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Introduction

Abstract

Large ungulates critically influence forest structure and functioning besides being
seriously threatened by anthropogenic pressures. For assessing their populations,
surveys of ungulate sign encounters are widely used because of their practicality.
However, these yield unreliable results because of their failure to address the
problem of imperfect detection. Here, we present an innovative application to
address this key weakness in traditional ungulate sign surveys. We describe the
ecological process of ungulate sign deposition as well as the observation process of
sign detection in our modelling. We simulate 183 ecological and sampling-related
parameter values to first evaluate model performance. Simulation results demon-
strate that we can achieve good estimates of animal density when the radius of the
animal daily movement range is accounted for during survey design. We design
and conduct a field survey of ungulate signs to estimate ungulate densities using
both occupancy and distance sampling approaches. For five species of ungulates,
the densities estimated from our sign survey (number of ungulate clusters km™)
were 1.46(0.68) chital Axis axis, 1.42(0.67) sambar Rusa unicolor, 1.01(0.44) gaur
Bos gaurus, 0.74(0.39) wild pig Sus scrofa and 1.42(1.59) muntjac Muntiacus
muntjak, and were similar to those generated from line transect sampling
2.16(0.76) chital, 2.47(0.56) sambar, 0.94(0.3) gaur, 1.09(0.37) wild pig and
4.03(0.83) muntjac), except for muntjac. The potential utility of this approach
extends beyond sign surveys of forest ungulates to a wider range of animal
monitoring contexts, including those based on scent-station surveys and camera
trap surveys of elusive mammals.

tained harvest of ungulate populations, requires reliable
estimates of their population size (abundance) and densities

Most large mammal species are threatened globally by over-
hunting and habitat destruction, consequent upon rapid
human population growth and economic development
(Ceballos et al., 2005; Schipper et al., 2008). Large ungu-
lates (>15 kg body mass) are particularly vulnerable because
of biological traits, such as their wide-ranging movements,
tendency to forage on croplands and body size that attracts
hunters (Macdonald, 2001; Madhusudan & Mishra, 2003).
However, densities of most tropical forest ungulate species
are now significantly depressed, and several species are
threatened with extinction because of human impacts,
potentially driving major changes in forest ecology. Several
species impact agriculture or forestry, and many are har-
vested for food by local populations. Given their critical
ecological role, reliable assessment of their populations
assumes importance. Effective conservation, or even sus-

(Katzner et al., 2011).

In the face of imperfect detection, capture-recapture
modelling (Williams, Nichols & Conroy, 2002) has been
successfully used for estimating abundance of ungulate
species that are individually identifiable from photographs
(Goswami, Madhusudan & Karanth, 2007) or from fecal
DNA (Eggert, Eggert & Woodruff, 2003). Photo captures
require specialized camera trap surveys (O’Connell, Nichols
& Karanth, 2010), whereas DNA captures demand sophis-
ticated and costly laboratory support, thus limiting their
application in the field. Although estimation methods based
on photographic encounter rates have been proposed for
individually unidentifiable species (Rowcliffe ez al., 2008),
these require accurate data on animal movement rates that
are often difficult to acquire in the field (Rovero & Marshall,
2009).
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Ungulate density estimation using sign surveys

Line transect surveys (Buckland ef al., 2001) involve
visual counts of either ungulates (Karanth & Sunquist,
1992; Jathanna, Karanth & Johnsingh, 2003) or their dung
(Plumptre & Harris, 1995; Marques et al., 2001), and are
widely employed to estimate abundance. However, visual
surveys are sometimes rendered impractical by low densities
or extreme wariness of animals, dense vegetation or difficult
terrain. Often, converting dung counts from line or point
transect surveys (Buckland ez al., 2001) into estimates of
ungulate density is also problematic because of difficulties in
estimating species-specific rates for daily defecation and
dung decay across seasons and habitats (Nchanji & Plump-
tre, 2001; Laing et al., 2003). Furthermore, the amount of
dung or tracks deposited by an individual ungulate is
usually so large that establishing a reliable statistical rela-
tionship between such signs and actual animal densities is a
futile exercise.

