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Abstract7

Recently the connected vehicle (CV) technology has received significant attention with active ef-8

forts of pilot deployments supported by the US Department of Transportation (USDOT). At signalized9

intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on10

conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus11

on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the12

near future. How to utilize data from a small number of CVs to improve traffic signal operation remains13

an open question. In this work, we develop an innovative approach to estimate traffic volume, a key14

input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices15

under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized16

intersections as a time-dependent Poisson process, which can account for signal coordination. The es-17

timation problem is formulated as a maximum likelihood problem given multiple observed trajectories18

from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to19

solve the estimation problem. Two case studies were conducted to validate our estimation algorithm.20

One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 280021

CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of22

a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation23

is found to be 9% to 12%, based on benchmark data manually collected and data from loop detectors.24

Considering the existing scale of CV deployments, the proposed approach could be of significant help to25

traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for26

detector-free signal operation in the future.27
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1 Introduction1

Signalized intersections are indispensable parts of urban traffic networks. Currently, over 300,000 traffic2

signals exist in the U.S., accounting for $82.7 billion public investments (NTOC, 2012). With two-thirds of3

urban vehicle miles traveled on signal controlled roads (McCracken, 1996), signalized intersections have often4

become hot-spots of traffic congestion, causing 295 million vehicle-hours of delay annually1. Considering the5

amount of traffic signals and their impact to the traffic network, it is critical to operate traffic signals6

efficiently. However, the majority of signals in the U.S. are only re-timed once every 2-5 years, despite of a7

high benefit-cost ratio for signal re-timing (Sunkari, 2004). This is primarily due to the labor costs for the8

retiming process. With tightening budgets and resources nowadays, maintaining efficient signal operation9

has become a challenging task for many traffic management agencies.10

Recent advent of connected vehicle (CV) introduces great opportunities of reforming the conventional11

traffic signal operation. Currently, many traffic signals in the U.S. are still fixed-time signals, which are12

not responsive to fluctuated traffic demands. For traffic signals to accommodate varying demands, vehicle13

detectors, e.g., inductance loop detectors or video detectors, need to be installed and maintained properly.14

This inevitably incurs significant cost for the public agencies. With the vehicle-to-infrastructure (V2I)15

communication, CVs can continuously report their status to roadside equipment (RSE) at intersections,16

working as mobile sensors. Therefore, CVs hold great potential to reduce or even eliminate the needs for17

fixed-location detectors in the existing signal systems. When penetration rates are low, the CV data could18

be used to generate performance measures for fine-tuning traffic signals periodically. When penetration rates19

are high, it becomes viable to operate adaptive signal control that solely depends on CV input.20

Considering these potentials, deploying V2I systems at signalized intersections has been an important21

part of CV pilot deployment, exemplified by the installation of RSEs at intersections in the Safety Pilot Model22

Deployment (SPMD) project (Gay and Kniss, 2015), the upcoming CV pilot deployment (Masters, 2016), as23

well as in the Smart City development supported by the US Department of Transportation (USDOT). Along24

with the deployment efforts, a number of CV-based signal control algorithms have also been proposed.25

However, the signal control algorithms proposed in the previous studies mainly focus on scenarios that26

penetration rates of CVs reach certain levels, e.g., 25%, which may not be feasible in the near future. In27

addition, most of the existing studies rely on simulated data which may not capture real-world characteristics28

of CVs, e.g. communication performance or GPS accuracy. Therefore, the proposed algorithms may not be29

transferable to the practice. How to utilize real-world CV data under low penetration rate environment to30

1 Congestion Reduction Toolbox. U.S. DOT FHWA. www.fhwa.dot.gov/congestion/toolbox.
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improve traffic signal operation remains as an open question.1

Aiming to answer this question, this work develops an innovative approach that uses data from CVs to2

estimate traffic volumes at signalized intersections, particularly under low penetration rate environment. It3

has been well known that traffic volumes are the very key inputs to designing and optimizing traffic signal4

operation. In conventional signal systems, vehicle arrival information can only be obtained from detectors at5

fixed locations. Different from the detector data, CV data provide detailed trajectories, albeit from a small6

percentage of vehicles. The comparison is illustrated in Figure 1. The challenge here is to estimate overall7

arrival information using limited CV trajectories. (For example, about 3%-12% traffic in the City of Ann8

