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Missing data is a common issue in research using observational studies to investigate the effect of treatments
on health outcomes. When missingness occurs only in the covariates, a simple approach is to use missing
indicators to handle the partially observed covariates. The missing indicator approach has been criticised
for giving biased results in outcome regression. However, recent papers have suggested that the missing
indicator approach can provide unbiased results in propensity score analysis under certain assumptions. We
consider assumptions under which the missing indicator approach can provide valid inferences, namely: (1)
no unmeasured confounding within missingness patterns; either (2a) covariate values of patients with miss-
ing data were conditionally independent of treatment; or (2b) these values were conditionally independent
of outcome; and (3) the outcome model is correctly specified: specifically, the true outcome model does
not include interactions between missing indicators and fully observed covariates. We prove that, under the
assumptions above, the missing indicator approach with outcome regression can provide unbiased estimates
of the average treatment effect. We use a simulation study to investigate the extent of bias in estimates
of the treatment effect when the assumptions are violated and we illustrate our findings using data from
electronic health records. In conclusion, the missing indicator approach can provide valid inferences for
outcome regression, but the plausibility of its assumptions must first be considered carefully.

Key words: average treatment effect; missing confounder data; missing covariate data; missing

indicator; outcome regression

1 Introduction

Observational studies are a valuable source of information for research investigating the efficacy and safety

of treatments in practice. We focus on scenarios where we want to estimate the effect of treatment on a

health outcome. However, a common challenge when using observational data is how to deal with missing

data. If not handled appropriately, missing data can lead to bias and a loss of efficiency (Bartlett et al.,

2015). When using observational data for research, missing data is often an issue in variables that may be

considered as potential confounders, such as smoking status or ethnicity.

The simplest approach for handling partially observed covariates is complete record analysis (also called

complete case analysis), where patients with missing data are excluded from analysis. Although complete
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2 Blake et al.: Outcome regression with missing indicators

record analysis can provide unbiased results (Bartlett et al., 2015), this approach will typically lead to

a loss of efficiency due to the exclusion of information. Furthermore, if patients with complete records

are not representative of the population of interest, results from a complete record analysis may not be

generalizable to the population of interest (Little and Rubin, 2002; Pigott, 2001).

A popular alternative missing data method is multiple imputation, where missing values are imputed

multiple times with plausible values in order to create multiple ‘complete’ imputed datasets. After analysing

each dataset, the results are combined using Rubin’s Rules to obtain an overall treatment effect estimate

(Rubin, 1976; Carpenter and Kenward, 2013). Although multiple imputation is very powerful, it can be

fairly complex and standard implementation requires the assumption that data are missing at random (i.e.

the probability of being missing depends on observed data and, given these, does not depend on unobserved

data) (Carpenter and Kenward, 2013; Seaman et al., 2013). The plausibility of the missing at random as-

sumption should be considered when implementing multiple imputation (Sterne et al., 2009). In addition,

imputing missing values in standard multiple imputation relies on parametric assumptions (Little and Ru-

bin, 2002), the plausibility of which should also be considered (Nguyen et al., 2017).

Another simple way of dealing with partially observed covariates is to use missing indicators — vari-

ables which indicate whether the covariate is missing or observed. For a continuous covariate, missing

observations are replaced with a fixed value, say 0, and a missing indicator is added to the analysis model,

alongside the continuous variable. For a categorical covariate, the missing indicator approach is equivalent

to adding a ‘missing’ category to the variable.

The use of missing indicators to handle missing covariates in outcome regression has been criticised in

the literature for being “ad hoc” (Vach and Blettner, 1991; Greenland and Finkle, 1995), and for giving

biased results (Groenwold et al., 2012; Jones, 1996). However, the missing indicator approach is often used

to deal with missing covariates (Knol et al., 2010) and has been recommended as a missing data method

for propensity score analysis (Stuart, 2010). Related methods, incorporating the last-observation-carried-

forward approach, have been studied in the context of non-systematic monitoring of covariates in settings

with time-varying treatments (Hernán et al., 2009; Kreif et al., 2018). Furthermore, our recent work in the

propensity score context suggests that the missing indicator approach can provide unbiased estimates under

certain assumptions (Blake et al., 2019). In propensity score analysis, we want to model the relationship

between the covariates and the treatment, whereas in outcome regression, we wish to model the relationship

between the covariates and the outcome. So, we need to investigate whether the validity of our findings

in the propensity score context also holds for outcome regression. Therefore, in this paper we consider

whether our work can be extended to the context of outcome regression.

We begin in Section 2 by describing the basic principles of the missing indicator approach and the

assumptions underlying its validity. In Section 3, we prove that the missing indicator approach can give

unbiased estimates of the treatment effect in outcome regression and show how our work fits in with the

literature. In Section 4, we explore the extent of bias in the estimation of the treatment effect when these

assumptions are violated. In Section 5, we apply the missing indicator approach in multivariable outcome

regression to an illustrative example. We conclude with a discussion in Section 6.

2 Background

2.1 Notation and potential outcome framework

Let Z be a binary variable indicating treatment allocation (or exposure status, etc. depending on context)

and let Y represent the observed outcome variable. In this paper, we will concentrate on missing data in

covariates and assume that treatment Z and outcome Y are fully observed, as the missing indicator method

does not accommodate missing data on the outcome or exposure.

To enable us to describe the assumptions underlying the missing indicator approach, we refer to the

potential outcome framework, developed by Rubin (1974) for causal inference from observational data.
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We let Y (z) represent the potential outcome that would be observed if Z was set equal to the value z

(z = 0, 1).

We focus on a scenario with two confounders: a fully observed confounder C and a partially observed

confounder X . The missing indicator R equals 1 if X is observed, and R = 0 if X is missing.