Consequently, there exists a need for reliable, accurate
and a cost-effective method for monitoring forest ungulate
populations in situations where transect surveys are not
feasible — particularly when abundance is low. This is a more
general abundance estimation problem in ecology and con-
servation that has received methodological focus in recent
times (see Isaac et al., 2011; Katzner et al., 2011; Rowcliffe
et al., 2011; Archaux, Henry & Gimenez, 2012). For our
specific problem with forest ungulates, and more broadly
across a range of taxa, we believe that the conceptual frame-
work offered by MacKenzie ef al. (2006) and Royle &
Dorazio (2008) is appropriate to address our specific need.
We present here the outcome of a rigorous field study that
develops and validates the use of such an approach that
shows promise.

Study species and objectives

We develop a practical field sampling and density estima-
tion protocol based on field counts of easily detectable
signs (dung or tracks) for five species of Asian forest ungu-
lates: gaur Bos gaurus, sambar Rusa unicolor, chital Axis
axis, wild pig Sus scrofa and muntjac Muntiacus muntjak.
These species exhibit a diverse range of body sizes (20—
1000 kg), social behaviors (solitary territorial to solitary
wide-ranging to social herding), diets (selective feeders
to browsers to mixed feeders to grazers), habitat prefer-
ences (dense forests to open grasslands; Macdonald,
2001) and variations in population densities (0.89-50
animals km™).

Our methodology rests on the application of an abun-
dance model of occupancy (see Royle & Nichols, 2003) on
designed sign survey data. Although this model is designed
for temporally replicated samples, we explore its relevance
for spatially replicated samples (hereafter called AOS
model, for abundance-occupancy-spatial) through simula-
tions. We validate properties of our estimates with density
estimates derived from extensive computer simulations, and
compare it with density estimates derived from line transect
surveys using visual counts.

A. M. Gopalaswamy et al.

Study area

We conducted this study in Bhadra Tiger Reserve, Karna-
taka, India (Fig. 1; Longitude 75°29” E to 75°47" E and
Latitude 13°22’ to 13°47” N) from April to June 2007. The
line transect survey was carried out between April and
May, and the occupancy survey was conducted during the
month of June when pre-monsoon showers begin. This
492 km? moist deciduous forest tract (Jathanna et al., 2003)
supports populations of the five forest ungulate species
of interest. It also supports several large mammal species,
such as Asian elephant Elephas maximus, sloth bear
Melursus ursinus, dhole or Asiatic wild dog Cuon alpinus,
leopard Panthera pardus and tiger Panthera tigris, and is
considered to be an important conservation site within a
global biodiversity hot spot (Das et al., 2006). Most of
these ungulate species currently occur well below their
optimal densities here (Jathanna ez al., 2003; Karanth
et al., 2004) because the reserve is still in the process of
recovering from past anthropogenic impacts (Karanth,
1982, 2007; Jathanna et al., 2003). Within the Bhadra
reserve, we chose a specific study area of 178 km? size in
Muthodi (Fig. 1).

] Water Reservoir
Line Transect

|:| Park Boundary

E Study Area

Figure 1 Map of Bhadra Tiger Reserve with a system of line
transects (inset map shows the location of the park in India). The
study area (Muthodi) is shaded grey.
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Methods
Design of simulations

Model component for the spatial distribution of
ungulates and their signs

Ungulates are assumed to be spatially distributed in the
study area following a random poisson process (Pielou,
1969: 81-82). For the simulation exercises, we utilized a grid
of 20x20 =400 cells to overcome potential biases of small
sample size on parameter estimates. Point locations of ungu-
late groups were generated using the software package R (R
Development Core Team, 2009), with their x and y coordi-
nates in a Cartesian plane. Locations were drawn from a
uniform distribution so that a binomial process can describe
the number of individual groups in each cell and be approxi-
mated as a poisson variate. Let S = (S,, S,) represent points
on the Cartesian plane and defined as a collection of activity
range centres of all individual ungulate groups present
within the grid (Fig. 2).

For a square grid composed of Q(=400) cells, S, and S,
are modelled as follows:

S, ~ Uniform (0, \/é)
S, ~ Um'form(O, \/é)

We assume that signs (tracks or dung) generated by indi-
vidual ungulate groups are deposited at a uniform rate over
a pre-defined period within a circle of radius R (Fig. 2).

=
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Figure 2 An example of a simulation output in R describing the
ecological process of sign deposition (black circles) around animal
group activity centres (pink dots), within 100 sampling grid cells.