Arbor, MI, are CVs because of the SPMD Project)9

Figure 1: Illustration of CV data versus detector data

In this work, the above challenge will be addressed through leveraging historical CV data and the repet-10

itive patterns of vehicle arrivals at signalized intersections. In the proposed algorithm, vehicle arrivals at11

intersections are modeled as a time-dependent Poisson process with a time dependent factor characterizing12

arrival types. For volume estimation, an expectation maximization (EM) procedure is derived that can13

incorporate different types of CV trajectories. To evaluate the performance of the proposed algorithm, two14

case studies were conducted: the first case study utilized real-world CV data received by a RSE in the SPMD15

project; the second case study utilized vehicle trajectory data from users of a route navigation service. To16

the best of our knowledge, this research is the first attempt of exploring real-world CV or GPS trajectory17

data under low penetration rate environment for volume estimation at signalized intersections. Our ultimate18

goal is to use CV data to develop a detector-free signal control system in the future.19

The rest of this paper is organized as follows. Section 2 presents a review of relevant work for traffic20

signal control with CVs, as well as traffic state estimation at intersections with probe vehicle. Section 321

briefly introduces the SPMD project and CV data. Section 4 describes the methodology for estimating22
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traffic arrivals. Section 5 presents the two case studies using vehicle trajectory data. Conclusions and future1

research are discussed in Section 6.2

2 Relevant Work3

Traffic signal control with CVs has captured substantial attention in the past several years. Many4

existing studies focus on developing real-time traffic signal control with CVs, through either extending signal5

actuation mechanism or minimizing vehicle delay based on a traffic model (Agbolosu-Amison et al., 2008;6

Milanés et al., 2012; He et al., 2012; Lee et al., 2013b,a; He et al., 2014; Guler et al., 2014; Feng et al.,7

2015; Goodall et al., 2016). However, most of the proposed adaptive signal control algorithms require high8

penetration rates of CVs, e.g., 25%. Such high penetration rates may not be achievable in the near future.9

A notable exception is (Day and Bullock, 2016) which conducted a proof-of-concept study using CV data10

in a low penetration rate environment for optimizing signal coordination. However, the data used in (Day11

and Bullock, 2016) were sampled from fixed location vehicle detectors so vehicle trajectories were not used12

in their study. The problem of estimating traffic volume from vehicle trajectories, which is a fundamental13

input for signal operation, is also not tackled.14

On the other hand, with increasing availability of GPS data from cell phones and navigation units,15

substantial efforts have been carried out for traffic state estimation using vehicle trajectory data. Exemplified16

by the Mobile Century project (Hoh et al., 2008; Work et al., 2008; Herrera et al., 2010), a large group of17

existing studies used GPS data to estimate traffic speed and travel time (Turner and Holdener, 1995; Chen18

and Chien, 2001; Long Cheu et al., 2002; Hellinga and Fu, 2002; Nanthawichit et al., 2003; Bhaskar et al.,19

2011; Jenelius and Koutsopoulos, 2013; Zheng and Van Zuylen, 2013).20

Recently, several studies have also been conducted for real-time queue length estimation at signalized21

intersections. These approaches can be grouped into two main categories, one based on a probabilistic22

approach and the other using shockwave theory. Comert and his colleague derived analytical expressions23

of conditional probability of queue length based on the probability of observing probe vehicles in a queue24

(Comert and Cetin, 2009; Comert, 2013, 2016). Hao et al. proposed a Bayesian Network based model for25

estimating the probability of probe vehicle positions in vehicle arrivals (Hao et al., 2013, 2014). Another26

category focuses on applying the shock-wave theory by (Lighthill and Whitham, 1955; Richards, 1956) for27

queue length estimation with vehicle trajectory data. Ban et al., proposed to estimate traffic delay using28

travel time sampled from mobile sensors(Ban et al., 2009). The methodology was later extended for real-time29

estimation of queue length in (Ban et al., 2011; Hao et al., 2015). Cetin proposed a procedure for queue length30

estimation with over-saturated traffic conditions by identifying critical points of traffic shockwave (Cetin,31

2012). Christofa et al. proposed a procedure to detect queue spillback using trajectory data with signal32
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status information at both subject and upstream intersections (Christofa et al., 2013). Li et al. proposed1

a data fusion procedure for queue length estimation, leveraging data from both probe vehicles and loop2

detectors (Li et al., 2013). Sun & Ban applied the variation formulation of traffic flow model by (Daganzo,3

2005) for reconstructing all vehicle trajectories based on probe vehicle data (Sun and Ban, 2013). Their key4

idea was to obtain flow information based on probe vehicle speeds, assuming that arrivals between two probe5

vehicles were uniform.6

In the aforementioned studies, the primary focus is on estimating real-time performance measures at iso-7

lated intersections. However, estimating traffic volumes, which are critical for offline optimization of signal8

operation, has yet been studied. A notable exception is (Ban and Gruteser, 2010), which proposed an esti-9

mator for volume estimation using sampled travel time and delay pattern estimated from (Ban et al., 2009).10

