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Estimating Time-Series Models From
Irregularly Spaced Data

Piet M. T. Broersen and Robert Bos

Abstract—Maximum-likelihood estimation of the parameters
of a continuous-time model for irregularly sampled data is very
sensitive to initial conditions. Simulations may converge to a good
solution if the true parameters are used as starting values for the
nonlinear search of the minimum of the negative log likelihood.
From realizable starting values, the convergence to a continuous-
time model with an accurate spectrum is rare if more than three
parameters have to be estimated. A discrete-time spectral esti-
mator that applies a new algorithm for automatic equidistant
missing-data analysis to irregularly spaced data is introduced.
This requires equidistant resampling of the data. A slotted near-
est neighbor (NN) resampling method replaces a true irregular
observation time instant by the nearest equidistant resampling
time point if and only if the distance to the true time is within
half the slot width. It will be shown that this new resampling
algorithm with the slotting principle has favorable properties over
existing schemes such as NN resampling. A further improvement
is obtained by using a slot width that is only a fraction of the
resampling time.

Index Terms—Continuous-time likelihood, nearest neighbor
(NN) resampling, order selection, slotting, spectral estimation,
unequally spaced, uneven sampling.

I. INTRODUCTION

MANY estimation techniques for unevenly spaced data

have been developed [1]. They can be divided in

continuous-time and discrete-time spectral estimates. The

maximum-likelihood (ML) estimator has been formulated for

the estimation of continuous-time models from irregular data

[2]. However, this estimator is known to be very sensitive to

local minima and requires very good initial estimates [3].

Replacing the derivative operator in the continuous-time

model by a discrete-time approximation is a method to identify

continuous-time models from unevenly sampled data. Low-

order autoregressive (AR) processes have been studied with this

method [4]. All known variants inevitably suffer from bias.

For autoregressive moving average (ARMA) systems, the

Cramér–Rao lower bound for the parameters has been derived

[5], which depends on the actual irregular observations. This

achievable accuracy computation uses a state space formulation

of the ARMA model.

A new continuous ARMA method requires the explicit use

of a sampling model for the irregular instants, for which the
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Poisson distribution is used [6]. The precise shape of that

distribution is very important for the result, but it is almost

impossible to establish it from practical data.

Several discrete-time methods have been described. The slot-

ting technique estimates equidistant lags of the autocovariance

function from irregularly sampled data. Many variants and

improvements have been proposed [1]. No existing slotting

method gives positive definite estimates for the autocorrelation

function, which is necessary for a positive spectral density as

Fourier transform. Sometimes reasonable results have been re-

ported, but only if more than 100 000 observations are available.

Resampling techniques reconstruct a signal at equal time

intervals. Those equidistant data can be analyzed with the

usual signal processing methods, which can guarantee the

positive definite property. However, spectral estimates at higher

frequencies will be severely biased. Adrian and Yao [7] de-

scribed the bias caused by sample-and-hold reconstruction as

low-pass filtering of the signal, which is followed by adding

noise. For Poisson-distributed measuring instants, these effects

can in theory be eliminated using a refined sample-and-hold

estimator [1]. Recent developments in refinement techniques

are exclusively limited to Poisson distributions [8]. Undoing

the bias is based on the asymptotic theory, neglecting the

variance of the estimates. Therefore, very large data sets are

required for this method. For practical data, it is not possible to

reconstruct details with a magnitude below the theoretical bias

level reliably. Nearest neighbor (NN) resampling and sample-

and-hold have similar filtering and noise characteristics [9]. The

resampled spectra are strongly biased for frequencies higher

than about 15% or 20% of the mean data rate.

A new idea with time-series analysis can be perceived as

searching for uninterrupted sequences of data that are almost

equidistant [10] and using the Burg method for segments to

estimate the spectrum with an AR model. In a similar approach,

a slotted version of that Burg algorithm uses a modified NN

resampling scheme to create an equidistantly resampled sig-

nal, with many empty places where no original observation

fell inside the slot width. Slotting reduces the bias of NN

resampling considerably. The reason is that slotting prevents

an irregular observation to appear at multiple resampled time

instants. A disadvantage of this method is that very large data

sets are required to obtain some uninterrupted sequences of

sufficient length for the Burg algorithm. It turned out that a

nonlinear ML algorithm for missing-data problems, which have

already been described by Jones [11], could sometimes give

a better solution for slotted resampled data, also if much less

data are available [12]. Whereas the slotted method required

about 200 000 irregular observations, the ML method could
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Fig. 1. Log likelihood of 1000 irregular observations of a continuous one-
pole process as a function of α, where α is a multiplication factor for the true
parameter.

converge already to an accurate spectral estimate with 2000 or

less observations.