* Animal Activity Centre

Ungulate density estimation using sign surveys

Using the simulation approach described by Hlynka &
Loach (2005), we define two additional random variables:

o ~ Uniform(0, R)

6 ~ Uniform(0, 27)

For an individual ungulate group u, located at x,, y.
represents one possible location of a sign.
Then the location (x,, y,) is generated by

Xy =Sy + Jacos (6)

Vu=S+ \/&Si]’l(@)

The purpose of employing the Hlynka & Loach (2005)
approach is to ensure that signs are ‘uniformly’ distributed
within a circle of a fixed radius without clustering either at
the centre or at the rim. We acknowledge that other distri-
butions may also be relevant in the simulation, such as the
bivariate normal distribution commonly employed in spa-
tially explicit capture-recapture modelling nowadays
(Borchers & Efford, 2008; Royle et al., 2009).

Model component for the field survey
sampling process

The survey was designed so that skilled field personnel
record species presence by detecting signs (fresh tracks and
dung), systematically along S-shaped predetermined survey
routes within each grid cell (Fig. 3). For performing com-
puter simulations, we treated sign detections as occurring
over narrow detection strips on such trails. Each trail con-
sists of eight segments, which form ‘spatial replicates’ (Hines
et al., 2010) within a cell (Fig. 3). Observers record detec-
tions or non-detections of signs of each ungulate species
only once on each replicate.

We simulated two broad scenarios of detection condi-
tions. The first assumed that if signs are present in a spatial
replicate, observers detect species presence with certainty. In
the second, a more realistic scenario, we permitted the prob-
ability that observers could miss some signs present on a
replicate.

We modelled the probability of detecting ungulate group
presence using the Royle & Nichols (2003) formulation

Puienty =1= (1= 13, )™"
where psignij) = probability of detecting ungulate group pres-
ence if at least one sign is in the spatial replicate j given
presence of ungulate group in the replicate of cell i
rsien = probability of detecting a sign of an individual present
along a segment; Nggj = total number of signs actually
present at spatial replicate j of cell i. Hence, given presence
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Figure 3 Ungulate sign survey conducted in 55 grid cells (each of size 3.24 km?) within Muthodi (Bhadra Tiger Reserve).

of = 1 sign in the replicate, the detection of sign at replicate
j of cell i, d; was simulated as a Bernoulli random deviate,

d; ~ Bernoulli( pug)

In simulations, the following parameters were varied: (1)
animal group density per grid cell via the total number of
animal group activity centres N of the grid; (2) the number
of signs deposited by each animal group N, (3) the radius
of the circle that represents the daily movement range R of
an individual animal group; and (4) the probability of
detecting an individual animal groups sign, r,, on a spatial
replicate, although we did not assess for heterogeneity in
ryien between replicates. We expected, a priori, that the value
of R will play a critical role in the estimates of
abundance.

In addition to the initial large sample of 400 grid cells,
simulations were also run to investigate model performance
with fewer cells to cover a smaller area. We simulate 100
datasets based on 183 plausible scenarios to evaluate the
performance of the AOS model. All simulations were coded
and executed using software package R (R Development
Core Team, 2009). The simulation and the estimation codes
are available upon request.

Model validation using simulations

Counts of signs generated from the simulated data from
spatial replicate j in cell i were stored in matrix form
(number of grid cells [sites] X number of segments [spatial
replicates] in each cell). For example, in a survey for animal
signs as in (Fig. 2) that consists of eight spatial replicates
within a cell, the vector representing actual number of signs
in a cell Nggni) may look as follows.

Niigniy ={2324024 68235}

By reducing this numerical vector into a binary detection
and non-detection form,

w, ={11011111}

Detection vector w; will take this form if the value of
Tsign = 1 because pgignij) = 1.

However, if the value of ry, takes any other value
between 0 and 1 due to imperfect detections, for example if
Tsign = 0.5, then one possible manifestation of w; can be,

w,={11001111}

The extra zero that now appears in w; in the fourth
column is a chance consequence arising out of the fact that
Psigniity = 1 — (1 = 0.5)>=0.75 (which is<1). Applying the
same logic at the cell level,

Nanimal
Danimal(iy = 1- (1 - ranimal) animal(i)

where, panimay 18 the probability of detecting at least one
animal group in cell / in a replicate. ruma is the probability
of detecting an individual animal group in a replicate. Noyi-
mali) 1S the number of animal groups in cell 7.

