, we have from the above, -

T+ 3,

+

17 2 - iVéz_-’D

— -

|d; +4, | (52)

(231) SO N e
We now show that V is given by the normalized outer product of d. and 4,.

2 1 2
s -5

dg X dy = WV O X WV, |0
1| 1

= P 18 @D L y@D) x (s v & D 4 v @D

= W [-82 vfz’l) X v{z’l) + 8 vl(z’l) X v:,fz’l)

’ ) »1 ) . ’
-8 x vy D 4 gD g2 (53)

where " X " stands for vector outer product.




2,1) 2,1
Since vy 14) Vf s1) _ 0, V§2,l) X v,352,1)

@,1) 2,1
vy R | Vé ? ), we have from (53),

--;x—d; - 22 aviz 1) g{2:1)

Since V(Z’l) is an orthonormal matrix, we have

2,1 (2,1) _ 2,1)
vy X Vs £V,

Substituting the above into (54) gives

— —
I x T, =xow GV(Z b

Since VéZ’I) is normalized, we have from the above

— -—
d, x 3, -
—_—= = Vz(’)
15 x5 |

Since V.

21 is orthonormal, we have

@,1) _ 2,1, @2,1)
vy £V, X Vg

Substituting (52) and (55) into the above gives

TxT Do
2D 1" % 17 %
1 -—
1T x5, | T+ |
Similarly, for the motion from t2 to t3, one can show using exactly the

procedure as above that columns of V,4 can be expressed as functions of

— e

di' and d2' in (48) and (49) as follows:

3-38

(54) =

(35

(56)
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Ia;" + 4, |l | 7)

I 4" %, | (58)

1+ x| 59)

With either (50) or (51), we have from (52) and (57), v§291> -+ v§2’3)

end from (55) and (58), V/2'D) = + v and £rom (s6) and (59,
V§2’1) = + V£2’3). Thus, we have proved that

— 41 T

21 Y23 -

+1 60)
L .

(1i) ILet (xns yns z !

do = '> ¥y 's 2z ') and (x ", y ", z_") be the
n n n n n n

n

new coordinate systems obtained by rotating the coordinate

systems (X,y,z) at T &x',y',2") at t, and (x",y",z") at tas

respectively, using the orthonormal matrix V

21 as follows:




ye

W

ne

= -
<
T
21 y
4
-
T '
21 y
zﬁ
x"
T
21 yll
zl!
- o

23

£
-
T
V23 y

3-40

(61)

62)

(63)
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or
Pslxn- x|
) ynv = V2§ y
L's3 zn- | z | (64)
where 8, = +1, i =1, 2, 3. Similarly, from (60) and (63), we have
-;1 xn"- -x“u S
TEAL L SN ES
.83 zn"_ . bz"_ 65)

(64) and (65) indicate that the new coordinate systems (sn, Yy zn) in
(61l) and an", yn", zn") in (63) can also be obtained, except for the signs

by rotating the o0ld coordinate systems using V23 instead of V Note

21°

that in (64) and (65), (%, y, z) is the coordinate system at t, and (x", y", z")

2

is the coordinate system at t3, while V,, is the matrix in (42) containing

23

the singular vectors for the matrix A ., which characterizes the motion from

23
t2 to t3. Similarly, in (61) and (62), (X, ¥y, 2) is the coordinate system
at t, and (x', y', 2') is the coordinate system at £y while V21 is the matrix

in (42) containing the singular vectors for the matrix A21 which characterizes

the motion from t2 to tl.

systems in the object space are transformed as in (61) and (62) using V21

for the motion from t2 to tl’ there is a rigid circle lying on the inter-

According to [2], if the original coordinate

section of the object surface and the ellipsoid

4y =k (&2 2+ nf 0 S0 p B0 (66)




at t2, while at tl’ this rigid circle must lie on the intersection of

the object surface and the sphere
+ 2 ®7)

where d1 is some constant. We would like to show that this rigid circle
must be concentric, on the object surface, with another rigid circle that

lies on the intersection of the object surface and the ellipsoid

d2 = k2§ {[K§2,3)]2 an - [152,3)]2 yn2A+ [k§2’3)]2 znZ} 68)

at t2 and on the intersection of the object surface and the sphere

19

= g2 2 w2
d2 x,ty, otz ©69)

at t3 for some d2.

Because of (60), (61) and (64), we can see that the principle
axes of the two ellipsoids in (66) and (68) are the same. From (46), (47)
and (61), the solutions for the directional cosines of the planar patch at

t2 in the new coordinate system for the motion from t2 to tl are given by

F1:) [ 2§ ]
T = ot
V21 W Vél 0 w 0
1 1

Similari;;»from (48), (49) and (64), the solutions of the directionél cosines
of the planar patch at €, in the new coordinate system for the motion from

tz to t3 are given by



— 5" Q:GV_
® ' = 8
V23 w.V23 0 w 0
1 1
. A L. J

From the above two equations, we can see that in the new coordinate system,

the normal directions of the object surface at t, must be perpendicular to

the Yy axis, both for the motion from t2 to t, and for the motion from tz
to t,. Since the principle axes of the two ellipsoids in (66) and (68)
coincide with the L yn and zn axes and since the normal direction of the
planar patch is perpendicular to the Y axis (or equivalently, the planar
patch is parallel to the Y, axis) we see that the centers of the rigid
circles lying on the intersections of the planar patch and the ellipsoids
either in (66) or (68) must be on the X zn plane. Obviously, for a
particular planar patch, as d1 increases, the dimension of the ellipsoid

