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Estimating Traffic Disruption 
Patterns with Volunteered 
Geographic Information
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Accurate understanding and forecasting of traffic is a key contemporary problem for policymakers. 
Road networks are increasingly congested, yet traffic data is often expensive to obtain, making 
informed policy-making harder. This paper explores the extent to which traffic disruption can be 
estimated using features from the volunteered geographic information site OpenStreetMap (OSM). We 
use OSM features as predictors for linear regressions of counts of traffic disruptions and traffic volume 
at 6,500 points in the road network within 112 regions of Oxfordshire, UK. We show that more than 
half the variation in traffic volume and disruptions can be explained with OSM features alone, and use 
cross-validation and recursive feature elimination to evaluate the predictive power and importance of 
different land use categories. Finally, we show that using OSM’s granular point of interest data allows 
for better predictions than the broader categories typically used in studies of transportation and land 
use.

Understanding and forecasting traffic is an important task for urban policymakers. Road networks are by far the 
most heavily used part of transport infrastructure (for example, 64% of all trips in the UK were made by car in 
20161); yet compared to other transportation modes (such as rail and air) basic data about traffic flow on roads is 
largely lacking.

In the last decade, a variety of novel data sources have started to offer the possibility of filling this gap, such as 
data from GPS transponders on mobile phones2 or data from social media3, which are generating considerable 
academic interest. Here, we contribute to this growing literature on the use of new data sources to understand 
traffic by using volunteered geographic information from OpenStreetMap (OSM) to understand what types of 
land use are associated with traffic jams, as well as increased traffic volume.

The connection between land use and transport is a classic subject in the literature, dating back to 19th cen-
tury work by Ravenstein and Carey on human migration4,5 to recent data-driven studies incorporating land use 
data into traffic volume prediction6–10. Despite the recent increase in the public availability of urban data, land 
use categories are typically classified at a highly aggregate level (e.g., defining areas as residential, commercial, or 
industrial) and data have typically been expensive to put together, meaning it is often only available for large cities 
such as London, New York or Paris, being less common in smaller or less dense locations11–14. It is this context 
that makes OSM a very useful tool, in that its data is highly granular, offering a classification of different types of 
commercial activity, public amenities and other forms of land use, but also in the fact that all this data is freely and 
openly available. The completeness and accuracy of OSM coverage has been assessed in previous studies11,12,15–21, 
yielding positive but cautious results, particularly about road networks. It has also been used to successfully iden-
tify the types of trips which human mobility models struggle to predict accurately10.

Results
We test the extent to which OSM data can offer a good estimation of the volume of overall traffic and the number 
of traffic disruptions, defined as any deviation from normal smooth traffic on a road network, by making use of 
a series of linear regression models. For the models of the traffic disruptions volume, observations are the geo-
graphic (latitude and longitude) points where traffic disruptions were observed in the network and the response 
variable is the number of traffic disruptions observed during the month of March 2017.

The data analysis pipelines for the two sets of linear models in this study are described in Fig. 1. As shown in 
the top panels (a), we first produce kernel density estimates (KDE) of every OSM category and meta-category. We 
then estimate the number of traffic disruptions at a given latitude and longitude using the KDEs of either the OSM 
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meta-categories or of the OSM categories at each point. To produce the KDEs, we made use of a Gaussian kernel 
searched over a range of bandwidth parameters before adopting a bandwidth of 0.001, which captures the range of 
spatial variation of all OSM points of interest. The specific value of the bandwidth parameter did not qualitatively 
affect our results. These KDEs allow us to estimate the density of any type of OSM feature at all of the points where 
traffic disruptions were reported.

As shown in the bottom panels (b), we also perform a second set of linear regressions where we aggregate the 
OSM data points into a total count for every one of the 112 electoral wards in the county of Oxfordshire, UK. We 
then estimate the volume of traffic going into every ward using either counts of the OSM meta-categories or all 
OSM categories for each ward.

Estimating traffic disruptions. The first linear model to estimate traffic disruptions only makes use of the 
meta-categories of OSM features (see Table 1a). These meta-categories represent traditional classifications of land 
use types. The model only weakly fits the traffic disruptions data, resulting in an adjusted R2 of 0.11, which is a 
goodness-of-fit metric that takes into account the different number of independent variables and is a common 
metric for model comparison in computational social science22–24. Individual coefficients show that commercial 
areas are the ones most associated with high traffic, while industrial areas are the least so. We also tested different 
versions of the model only estimating distributions on weekdays and weekends, as the nature of traffic disruptions 
on these days could be different, but the overall fit to the log-transformed data was similar.