The confounder values can be partitioned as {Xobs, Xmis}, where Xobs is the set of X values that are

observed and Xmis is the set of missing X values (i.e. Xmis contains the true unobserved X values). For

each patient with R = 1, Xobs is equal to X and Xmis is empty. For each patient with R = 0, Xmis = X

and Xobs is empty. Additionally, we define X∗ = X when R = 1, and X∗ = 0 when R = 0. Note that

an alternative approach would be to define Xobs instead as RX (which is equivalent to X∗) and Xmis as

(1 − R)X . However, for the purposes of this paper, we use the Xobs and Xmis notation, following the

literature on which our theory builds (D’Agostino and Rubin, 2000; Mattei, 2009).

Our estimand of interest is the average treatment effect (ATE): E[Y (1)] − E[Y (0)]. To estimate the

treatment effect, we make the following standard assumptions for causal inference with complete data:

strongly ignorable treatment allocation, no interference, consistency, and positivity.

The Strongly Ignorable Treatment Allocation (SITA) assumption — an important assumption in causal

inference using observational data — is that there is no unmeasured confounding (Rosenbaum and Rubin,

1983). In a scenario with two confounders, C and X , the SITA assumption can be written as:

Z ⊥ Y (1), Y (0)|C,X. (1)

Under the assumption of no interference, the treatment status of one patient does not affect the potential

outcomes of another patient (Höfler, 2005; Hernán and Robins, 2018). Assuming consistency, the observed

outcome of a patient is equal to the potential outcome corresponding to the treatment they actually received,

i.e. if Z = z then Y = Y (z) (Hernán and Robins, 2018). Finally, under positivity, all patients have a non-

zero probability of being assigned to each value of treatment, given their characteristics (Little and Rubin,

2000; Hernán and Robins, 2018)

2.2 The missing indicator approach

The missing indicator approach is a simple method of dealing with partially observed covariates. When

using outcome regression, the missing indicator approach allows patients with missing data to be used for

the estimation of the treatment effect on the outcome, given covariates.

For a continuous partially observed covariate, the missing indicator approach in outcome regression

replaces missing covariate values with some fixed value: the same value (for example, 0) is used for all

participants with that covariate missing. Both the modified covariate and the missing indicator R are then

included in the analysis model. For a categorical partially observed covariate, the missing indicator ap-

proach is equivalent to adding a ‘missing’ category to the variable. The regression coefficient for treatment

can then be used to obtain an estimate of the treatment effect using appropriate transformations (eg. the

identity function for linear regression).

For example, using the missing indicator approach for linear regression, the analysis model is E[Y ] =
α0 + α1Z + α2C + α3X

∗ + α4R, where X∗ = X when R = 1, and X∗ = 0 when R = 0, and where α1

is the regresssion coefficient corresponding to our estimate of the ATE.

We note that, in the propensity score context, the missing indicator approach allows patients with miss-

ing data to contribute to the estimation of the propensity score (i.e. the probability of receiving treatment,

given patient characteristics). So, missing indicators are included in the propensity score model, rather

than the outcome model (which only includes treatment allocation and the propensity score as covariates).

2.2.1 Assumptions underlying the missing indicator approach

Our recent work in the context of propensity score analysis has shown that the missing indicator approach

relies on four assumptions (Blake et al., 2019). In this paper, we extend this work by investigating whether
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these four assumptions also underlie the validity of the missing indicator approach in outcome regression,

in order to understand when this approach is appropriate in practice.

The first assumption is that there is no unmeasured confounding within missingness patterns, i.e. within

each subgroup of patients who have information recorded on the same variables (Mattei, 2009). We call

this the missingness Strongly Ignorable Treatment Allocation (mSITA) assumption, due to the similarity

to the SITA assumption (equation (1)). Mathematically:

mSITA: Z ⊥ Y (z)|C,X,R for z = 0, 1. (2)

We call the second and third assumptions the Conditionally Independent Treatment (CIT) assumption

and the Conditionally Independent Outcomes (CIO) assumption, respectively. The CIT assumption is that

missing confounder values are conditionally independent of treatment, given the observed confounder val-

ues and the missing indicator, while the CIO assumption is that missing confounder values are conditionally

independent of the potential outcomes (Mattei, 2009).

CIT: Z ⊥ Xmis|C,Xobs, R. (3a)

CIO: Y (z) ⊥ Xmis|C,Xobs, R for z = 0, 1. (3b)

Note that in scenarios with partially observed confounders, the mSITA, CIT and CIO assumptions replace

the SITA assumption with respect to identification of the causal estimand.

The fourth assumption in the propensity score context is that the propensity score model is correctly

specified; in particular, we assume that the true propensity score model does not include an interaction

between the missing indicator R and the fully observed confounder C (CR interaction). In other words,

the effect of the fully observed confounder on treatment allocation is assumed to be the same for all miss-

ingness patterns.

The analogue assumption for outcome regression is that the outcome model is correctly specified and, in

particular, the true outcome model does not include a CR interaction. The plausibility of this correct spec-

ification assumption is context-dependent and can be assessed in the data at hand, allowing the possibility

of adapting the model in order to ensure the outcome model is correctly specified.

We can obtain valid inferences from the missing indicator approach in propensity score analysis under

the following sufficient assumptions: (i) the mSITA assumption holds; (ii) either the CIT or the CIO

assumption holds; and (iii) the propensity score model is correctly specified (Blake et al., 2019). In this

paper, we extend this work to the outcome regression context, demonstrating in Section 3 that we can

use the missing indicator approach with outcome regression to obtain valid inferences under the following

assumptions: (i) the mSITA assumption holds; (ii) either the CIT or the CIO assumption holds; and (iii)

the outcome model is correctly specified.

