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ABSTRACT

Recent research has investigated various means of measuring link travel times on freeways.  This
search has been motivated in part by the fact that travel time is considered to be more
informative to users than local velocity measurements at a detector station.  But direct travel time
measurement requires the correlation of vehicle observations at multiple locations, which in turn
requires new communications infrastructure and/or new detector hardware.

This paper presents a method for estimating link travel time using data from an individual dual
loop detector, without requiring any new hardware.  The estimation technique exploits basic
traffic flow theory to extrapolate local conditions to an extended link.  In the process of
estimating travel times, the algorithm also estimates vehicle trajectories.  The work demonstrates

that the travel time estimates are very good provided there are no sources of delay, such as an
incident, within a link.
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INTRODUCTION

A recent report from the California Department of Transportation noted that, "rapid changes in
link travel time represent perhaps the most robust and deterministic indicator of an incident [and]
link travel time ... is perhaps the most important parameter for ATIS functions such as

congestion routing." (Palen, 1997)  Similar views have lead the Federal Highway Administration
and several states to develop and deploy new detector technologies capable of collecting true
travel time data over extended freeway links, e.g., Balke et al., 1995, Coifman, 1998, Huang and
Russell, 1997, Sun et al., 1999.

The emphasis on new technology to measure travel time is partially due to a misunderstanding of
how to interpret vehicle travel times.  For example, Sun et al. used conventional average velocity
sampled at a detector station over fixed time periods as a base case in their analysis.  The authors
found that link travel times differed significantly from the quotient of local velocity and the link
distance.  But this result is not surprising, since the link travel time for a vehicle reflects traffic
conditions averaged over a fixed distance and a variable amount of time, while the detector data
only reflects traffic conditions averaged over a fixed time period at a single point in space.

In contrast to the naive approach of generalizing point measurements over an entire link, this
paper will show that judicious application of traffic flow theory can yield accurate link travel
time estimates from point data.  In particular, Lighthill and Whitham (1955) postulated that
signals propagate through the traffic stream in a predictable manner and that a single curve in the
flow versus density plane defines the set of stationary traffic states.  When the state transitions
from one point on the curve to another, the resulting signal should propagate through the traffic
stream at a velocity equal to the slope of the line between the two points.  Building off of this
earlier work, Newell (1993) proposed a simplified flow density relationship, as shown in Figure
1.  Provided the traffic state remains on one leg of the triangle, all signals should propagate at the
same velocity: uF for free flow or uC for congested conditions.  Windover and Cassidy (2000)
have verified empirically that this simplification is reasonably accurate.  If a freeway link does

not contain a source of delay, such as a recurring bottleneck or an incident, then all of the signals
that influence a vehicle's travel time must pass at least one end of the link at a known velocity.

If we postulate that traffic velocity, v, over time, t, and space, x, has the functional form

v x t f x u t,( ) = + ⋅( ) (1)

where u is either uF or uC.  Then, the level sets of function f are straight lines and thus, v is
completely determined by observing this parameter over time at a single point in space, i.e., at a
detector station.  The evolution of vehicle trajectories in the time-space plane are defined by the
differential equation
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dx

dt
v x t= ( ), (2)

and vehicle's link travel time is simply the time it takes the corresponding trajectory to propagate
across the link, i.e., from one detector station to the next.

Using this postulate, the remainder of this paper develops a methodology to estimate link travel
times by integrating the signals that pass a dual loop detector, without deploying new hardware
or combining data from multiple locations.  The estimation method should be beneficial for
traveler information applications, where travel time is considered more informative to users than
average velocity.  One could also view the estimation method as providing "expected travel
times" without an incident.  Used in conjunction with one of the new technologies capable of
measuring the true vehicle travel times, a significant deviation between the expected and

measured travel times would be indicative of congestion.  Then, historical trends could be used
to differentiate between recurring congestion and an incident.  If a travel time estimation system
is deployed for real time traffic control, the system could also prove beneficial for planning
applications such as quantifying congestion or model calibration.  This last point is an important
task for the traditional four-step planning process as well as the on-going Travel Model
Improvement Program, which seeks to replace the process with microsimulation models.  For
example, the TRANSIMS designers at Los Alamos National Labs note that "The most important
result of a transportation microsimulation in [the planning] context should be the delays..."
(Nagel et al., 1998).  Finally, in the process of developing the estimation method, the paper will
also show how it can be used to estimate vehicle trajectories over a freeway link, which in turn

could be useful for quantifying vehicle emissions and other applications.