Because of the many unsolved problems for continuous-

time solutions and slotted autocovariance methods, this paper

investigates the application of the best discrete-time method

for equidistant missing-data problems [12] after that method

is adapted to irregular data. A survey of existing missing-data

methods and a robust version of the ML algorithm for autore-

gressive models of missing-data problems has been given [12],

[13]. For missing-data problems, the performance of the robust

and automatic ML algorithm outperforms all other methods.

The purpose of this paper is twofold. First, the ML principle

for continuous-time models is investigated, but no robust algo-

rithm has been found. Second, the continuous irregular prob-

lem is considered as an approximate equidistant missing-data

problem. Modifications required to apply the existing automatic

algorithm for equidistant missing data [12], [13] to irregularly

sampled data are given. Irregular data are approximated by a

number of shifted equidistant data sets. The choices of the grid

time, the slot width, and the selection of the best discrete-time

model for the irregular data are discussed.

II. LOG LIKELIHOOD OF AR MODELS

Experience shows that the estimation of first-order continu-

ous AR models with a single negative real pole never creates

a problem with continuous ML estimation. The surface of the

likelihood as a function of the parameter is smooth, and any

search method converges to the minimum whatever the start

value might be. Fig. 1 gives an example for a real root at −0.8. It

is not difficult to find the minimum from arbitrary initial values

if the likelihood is completely regular.

Second-order simulations sometimes converged to the mini-

mum of the likelihood. A simple sequential method starts with

the AR(1) model. Then, the starting values for an AR(p) model

are found by using the model estimated for order p− 1 plus

an additional negative initial value for the real pole of the new

Fig. 2. Log likelihood of 1000 irregular observations of a continuous four-
pole process as a function of α, where α is a simultaneous multiplication factor
for the complete true parameter vector.

order p. In most two-pole simulations, the sequential starting

values for orders 1 and 2 converged to the minimum of the

likelihood. However, the sequential AR orders in a few runs

failed to converge to a good spectral estimate with a peak.

Using the true values of the parameters as starting values for

the nonlinear search always found the model with a peak.

This demonstrates that the ML estimate is very sensitive to

the initial starting values for the nonlinear search [3]. A third-

order example exists of a peak with a pair of complex damped

conjugated poles and a negative pole, giving a constant slope.

This three-pole example marks the transition from successful

ML estimates and the impossibility to find initial values that are

close enough to the global minimum to converge. The surface

of the log likelihood was almost always rather rough with many

local minima.

No runs of fourth-order processes with two complex con-

jugated pole pairs converged to the global minimum of the

continuous log likelihood if sequential starting values were

used. Only in exceptional cases, realizable starting values were

close enough to the global minimum to obtain convergence to

the minimum of the log likelihood with the nonlinear search.

Sometimes, numerical problems even prevented convergence

from the true process parameters as starting values. Matrices

were close to singularity. Fig. 2 demonstrates a reason for the

poor convergence. It is almost impossible to find the global

minimum. Many local peaks and minima are seen. The number

of peaks in Fig. 2 would grow with the number of likelihood

evaluations, which is given by the density of the evaluation

grid for α. Repeated simulation runs never delivered a four-pole

realization, where the surface of the continuous log likelihood

was smooth and without very large peaks.

Several ML scenarios have been attempted. Generally, the

optimization will stop at the local minimum closest to the

starting values. The shown appearance of the log-likelihood

function is a combination of true likelihood properties, numer-

ical singularities, and programming imperfections. No reports

of successful ML algorithms for higher order models have been

found in the literature. Only models with one or two poles can
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be determined reliably. It is clear that it will not be allowed to

extrapolate a good ML behavior of an estimation method for

one or two poles to arbitrary model orders.