The second model has more granular land-use data by making use of all OSM categories that were observed 
at least a hundred times in Oxfordshire, resulting in KDEs for 40 different types of point (from pubs, schools and 
restaurants to graveyards, postboxes and gardens). This model fits the log-transformed data considerably better 
than the meta categorization model as captured by the adjusted R2. This granular model results in an adjusted 
R2 = 0.55. This large increase in adjusted R2 is not simply the result of more input/independent variables; adjusted 
R2 accounts for the number of independent variables and will decrease when variables are added that do not 
affect the dependent variables. The model coefficients of largest absolute value are represented in Table 1b, and 
their corresponding p-values are indicated as well. It is important to note that the OSM category residential is not 
equivalent to the meta-category residential, as the latter includes more OSM categories. We discuss this point in 
more detail in the next sections.

The second, granular model gives estimates of how things we might expect to explain local traffic jams vary 
with actual traffic disruptions. For example, one would expect places of worship and schools to both have a rel-
atively high number of traffic disruptions, but the coefficients in this model indicate a large difference between 
the coefficient corresponding to the relationship between the number of points of interest tagged as schools 
(c = 0.042) and the log-transformed number of traffic disruptions and the corresponding coefficient for places of 

Figure 1. Schematic pipeline of the linear model for the two sets of linear models in this study. As shown in the 
top panels (a), we first produce kernel density estimates (KDE) of every OpenStreetMap (OSM) category and 
meta-category, which we then compare with the number of traffic disruptions at a given latitude and longitude. 
The bottom panels (b) show we also aggregate the OSM data points into a total count per ward, which we then 
compare with the traffic volume going into every ward in Oxfordshire.
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worship (c = 0.009). The analysis, however, is only correlational: OSM points of interest tagged as farmland and 
parking have high positive coefficients, which suggests that the high number of traffic disruptions around such 
points might be due to traffic network features such as narrow roads rather than the effects of these OSM features 
directly.

Estimating traffic volume. We also test the effectiveness of OSM data in estimating the traffic volume in 
Oxfordshire. For this variable, rather than using KDEs to estimate the density of each OSM feature at a given road, 
we aggregate the number of points of interest tagged with each meta-category and category, producing two sets 
of independent variables for every ward: one corresponding to the total number of points tagged with each one 
of the 6 OSM meta-categories, and one corresponding to the points in every ward in the 40 categories. We then 
produce two corresponding linear regression models using the log-transformed total traffic flowing into a ward 
as the dependent variable.

Not surprisingly, some OSM categories are also highly correlated, in the sense that they often appear in the 
same wards. Figure 2 lists all OSM categories, and shows these correlations in detail. It shows a heatmap display-
ing the Pearson correlation between the distribution of OSM categories over wards, giving higher values to pairs 
of OSM categories that often appear in the same wards (e.g, forest and meadow), and lower values to pairs of wards 
that rarely co-occur (e.g., farmyard and fast food). The figure also shows the result of performing hierarchical 
clustering on the OSM categories according to their correlation. There is a cluster formed by farm, farmland, 
farmyard, forest, meadow, graveyard and reservoir, which separates these rural categories from more urban cate-
gories as university or retail.

The linear regression models built with the traffic volume data show the same qualitative trend as the ones 
built with traffic disruption data. The first model, with the 6 meta-categories, results in an adjusted R2 of 0.26. Its 
coefficients indicate that OSM points tagged as commercial are associated with heavier incoming traffic, while 
points tagged as recreational are negatively associated with it. Coefficients corresponding to meta-categories are 
presented in Table S1 in the Supplementary Information.

The finer-grained model, featuring the 40 OSM categories shown in Fig. 2, naturally shows a more nuanced 
scenario. Not only does it provide a better fit to the data, with an adjusted R2 of 0.45, but it also provides more 
detail into the meta-categories used in the simpler linear models. Categories such as telephone and university 
show strong associations with higher levels of incoming traffic, whereas categories such as forest, meadow and 
allotments show weaker associations.