However, the algorithm relies on accurate delay estimation, which requires a relatively high penetration rate11

(>20%) as reported in (Ban et al., 2009). This, however, would be difficult in a near future. In this work,12

we aim to fill in the gap for volume estimation using CV data with low penetration rates. We believe that13

the proposed methodology would be an important building block of utilizing CV or vehicle trajectory data14

for traffic signal re-timing, and eventually achieving detector-free signal operation in the future.15

3 Data from the Safety Pilot Model Deployment (SPMD) Project16

In this paper, we use CV trajectory and signal status data collected in the SPMD project. The SPMD17

project was conducted by the University of Michigan Transportation Research Institute (UMTRI) for eval-18

uating operation applicability of CV technology in a real-world, concentrated environment, and also for19

quantifying the benefits of CV safety applications and user acceptance2. In the project, since August 2012,1

UMTRI has equipped about 2800 vehicles with dedicated short range communication (DSRC) devices and2

deployed RSEs at 27 locations including 19 intersections. An illustration of RSE deployment in the project3

is shown in Figure 2. The basic safety messages (BSM) received by the RSEs have been continuously col-4

lected and archived in the UMTRI database. Sample data from the SPMD project are also available at the5

Research Data Exchange3.6

2SPMD Project http://safetypilot.umtri.umich.edu/
3 FHWA Research Data Exchange: www.its-rde.net
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Figure 2: Deployments of RSEs in the SPMD project (Source: http://safetypilot.umtri.umich.edu/)

BSM data from RSEs7

A sample of processed BSM data received by a RSE is shown in Figure 3. Only a subset of data fields1

are used in our investigation, including device ID of a RSE (RxDevice), device ID of a CV sending the BSMs2

(TxDevice), GPS position and speed of the CV, and timestamp when the BSM was received by a RSE.3

Figure 3: Sample BSM data received by RSEs

Signal status data from SPaT messages4

The SPaT (signal phase and timing) data broadcast by the RSEs have also been collected at deployed5

intersections. The SPaT data contain information of signal status that can be used as the input for “signal6
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aware” CV applications, e.g., red light violation warning or eco-approach/departure assistance. Here, only a7

portion of the data fields in the SPaT are used, including: timestamp when a message was generated, signal8

phase ID and signal status. A sample of SPaT data is shown in Figure 4.9

Figure 4: Sample signal status data from SPaT messages broadcast by RSEs

Data processing10

The GPS information from BSM and signal status data are processed in the following manner. We first11

select an interested movement, its associated signal phase, and an interested time period, e.g., 8AM-9AM, for12

investigation. We then select GPS data associated with the movement and time period, based on direction13

of CV trajectories, and also prepare corresponding signal status data. Then, based on road geometry, we14

calculate CVs’ longitudinal position along the road from GPS positions, and generate time-space trajectories.15

We also map GPS time into signal clock time. This is done by finding the green start when a CV passes16

the stop bar, and subtracting the green start time from CV trajectory time, so that we have signal clock17

time for the CV trajectory, i.e., time using green start as zero. With the time in signal clock, we can18

aggregate trajectories to calculate the time dependent factor, similar to the cyclic profile generated from19

vehicle detectors (Abbas et al., 2001; Zheng et al., 2014; Day and Bullock, 2016). The time dependent factor20

is then used with CV trajectories to estimate traffic volumes, the details of which is presented in the next21

section.22

4 Methodology23

In order to estimate traffic volume, our basic idea is to take advantage of vehicle arrival information in1

vehicle trajectories. The arrival information can be reflected from the status whether a vehicle stopped or2

not. An example is shown in Figure 5. In the figure, CV1 passed the intersection with a stop and CV23

without a stop. Then, based on CV1’s stopping position or departure time, we can calculate number of4

vehicles queuing in front of it. Based on the trajectory of CV2 without a stop, we know that if vehicle queue5

existed, the queue would not be long enough to impact CV2. In other words, the upper bound of possible6

vehicle arrivals between CV1 and CV2 can be calculated based on the trajectory of CV2. By combining7
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Figure 5: Illustration of vehicle arrival information in trajectories

these arrival information from vehicle trajectories, volume of overall vehicle arrivals can be estimated.8