2.2.2 Plausibility of the assumptions underlying the missing indicator approach

In missing data methodology, when deciding if a particular method is appropriate, it is important to con-

sider the way in which data becomes missing, i.e. the missingness mechanism. Rubin’s taxonomy (Rubin,

1976) is commonly used to classify data as being missing completely at random, missing at random, or

missing not at random (Carpenter and Kenward, 2013; Little and Rubin, 2002).

The plausibility of the assumptions in Section 2.2.1 rely instead on the underlying structure of the

data (i.e. the causal associations between variables), rather than the missingness mechanisms (Blake et al.,

2019). For example, the CIT and CIO assumptions together mean that the partially observed confounder

does not confound the relationship between treatment and outcome when it is missing (Blake et al., 2019).

So, either the confounder-treatment relationship is absent in individuals who have missing confounder val-

ues or the confounder-outcome relationship is absent in individuals who have missing confounder values.

Hence, key violations of the CIT or CIO assumptions occur when the missing confounder values affect

treatment allocation or the outcome, respectively.
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If we believe that the SITA assumption (i.e. no unmeasured confounding) holds in full data, then the

mSITA assumption says that additionally conditioning on missingness patterns does not introduce bias.

One key way in which this can be violated is when there are: shared unmeasured common causes between

outcome and missingness, and unmeasured common causes between treatment and missingness. This is an

example of M-bias, which has been discussed extensively in the literature (Greenland, 2003; Pearl, 2009).

The correct specification assumption would be violated if the effects of fully observed confounders on

the outcome varied by missingness pattern. Unlike this parametric assumption, which can be tested in the

data, the mSITA, CIT and CIO assumptions are not testable. Instead, researchers should use substantive

knowledge of the given clinical setting to determine the plausibility of the mSITA, CIT and CIO assump-

tions.

The first step to assess the plausibility of these assumptions would be to consider whether it is clinically

plausible that X is only a confounder when it is observed. If so, and if key violations of the assumptions

can be ruled out, then researchers can construct a causal diagram to represent the underlying structural

assumptions for the given clinical setting (Blake et al., 2019). This causal diagram should include the

missing indicator R. The next step is to convert this causal diagram to incorporate potential outcomes

(Richardson and Robins, 2013; Balke and Pearl, 1994; Shpitser and Pearl, 2007). Then, the d-separation

rule – which determines whether variables are conditionally independent given a set of other variables

(Pearl, 1995; Richardson and Robins, 2013) – can be applied to the causal diagram to assess whether the

mSITA assumption holds. In order to assess the CIT and CIO assumptions, the causal diagram should be

restricted to patients with R = 0 and modified to reflect why it is plausible that X is only a confounder

when it is observed (Blake et al., 2019). The d-separation rule can then be applied to this final causal

diagram to assess the CIT and CIO assumptions.

For example, consider a simple scenario with a partially observed confounder X and a fully observed

confounder C, where C also has causal effects on both X and R. Further suppose that the X-Z relationship

is absent in patients with missing X values. Hence, it is plausible that X is only a confounder when it

is observed. Figure 1 shows a causal diagram representing this scenario, constructed in the form of a

single world intervention graph in order to incorporate potential outcomes (Richardson and Robins, 2013).

Applying the d-separation rule to Figure 1, as previously described (Richardson and Robins, 2013; Blake

et al., 2019), we find that Z is conditionally independent of Y (z) given C, X and R. Hence, the mSITA

assumption holds in this example. In order to be able to assess the CIT and CIO assumptions, we modify

Figure 1, by restricting to patients with R = 0 and removing the arrow from X to Z in order to encode

the assumption that the X-Z relationship is absent in patients with R = 0. Figure 2 shows this modified

causal diagram. Applying the d-separation rule to this diagram, we find that the CIT assumption holds and

that the CIO assumption is violated. Hence, in this scenario, the mSITA and CIT assumptions hold and the

missing indicator approach is considered appropriate.

When there are multiple partially observed confounders, R becomes a vector of the missing indicators,

whilst Xobs now represents all of the sets of observed confounder values and Xmis represents all sets

of missing confounder values. Assuming that the missingness of these confounders are not associated

with each other or with the other confounders, we can assess the CIT and CIO assumptions for each

confounder separately, but whilst conditioning on all sets of observed confounder values and all fully

observed confounders. An assumption only holds if it holds for every confounder. Issues may arise if

the missing indicator of one confounder changes the missing values of another confounder; however, this

seems unlikely. For complex scenarios, we recommend constructing a causal diagram that incorporates all

relevant substantive knowledge and a missing indicator for each partially observed confounder, and then

using software such as Dagitty (Textor et al., 2011) to assess the plausibility of the assumptions.
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3 Unbiased estimation of the average treatment effect

In this section we prove that, under the four assumptions given in Section 2.2.1, the missing indicator

approach in outcome regression can give an unbiased estimate of the average treatment effect (ATE). We

also explore how this result relates to the findings in the literature that the missing indicator approach gives

biased results (Jones, 1996), and how the assumptions relate to prior literature.

The target estimand is: ATE = E[Y (1)]− E[Y (0)]. We can rewrite this as:

ATE = E
[

E
(

Y (1)|C,Xobs, R
)

− E
(

Y (0)|C,Xobs, R
)]

,

which can then be written as:

ATE =
∑

[

∑

yP
(

Y (1) = y|C,Xobs, R
)

−
∑

yP
(

Y (0) = y|C,Xobs, R
)]

. (4)

Below in Section 3.1, we show that if the mSITA assumption holds and either the CIT assumption or

the CIO assumption holds, then:

E[Y (z)|C,Xobs, R] = E[Y (z)|Z,C,Xobs, R] (for z = 0, 1). (5)

Hence, we can rewrite equation (4) as:

ATE =
∑

[

∑

yP
(

Y (1) = y|Z,C,Xobs, R
)

−
∑

yP
(

Y (0) = y|Z,C,Xobs, R
)]

= E
[

E
(

Y (1)|Z,C,Xobs, R
)

− E
(

Y (0)|Z,C,Xobs, R
)]

.