For both the incoming traffic volume per ward and the number of traffic disruptions, the jump from 6 
meta-categories to 40 OSM categories implied a change from a linear model with a poor fit to a model with a 
better fit, indicated by the changes in their adjusted R2. It is natural to then ask if all 40 OSM categories are nec-
essary for the new model to work, or if an equally good fit could be obtained by selecting a different number of 
meta-categories, or a subset of those 40 OSM categories, excluding correlated categories. This is discussed in the 
next subsection.

Variable Estimate

(a)Meta-categories only

Residential  − 0.09**

Industrial  − 0.18**

Recreational  − 0.10*

Institutional 0.14*

Green space 0.26***

Commercial 0.32***

Observations 6529

Adjusted R2 0.11

(b) Granular model

Residential 0.61***

Farmland 0.56***

School 0.042**

Place of worship 0.009**

…

Apartments  − 0.09**

Observations 6529

Adjusted R2 0.55

Table 1. Granular land-use categories from OpenStreetMap allow for more detailed understandings of traffic 
disruptions. Compared with the traditional land-use categories shown in (a) that produce an adjusted R2 = 0.11, 
the granular classifications used in (b) increase the adjusted R2 to 0.55. Only a small subset of the 40 predictor 
variables are shown for (b), with all other coefficients shown in Table S3 in the Supplementary Information. 
Respectively, *, ** and *** indicate p < 0.05, p < 0.01 and p < 0.001.
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Feature selection. We address the explanatory power of each variable in these linear models using feature 
ranking with recursive feature elimination, aided by cross-validated selection of the best number of features, as 
implemented in the scikit-learn Python library25. For both dependent variables, i.e., the incoming traffic volume 
per ward and the volume of traffic disruptions on a point in the road network, we perform 1000 rounds of k-fold 
cross-validation with k = 10, scoring models for their adjusted R2. For every cross-validation round, the 6 or 40 
independent variables are then ranked according to their importance, which in this case is the magnitude of their 
corresponding coefficients in the linear models. Selected features are assigned rank 1, with the next-best variable 
being assigned rank 2, and so on until the last variable.

As multiple cross-validation rounds might result in different rankings of their predictor variables, we combine 
all rankings by calculating the stability of every variable, as well as its mean rank. Stability selection26 is a method 
which provides a useful balance between feature selection and data interpretation, by evaluating how often a 
given feature is included among the most important (i.e., rank 1) for a model. Strong or important features should 
achieve scores close to 1, indicating that most of the 1000 cross-validation rounds ranked them as one of the best 
features for prediction. Any weaker but still relevant features should still have non-zero scores, as they ought to be 
selected as best features at least occasionally. Finally, irrelevant features should return near-zero scores, indicating 
that they are very unlikely to feature among the selected variables.

For the volume of traffic disruptions, both the mean rank and the stability analysis reveal the same pattern, 
as shown in Tables 2 and 3. As there is no specific threshold separating stable from unstable features, these tables 
show the all six meta-categories in Table 2 and the 10 variables with the lowest rankings and highest stability 
scores in Table 3. The meta-category residential features at the top, with both mean rank and stability equal to 
1, indicating a variable that featured as important in all of the 1000 cross-validation rounds. It is then followed 
by the meta-category of recreational, which still features as important, with all other meta-categories featuring 
with a lower rank, and a stability less than 0.6. The corresponding granular OSM categories show the categories 
farmland, residential, parking, forest, and farmyard at the top, with mean rank and stability of 1.000, indicating 
that they were considered important variables in all 1000 cross-validation rounds. These categories are followed 
by farm, meadow, and industrial, with stability of 0.999 and respective mean ranks of 1.001, 1.002 and 1.003. 