III. MULTISHIFT SLOTTED NN RESAMPLING

Discrete-time signal processing methods can be applied to

equidistantly resampled irregular data with sample-and-hold

[7] or NN resampling [9]. That gives a simple equidistant

signal that has an unacceptable bias for frequencies above 0.15

or 0.2 times the mean data rate. The analysis of resampling

methods shows that the bias is caused by the multiple use of the

same observation and the shift of irregular observation times

to a fixed grid. The multiple use of a single observation for

more resampled data points is a serious problem. This creates

a bias term in the estimated autocovariance function because

the autocovariance R(0) leaks to autocovariances estimated at

nonzero lags. Multiple use of the same observation is elimi-

nated in slotted NN resampling. That will produce a resampled

signal with many empty places, which can be processed with a

missing-data algorithm.

Assume that a signal x(t) is measured at N irregular time

instants t1, . . . , tN . The average distance between samples T0

is given by T0 = (tN − t1)/(N − 1) = 1/f0, where f0 denotes

the mean data rate. The signal can be resampled on a grid at

KN equidistant time instants at a grid distance of Tr = T0/K.

The resampled signal exists only for t = nTr with n as an

integral number. The spectrum can be calculated up to the

frequency Kf0/2. The usual NN resampling substitutes at all

grid points nTr the closest irregular observation x(ti), with

|ti−1 − nTr| > |ti − nTr| |ti+1 − nTr| > |ti − nTr|. (1)

The uninterrupted resampled signal contains KN equidistant

observations. For K ≫ 1, that means that many of the original

N irregular observations will be used for more resampled

observations.

Slotted NN resampling only accepts a resampled observation

at t = nTr if there is an irregular observation x(ti) with ti
within the time slot w, which can be expressed as

nTr − 0.5w < ti ≤ nTr + 0.5w. (2)

If there is more than one irregular observation within a slot,

the one closest to nTr is selected for resampling; if there is

no observation within the slot, the resampled signal at nTr is

left empty. For small Tr and for w = Tr, the number N0 of

nonempty resampled points nTr becomes close to N because

almost every irregular ti falls into another time slot. For larger

Tr withK < 1, more irregular observations may fall within one

slot, and only the one closest to the grid point survives in the

slotted NN resampled signal. The successive resampling times

nTr cover the whole continuous time axis for w = Tr.

Taking w = Tr/M with M as an integer, gives disjunct

intervals, where some irregular times ti are not within any

slot of (2). Therefore, multishift slotted NN resampling is

introduced, whereM different equidistant missing-data signals

are extracted from one irregular data set. The sampling instants

with nonempty places for the M signals are given as

nTr +mw − 0.5w < ti ≤ nTr +mw + 0.5w

m = 0, 1, . . . ,M − 1. (3)

Now, all slots of width w are connected in time. The number

of possible grid points is NMT0/Tr. Hence, the fraction γ
of points with an observation present is approximately given

by 1/MK. Experience with missing-data problems shows

that time-series models can be easily estimated for γ > 0.1
[12], [13]. It may become difficult if γ is less than 0.01, unless

the number of observations is very large. This limits the useful

range of resampling time and slot width for a given number of

observations.

The bias of multishift slotted NN resampling is strongly re-

duced in comparison with the usual NN. For Poisson sampling

instants, its bias can be described with the probability density

function f(τ) of the continuous-time lags τ that contribute to

the resampled autocorrelation Rres(nTr). f(τ) is given as

f(τ) = 0.5f0

{

e−2f0τ − e2f0(τ−w)
}

+ f2
0 τe

−2f0τ , 0 < |τ | < w/2

= (w − τ)f2
0 e

−2f0τ , w/2 ≤ |τ | ≤ w

= 0, |τ | > w. (4)

With this result, the expectation of the resampled autocorrela-

tion becomes

Rres(nTr) =

w
∫

−w

R(nTr + τ)f(τ)dτ, n �= 0

Rres(0) =R(0). (5)

This type of bias due to the shift of irregular observation

times to a resampled equidistant grid will be present in all

equidistant evaluation methods for irregular data. This includes

all slotted autocorrelation methods with fuzzy slotting or local

normalization, as defined in [1]. The bias will be of the same

order of magnitude as that obtained with (5) for w = Tr.