The inputs to our estimation algorithm include vehicle trajectories approaching to an intersection as well9

as traffic signal status. For a CV trajectory, the information being utilized includes its projected arrival time10

with free flow speed at the stop bar tf,i , its departure time at the stop bar td,i, the type of event indicating11

whether a CV stopped or not si, and the subscript i as the index of the event. For each CV trajectory, we12

can retrieve the following vector Xi, for the key information of trajectories. Then, the estimation only needs13

to use the information within the vector, instead of the raw trajectory data.14

Xi = (tf,i, td,i, si)
T

For CV without a stop, the projected arrival time at stop bar is equal to the departure time, as: tf,i = td,i.15

For a CV with a stop, we can estimate its projected arrival time tf,i as:1

tf,i = ts,i +
li

vf

(1)

Where: ts,i is time when the CV came to a stop, li is the distance of its stopping position to the stop2

bar, and vf is the free flow speed.3

To incorporate signal information, we also treat the red signals as a type of events. Here, we assume4

that no residual queue exists at the start of red signal. With this assumption, we only focus on estimation5

with non-saturated traffic conditions, leaving estimation with over-saturated traffic conditions in our future6

research. For each red signal, we can also prepare the trajectory information vector as:7

Xj = (tf,j , td,j , sj)
T

, with tf,j = tr,j , td,j = tg,j

9



Where:tr,j is the time of red start for cycle j, and tg,j for green start. Here, sj is set as -1, indicating that8

this event is corresponding to a red signal. Denoting red signal as an event is for the ease of data processing9

so that we can calculate inter arrival period between arrivals of CVs and starting time of red signals easily.10

These two vectors are the main input to the estimation process in the next section.11

4.1 Modeling Traffic Arrivals as a Time-Dependent Poisson Process12

During a selected Time of Day (TOD) period, we assume that traffic arrivals follow a time-dependent Poisson13

process with an arrival rate of λp(t(c)). Here, t(c) indicates time within a signal cycle, the superscript (c)14

indicates that the time is measured using a signal clock, λ denotes the mean arrival rate, and p(t(c)) is the15

time dependent factor proportional to the arrival rate at t(c), i.e., the fraction of total arrivals at t(c) over16

the entire signal cycle. In traffic engineering literature, Poisson process is a common choice to model traffic17

arrivals at intersections. The additional assumption that arrival rates are dependent on the time in a signal18

cycle is to account for impacts from signal coordination. With the signal coordination, traffic departures19

at the upstream intersection would be grouped as platoons, leading to nonhomogeneous arrivals at subject20

intersection. The time-dependent Poisson process is used to characterize the non-homogeneous arrivals.21

Defining N(t1, t2) as the accumulative number of arrivals from time t1 to t2, we have:22

N(t1, t2) ∼ Poisson (Λ(t1, t2))

Where: Λ(t1, t2) =
´ t2

t1
λp (C(t)) dt = λ

´ t2

t1
p (C(t)) dt, indicating arrival rate between t1 and t2, and also23

for simplifying notations. C : t → t(c), maps the time of a day, t, to time in signal cycle clock, t(c). λ is the24

mean arrival rate across the investigation period.25

By aggregating CV trajectories, we can calculate the time dependent factor p(t(c)) based on the following26

equation:27

p(t(c)) =
1

N

N
∑

i=1

I{C(tf,i) = t(c)} (2)

Where: I{C(tf,i) = t(c)} is an indicator equal to 1 if the projected arrival time is in t(c) interval, and 01

otherwise, and N is the total number of CV trajectories. For the ease of data processing, we discretize time2

with 1-sec interval.3

Here, the equation essentially calculates fraction of CV arrivals during t(c) interval from total CV arrivals4

during a cycle. We use the fraction of CV arrivals as the estimate of the fraction of traffic, including both5

CV and non-CV. Essentially, this assumes that CVs are homogeneously distributed in cycle arrivals for a6

particular movement during the investigation period. However, across different movements, we allow the7
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penetration rates to be different, which are observed in cases studies in the later sections.8

Given the Poisson arrival process, the likelihood function for observing all valid CV trajectories can be9

formulated by taking advantage of the inter-arrival time and the corresponding number of non-CV arrivals10

between two consecutive CV trajectories received at RSE. As mentioned earlier, two types of CV trajectories11

are considered: 1. CV trajectory with a stop at an intersection, and 2. CV trajectory that traverses the1

intersection without a stop. Between the projected arrival times of two stopped CVs, or between the projected2

arrival time of one stopped CV and the start of a red signal, the number of non-CV arrivals can be calculated3

based on the CVs’ departure time. If a CV without a stop is observed, then queues at intersection, if exist,4

are not long enough to affect the non-stopped CV. Thus, the maximum number of vehicle arrivals before the1