TRAVEL TIME ESTIMATION

A dual loop detector station is capable of recording vehicle velocities and arrival times at a single
point in space.  We use this information to define a chord in the time-space plane, where a chord
is simply a straight line with a slope equal to a vehicle's measured velocity and passes the
location of the detector at the instant the vehicle passes.  Figure 2A shows a single chord for a

detector at zero distance and Figure 2B adds the next 13 chords recorded at the detector.
Empirically, the chords provide a rough approximation of vehicle trajectories for a short distance
downstream of the detector, but the approximation quickly breaks down, as evidenced by the
intersection of several cords in Figure 2B.  Assuming that individual vehicle measurements
represent discrete observations from a slowly varying traffic state at the detector location, the
changing state can be approximated by discrete samples equal to the vehicle headways.  During
congested conditions, i.e., the right hand leg of the curve in Figure 1, the transition between one
discrete state and another should propagate at uC.  In other words, a vehicle passage represents an
observed signal.  These signals are shown with dashed lines in Figure 2C, where each chord is
truncated as soon as it reaches the next observed signal.  Figure 3 shows the relationships
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between uC, vehicle velocity, vj, headway, hj, travel time, τj, and distance traveled, xj, for j-th

truncated chord.  It is a simple exercise to show that,

τ j
j

j C

h

v u
=

+1
(3)

x vj j j= ⋅τ (4)

Because all signals are assumed to travel at the same speed, the parameters from Figure 3 are the
same for any vehicle passing through a given band between two signals.  Connecting the
truncated cords end-to-end yields an estimated trajectory, shown in Figure 2D, for the vehicle
from part A.  In practice, one need only add up successive xj's until the total exceeds the link
distance.  The sum of the corresponding τj's yields a travel time estimate.  To enumerate the steps

in this estimation, first, measure hj and vj then calculate xj and τj using Equations 3 and 4.  For

the k-th vehicle, find the largest Nk such that,

d xj
j k

k Nk

≥
=

+

∑ (5)

where d is the length of the link and Nk+1 represents an estimate of the number of vehicles that
pass the detector while the k-th vehicle traverses the link.  Typically the link distance will exceed
the sum of xj's by some percentage of the next xj, so a better estimate of travel time will include
the corresponding τj, weighted by the same percentage.  More formally, calculate a weight, p, as

follows,

p

x x d

x
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j k

k N
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(6)

Finally, calculate the estimated travel time, Tk,

T pk k N j
j k

k N

k

k

= ⋅ ++ +
=

+

∑τ τ1 (7)

Another improvement comes by recognizing that hj occurs between vehicle observations.  So the
harmonic mean of two successive velocity measurements, vj and vj+1, should be more
representative of conditions during the j-th band than either velocity measurement taken alone.
The remainder of this paper uses this improvement.  It is a simple extension to show that rotating

Figures 2-3 by 180 degrees, the methodology can also be applied to traffic upstream of a
detector.  Lastly, to estimate the k-th vehicle trajectory, one only need calculate the cumulative
sum at each j from Equations 5 and 7.
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A Short Example

This example applies the travel time estimation methodology during congested conditions, over
an 1,800 foot long freeway link that does not contain any ramps.  Dual loop detector stations
bound the link on either end (see Coifman et al., 2000 for more information).  In this
configuration, each detector station can be used to generate an independent estimate of travel
time over the link.  Before making this estimate, one must settle on a value of uC.  Examining a
different freeway, Windover, 1998 found uC had a small variance from signal to signal and most
signals during congested conditions traveled between 12 mph and 16 mph.  The velocity range
was manually verified at the subject link by comparing extrema points in time series flow and
occupancy at either end of the link.  A constant value of 14 mph is assumed for uC throughout the

rest of the paper.

Examining a single lane, the solid line in Figure 4A shows the estimated travel times from the
upstream detector.  Using concurrent video to visually match every vehicle that stayed in the lane
between the two stations, the points show the corresponding ground truth travel times.  This
process is repeated in Figure 4B at the downstream station.  For the sake of comparison
throughout this paper, all plots of travel time are shown relative to vehicle arrival times at
downstream station.  The performance of each detector station is summarized on the left-hand
side of Table 1.  Both estimates were, on average, within 10 percent of the true value while the
corresponding naive link travel time estimates, presented in the center of the table, have an
average error on the order of 25 percent.