Fig. 3 shows the bias effects on the spectral density; the

bias results from the variation of the autocorrelation function

over the slot width. The example has a constant spectrum for

frequencies f below 0.01f0, a constant slope in the double

logarithmic presentation that descends at a rate of ∼ f−5/3

from 0.01f0, and an extra declining slope at a rate of ∼ f−7

for frequencies above 0.1f0. This type of spectra occurs in

turbulent flow. The first figure shows the whole frequency range

for a very low resampling rate. The resampling time Tr = 2/f0
permits to compute spectra only up to f0/4. The other figures

are limited to the higher part of the frequency range to increase

the visibility of the bias. The total frequency range increases

inversely proportional to Tr. The bias becomes important in

weak parts of the spectrum and becomes less if the slot width

is reduced. For w = 1, the fraction of the total frequency range

with an acceptable bias diminishes for smaller values of Tr. If
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Fig. 3. Theoretical expectation of the spectral bias of slotted NN resampling for a turbulence spectrum for four resampling times Tr and four slot widths w,
which is always given as a fraction of Tr for f0 = 1.

the slot width is taken small enough, the bias will disappear

eventually. That requires a very small slot if the dynamic range

of the true spectrum is large, which is similar to that in Fig. 3

for Tr = 0.25. However, the small slot width also reduces the

remaining data fraction γ because more resampling instants are

used for the same number of irregular observations. A smaller

slot reduces the bias of the spectral estimate, but it gives an

increased variance because the remaining fraction γ becomes

smaller and the estimation of parameters is more difficult.

As all resampling schemes give biased estimates, only the

estimation of a continuous-time model can be unbiased for

irregular data and can possibly approach the Cramér–Rao lower

boundary for the achievable accuracy. Discrete-time spectra are

intrinsically defined over a limited frequency range and can at

best represent the data within that range.

IV. EQUIDISTANT TIME-SERIES MODELS

Three different linear types of time-series models can be

distinguished for equidistant observations xn of a stationary

stochastic process, namely 1) auto regressive or AR; 2) mov-

ing average or MA; and 3) combined ARMA models. An

ARMA(p, q) model can be written as [14], [15]

xn + a1xn−1 + · · · + apxn−p = εn + b1εn−1 + · · · + bqεn−q

(6)

where εn is a purely random process of independent identically

distributed stochastic variables with zero mean and variance σ2
ε .

It is purely AR for q = 0 and MA for p = 0.

The estimated time-series model is a parametric estimator

for the spectrum and the autocorrelation function. The power

spectral density h(ω) of an ARMA(p, q) model is completely

determined by the parameters in (6) together with the variance

σ2
ε and is given as

h(ω) =
σ2

ε

2π

∣
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The autocovariance of xn can be computed as the inverse

Fourier integral transform of (7). It can easily be found directly

with the standard theory [14], [15], showing that the parameters

of a time-series model completely describe the power spectral

density and the autocorrelation function of the data xn.

Accuracy measures have been defined that can compare the

quality of the discrete-time model with true or aliased contin-

uous spectra [9]. With the spectral distortion SD, the integral

of the squared difference between the logarithms of spectra can

be computed for an arbitrary frequency range, which can be

expressed as

SD =
NTr

2π

π/Tr
∫

−π/Tr

[

ln {h(ω)} − ln
{

ĥ(ω)
}]2

dω. (8)

The hat indicates a spectral estimate. By limiting the integration

to the definition area of the discrete spectrum, it is possible

to attribute a single number to the accuracy of discrete-time

approximations to continuous-time spectra [9].

An automatic ML program ARMA selection-missing

(ARMAsel-mis) has been developed for the equidistant

missing-data problem [12]. In simulations, the accuracy of the



1128 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 4, AUGUST 2006

ARMAsel-mis spectra in estimation when data are missing

was better than the spectra obtained with many other methods

from the literature. Examples have been given where the es-

timation of time-series models in missing-data problems was

efficient, which means that the accuracy of the resulting model

approached the limit of the achievable accuracy.