In our sampling situation, the probability of detecting an
individual animal group ruma is the result of the product:
Fanima = (probability of an individual group located in the
vicinity of a replicate) x (probability of detecting at least one
sign of an individual group on replicate conditional on
group located in the vicinity).
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Our sampling situation and protocol does not provide
sufficient information to estimate the earlier two probabili-
ties describing ruma separately. Further, the quantity 7uima
can vary between replicates within a cell as a consequence of
the earlier two probabilities. In reality, we would expect the
second probability, that is the probability of detecting at
least one sign of an individual group on replicate, to very
rapidly approach unity because the quantum of signs
usually deposited by an ungulate group is very high (usually
in several thousands). So our main concern is the possibility
of variation in the quantity 7um« as a result of the location
of a spatial replicate relative to the location of ungulate
groups because the AOS model that we apply is based on the
assumption that ..« Will be a constant. Our objective is to
investigate how the AOS model performs in spite of this
assumption violation under varying conditions of these
parameters in our simulations (Appendices S1, S2 and S3).

We considered the application of the poisson version of
the likelihood (Royle & Nichols, 2003), which takes the
form,

v K (T, -
L(Wi.lran[mah 2'): HZ(W ][1_(1_ranimal) :I
i=l k=0 i

-t T[]

where w; is the number of detections in cell 7 (i.e. the sum of
the vector ;). A is the average number of animal groups in
each cell. M is the total number of cells. 7} is the number of
trials (sampled replicates) in cell i. K is the upper limit of the
number of animal groups in a cell.

We assessed the quality of the earlier estimator for esti-
mating A against simulated data (see Appendices S1, S2 and
S3) using the root mean squared error (RMSE; Casella &
Berger, 1990):

RMSE(4)= \/Var(i) + [/{ ~ e T

where A, = true value of A defined in the simulation. We
also fit the over-dispersed version (Pielou, 1969, pages
94-95) of the earlier likelihood to the real data (Royle &
Nichols, 2003) using the form

MK 7: K Wi
L(M}i,lranimal: A):HZ(W j[l_(l_ranimal) :|

i=l k=0

- | T k+a
X[ (1= Fapinat)* | [k(’Fra))}

* [1 J(rlé;)al)lu T [1 + (1% au }

where, u is the average number of animal groups in each cell
and a is the over-dispersion parameter.

Throughout our formulation, we describe Nuimay and A
or u as the number of animal groups rather than number of
animals, deviating from the original Royle & Nichols,
(2003) formulation, because our study species occur in

Ungulate density estimation using sign surveys

groups of varying sizes (Karanth & Sunquist, 1992). Failure
to recognize this behavioral trait will seriously distort our
interpretation of the results because the AOS model assumes
that the probability 1 — ruuma can be multiplied Nanimai)
times, implying independence.

Field surveys

Choice of grid cell size

We choose a grid cell size of 3.24 km?, which is sufficiently
large to circumscribe expected daily movement of the study
species based on home range size and movement rates
reported in field studies. For sambar, see Schaller (1967),
Dinerstein (1979), and Sankar & Acharya (2004); for gaur,
see Conry (1989) and Sankar ef al. (2000); for chital, see
Schaller (1967), Mishra (1982), Mishra & Wemmer (1987),
and Moe & Wegge (1997); for muntjac, see Barrette (1977,
1987), and Odden & Wegge (2007); and for wild pig, see
Singer (1981), Baber & Coblentz (1986), and Caley (1997).

The study area in Muthodi (178 km?) is partitioned into
55 grid cells. Each cell contains nine equally spaced point
locations called ‘sampling destinations’, and the distance
between any two adjacent points is 600 m (Fig. 3). Each
spatial replicate is visualized as a 300-m trail segment along
the sampling route passing through these nine sampling
destinations. Consequently, each grid cell contained 16
spatial replicates (Fig. 3).

Survey teams consisting of 2-3 skilled field personnel
searched sampling routes in each cell to locate fresh (<24 h
old) tracks or dung of ungulates. Teams optimized sign
detections by deviating from the survey route by < 50 m on
either side to search logging roads, river banks, stream beds,
water holes, mineral licks or wallows, all the while ensuring
proximity to nine sampling destinations and uniform spatial
coverage of the cell.

The survey was conducted after light showers when fresh
signs were clearly visible and detectable. Thus, we could
reasonably assume that the individual animal depositing a
sign was present within the cell. Field teams surveyed each
cell within < 8-10h to limit potential biases induced by
animal movements between cells (Fig. 3).