Under the consistency assumption (Section 2.1), this is:

ATE = E
[

E
(

Y |Z = 1, C,Xobs, R
)

− E
(

Y |Z = 0, C,Xobs, R
)]

. (6)

So, we can model the relationship between the outcome and C,Xobs, R in each of the two treatment

groups and — assuming that the outcome model is correctly specified — we can substitute estimates of

the conditional expectations in equation (6) to obtain an unbiased estimate of the ATE. Thus, under the

assumptions given in Section 2.2.1, we can get an unbiased estimate of the treatment effect by modelling

the relationship between outcome and treatment, given confounders and the missing indicator.

The missing indicator approach suggests a particular parametric specification of the outcome model, at

this stage. In particular, missing indicators are added as main effects only, thereby encoding the assump-

tion that there are no interactions between the missing indicators and fully observed confounders. These

parametric modelling assumptions can be assessed using the data at hand, although it is unclear whether

such checks are common in practice.

3.1 Proof of equation (5)

We first suppose the mSITA and CIT assumptions hold (equations (2) and (3a), respectively). For z = 0, 1,

we can write E[Y (z)|C,Xobs, R] (from equation (5)) in summation notation:

∑

yP
(

Y (z) = y|C,Xobs, R
)

=
∑∑

yP
(

Y (z) = y,Xmis|C,Xobs, R
)

=
∑∑

yP
(

Y (z) = y|Xmis, C,Xobs, R
)

P(Xmis|C,Xobs, R).

(7)

Under the mSITA assumption, the first probability in equation (7) can be written as

P
(

Y (z) = y|Z,Xmis, C,Xobs, R
)

, and under the CIT assumption, the second probability can be written
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as P(Xmis|Z,C,Xobs, R). So, for z = 0, 1, equation (7) becomes:

∑∑

yP
(

Y (z) = y|Z,Xmis, C,Xobs, R
)

P(Xmis|Z,C,Xobs, R)

=
∑∑

yP
(

Y (z) = y,Xmis|Z,C,Xobs, R
)

=
∑

yP
(

Y (z) = y|Z,C,Xobs, R
)

.

Alternatively, if the mSITA and CIO assumptions (equations (2) and (3b)) hold, for z = 0, 1, we write:

∑

yP
(

Y (z) = y|C,Xobs, R
)

=
∑

y
P
(

Y (z) = y|C,Xobs, R
)

P
(

Z|C,Xobs, R
)

∑

P
(

Z,Xmis|C,Xobs, R
)

,

(8)

where the denominator is strictly positive under the positivity assumption.

Now, we can write:

∑

P
(

Z,Xmis|C,Xobs, R
)

=
∑

P
(

Z|Xmis, C,Xobs, R
)

P
(

Xmis|C,Xobs, R
)

. (9)

Under the mSITA assumption, the first probability in equation (9) can be written as

P
(

Z|Y (z) = y,Xmis, C,Xobs, R
)

, and under the CIO assumption, the second probability can be written

as P(Xmis|Y (z) = y, C,Xobs, R). So, for z = 0, 1, equation (9) becomes:

∑

P
(

Z,Xmis|C,Xobs, R
)

=
∑

P
(

Z|Y (z) = y,Xmis, C,Xobs, R
)

P
(

Xmis|Y (z) = y, C,Xobs, R
)

=
∑

P
(

Z,Xmis|Y (z) = y, C,Xobs, R
)

= P
(

Z|Y (z) = y, C,Xobs, R
)

.

Hence, we can write equation (8) as:

∑

y
P
(

Y (z) = y|C,Xobs, R
)

P
(

Z|C,Xobs, R
) P

(

Z|Y (z) = y, C,Xobs, R
)

=
∑

y
P
(

Y (z) = y, Z|C,Xobs, R
)

P
(

Z|C,Xobs, R
)

=
∑

yP
(

Y (z) = y|Z,C,Xobs, R
)

.

3.2 Connections to prior work on the missing indicator approach

Jones (1996) assumed that the true outcome model is a linear regression model with a fully observed

covariate Z, a single partially observed covariate X and independent normal errors ǫ:

Y = β0 + β1Z + β2X + ǫ, (10)

where ǫ is independent of (Z,X,R). Correspondingly, the missing indicator approach can be represented

mathematically as:

E[Y ] = γ0 + γ1Z + γ2X
∗ + γ3R. (11)

Jones (1996) showed that the least squares estimator of γ1 is biased for β1, noting that the least squares

estimator is unbiased when the sample covariance of Z and X , for patients missing X , is zero. If the CIT

assumption holds, this condition holds, since treatment allocation is independent of the confounder for

those patients with missing confounder values.
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The true outcome model assumed by Jones (1996) in equation (10) leads to the CIO assumption being

violated as the outcome is dependent on the missing confounder values. However, if the CIO assumption

does hold, then the true outcome model instead resembles the parametric model corresponding to the

missing indicator approach in equation (11) (i.e. the true model is Y = β0+β1Z+β2X
∗+β3R+ ǫ), and

it is simple to show that the least squares estimator is unbiased.

Hence, our findings are compatible with Jones’s findings (1996). We have additionally shown that

the missing indicator approach can give unbiased estimates when the mSITA and CIO assumptions hold

(regardless of whether the CIT assumption additionally holds).