CV can be calculated. Illustrations of the two types of CVs are shown in Figure 6, along with notations for2

calculation later on.3

11
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(b) CV without stop

Figure 6: Illustrations of two different types of CV trajectories

4

For each CV trajectory, we can calculate the probability of occurrence according to the following cases:5

Case 1. If si = 1, si−1 = −1 or 1, indicating a CV trajectory with a stop is observed after red start or6

after the arrival of another stopped CV, we have:7

N(tf,i−1, tf,i) = ny,i, N(tf,i−1, tf,i) ∼ Poisson (λPy,i)

12



Where: ny,i =
⌊

G(td,i−1,td,i)
hs

⌋

, denoting the number of departures during the inter-arrival period [tf,i−1, tf,i].8

hs is the saturated headway, and Py,i =
Λ(tf,i−1,tf,i)

λ
=
´ tf,i−1

tf,i
p (C(t)) dt, for simplifying notations. G(td,i−1, td,i)9

is the effective green time from time td,i−1, to td,i. The subscript y denotes that the observations are for10

stopped CVs. The illustration is also shown in Figure 6a.11

Case 2. If si = 2, si−1 = −1 or 1, indicating a CV trajectory without a stop is observed after red start12

or after a stopped CV. Accordingly, we have:13

N(tf,i−1, tf,i) ≤ nz,i, N(tf,i−1, tf,i) ∼ Poisson (λPz,i)

Where: nz,i =
⌊

G(td,i−1,td,i)
hs

⌋

, Pz,i =
Λ(tf,i−1,tf,i)

λ
=
´ tf,i−1

tf,i
p (C(t)) dt. The subscript z denotes that the14

observations are for non-stopped CVs. The illustration is also shown in Figure 6b.15

Besides these two cases, two other cases of trajectories also exist: 1. stopped CV arriving after a non-16

stopped CV in the same cycle, and 2. non-stopped CV arriving after another non-stopped CV, also in the17

same cycle. For the first case, the stop of the CV would not be caused by queues or red signal, but likely by18

other factors, e.g., mid-block entry of other vehicles. For the second case, after the arrival of a non-stopped19

CV, we know that the queues must have been cleared and the rest of CVs in the same cycle would travel20

with free-flow speed. The trajectory therefore does not provide useful information for volume estimation.21

Accordingly, both cases are considered as invalid or trivial observations, and are not used in the estimation.22

Based on the discussion, the likelihood of observing all valid CV trajectories can be calculated with the23

following equation, with Y as the collection of observations for all stopped CVs, and Z for all non-stopped24

CVs.1

L(Y, Z|λ) =

n
∏

i=1

{

(λPy,i)
ny,ie−(λPy,i)

ny,i!

} m
∏

j=1

{

nz,j
∑

k=0

(λPz,j)ke−(λPz,j)

k!

}

(3)

Now, we can estimate λ for the traffic volume using maximum likelihood estimator (MLE). However, due2

to the summation inside the product operation in Equation 3, it is difficult to obtain a closed form of the3

MLE. Instead of seeking for a closed form, we use the Expectation Maximization (EM) algorithm for the4

estimation.5

4.2 Estimating Parameter Using Expectation Maximization (EM)6

The Expectation Maximization (EM) algorithm is an iterative procedure to find the MLE mostly suitable7
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when unobserved or partially observed variables exist. The EM algorithm consists of two main steps: the8

E-step and the M-step. The E-step calculates the conditional expectation of unobserved or partially observed9

variables based on initialized parameters, and the conditional expectation of the likelihood. Then, the M-10

step searches for an optimal update of the parameters through maximizing the likelihood. The two steps11

are iterated until updates converge. For the details of the EM algorithm, interested readers are referred to12

(Bilmes et al., 1998). In our case, CV trajectories with stop provide direct information of number of arrivals,13

while trajectories without a stop only provide information of upper bounds of the number of arrivals, i.e.,14

partial information. Considering this, the EM algorithm would be a proper choice for our estimation.15

For the E-Step, denoting n̂z,i as the true value of accumulated number of arrivals by time tz,i corre-16

sponding to a CV trajectory without a stop, we have the log-likelihood for the complete data sequence1

as:2

LLc =

n
∑

i=1

ln p(ny,i|λPy,i) +

m
∑

i=1

ln p(n̂z,i|λPz,i)

=

n
∑

i=1

[

ln
(λPy,i)

ny,ie−λPy,i

ny,i!

]

+

m
∑

i=1

[

ln
(λPz,i)

n̂z,ie−λPz,i

n̂z,i!