Line transect surveys of ungulates

To derive independent estimates of ungulate density, we also
used the standard line transect sampling method (Buckland
et al., 2001) based on visual detections. This method has
been effectively employed since 1988 (Karanth & Sunquist,
1992; Jathanna et al., 2003; Karanth et al., 2004), and this
study followed field and analytical protocols described else-
where (Karanth, Thomas & Kumar, 2002; Thomas &
Karanth, 2002). We used a subset of 11 line transects used
for long-term monitoring of ungulate populations (Karanth
et al., 2008). The survey generated using design options
in the program DISTANCE 5.0 (Thomas et al., 2010)
employed systematic transect placements at 3-km spacing,
with a random start (Fig. 1). Each 3.2-km long transect
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sampler is of a square geometry, with each side of 800 m in
length. Each spatial replicate was sampled eight times —
thus, a total walk effort of 272.8 km was invested.

Line transect data were analyzed using the program
DISTANCE for each ungulate species. We fitted several
plausible detection probability models generated under
hazard-rate, half-normal and uniform detection functions
to the observed distance data, to select the most appropri-
ate models (see Buckland et al., 2001). We generated esti-
mates of detection probability, animal cluster densities,
cluster size and animal densities (Thomas & Karanth,
2002).

Results

Simulations of occupancy models

Results of the various simulation runs are tabulated in
Appendices S1, S2 and S3. We report only the key findings
from these simulations. The RMSE values indicate that the
model performed optimally (least relative RMSE value)
when the number of animal groups per cell varied from 0.5
to 4 (Appendices S1 and S2). The RMSE values indicate
(Appendices S1 and S2) that the model performance
improved when the number of signs deposited by each
animal group is increased. Similarly, in the face of imperfect
detection of signs (rye = 0.5), the quality of the estimation
drops, albeit only marginally. However, the number of signs
deposited is usually so large that the effect of a decrease in
I'ign 18 Telatively negligible because py,, would asymptote to a
value very close to 1. We note here that p,, is also influenced
by the width of the strip considered in this simulation, which
was maintained as a constant in our study.

We observe that the estimate of cell-specific abundance is
most strongly influenced by the choice of R, the radius of the
daily movement range, as indicated by a positive bias. We
conclude that accuracy of the specification of R is critical for
estimating animal abundance under the AOS model. We do
note that the direction of the bias is consistent (Supporting
Information Appendices S1 and S2). From the estimated

—>¢— True lambda = 2
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—@— True lambda = 0.25
—l—True lambda = 0.5

True lambda = 1

Figure 4 Effect of daily movement range R
on the relative RMSE value of the estimate

—%— True lambda = 4 A

of A from simulation exercises. Graph
demonstrates that low or high values of R
produces large relative RMSE values.
RMSE, root mean squared error.

RMSE values, we observe that the model performs most
optimally when the radius of the daily movement range of
an animal group is set between 6 and 15% of the length of a
grid cell (Fig. 4). Alternatively, if we have an accurate esti-
mate of R, this bias can always be corrected.

We examined the effect of reduced sample sizes of grid
cells because our field occupancy survey of large ungulates
contain fewer than the 400 cells used in all other simula-
tions. These results show that while the mean estimate of the
parameter A is positively biased by reduction in sample size,
the median value of the estimate remains relatively unbi-
ased. This is the classical small-sample size bias. These
results confirm the desirability of having as many grid cells
(say 200+) of the right size with > 8 replicates for reliable
estimation of A (also see Royle & Nichols, 2003). However,
when the number of signs deposited is very large, the quality
of the estimation improves drastically (see RMSE results in
Supporting Information Appendix S3).

Estimates from field surveys

Influence of heterogeneity in detection
probabilities on estimates of occupancy

The standard occupancy model (MacKenzie et al., 2002)
assumes that sign detection probabilities do not vary among
cells even if animal abundance varies across them, whereas
the AOS model permits such variation and attributes it to
variation in cell-specific abundances. For four of the five
study species (chital, sambar, gaur and wild pig), the occu-
pancy models of AOS model fit the data better than the
standard MacKenzie et al. (2002) model (AAIC =+36.43,
+38.05, +59.38 and +5.80 for chital, sambar, gaur and wild
pig, respectively; Table 1). For muntjac, the smallest ungu-
late, the reverse was true (AAIC =-2.01). These results indi-
cate that heterogeneity in detection probabilities among
cells, presumably due to varying cell-specific abundances,
does exist for all ungulates except muntjac, although the
wide standards errors weaken the inference.