3.3 Connection to alternative statements of assumptions in the literature

The missing indicator method has been recommended for propensity score analysis (Stuart, 2010), based

on work in relation to the missingness pattern approach within propensity score analysis (Mattei, 2009;

D’Agostino and Rubin, 2000). This approach involves modelling the propensity score separately for each

pattern of missing confounder data and can be thought of as a generalisation of the missing indicator

method.

In Section 2.2.1, our statement of the mSITA, CIT and CIO assumptions follows Mattei (2009), who

states assumptions sufficient for valid inference for the missingness pattern approach. Our assumptions

differ from Mattei (2009) in that our version of the CIO assumption is slightly weaker, and requires the

conditional independence statement to hold separately for each potential outcome, rather than jointly for

the pair of potential outcomes as in the Mattei (2009) original presentation.

D’Agostino and Rubin (2000) instead provide the following assumption, sufficient for valid inference

in the missingness pattern approach:

Z ⊥ (Y (0), Y (1), Xmis)|Xobs, R. (12)

The mSITA and CIT assumptions imply that equation (12) holds. However, mSITA and CIO can hold

while equation (12) is violated. Thus Mattei (2009) gives a wider set of assumptions under which the

missingness pattern approach provides valid inference.

There are strong connections between the missingness pattern approach and other work exploring non-

systematic monitoring of time-varying covariates (Hernán et al., 2009; Kreif et al., 2018). These papers

suggest a version of the “no unmeasured confounding assumption” which, in the single time-point exposure

setting, can be written as:

Z ⊥ Y (z)|Xobs, R. (13)

Note that here, we have omitted fully observed confounders in order to simplify our discussion of the

connections between alternative statements of assumptions.

If the D’Agostino assumption holds, then assumption (13) holds. Further, if either the mSITA and CIT

assumptions hold, or the mSITA and CIO assumptions hold, then assumption (13) holds. Compared to the

D’Agostino assumption (12), therefore, the mSITA, CIT and CIO assumptions can be seen as a wider set

of assumptions under which variants of missingness-pattern-type approaches can produce valid inference.

The statement in equation (13) thus provides the most general of the three sets of assumptions.

Kreif et al. (2018) focus on the scenario where the partially missing (non-systematically monitored)

covariate is key to the treatment decision process and thus when the clinician does not have this covariate

information, they must rely on the last measurement available. Therefore, in their setting – in contrast

to our scenario – the covariate always contributes to the treatment decision, whether as an up-to-date

measurement or as the last available measurement. However, both settings lead to a causal structure which

satisfies a CIT-type assumption.

Here, we assume that full-data inference is the goal, i.e. if we were able to obtain full data then we

would. Kreif et al. (2018), in contrast, treat the monitoring process (which induces the missing covariate
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data) as an intrinsic part of the setting, and as an attribute of interest in its own right. In particular, in time-

varying settings the optimal treatment combination may depend on the intended monitoring process. This

makes the inferential goals of Kreif et al. (2018) quite different to those laid out in the current paper. In

particular, the set of assumptions we focus on (mSITA, CIT and CIO) require the investigator to consider

the confounding structure in the full data setting and how missingness arises in that setting (mSITA),

and then to subsequently explore how this structure may change when missing confounder values are

present (CIT/CIO). We have found this two-step process useful in considering plausibility of assumptions

in real-life settings. Furthermore, although identification of the ATE can be proved using a modification

of assumption (13), it may sometimes be more helpful to separate the relationship between the missing

confounder values and treatment allocation from the relationship between the missing confounder values

and the potential outcomes by considering the CIT and CIO as two separate sub-assumptions.

All three sets of assumptions make it clear that they are likely to be satisfied in a setting where missing

confounder values are unavailable to the individual making the treatment decision and thus do not affect

treatment. However, only the first version, with CIT and CIO as two separate sub-assumptions, makes it

clear that there is another quite different set of scenarios in which missingness-pattern-type methods may

provide valid inference.

4 Simulation Study

In this simulation study, we explored the extent of the bias introduced into the treatment effect estima-

tion when each of the key assumptions is violated. Source code to reproduce the results is available as

Supporting Information on the journal’s web page (http://onlinelibrary.wiley.com/doi/xxx/suppinfo).

4.1 Data-generating mechanisms

We considered 81 data-generating mechanisms. For each, datasets of sample size n = 500 were generated.

The data-generating mechanisms differed according to which of the assumptions hold. A factorial design

was used to consider all possible combinations of each assumption having no violation, a weak violation

or a strong violation.

We let UZ represent a common cause between treatment and the missing indicator, UY represent a com-

mon cause between the outcome and the missing indicator, and e represent error in the outcome regression

model. We generated UZ , UY and e from independent standard Normal distributions.

Two binary confounders X and C were generated using Binomial distributions: X ∼ Bin(1, 0.67) and

C ∼ Bin(1, 0.58). To create missing data in X , we generated a missing indicator R ∼ Bin(1, P(R = 0)),
where: logit(P(R = 0)) = −0.5 + 1.48 · UZ + 1.36 · UY .

We also generated a binary treatment allocation variable Z ∼ Bin(1, P(Z = 1)), where:

logit(P(Z = 1)) = −1.2 + αUZ + 1.38XR+ βX(1−R) + 2R+ 1.69C.

The observed proportion of treated patients varied between 62.2% and 86.2%, depending on the data-

generating mechanism. We generated a continuous outcome using the regression model:

Y = 1− 2.35Z − 2.2αUY − 1.55XR+ γX(1−R) + 1.8R− 1.7C + δCR+ 3e.

where α ∈ {0, 0.125, 1.25}, β ∈ {0, 0.138, 1.38}, γ ∈ {0,−0.155,−1.55} and δ ∈ {0,−0.42,−4.2}. If

α = 0, then the mSITA assumption holds. Similarly, if β = 0, γ = 0, or δ = 0, then, respectively, the

CIT assumption holds, the CIO assumption holds, or the outcome model is correctly specified. For each

parameter, the smaller and larger non-zero values represent, respectively, a weak violation and a strong

violation of the corresponding assumption.