in (66) also increases and, consequently, the center of the rigid circle
that lies on the intersection of the planar patch and the ellipsoid becomes
¢loser to the zn axis. In the limit, as d1 goes to infinity, the center

is on the z, axis. Similarly, as d2 becomes iarge, the center of the rigid
circle on thefinteésection of the planar patch and the ellispoid in (68)
approaches the z, axis. On the other hand, as dl decreases, the rigid
circle lying on the intersection of the planar patch and the ellipsoid

in (66) gradually shrinks to a point. For a particular plamar patch, let

the distance between this limiting point and the z axis be P Similérly,

lﬂ
as dz decreases, the rigid circle lying on the intersection of the planar

patch and the ellipsoid in (68)43150 shrinks to a point. Let the distance

between this limiting point and the z axis be Pz. Then it is seen that

the distances between the zn axis and the centers of the collection of

3-43
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circles lying on the planar patch and the ellipsoids in (66) for some range
of d1 vary between 0 -and Pl’ while the distances between the z axis and
the centers of the collection of circles lying on the planar patch and the
ellipsoids in (68) for some range of d2 vary between O and P,. Let P3 be

2
such that

From the above, it is obvious that there exist at lgast two rigid circles
lying on the intersections of the planar patch and the elliésoids in (66)
and (68), respectively, such that the centers coincide with each other and
the distances between the center and the z, axis is Pse

Let the equation describing the object surface at t2 be expressed as
aX+By+yz=1 (70)

for some &, B, ¥ € R. Note that at this point we do not know whether
@, B and ¥ in (70) are unique or not. However, any choice of @, f and
Y will lead us to the conclusion we are expecting for step (ii) as to be

seen in the following. Substituting (70) into (66) gives

2
2 [2@1) 2 (2,1)]2 @,1]% 2
[1{2’1)] P I x - 2d ‘[*3 o=+ [xz ] y.
: |

+ = d1 (71)

Similarly, substituting (70) into (68) gives
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(2,3) 2 2 (2:3) 72
' A 2,3).2 2
[K{Z’B)lz 3 a] xi - 2 |2 y x + [ké 17y
¥
L 2,3)72
+ |3 = 4
Y 2 (72)

Since z, no longer appears in (71) and (72), the two curves in the x y
plane described by (71) and (72) are the vertical Projections of the two
concentric circles in the (s s Yoo 2 ) 8space into the X, y Plane and,
therefore, must be two ellipses that are identical up to a scale factor.
By equating the coefficients in (71) and (72) up to a positive propor-

tionality constant h, we have

2,3) ~
(2,1) 72 3\ (2,
A By I (2,302 |23 73
(2,012 B2 = oA AT g | ey
R H @ |
(2,1)92 (2,3)12 |
R e = 2. Za[éi-——- : (74)
“ Y %2 Y
2,1)]2 : ‘
ﬁ; S K [X(quz o |
-V ) |
4 2
(2,1)72 (2,3)7 2 :
1 B - L (76)
3 Y q, y
: ; iti 74)
Let g =(%h) . (Note that dl’ d2 and h are all positive). Then (
becomes
(2,3)
A - i Ay -

But since the singular values are nonnegative by definitlon,vwe have




(2,1) o, (2,3)

Similarly, (75) gives

_xz(z,l) - g A2(2’3)-

Substituting (78) into (73) gives

wmw+$gmm_wwm¥+$ymv

or A (2,1) = g )\1(2’3) A

1

From (77),»(78) and (79), we have

A = g A

21 23

(iii) From (36), we have

A3 = Ay A

(35) and (81) give

-1

Az = Ay Ay
(U,, A, V T)(U A
23 fp3 Vp30(Uy,

| . i
(Upg Apg V3)(V,, A

Substituting (60) and (80) into (82) gives

21 Y210
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77

(78)

(79)

(80)

(81)

(82)



where

Since U23 is orthonormal, it is obvious from (85) and (86) that U and V

13

A

>

>

>

T
Usz 3 Va3 ° Vg
-1
8 Uy lyg o I
£1 A
U23‘ +1
1
L
[ +1
Uss xl
1
UATE
gl 1
_
+1
Uz3 +1
+1
Uss

are orthonormal.

nonnegative diagonal elements. Therefore, from definition, (83) is the

singular value decomposition of A

Also, since g 2 0, A in (84) is a diagonal matrix with

13°

+1 ]
+1
| sl
ail "1
+1
1
L B
-1 -1
8 " Ayy Ayg Upg
-1 T
™ u,;.

=1

“l =l T
23 Uz
T

23 Y23

But since the singular values are
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(83)

(84)

(85)

(86)
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unique given A13, we have

Al3 = A = g~ eI ” (87)
Therefore, A (1,3) C= X (1,3 .= X (1,3 = g“l .

- 1. 2 3
Since the three singular values of A13 for the motion from tl to t3 are

identical, from Theorem III in (2], the motion parameters are unique,
contradicting the assumption that there are two solutions. We have thus
proved that given four image point correspondences in three image frames,

the solution for the motion parameters is unique,



V. Conclusions

We have shown4that in estimating three-dimensional motion parameters
of a rigid planar patch the eight pure parameters used in [1] and [2] are
unique, and can be determined by solving a set of eight nonsingular linear
equations given the image correspondences of four points with no three
colinear both before and after the motion. In [2] it was shown that given
the eight pure parameters, there are two possible solutions to the motion
parameters. It is proved in this paper that given four image point cor=-
respondences in three (distinct) perspective views, the‘motion parameters

are uniquely determined.
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