6 Animal Conservation s« (2012) ee—ee © 2012 The Authors. Animal Conservation © 2012 The Zoological Society of London
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Ungulate density estimation using sign surveys

Table 1 Comparison of performances of habitat occupancy models of MacKenzie et al. (2002) model and AOS model using data from sign

surveys of ungulate species in Bhadra Tiger Reserve, India

Number of spatial

AIC value from MacKenzie

AIC value from

Species replicates per cell et al. (2002) model AOS model AAIC

Chital 16 888.10 851.67 +36.43
Sambar 16 1147.01 1108.96 +38.05
Gaur 16 1187.56 1128.18 +59.38
Pig 16 765.26 759.46 +5.80
Muntjac 16 688.78 690.79 -2.01

AIC, Akaike's Information Criterion.

Table 2 Estimates of individual group-specific detection probability and cell-specific animal group abundance generated from AOS model using

data from sign surveys of ungulate species in Bhadra Tiger Reserve, India.  is the estimate of animal group-specific detection probability, 4
or [ is the estimate of average number of animal groups in a cell, 4 is the over-dispersion parameter, p is the estimate of the correlation

coefficient
No. of spatial AQOS poisson AQS Over-dispersed poisson

Species replicates f[.éE(f)] i[ﬁE (i)] Pa f[ﬁE (f)] ﬂ[\éE(ﬂ)] é[éE(é)] Pu AAIC
Chital 16 0.31(0.07) 4.74(1.23) -0.96 0.30(0.01) 4.98 (1.93) 71.6 (379.05) -0.98 +2.03
Sambar 16 0.20 (0.05) 4.61(1.21) -0.96 0.08 (0.47) 12.13 (74.65) 6.12 (21.11) -1.0 +2.07
Gaur 16 0.20 (0.04) 3.30(0.80) -0.93 0.03 (0.02) 23.71(12.92) 3.04(0.92) -0.98 -1.43
Pig 16 0.08 (0.02) 2.41(0.70) -0.91 0.07 (0.025) 2.47 (0.875) 71.60 (525.49) -0.94 +2.02
Muntjac 16 0.03(0.02) 4.60 (2.86) -0.99 0.03(0.02) 4.84 (3.509) 71.59 (363.08) -0.99 +2.04

AOS, abundance-occupancy-spatial.

Density estimates from AOS model

The parameter estimates, Zuima and i, along with the com-
puted correlation coefficient between the two parameters,
are reported (Table2), where A refers to the average
number of animal groups present within one grid cell of
size 3.24 km? and Zuuna refers to group-specific detection
probabilities for each species. Due to the relatively
small sample size attained in the field survey (number
of cells =55 <200 + suggested by the simulations), we
obtained a correlation coefficient of less than —0.9 between
the estimated parameters fuima and A for all species sur-
veyed. Hence, we view the estimate with some caution,
although the median estimate of 4 in our simulations (Sup-
porting Information Appendix S3) for low sample sizes sug-
gests these estimates are reliable. However, in the extreme
case where the correlation coefficient between Zumima and A is
as extreme as —0.98 (for muntjac data), and estimated 7uima
is also very low (0.03), we are concerned with the estimate of
Ain our survey. This is because we are not sure if r is indeed
very low or whether it is an outcome due to high correlation
with A during estimation.

Our results also provide evidence that the study area was
fairly homogenous, and consistent with our a priori assump-
tion, because the over-dispersed version of the Royle &
Nichols (2003) received considerably lower support
(AAIC > 2) relative to the poisson model for all species,
except gaur (AAIC = 1.432) (Table 2). However, the corre-
lation coefficient between fuwma and A was very high
(pry=-0.98) for the gaur analysis, indicating that the

Table 3 Results of density estimation for ungulate species using line
transect sampling data at Bhadra Tiger Reserve

Species Model n P S[SE(S)] D, [ﬁE(ﬁs)] ﬁ[éE(f) ]
Sambar  HN-cos 59 0.49 1.78(0.12) 2.47(0.56) 4.40(1.03)
Chital HN-cos 47 0.33 4.11(0.81) 2.16(0.76) 8.88 (3.58)
Muntjac UN-cos 49 0.52 1.08 (0.04) 4.03(0.83) 4.35(0.91)
Gaur UN-cos 21 0.59 4.10(0.90) 0.94(0.30) 3.86(1.49)
Wild pig UN-cos 29 0.61 2.24(0.39) 1.10(0.37) 2.46 (0.94)