Data were simulated using Stata 14.2 with 5000 simulation repetitions per data-generating mechanism.
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4.2 Methods

Each simulated data set was analysed using the missing indicator approach with multivariable linear regres-

sion, by creating a new version of the partially observed binary covariate with a third ‘missing’ category.

Our estimand is the average treatment effect, as estimated using the treatment coefficient from a linear

regression model. Our performance measure of interest is absolute bias of the ATE: 1

5000

∑

5000

i=1
θ̂i − θ,

where θ̂i is the estimated treatment effect from the ith repetition, and θ is the true treatment effect.

4.3 Results

In Figure 3, the left-hand panel presents the absolute bias in the estimated treatment effect for eight sce-

narios, depicting all possible combinations of the mSITA, CIT and CIO assumptions holding or not. The

dark bars show scenarios where the mSITA assumption (required for valid inference) holds. The light bars

show scenarios where it does not. As expected from our theory above, if the mSITA assumption is violated

(light bars), bias is present. The four sets of bars show combinations of the CIT and CIO assumptions

holding or not, for scenarios where the mSITA assumption holds (dark bars); bias is present only when

both CIT and CIO are violated. The right-hand panel of Figure 3 shows the same eight scenarios, but with

a parametric violation of assumptions: the outcome model fitted assumes no interaction between the miss-

ingness indicator and the fully observed confounder C, but in truth this interaction does exist. Violation of

this parametric assumption leads to bias in all eight scenarios.

Figure 4 shows a number of scenarios in which the outcome model is correctly specified but the other

three assumptions (mSITA, CIT and CIO) may be violated. The three panels show – from left to right –

increasing levels of violation of the CIO assumption. Within the three panels, the three sets of bars show

– from left to right – increasing levels of violation of the CIT assumption. Within each set of bars, the

bars show – from left to right – increasing levels of violation of the mSITA assumption. Large bias is seen

when either a strong violation of the mSITA assumption is present, or when strong violations of both the

CIT and CIO assumptions are present.

Figure 5 shows the same scenarios as Figure 4, but with weak violations of the parametric assumptions

(weak CR interactions present but not included in the fitted model) shown in the top panel, and strong

violations of the parametric assumptions shown in the bottom. Weak violations of the parametric assump-

tions induced additional small amounts of bias compared to Figure 4. Strong violations of the parametric

assumptions induced large amounts of biases under most settings.

The missing indicator approach gives unbiased estimates of the treatment effect when the mSITA as-

sumption holds, the outcome model is correctly specified and either one, or both, of the CIT and CIO

assumptions hold. When both the CIT and CIO assumptions are violated, the missing indicator approach

gives biased results, whether or not the other two assumptions hold. The worst bias occurs when both

the mSITA assumption and the correct specification assumption is violated and the CIT assumption holds,

whether or not the CIO assumption holds. In general, having the mSITA assumption violated results in

larger biases for the settings explored in the simulation study. In addition, incorrectly specifying the out-

come model, i.e. failing to include an interaction between the fully observed confounder C and the missing

indicator R in the true outcome model, generally results in larger biases than when the outcome model is

correctly specified.

When the outcome model is correctly specified, weak violations of the other assumptions results in

similar biases compared to when the assumptions hold (Figure 4). Similar results were found when con-

sidering data-generating mechanisms where the true outcome model includes a weak CR interaction and

when considering data-generating mechanisms with a strong CR interaction (Figures 5a and 5b respec-

tively). In general, having a weak CR interaction resulted in similar or larger biases compared to scenarios

where the outcome model is correctly specified.
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5 Application to illustrative example

5.1 Study description

Our illustrative example is a cohort study using electronic health records data from the UK Clinical Practice

Research Datalink and the Hospital Episode Statistics (Mansfield et al., 2016). The cohort study aimed to

investigate the association between risk of acute kidney injury (AKI) and use of angiotensin-converting en-

zyme inhibitors or angiotensin receptor blockers (ACEI/ARBs), compared to other antihypertensive drugs.

An important covariate in the study was chronic kidney disease, which was categorised into stages based

on a continuous measure of kidney function called the estimated glomerular filtration rate (eGFR). Lower

values of eGFR indicate worse kidney function.

Data were obtained for 570 586 new adult users of antihypertensive drugs between 1997 and 2014.

Follow-up began at first prescription of ACEI/ARBs, beta blockers, calcium channel blockers, or diuretics.

The treatment of interest was prescription of ACEI/ARBs. Our outcome of interest was kidney function

within 2 months of first prescription of an antihypertensive drug, as measured using eGFR (Levey et al.,

2009). Due to conditions of the data use agreement, we can no longer access the eGFR data after treat-

ment initiation, so we have simulated this variable, based on observed relationships in prior studies (see

Appendix for details). As a result, the ‘true’ treatment effect is known.

In this study there were a number of fully observed potential confounders: age, sex, chronic comorbidi-

ties, other antihypertensive or diuretic drugs, and calendar period. In addition, two potential confounders

were partially observed: ethnicity, which had 59.0% missing data; and baseline eGFR category, which had

52.9% missing data.