Although the travel time estimation is not perfect, it is still quite good considering the fact that it

is based on data from a single point in space.  Looking closer at the data, Figure 5 shows a detail
of the estimated trajectories implicit in the upstream travel time estimation.  In this plot, the
upstream detector is at zero feet and the downstream detector is at 1,800 feet.  A total of 137
trajectories are shown, of which, 106 pass the downstream detector during the five minute
period.  The trajectories are not exact, e.g., no effort has been made to account for potential
variance in uC or the presence of lane change maneuvers, but the simple fact that they provide a
good estimate of true travel time over an extended distance suggests that they are a good
approximation.  As further motivation, consider Figure 6.  The methodology was used to
estimate vehicle trajectories one half mile upstream and one half mile downstream of a detector
station using data from the I-880 Field Experiment (Skabardonis et al., 1996), while the bold lines
show actual probe vehicle trajectories over the same segment.

The trajectory approximations could be useful for planning applications or emissions modeling.
For example, emissions are typically estimated using vehicle miles traveled, average velocity,
average flow, or more recently, using point detectors capable of measuring instantaneous
emissions from individual vehicles.  But none of these methods are capable of capturing the
effects of vehicle dynamics.  As a result, significant factors contributing to vehicle emissions,
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such as acceleration, often go unmeasured (Holemen and Neimeier, 1998).  On the other hand, a
vehicle's dynamics are implicit in its trajectory and when used in conjunction with calibrated
vehicle emissions (e.g., West et al., 1999), this work could allow for real time estimates of
emissions along an entire freeway.  Future research will examine the accuracy of the trajectory
estimates in terms of such applications.

Extending to Free Flow Conditions - a Long Example

During free flow traffic conditions, signals travel downstream with the vehicles and the
transitions shown in Figure 2C should correspond to individual chords.  Or, if we continue the
assumption of constant signal velocities, they should now travel downstream at uF.  By
erroneously assuming that free flow signals travel against the direction of travel with velocity uC

and treating the data the same way as congested periods, the travel time estimate will be based on
the wrong set of vehicle observations.  But, free flow traffic is characterized by approximately
constant velocity over time and space.  So the vehicles selected with uC should have similar
velocities to the correct set of vehicles and any resulting errors in the travel time estimate should
be negligible.

Putting this hypothesis to the test, consider 24 hours of data between the same detector stations
used in the previous example.  This time, however, we arbitrarily present one of the lanes in the
opposite direction.  The two parts of Figure 7 show the estimated travel times from each detector
station with a solid line.  Manually generating ground truth matches for this long data set would
be prohibitively time consuming.  Instead, two vehicle reidentification algorithms are employed.
For a given downstream measurement, each algorithm searches the upstream observations for the

measurement that corresponds to the same vehicle (Coifman and Cassidy, 2000, Coifman, 1999).
The resulting travel times for the matched vehicles are shown with points in each plot.  As
predicted, the estimation methodology performed quite well during free flow conditions, when
the true travel time was on the order of 20 seconds.

Figure 8A shows a detail of the congested measurements.  Again, the estimation method appears
to follow the measured values while Figures 8B-C show the corresponding naive link travel time
estimate using the local average velocity sampled every 30 seconds.  As expected, the fixed time
samples do not provide a good estimator of link travel time, with some samples being over eight
times too large.

Applying the methodology to conventional traffic data

The large errors from the naive estimate are due to the simple fact that a single 30 second sample
at one point in space can not capture the travel time experienced by a vehicle traversing a link.
Although the proposed methodology promises greater accuracy, most operating agencies would
have to upgrade their hardware and/or software in the field to estimate travel time based on
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individual vehicle measurements.  But the use of vehicle headways was chosen out of
convenience.  If a surveillance system only reports samples over fixed time periods and care is
taken to measure space mean speed accurately, then the preceding theory is still valid and one
can apply the estimation methodology to these data using a constant h, equal to the sampling
period.  In this scenario, the estimation methodology combines data from several fixed time

samples rather than from individual vehicle measurements.  The results for the short example
using a 30 second sampling period are reported on the right hand side of Table 1.  Note that the
error is still less than half of that from the naive estimate.