Figure 2. Clustermap showing the Pearson correlation of the distribution of different OSM categories over 
all Oxfordshire wards. The heatmap shows the correlation between the number of points of interest tagged as 
every OSM category in this study. The trees show how OSM categories cluster according to their correlation. For 
example, OSM categories such as farm, farmland, farmyard form a cluster, indicating that they often appear in 
the same wards, while not being as correlated to categories such as cafe and fast food.
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Tables 2 and 3 also show the mean rank and stability results for the total incoming traffic volume. Reported 
results are for trips on weekday mornings, but qualitatively similar results are obtained when using the full collec-
tion of trips in the dataset as shown in Table S2 in the Supplementary Information. The meta-category commercial 
features at the top, with both mean rank and stability equal to 1, indicating a variable that featured as important 
in all of the 1000 cross-validation rounds. It is then followed by the meta-category of recreational, which still 
features as important, with all other meta-categories featuring with a lower rank, and a stability less than or equal 
to 10%. The corresponding granular OSM categories show fast-food at the top, with a mean rank and stability of 
1. The categories post box and cafe feature next. OSM categories such as farm and farmyard feature with lower 
mean ranks, and stability under 0.7. One must bear in mind that the OSM categories residential and commercial 
are not equivalent to the meta-categories residential and commercial. This point is discussed in more detail in the 
next section.

ranking stability

(a) Meta-categories only, traffic disruptions

residential 1.000 1.000

recreational 1.311 0.689

commercial 1.758 0.553

industrial 2.216 0.542

green space 2.794 0.422

institutional 3.379 0.415

(b) Meta-categories only, traffic volume

commercial 1.000 1.000

recreational 1.734 0.266

institutional 2.676 0.058

residential 3.636 0.040

green space 4.606 0.030

industrial 5.602 0.004

Table 2. Average ranking and stability of different meta-categories in predicting the number of traffic 
disruptions and the incoming volume for every Oxfordshire ward.

ranking stability

(a) Granular model, traffic disruptions

farmland 1.000 1.000

residential 1.000 1.000

parking 1.000 1.000

forest 1.000 1.000

farmyard 1.000 1.000

farm 1.001 0.999

meadow 1.002 0.999

industrial 1.003 0.999

reservoir 1.010 0.993

soccer 1.020 0.990

(b) Granular model, traffic volume

fast-food 1.000 1.000

post box 1.028 0.972

cafe 1.080 0.948

bench 1.211 0.869

soccer 1.409 0.802

commercial 1.648 0.761

telephone 1.916 0.732

parking 2.200 0.716

convenience 2.508 0.692

farm 2.855 0.653

Table 3. Average ranking and stability of different OSM categories in predicting the number of traffic 
disruptions and the incoming volume for every Oxfordshire ward. Only the top 10 variables according to 
ranking are shown.
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Discussion
The analysis presented in this paper shows how fine-grained land use categories can be used to estimate traf-
fic volume and traffic disruption patterns. In particular, we have shown that the fine-grained features available 
on OpenStreetMap can greatly increase the explanatory power of linear models. Of course, some variation still 
remains unexplained, and it is likely that more dynamic features (such as weather patterns or working week 
fluctuations) would need to be taken into account to account for this. Besides, since OpenStreetMap is contin-
uously updated, this work can only provide a cross-sectional snapshot of the data. Nevertheless we have shown 
that static features can offer important explanatory power, and this too is useful to provide a perspective on how 
things might change as the features themselves change. We have also shown the importance of different land use 
categories by using recursive feature elimination, and have used cross-validation to examine the predictive power 
of different models.

One useful application of these data and methods is to offer estimated answers to questions such as "what 
impact will placing another cafe at a given point have on traffic jams at that location?” For example, according to 
our fine-grained traffic models, the impact of a new school on the number of traffic disruptions in its area should 
be comparable to the impact of a new retail store or fast food restaurant. The linear model coefficients associated 
with the presence of these amenities are all approximately ci = 0.05, meaning that an increase by 1 in these varia-
bles (number of schools, retail stores, and restaurants) implies an increase of 5% in the log-transformed number 
of traffic disruptions, i.e., an increase in 12% in the monthly number of traffic disruptions at the location. These 
same categories—school, retail, and fast food—also have a positive correlation with the monthly volume of traffic 
going into a ward, even if with different coefficients. Respectively, the three categories have coefficients of 0.0010, 
0.0021, and 0.0028, implying respective increases in 0.2%, 0.5%, and 0.7% in the total (non-log transformed) 
traffic flowing into areas.