]

=
n

∑

i=1

[ny,i (ln λ + ln Py,i) − λPy,i − ln ny,i!]

+

m
∑

i=1

[n̂z,i (ln λ + ln Pz,i) − λPz,i − ln n̂z,i!] (4)

Then, the expectation of the log-likelihood can be expressed as:3

Q(λ|λ(s)) = E(LLc|λ(s)) = C +
n

∑

i=1

[ny,i ln λ − λPy,i] +
m

∑

i=1

[n̂z,i ln λ − λPz,i] (5)

We will use the conditional mean as the estimate of the unobserved n̂z,i, given nz,i. We have:4

n̂z,i|nz,i, λ(s) =

nz,i
∑

k=0

kPr(n̂z,i = k|n̂z,i ≤ nz,i, λ(s)) =

nz,i
∑

k=0

k

(λ(s)Pz,i)k

k!
∑nz,i

l=0
(λ(s)Pz,i)l

l!

(6)

Finally, in the M-step, by setting the derivative of Q(λ|λ(s)) with respect to λ as zero, we have an equation5

for updating λ, as:6

λ(s+1) =

∑n

i=1 ny,i +
∑m

i=1 n̂z,i
∑n

i=1 Py,i +
∑m

i=1 Pz,i

(7)

The equations 6, 7 complete the EM iteration for the estimation.7
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5 Case Studies8

To evaluate the proposed estimation algorithm, two case studies were conducted. The first case study9

utilized CV data received by a RSE in the SPMD project. The second case study utilized GPS data from10

users of a navigation service. These two types of data essentially contain similar information. However, data11

from CV are in 10 Hz sampling frequency while data from navigation devices are in 1 Hz frequency. Also,12

the studied intersection in the first study was controlled by the SCOOT adaptive signal system, while in the13

second case study, the intersection was controlled by a fixed-time signal.14

5.1 Case Study 1: Using CV Data from a RSE15

In the first case study, we analyzed data from Intersection of Plymouth Rd. & Green Rd., one of the deployed16

intersections in the SPMD project. CV data used were collected from 04/25/16 to 05/13/16. An illustration17

of the intersection geometry is shown in Figure 7, together with the ring-and-barrier diagram for traffic signal1

in operation. Here, our investigation focused only on EB through, WB through, as well as SB through and2

left-turn traffic, corresponding to phase 1, 2 and 4. The NB approach is a single-lane road adjacent to the3

parking lot of a shopping plaza. At the NB approach, traffic from the driveways and parking lots frequently4

affected vehicles traveling at the NB approach, resulting in additional queues and vehicle-stops not caused5

by the traffic signal. Since the stop and queuing information play key roles in our estimation, we exclude6

the analysis for the NB traffic, considering the noises caused by the traffic from the parking lot.7

15
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Figure 7: Illustration of investigated intersections

8

For each interested approach, trajectories of CVs were first processed as time-space plots with time as1

the horizontal axis and distance to the stop bar as the vertical axis. The trajectories are shown in Figure2

8a. With the SCOOT adaptive signal system, at this intersection, the cycle length, red and green duration3

all varied from cycle to cycle. To select a common reference point in a signal cycle, we use the start of green4

as time 0 in the plot for simplicity. The stop bar position is used as 0 origin along the y-axis. The distance5

increases upstream along y-axis. That is, vehicles travel from locations of positive distances to negative6

distances.7
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(a) Sample CV trajectories

(b) Time dependent factor for 11AM-12 PM period (left) and 6 PM-7 PM period (right)

Figure 8: Illustration of CV trajectories (a) and time dependent factor (b) for EB through movement

8

The CV trajectories were aggregated according to different TOD periods with 1-hour intervals across dif-1

ferent days, to first calculate time-dependent factors p(t). For different TOD periods, substantially different2

p(t) were observed with two examples shown in Figure 8b. The differences in p(t) are likely due to differences3

in both traffic patterns and signal settings in the two different TOD periods. Then, the EM procedure was4

implemented for the estimation.5

For validation purpose, hourly volumes were also manually collected for two days, i.e., 04/25/16 and6

04/26/16, from 11:00 AM to 7:00 PM. Using the measured volumes, we calculated the penetration rates of7
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CVs, shown in Figure 9. Overall, the penetration rates ranged from 3% to 12%, varying over the selected8

periods. The rates also varied substantially at different approaches, with lower CV penetration rates at the9

EB and WB approach, i.e., the main approaches, and higher rates at the SB approach, a minor approach.10

This variation could be due to that the SB approach connects to residential areas close to the University of11

Michigan, that would have larger population of participants of the SPMD project.12