V. ARMA SELECTION-IRREGULAR

(ARMASEL-IRREG) ALGORITHM

Input for the algorithm for irregular data are the M equidis-

tant missing-data sequences or signals obtained with the mul-

tishift slotted NN algorithm of (3). The signals are all derived

from the original irregularly sampled observations in the same

time interval. In principle, the data in the different signals are

correlated and not independent. However, the most influential

parts of each signal are found at places where only few data are

missing. Generally, those places will be at different locations

for the various signals, and the assumption that the signals

are more or less independent is justified. An approximation

for the likelihood is defined by computing it separately for

each signal and adding them in the minimization procedure.

Computing over more signals in the same time interval gives

only a true likelihood if those signals are independent and

uncorrelated. Otherwise, not all contributions to the true like-

lihood are taken into account because nearby observations may

belong to different multishift resampled signals. The likelihood

of the shifted signals is only equal to the sum of the likelihood

of each of the individual signals if all shifted signals were

independent. However, using the almost independentM signals

together, each with about N/M observations, gives a much

better accuracy than using only one of the resampled signals.

All elements for an automatic ARMAsel algorithm for ir-

regular data can be copied from the algorithm that has been

developed and described for missing data [12], [13], and are

given in the following list.

• Apply multishift slotted NN resampling of (3) to replace

the irregularly sampled signal into a number of equidis-

tant missing-data signals that can be used in a dedicated

missing-data algorithm that accepts the shifted signals

with a slot width smaller than the resampling distance.

• Discrete-time “likelihood” for AR models is computed for

every signal separately and added afterward. The exact

method is used for γ > 0.15; else, an approximation is

faster [12].

• Tangent of π/2 times the AR reflection coefficients is

used in the minimization to guarantee estimated reflection

coefficients with absolute values less than 1, which is a

prerequisite for stationary AR models.

• Starting values for the AR(p+ 1) model are the estimated

reflection coefficients of the AR(p) model with an addi-

tional zero for the reflection coefficient of order p+ 1.

• AR(p) order selection uses the following as criterion:

GIC(p) = the “log likelihood” + αp

with α = 3 for less than 25% missing, α = 5 for less than

25% remaining, and α = 4 otherwise.

• MA and ARMA models are estimated from the parameters

of an intermediate AR model.

• Order of that intermediate AR model is chosen as the

highest AR order with a spectrum close to the that of the

selected AR model.

• Order selection for MA and ARMA models is based on

the log likelihood plus three times the number of estimated

parameters.

• Quantity γN can be considered as an effective number of

observations. The fraction γ is determined by the choice

of the resampling period and the slot width.

VI. CONTINUOUS ML AND DISCRETE ARMASEL

The four-pole continuous AR process with two spectral

peaks analyzed in Fig. 2 has been used as an example. The

fitting of a continuous AR model with the ML method is very

sensitive to the starting values. It has been demonstrated in

Fig. 2 that the log-likelihood function is not well behaved and

has many local minima [3]. The nonlinear ML optimization of

the log likelihood uses the specific parameterization of Jones

[2]. This is to make sure that the real parts of the roots of the

estimated continuous model are negative and that the solution

will always be stable. To verify that a good ML solution exists

and that it has a low value of log likelihood, the true parameters

have been used as starting values for the nonlinear minimization

of the log likelihood. This optimization mostly converged to an

ML spectral estimate that is very close to the true spectrum.

However, those starting values are only possible in simulations

where the truth is already known. It just shows that the true

continuous ML solution with the global minimum of the log

likelihood will be very attractive if good starting values can be

found in practice.

In ML estimation in discrete-time missing-data problems,

the model estimated for order p− 1 with one additional zero

has been used as the starting value for order p. Trying variants

of this estimation with increasing orders for the continuous

models were not successful if more than two parameters had

to be estimated. They use the estimate of order p− 1 as starting

values for the solution at order p, with an additional pole at

−0.2 or any other value. In addition, finite poles close to −∞
have been tried for the additional pole. One of the problems