In this example, only 21% of patients had complete data for both ethnicity and baseline eGFR category;

the majority of patients records would be discarded, leading to a loss of efficiency, if complete record

analysis was used for this example. Furthermore, standard multiple imputation may not be appropriate

since the missing at random assumption is questionable: baseline eGFR category is more likely to be

measured for patients with worse kidney function. The assumptions underlying the missing indicator

approach seem reasonable in this context. First, the mSITA assumption would be violated if there are any

unobserved common causes between missingness of baseline eGFR category and treatment allocation or

the outcome. In this example, it seems plausible that any such common causes, such as age or chronic

comorbidities, are measured and able to be included in the analysis model. In addition, predictors of

missingness in ethnicity seem unlikely to also be predictors of prescription decisions. Thus the mSITA

assumption seems plausible here.

Second, it is plausible to assume that information about a patient’s baseline eGFR category is unlikely

to influence the clinician’s decision to prescribe if this information is not available to the clinician (eg. if

a kidney function test had not been ordered beforehand). In practice, proxy information about a patient’s

baseline eGFR category may be available to the clinician (but not to researchers using electronic health

records). However, this is likely to reflect poor kidney function for only a small proportion of the whole

study population. In addition, it is plausible that a clinician would ensure information on patient’s ethnicity

is recorded if they believe that this information is an important factor in their decision whether or not to

prescribe ACEI/ARBs. Thus we believe that the CIT assumption is plausible.

Third, it seems plausible that the effect of the other fully observed risk factors on AKI would not

vary according to whether or not ethnicity and baseline eGFR category were measured. Furthermore, this

assumption can be tested in the data.

Fourth, the CIO assumption does not seem plausible in this context — since baseline kidney function

remains a risk factor for change in eGFR, whether or not baseline eGFR category is measured. Since we can

obtain valid inferences from the missing indicator approach when just one of the CIT and CIO assumptions

hold (in addition to the mSITA and correct specification assumptions holding), the CIO assumption being

violated is not an issue here; the mSITA, CIT and correct specification assumptions seem plausible and

thus the missing indicator approach is considered appropriate.
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5.2 Method

We applied linear regression, adjusted for ethnicity, baseline eGFR category and fully observed con-

founders (age category, sex, chronic comorbidities, and calendar period), to obtain estimates of the treat-

ment effect comparing patients prescribed ACEI/ARBs at start of follow-up time exposed to ACEI/ARBs

versus patients not prescribed ACEI/ARBs at baseline. To handle missing data in ethnicity and baseline

eGFR category, we applied complete record analysis and the missing indicator approach. Analysis was

conducted in Stata 14.2.

5.3 Results

Our results are given in Table 1. The missing indicator approach uses all missingness patterns; in addition

to the 121 527 patients with complete data, 112 142 patients had missing data for baseline eGFR category,

147 011 have ethnicity missing, and 189 906 had missing data for both. Using the missing indicator

approach, the estimated treatment effect was closer to the true treatment effect than the estimate from

complete record analysis. In addition, the complete record analysis estimate has a wider confidence interval

due to the exclusion of over 75% of the patient records. When interactions between the missing indicators

and the fully observed confounders are added into the regression model, the results do not change much

compared to the missing indicator approach (-0.6575, 95% CI: [-0.7424, -0.5567]), and so there is no

evidence of a violation of the parametric assumption.

6 Discussion

In this paper, we have shown that the missing indicator approach in outcome regression is unbiased when (i)

there is no unmeasured confounding within missingness patterns; (ii) either confounder values of patients

with missing data are conditionally independent of treatment assignment, or these missing confounder

values are conditionally independent of the outcome; and (iii) the effect of fully observed confounders

on the outcome is the same for all missingness patterns. We have applied the missing indicator approach

to an illustrative example using routinely collected data, a key area in which the method’s underlying

assumptions may be plausible (Blake et al., 2019).

An advantage of the missing indicator approach for outcome regression is that it is easy to implement

and, unlike complete record analysis, avoids discarding much information when the proportion of missing

data is large. In addition, the missing indicator approach may be appropriate in situations where multiple

imputation is not, as the missing indicator approach does not rely on the conventional classification of miss-

ingness mechanisms. Whereas standard implementation of multiple imputation is guaranteed to be valid

when data are missing at random, the CIT and CIO assumptions are not about the missingness mechanism,

but are rather about whether the partially observed covariate confounds the relationship between treatment

and outcome when it is missing. When either the CIT or the CIO assumption holds, the relationships

between variables among patients with observed data are not the same as those among patients with miss-

ing data, and so multiple imputation may not be appropriate. In contrast, the missing indicator approach

may be unbiased under missing not at random mechanisms, and biased under some missing completely at

random mechanisms.

The missing indicator approach has been criticised in the missing data methodology literature as being

‘ad hoc’ (Greenland and Finkle, 1995) and biased (Groenwold et al., 2012; Jones, 1996). We have shown

that the missing indicator approach can give unbiased results under certain assumptions. Researchers seek-

ing to use the missing indicator approach should first consider whether these assumptions seem plausible

within the context of a given clinical setting, with the help of causal diagrams. In our simulation study, we

considered scenarios with a single partially observed variable. Our suggested approach to handling mul-

tiple partially observed confounders within the missing indicator framework requires the assumption that

the missingness of one confounder does not affect the missing values of another confounder. In practice,
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researchers should carefully consider the plausibility of such an assumption, in addition to considering the

plausibility of the mSITA, CIT, CIO, and correct specification assumptions. If the assumptions underlying

the missing indicator approach are found to not be appropriate, then researchers should consider whether

the assumptions underlying complete record analysis or multiple imputation are more appropriate in the

given scenario.

The missing indicator approach is a method for handling missing covariate data, but cannot handle

missing data on the outcome or treatment allocation. Further work is required to extend the approach to

handle other missing data, perhaps by combining with other methods such as multiple imputation. Another

limitation of the missing indicator approach, in the context of propensity score analysis, is that estimation

issues may arise if there are many missingness patterns and some of these patterns have low sample size.