Figure 9: CV penetration rates over time of day

13

The observed volumes were then used for comparing with the estimated volumes, with results shown in14

Figure 10. The three cases are shown in three sub-figures, respectively. In the figure, the yellow bars show15

the estimated volume, and the blue bars show the observed volumes, both in units of vehicle per hour per1

lane (vphpl). Substantial different traffic patterns exists in the three cases. For example, clear afternoon2

peak existed in both EB and SB cases, but not in WB case. Regarding the estimation, the estimated volumes3

are generally closed to the observed volumes for all the three cases. To further quantify the accuracy, we4

calculated the Mean Absolute Percentage Error (MAPE) for the estimation based on the following formula,5

indicated as well in the figure.6

MAPE =
1

N

N
∑

i=1

|V olo,i − V ole,i|

V olo,i

(8)

Where: V olo,i is the observed volume, and V ole,i is the estimated volume, during i-th interval.7
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(c) SB-Through and Left-Turn movement

Figure 10: Comparison between observed volume with estimated volume using SPMD data

8

The MAPEs are 11.2%, 10.1% and 12.3% for EB, WB and SB approach, respectively, indicating rea-9

sonable accuracy of the proposed procedure. Among the 3 approaches, however, the estimation for the SB10

approach performs the worst among all three phases, despite the largest CV penetration rates. This is likely1

due to that the arrival patterns are more stable at the EB and WB approaches with signal coordination,2

than that at the SB approach, i.e., a minor approach. Additionally, with the lowest traffic volumes at the3

SB approach, the total number of observed CV trajectories at the SB approach is similar to that at the4

EB and WB approach, which could imply that the sample size also play an important role rather than the5

penetration rate alone. Nonetheless, the results show encouraging estimation accuracy using CV data with6

overall low penetration rates in the investigated cases.7
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5.2 Case Study 2: Using Data from a Route Navigation Service8

In the second case study, we utilized data collected from drivers using a navigation service in the City of9

Shenzhen, China. The data were collected on workdays between 06/13/2016 and 06/30/2016 on LongXiang10

Rd. The illustration of data sample is shown in Figure 11, in which the color indicates vehicle speed. For11

the analysis, we focused on a selected approach at an intersection and estimated traffic volumes using the1

proposed procedure. The estimation was then validated using data from loop detectors for the approach.2

The selected approach and intersection are indicated with the purple arrow and circle in Figure 11.3
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Figure 11: Illustration of GPS data from navigation service users

4

At the selected intersection, Intersection LongXiang Rd. & YiCui Rd., a sample set of the GPS trajec-5

tories between the adjacent upstream and downstream intersections for the through movement is shown in6

Figure 12. The time of each GPS data point was also converted to time within a signal cycle.7
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Figure 12: Trajectories of converted trajectory data from navigation user

1

For validation purposes, volume data were also obtained for the selected approach from loop detectors on2

07/12/2016. Based on the detector data, we calculated the penetration rates of the navigation users for the3

through movement. The results are shown in Figure 13. In general, the penetration rates were between 0.5%4

to 2%. The penetration rates also varied substantially across different time of day, with the peak penetration5

rates occurring around 11AM and 3 PM.6

Figure 13: Penetration rates of the navigation users over time of day

7
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The volume estimation results are shown in Figure 14. In this case, we did not observe clear morning8

peak and afternoon peak, and the traffic volumes are rather similar throughout a day, in the range between9

200 vphpl to 500 vphpl. Regarding the estimation accuracy, the estimated volumes are generally close to10

the observed volumes. The MAPE of the estimation is 9.2% for the selected approach. The overall trend of11

estimation is similar to that in Case Study 1. However, the estimation errors in Case Study 2 are slightly12

smaller than those in Case Study 1, despite lower penetration rates. This is most likely because that the13

traffic signal in Case Study 2 was in a fixed-timed mode, while the signal in Case Study 1 was controlled by14

the SCOOT adaptive control system. Therefore, the time-dependent factors or the cyclical profiles in Case15

Study 2 are more consistent from cycle to cycle, than those in Case Study 1, hence yielding better estimation16

results.17

Figure 14: Comparison between observed volume with estimated volume using data from navigation users
for hourly volumes