is that the stability of the model prohibits the use of the value

zero for the additional pole; some nonzero negative real pole

must be used for the additional pole of order p. Generally, the

likelihood of the starting model of order p becomes worse than

the AR(p− 1) likelihood if that extra finite pole is added. That

cannot happen in discrete-time modeling because the additional

parameter with the value 0 for order p gives the same value

of the likelihood. Moreover, the sequential optimization of the

continuous log likelihood did not always converge to lower val-

ues for a model with more parameters. In no single simulation

run with more than three parameters was a useful spectrum

found with those sequential starting values for increasing model

orders. Finding good starting values in practical situations is

necessary. Fig. 2 shows that only a very small region around

the true parameters will be good enough to obtain convergence

to the global minimum.
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Fig. 4. True spectrum, ML spectrum found with realizable starting values
derived from the ARMAsel-irreg solution and with sequential starting values
denoted IC123, and the slotted NN estimate of ARMAsel-irreg. The number of
irregular data was 1000, and the mean data rate was f0 = 1. For ARMAsel-
irreg, Tr = 1/4, and w = 1/4.

The ARMAsel-irreg algorithm gives a satisfactory estimate

in the specific simulation run shown in Fig. 4, with two peaks

at almost the true frequencies. That algorithm requires no user

interaction, except for the choice of the resampling frequency

Tr and the slot width w. The frequency range of the discrete-

time solution is limited to below 2 Hz because the method uses

an equidistant resampling scheme with Tr = 1/4. Therefore,

the highest frequency range suffers from the bias that follows

with (5). This is clearly seen in the spectrum of ARMAsel-

irreg shown in Fig. 4, where the estimate becomes flat at the

frequencies near 2.

The discrete-time model obtained with ARMAsel-irreg has

been used to construct starting values for the continuous-time

model. The zero-pole matching technique gives a transforma-

tion of a given discrete-time AR process to the poles of a contin-

uous differential equation with only left-hand side terms [16].

The use of the bilinear transformation that is generally preferred

would also introduce zeros in the continuous-time starting

model. This would require a different likelihood algorithm. The

continuous poles are then transformed to the starting values

for the algorithm of Jones [2] for a nonlinear minimization

of the log likelihood. Fig. 4 shows that the estimate of the

continuous-time spectrum starting from ARMAsel-irreg was

very good in this simulation run. The likelihood of the final

model found with the optimization was about the same as the

likelihood found from the true parameters as starting values.

However, the improvement was not caused by the continuous

ML optimization. Just transforming the estimated ARMAsel-

irreg model to the continuous-time equivalent with the zero-

pole matching did the job in this simulation run. The ML

search program decided that it could not improve the likelihood

further from those starting values. Only if the starting values

had two peaks at approximately the correct frequencies would

the continuous-time equivalent be as good as that in Fig. 4. It

was remarkable that if an initial estimate has a peak at a wrong

frequency, using that as the starting position resulted in a con-

tinuous ML solution with the peak at the same wrong frequency.

The explanation is that the surface of the log likelihood is so

rough that optimization will stop at a local minimum that is

very nearby the starting point.

Looking at the surface of the discrete-time log likelihood

in this example showed that this has a smooth surface. It has

been verified by repeated simulations that the continuous log

likelihood of the example with two peaks was always very

rough, which is similar to that in Fig. 2, and the discrete-time

log likelihood obtained with ARMAsel-irreg was smooth. If

enough data are available, discrete-time models may have the

bias of Fig. 3, but they do not have convergence problems

because there are no peaks in the log likelihood.

The accuracy the ARMAsel-irreg spectrum is very good in

comparison with many methods that use slotted estimates of

autocorrelation functions to estimate spectra. Those methods

mostly require 100 000 or more observations [1] and never

deliver acceptable estimates with only 1000 observations.

VII. SIMULATIONS WITH SLOTTING

Whereas sample-and-hold or NN resampling without slotting

always causes a filtering operation and additive noise in the

frequency domain, this effect may disappear by using the

slotting variant. As an example, the expectation of a white-

noise spectrum remains white and unchanged after slotted NN

resampling. This is clear with (5), where R(0) is unchanged

and all other contributions remain zero. Applying ordinary NN

gives a colored-noise spectrum because the repeated resampled

observations produce correlations at nonzero lags, which cause

a colored spectrum.