(Qu and Lipkovich, 2009) proposed a pattern-pooling algorithm to ensure sufficient sample size for esti-

mation in propensity score analysis. Further work is needed to explore the impact of low sample size in

missingness patterns in the context of outcome regression and whether this impact can be alleviated by

using pattern-pooling algorithms. A limitation of our simulation study is that we did not assess the impact

of changing the proportion of missing data. However, when the assumptions do not hold, bias is expected

to increase with the proportion of missing data. Furthermore, in this paper, we have focused on linear re-

gression. We believe that our theoretical results can be extended to risk difference estimation and Poisson

regression; further work is required to confirm this. Careful consideration would be required to translate

these results to the odds ratio setting due to non-collapsibility issues.

In conclusion, the missing indicator approach for outcome regression can be applied in a principled

way and can give valid results under a particular set of assumptions, but researchers must first consider

whether these assumptions seem plausible in the clinical setting of interest. We end by noting that standard

application of the missing indicator approach makes rather strong parametric assumptions about absence

of interactions between missing indicators and fully observed confounders; we recommend that checking

these assumptions in the data at hand should form part of routine practice when applying this approach.
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Appendix

A. Simulating kidney function for the illustrative example

We simulated a continuous outcome Y = Xβ + e where X denotes the design matrix, β represents

the vector of regression coefficients and e denotes the vector of error terms, where e ∼ (0, 14.65). The
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design matrix contains the vector with all entries equal to 1 and the following variables: prescription of

ACEI/ARBs at baseline; diabetes mellitus status at baseline; hypertension status at baseline; cardiac failure

status at baseline; arrhythmia status at baseline; ischaemic heart disease status at baseline; sex; ageband at

baseline; calendar period at baseline; ethnicity; and baseline eGFR category. The regression coefficients

are given in Table 2.
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Figure 1 A causal diagram for a simple scenario with a partially observed confounder X and a fully

observed confounder C, incorporating the missing indicator R. Y (z) is the potential outcome resulting

from intervening to set treatment Z to a particular value z.

Figure 2 A causal diagram for a simple scenario with a partially observed confounder X and a fully

observed confounder C, modified to assess the CIT and CIO assumptions. The square box around R = 0
indicates restriction to individuals with missing X values. Y (z) is the potential outcome resulting from

intervening to set treatment Z to a particular value z.
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Figure 3 Results from a simulation study showing the absolute bias in the estimated treatment effect

when using the missing indicator approach for multiple linear regression under different data-generating

mechanisms, which vary according to: (i) whether the mSITA assumption holds; (ii) whether the CIT

assumption holds; (iii) whether the CIO assumption holds; and (iv) whether there is an interaction between

the fully observed confounder C and the missing indicator R in the true outcome model. True treatment

effect: −2.35. Sample size: n = 500. Number of replications: 5000.
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Figure 4 Results from a simulation study showing the absolute bias in the estimated treatment effect

when using the missing indicator approach for multiple linear regression under different data-generating

mechanisms, which vary according to whether there is no violation, a weak violation or a strong viola-

tion of: (i) the mSITA assumption, (ii) the CIT assumption, and (iii) the CIO assumption. For all data-

generating mechanisms, the outcome model is correctly specified. True treatment effect: −2.35. Sample

size: n = 500. Number of replications: 5000.
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Figure 5 Results from a simulation study showing the absolute bias in the estimated treatment effect when

using the missing indicator approach for multiple linear regression under different data-generating mech-

anisms, which vary according to whether there is no violation, a weak violation or a strong violation of:

(i) the mSITA assumption, (ii) the CIT assumption, and (iii) the CIO assumption. For all data-generating

mechanisms, the true outcome model contains either a weak interaction (5a) or a strong interaction (5b) be-

tween the fully observed confounder C and the missing indicator R. True treatment effect: −2.35. Sample

size: n = 500. Number of replications: 5000.
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Table 1 Estimated treatment effects (mean differences) and 95% confidence intervals (CIs) using linear

regression to compare the effect on (simulated) kidney function of being prescribed ACEI/ARBs at start of

follow-up versus not begin prescribed ACEI/ARBs at baseline. True treatment effect: -0.6831

Missing data method Treatment effect (95% CI) Number of patients analysed

Complete record analysis −0.6150 (−0.7977,−0.4324) 121 527

Missing indicator approach −0.6496 (−0.7424,−0.5567) 570 586

Table 2 Regression coefficients for using baseline characteristics to simulate an outcome variable

measuring kidney function within two months of prescription of antihypertensive drugs. ACEI/ARBs:

angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. eGFR: estimated glomerular

filtration rate.

Coefficient Variable Coefficient Variable

-0.6831 ACEI/ARBs prescription 1.3974 calendar period 2001− 2004
0.4847 diabetes mellitus 2.7825 calendar period 2005− 2008

-5.5041 hypertension 4.2181 calendar period 2009− 2011
-1.9321 cardiac failure 4.9409 calendar period 2012− 2014
-1.6349 arrhythmia 4.1883 ethnicity recorded as south asian

-3.4547 ischaemic heart disease -2.6490 ethnicity recorded as black

-1.6717 female 2.7238 ethnicity recorded as other

-12.8473 45 ≤ age < 55 3.3971 ethnicity recorded as mixed

-17.6097 55 ≤ age < 60 0.1647 ethnicity missing

-20.0686 60 ≤ age < 65 -36.7126 baseline eGFR < 30
-22.1784 65 ≤ age < 70 -25.1941 30 ≤ baseline eGFR < 45
-24.1881 70 ≤ age < 75 -16.3931 45 ≤ baseline eGFR < 60
-26.5288 75 ≤ age < 85 -4.4043 baseline eGFR missing

-25.6283 age ≥ 85 94.0335 constant
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