1

In addition to hourly volume estimation, we further estimate the 30-min volume and 10-min volume, to2

test the performance of the proposed method for different estimation intervals. The estimation results are3

summarized in Figure 15. The upper figure shows results for 30-min volume estimation, and lower figure4

shows results for 10-min volume estimation. For 30-min volumes, the estimations are closed to the observed5

volumes with a MAPE of 11.5%, showing reasonable estimation accuracy for the 30-min volumes. For 10-min6

volumes, although we can observe that the main trend of estimated volumes follows the observation, with a1
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MAPE of 18.7%. However, the estimation performance is much less consistent with the largest estimation2

errors around 40% to 50%. (Note that, estimation at 2PM yields an error over 100%. However, this is likely3

caused by the abnormally low detector volume due to a detector error) The inconsistency would be likely4

due to the low number of CV trajectories within the 10-min windows for estimation input.5

(a) 30-min volume estimation

(b) 10-min volume estimation

Figure 15: Comparison between observation and estimation for 30-min volume (sub-Figure a) and 10-min
volume (sub-Figure b)

6

To illustrate the use of the estimated volume data for assisting signal operation, we estimate the hourly-7
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volume for four other intersections along the LongXiang Rd. and generated a time-space diagram (TS-8

Diagram) based on the estimated volumes and the time dependent factors. The TS-Diagram is a convenient9

and popular tool for traffic engineers to evaluate performance of signal coordination, and to fine-tune signal10

settings if necessary. The procedure to construct TS-Diagram is based on (Zheng et al., 2015), and the result11

is shown in Figure 16 for the LongXiang corridor with the 5 intersections for time period 8 AM-9 AM.12

Improvement 

Opportunities
YiCui Rd.

ChenGuang Rd.

RuYi Rd.

ShenTian Rd.

AiNan Rd.

Figure 16: Time-Space diagram for the tested segment

13

From Figure 16, it can be seen that, in general, the signals were coordinated well with traffic traveling14

in free-flow speed for the most of the time. However, for Intersection ShenTian Rd. & LongXiang Rd. and1

Intersection YiCui Rd. & LongXiang Rd., vehicle delay exist and could potentially be reduced by adjusting2

offsets at these two intersections, indicating improvement opportunities at these two intersections.3

6 Conclusion and Future Research4

With the rapid development of CV technology, paradigm shift may be brought to the traffic signal systems.5

The data from CVs provide invaluable opportunities to reduce or even eliminate the needs for conventional6

traffic detectors. In the near future with low penetration rates, data from CVs could be particularly useful7
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to generate offline performance measure for traffic signal systems and adjust signal operation periodically,8

e.g., two weeks or a month. This potential is especially beneficial for improving fixed time signal operation.9

In this paper, we developed an innovative method to estimate traffic volumes using trajectories data from10

CVs or trajectories data from navigation devices. For existing traffic signals, the traffic volumes are the key11

inputs to signal optimization, as well as to many other traffic engineering practices. Considering that CV12

deployments are still in their early stages, the focus of the proposed approach is to accommodate low CV13

penetration rates, for instance, below 10% in the City of Ann Arbor, MI. In the proposed approach, we mod-14

eled the traffic arrivals as a time dependent Poisson process and derived an EM procedure for the estimation.15

Based on the time-dependent Poisson process, the method can accommodate coordinated intersections, as16

well as isolated intersections, for traffic volume estimation. We tested the estimation procedure with two17

case studies using real-world CV data from the SPMD project and vehicle trajectory data from navigation18

service users, respectively. Comparing with volume data collected manually and data from loop detectors,19

reasonable accuracy of the estimations was found, with MAPE in range of 9% to 12%, for volume of intervals20

in 30 minutes and 1 hour, and MAPE of 19% for volume of 10-minute interval. We believe that the proposed21

methodology would be an important building block of utilizing CV data for adjusting or re-timing traffic22

signals.23

This research is but the first step of exploring trajectories data from CV or navigation devices for assisting24

traffic signal operation, and it can be extended in several directions. One of the directions is to improve the25

estimation algorithm for estimation with short intervals, e.g., cycle-by-cycle estimation, through data fusion26

of both historical data and real-time data. Such real-time volume estimation is critical for adaptive signal27

control, and will be one of the focuses of our future work. In addition, the proposed estimation is sensitive to28

interrupted traffic from adjacent parking lots or driveways which introduce significant noises to the vehicle29

trajectories. Thus, the proposed algorithm is mostly suitable for estimation at signalized intersections where30

no sink/source exists nearby the stop bar. Also, due to the assumption that no residual queue exists at start31

of signal cycles, the proposed approach is not suitable for estimation with over-saturated traffic conditions.1

We intend to address these limitations in our future work. Lastly, while the current focus is on estimating2

traffic arrival information, developing systematic approaches for traffic signal re-timing, regarding offsets,3

green splits, and cycle lengths as well as TOD schedules, will be another focus of our future work.4
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