The first simulation example has a constant slope in the

double logarithmic presentation that descends at a rate of

∼ f−5/3 from 0.01f0 and becomes flatter for very high fre-

quencies above f0 due to aliasing. This shape is inspired by

turbulence data [17]. This true spectrum can be approximated

very well with low-order AR models in the frequency range

of Fig. 5. The theoretical bias is negligible, and the estimated

and automatically selected AR(2) model of ARMAsel-irreg fits

closely. The ARMAsel algorithm selected the AR(1) model

for the equidistant data obtained with ordinary NN resampling.

This estimated NN shows a bias that would also be present in

the higher order AR models estimated from the NN signal. Like

in white noise, this filtering effect of NN gives a downward

bias. In this example, the performance of ARMAsel-irreg is

very good.

The second example in Fig. 6 has an extra declining slope

at a rate of ∼ f−7 for frequencies f above 0.1f0. The bias

of this example has been analyzed in Fig. 3. Fig. 6 gives the

true continuous-time spectrum and two estimated discrete-time

spectra. Here, the ARMAsel algorithm selected the AR(21)

model for the equidistant data obtained with NN resampling.

The ARMAsel-irreg algorithm selected the AR(5) model for

the slotted NN data. Both estimated spectra are rather close to

their respective biased expectations. Hence, slotting in combi-

nation with NN resampling gives a much lower bias, as might
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Fig. 5. True spectrum, the NN ARMAsel estimate, and the ARMAsel-irreg
slotted NN estimate from 1000 irregular observations, with Tr = T0/4 and
w = Tr/2. The true spectrum and the slotted NN expectation coincide within
the linewidth for this example.

Fig. 6. True spectrum, the NN ARMAsel estimate, and the ARMAsel-irreg
slotted NN estimate from 1000 irregular observations, with Tr = T0/4 and
w = Tr/2. The bias of the estimated spectra is close to the theoretical bias for
NN with ARMAsel and to the slotted NN with ARMAsel-irreg.

be expected. Both NN and slotted NN are very accurate for

f < 0.2f0. In the range of 0.2f0 < f < 0.5f0, the slotted es-

timate is still accurate, and the ordinary NN is biased. For still

higher frequencies above 0.5f0, both estimates are no longer

accurate. However, the bias reduction in the high-frequency

range due to slotting is still more than a factor 100 better than

that without slotting in this example with a steep spectral slope.

Nevertheless, the slotted NN estimate also still has a consid-

erable bias for high frequencies in Fig. 6. The improvement

obtained with slotting is only negligible for frequencies below

about 0.2f0, as has been predicted with theory [7].

VIII. CONCLUSION

A new estimator ARMAsel-irreg is introduced that fits a

time-series model to multishift slotted NN resampled signals

obtained from irregularly sampled data. The new ARMAsel-

irreg algorithm combines a spectrum that is guaranteed to be

positive with an improved accuracy at higher frequencies. The

results in simulations with few data are much better than those

that can be obtained from the same data but with other resam-

pling techniques. The order and type of the best time-series

model for the data can, in principle, be selected without user

interaction. However, order selection may still fail in practice

because of the likelihood properties.

Multishift slotted NN resampling with ARMAsel-irreg can

give accurate discrete-time spectra if the dynamic spectral range

of the signal is limited. For a large dynamic range, a small slot

width can reduce the bias. That requires large data sets to obtain

accurate estimates.

Continuous ML estimation may give good results for very

low order AR models but only if the model order is known in

advance and if the starting values of the nonlinear search are

close enough to the true process parameters. Using the selected

discrete-time model of ARMAsel-irreg as a starting value for

the continuous likelihood minimization sometimes gives a good

continuous-time model. However, ARMAsel-irreg is preferred

for practical data.

REFERENCES

[1] L. H. Benedict, H. Nobach, and C. Tropea, “Estimation of turbulent
velocity spectra from laser Doppler data,” Meas. Sci. Technol., vol. 11,
no. 8, pp. 1089–1104, Aug. 2000.

[2] R. H. Jones, “Fitting a continuous time autoregression to discrete data,” in
Applied Time Series Analysis II, D. F. Findley, Ed. New York: Academic,
1981, pp. 651–682.