Limitations

The estimation methodology assumes that all signals travel through the entire freeway link.  This

assumption fails when a queue partially covers a link.  Unfortunately, the end of a queue can not
be tracked using data from a single detector station.1  Figure 9 shows two examples of this
failure.  In each case, traffic over the downstream station is congested while vehicles at the
upstream station are free flowing.  Comparing the top and bottom halves of this figure, we see
the upstream detector underestimates the travel time and the downstream overestimates it during
these periods.  Of course these errors would be reversed when the upstream end of the segment is
queued while the downstream is free flowing.  In any event, the periods where the method breaks
down typically represent a small percentage of the day and as illustrated in this figure, they can
be identified by differing estimates from either end of the link.  Provided the estimates are
transmitted to a central location, such as a Traffic Management Center, such comparisons would
be easy to conduct.

Finally, one may have to assume a different flow-density relationship to apply this method at
other locations.  This modification could be as easy as calibrating the value of uC, but if need be,
one could extend the work to any flow density relationship in which flow is a strictly decreasing
function of density in the congested regime.

CONCLUSIONS

Link travel time is considered to be more informative to users than flow, velocity, or occupancy
measured at a point detector.  This paper has employed basic traffic flow theory to estimate link
travel time using point detector data.  Rather than simply measuring local velocity over fixed
sample periods, the approach presented herein could be used to increase the "information"

                                                  
1 Daganzo (1997) presents a method to estimate the end of a queue between two detector stations using data from

both stations.  Used in conjunction with the present work, it could lead to better travel time and trajectory estimates;
however, such work is beyond the scope of this paper, which focuses on extracting information from a single

detector station.
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available from dual loop detectors and other vehicle detectors.  The accuracy of the method lends
further evidence that the linear approximation of flow density relationship is reasonable during
congestion, supporting the work of Newell, Cassidy and others.

Since the method uses observations from a single point in space, changes in the traffic stream
may be overrepresented or underrepresented, as illustrated in Figure 9.  Because it is possible to

estimate link travel time from either end of the link, the periods when the method breaks down
can be identified easily.  In contrast, vehicle reidentification techniques using data from more
than one detector station actually measure conditions over the link.  Combining measured and
estimated travel times, it should be possible to produce a robust incident detection system by
looking for periods where the two approaches differ; perhaps even enabling incident detection
during congested conditions.  Naturally, such a system would have to account for recurring
bottlenecks as well as normal queue growth and decay.  To this end, future research will seek to
extend the estimation methodology to inhomogeneous freeway links and improve performance
during periods when a queue partially covers a link.

Although the estimation method is not perfect, it is surprisingly accurate for an approach that
uses data from a single point in space.  The estimated vehicle trajectories constructed en route,

e.g., Figure 5, could be useful for applications such as quantifying vehicle emissions due to
start/stop cycles on congested freeways.
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Figure 1, Triangular flow density relationship showing the signal velocity during free flow, 
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Figure 2, Time space diagram showing, (A) the chord for a vehicle passing the origin at 748 sec, (B) chords for subsequent vehicles, 
(C) truncated chords, (D) estimated trajectory and travel time for the vehicle in part A.
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Coifman, B. 

uC

time

di
st

an
ce



 

16.2 16.4 16.6 16.8 17 17.2 17.4
40

60

80

100

120

time of day (hr)

tr
av

el
 ti

m
e 

(s
ec

)

16.2 16.4 16.6 16.8 17 17.2 17.4
40

60

80

100

120

time of day (hr)

tr
av

el
 ti

m
e 

(s
ec

)
Figure 4, (A) Measured travel times (dots) and estimated from the upstream detector data 

(line), (B) repeated for the downstream detector data.
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of Figure 4A
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Figure 7, Measured travel times (dots) and estimated (line) from detector data over 24 
hours, (A) upstream estimate (B) downstream estimate.
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Figure 8, (A) Detail from Figure 7B, (B) the corresponding naive estimates taking the 

distance between detectors divided by 30 second average velocity downstream, 
(C) part B repeated with a larger vertical scale.
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Figure 9, Examples where the estimation technique fails, (A)-(B) Details from Figure 7A 
and (C)-(D) corresponding details from Figure 7B.
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average error 
(percent)

7 9.8 26.4 27.9 11.5 10.1

bias (sec) 0.6 -4.4 -0.2 -0.1 -2.8 -4.2

a Mean ground truth travel time is 77 seconds for this data set

Table 1,  Travel time estimation accuracy for the short example  a

Proposed estimate using      
30 second samples

upstream downstream upstream downstream upstream downstream

Proposed estimate using 
measured headways naive estimate
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