It is important to remember the limitations of OpenStreetMap land use categories. For example, the OSM 
categories residential and commercial are not equivalent to the meta-categories residential and commercial, and 
the OSM dataset includes tags such as farmland and farmyard along with farm, which was deprecated and sub-
stituted by the two other farm categories in 201727. Categories and meta-categories might differ in the quality 
of the annotation, and in how informative they are to the traffic predictions. The cross-validation and recursive 
feature elimination performed here are first steps in tackling this issue. The rank and stability analysis provide 
additional evidence that higher numbers of traffic disruptions are observed in residential and rural areas, indi-
cated by meta-categories such as residential and OSM categories such as farmland, forest and farmyard. This result 
matches the distribution of OSM categories over all wards, as indicated in Fig. 2, which shows that OSM tags such 
as house, farmland, residential, and farmyard are often seen in the same wards, while rarely co-occurring with 
OSM categories such as commercial or cafe. The latter two OSM categories do not feature as important predictors 
for the number of traffic disruptions, but they do feature as important predictors for traffic volume, where they 
show the highest rank and stability, which is also observed for the meta-category commercial.

Our study also suggests promising avenues for future research. One of these would be to take advantage of the 
constantly evolving nature of OpenStreetMap to track the emergence of new physical features, and relate these 
to changes in traffic conditions, thus extending the correlations we have highlighted in this paper into a causal 
setting. Another would be to combine these with other sources of observational data, such as licensing appli-
cations, planning permission, and building regulations, to see if these can build on the baseline model we have 
constructed. Finally, it would be worthwhile extending our study to other countries and contexts. One limitation 
of our study is that it focuses solely on one administrative region in the UK: it would be worthwhile to explore 
if the value of OSM’s granular point of interest data is generalizable. A larger dataset covering multiple locations 
and with fully held out test data would also allow the exploration of non-linear models with less danger of greatly 
overfitting the data. As our ability to understand and explain traffic patterns improves so will the ability of policy-
makers to effectively design urban transport systems that serve the needs of their citizens.

Materials and Methods
Our geographical focus is the English county of Oxfordshire, a geographical area of just over 2, 605 km2 and 
which contains around 680, 000 inhabitants. For our OpenStreetMap (OSM) data, we downloaded points of inter-
est from the OSM database which provide indications of the way land is used. Points of interest were downloaded 
in November 2017. One of the authors then assigned each point of interest to six meta-categories of land use: 
residential, industrial, commercial, recreational, institutional and green space (our assignment of each category 
is available as supplemental data to this paper). These categories are standard across the transport and land-use 
literature (see, for example, the typologies present in6,13,28). We also preserved the more granular categorization 
which is already provided by OSM (and hence requires no manual annotation). For example, our meta-category 
of commercial contains categories such as restaurant, pub and cafe. Our classification of OSM categories into 
meta-categories is availabl from Zenodo as indicated in the Data Availability section. We chose to ignore OSM 
categories and meta-categories with less than a hundred points of interest in Oxfordshire, as well as categories 
indicating the location of the transport network itself, as these are obviously coterminous with our traffic disrup-
tion data.

We obtained the traffic disruption data from traffic disruption reports shared with us by the Oxfordshire 
County Council, which are sourced from a major traffic analytics company. These reports correspond to over 1.4 
million traffic incidents from just over 6,500 points on the Oxfordshire traffic network (each point being approx-
imately a 10 m  ×  10 m square). The number of traffic disruptions counts at each point ranged from 1 to 64,313, 
and with an average of 219 traffic disruption counts per point, a standard deviation of 1382 counts, and a median 
of 21 traffic disruption counts per point. It is important to note that many traffic disruptions such as the ones 
studied in this paper do not result in casualties or police reports, meaning that data on car accidents only reflects 
a fraction of the incident estimates presented here.
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For the traffic volume data, we used anonymised and aggregated GPS mobile phone data provided by a major 
smartphone operating system. Similar data sets have been validated and successfully used in urban mobility stud-
ies in San Francisco29 and Amsterdam30. The data set contains estimated trip volumes for origin-destination pairs 
of wards in Oxfordshire between January and February 2017 in hourly increments. We took a subset of the data, 
only using trips inferred by the company to be made by vehicle (and not walking or cycling), and trips on week-
days made between 7 am and 12 pm (noon), which we aggregated into a total traffic going into every Oxfordshire 
ward over the two-month period. Using the whole day and/or including weekend trips yielded qualitatively simi-
lar results. Finally, we obtained shapefiles for the border of all Oxfordshire wards from the Digimap mapping data 
service31. Datasets were manipulated using dataframes from the Python Pandas library32.

Data availability
Data are available from Zenodo at https://zenodo.org/record/3383443.
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