[3] ——, “Fitting multivariate models to unequally spaced data,” in Time

Series Analysis of Irregularly Spaced Data, E. Parzen, Ed. New York:
Springer-Verlag, 1983, pp. 158–188.

[4] E. K. Larsson and T. Söderström, “Identification of continuous-time AR
processes from unevenly sampled data,” Automatica, vol. 38, no. 4,
pp. 709–718, Apr. 2002.

[5] E. K. Larsson and E. G. Larsson, “The CRB for parameter estimation
in irregularly sampled continuous-time ARMA systems,” IEEE Signal

Process. Lett., vol. 11, no. 2, pp. 197–200, Feb. 2002.
[6] E. Lahalle, G. Fleury, and A. Rivoira, “Continuous ARMA spectral es-

timation from irregularly sampled observations,” in Proc. IEEE/IMTC

Conf., Como, Italy, 2004, pp. 923–927.
[7] R. J. Adrian and C. S. Yao, “Power spectra of fluid velocities measured

by laser Doppler velocimetry,” Exp. Fluids, vol. 5, no. 1, pp. 17–28,
Jan. 1987.

[8] L. Simon and J. Fitzpatrick, “An improved sample-and-hold reconstruc-
tion procedure for estimation of power spectra from LDA data,” Exp.

Fluids, vol. 37, no. 2, pp. 272–280, 2004.
[9] S. de Waele and P. M. T. Broersen, “Error measures for resampled ir-

regular data,” IEEE Trans. Instrum. Meas., vol. 49, no. 2, pp. 216–222,
Apr. 2000.

[10] R. Bos, S. de Waele, and P. M. T. Broersen, “Autoregressive spec-
tral estimation by application of the Burg algorithm to irregularly sam-
pled data,” IEEE Trans. Instrum. Meas., vol. 51, no. 6, pp. 1289–1294,
Dec. 2002.

[11] R. H. Jones, “Maximum likelihood fitting of ARMA models to time series
with missing observations,” Technometrics, vol. 22, no. 3, pp. 389–395,
1980.

[12] P. M. T. Broersen, S. de Waele, and R. Bos, “Autoregressive spectral
analysis when observations are missing,” Automatica, vol. 40, no. 9,
pp. 1495–1504, 2004.

[13] ——, “Application of autoregressive spectral analysis to missing data
problems,” IEEE Trans. Instrum. Meas., vol. 53, no. 4, pp. 981–986,
Aug. 2004.



BROERSEN AND BOS: ESTIMATING TIME-SERIES MODELS FROM IRREGULARLY SPACED DATA 1131

[14] M. B. Priestley, Spectral Analysis and Time Series. London, U.K.:
Academic, 1981.

[15] P. M. T. Broersen, Automatic Autocorrelation and Spectral Analysis.
London, U.K.: Springer, 2006.

[16] G. F. Franklin, J. D. Powell, and M. Workman,Digital Control of Dynamic
Systems. Menlo Park, CA: Addison-Wesley, 1998.

[17] W. K. Harteveld, R. F. Mudde, and H. E. A. van den Akker, “Estimation of
turbulence power spectra for bubbly flows from laser Doppler anemome-
try signals,” Chem. Eng. Sci., vol. 60, pp. 6160–6168, 2005.

Piet M. T. Broersen was born in Zijdewind, The
Netherlands, in 1944. He received the M.Sc. degree
in applied physics and the Ph.D. degree from Delft
University of Technology, Delft, The Netherlands, in
1968 and 1976, respectively,

He is currently with the Department of Multi-
Scale Physics, Delft University of Technology. He
developed a practical solution for the spectral and
the autocorrelation analysis of stochastic data by the
automatic selection of a suitable order and type for a
time-series model of the data. His research interest is

automatic identification on statistical grounds by letting measured data speak
for themselves.

Robert Bos was born in Papendrecht, The Nether-
lands, in 1977. He received the M.Sc. degree in
applied physics from Delft University of Technol-
ogy, Delft, The Netherlands, in 2001. He is cur-
rently working toward the Ph.D. degree in the Delft
Center for Systems and Control, Delft University of
Technology.

He is currently a Reservoir Engineer with Shell
Netherlands, Den Haag, The Netherlands. His re-
search interests include monitoring using large-scale
first-principles models.