Model choice (HN-cos = half-normal model with cosine adjustment
terms; UN-cos = uniform model with cosine adjustment terms),
number of sightings (n after right truncation of data), and estimates
of detection probability (p), cluster size ( 5‘), cluster density (Ds) and
animal density (D), along with their standard errors (se), are reported.

parameters rgimg and u are virtually non-identifiable,
causing concern in the parameter estimates with the over-
dispersed model.

Density estimates from line transect surveys

The line transect surveys yielded 20-59 visual detections for
chital, sambar, gaur and muntjac, enabling us to fit detec-
tion functions reasonably well and generate density esti-
mates (Table 3). The number of detections for wild pigs
(n=12) was inadequate for reliable density estimation
(Buckland et al., 2001). Therefore, we borrowed density
estimates derived from a larger set of 24 transects from an
expanded area around the study site, and assumed pig den-
sities to be uniform across the wider area. Our results show
that despite a fairly high sampling effort (273 km), sample
sizes from visual detections were very low.
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Table 4 Comparison of sampling effort and density estimates for ungulate species in Bhadra Tiger Reserve generated from sign surveys using

AOS model and from line transect surveys based on visual detections

AOS approach

Distance sampling

Density of animal groups®

Density of animal clusters®

Species Sampling effort (in km) f)s, [éE(és)] Sampling effort (in km) f?s [ﬁE(ﬁs)]
Chital 256.80 1.46 (0.68) 272.78 2.16(0.76)
Sambar 256.80 1.42 (0.67) 272.78 2.47 (0.56)
Gaur 256.80 1.01(0.44) 272.78 0.94 (0.30)
Wild Pig 256.80 0.74 (0.39) 523.68° 1.09 (0.37)°
Muntjac 256.80 1.42 (1.59) 272.78 4.03 (0.83)

aA group here is defined as a ‘social group’, while a cluster is defined as a momentary congregation of animals. Group size = cluster size. For
the species we refer to here, group size Y cluster size. *Estimates for wild pigs were derived from a larger study area.

Half-normal detection key function models, in combina-
tion with cosine adjustment of orders, produced the best
fit for sambar and chital sighting data, while the
uniform + cosine adjustment models fitted muntjac and
gaur detection data best (Table 3). However, a combination
of few spatial replicates (n=11) and detection events
(n<60) produced wide standard errors. Comparisons
(Table 4) between the two survey methods show that cluster
density estimates, despite being derived from two different
approaches, matched well for all species except muntjac.

Discussion

Understanding the processes influencing forest structure and
dynamics by large ungulates requires reliable information on
their densities. However, consequent upon anthropogenic
pressures, large ungulate densities have declined drastically,
reducing them to occur in very low numbers in most remain-
ing forests. Additionally, logistical issues preclude the appli-
cation of standard methods, such as distance sampling or
capture-recapture sampling, to estimate their densities.
Therefore, there is a premium in developing approaches that
enable assessments of absolute or relative densities that
directly address the issue of imperfect detections.

Our study provides one possible solution to this problem.
We estimate densities of four large ungulate species from
simple, cost-effective sign surveys using the AOS model in
a region where ungulate densities are relatively low. It is
important for investigators to incorporate biological knowl-
edge of a target species in the design of such a sign survey.
Of critical importance is the reasonably accurate specifica-
tion of expected daily range sizes of animals to establish cell
sizes, and consideration of the length of spatial replicates.
However, simulation results show that, although underesti-
mation or overestimation of values assumed for radius of
activity R can bias estimates of density, the direction of this
bias appears predictable. This consistency in direction of
bias makes our approach a useful tool, at least as an ‘index’,
for monitoring ungulate densities across space and time. On
a related note, if accurate information on R, or the number
of cells expected to be visited by each animal group, is based
on prior knowledge (e.g. via radio-telemetry), this informa-
tion can be profitably incorporated into the survey design.
In our specific study, the specification of cell size was tar-

geted primarily for larger ungulate species, and turned out
too large for muntjac, the smallest among five species con-
sidered. As a result, our survey data may have failed to
capture the evidence of hetereogeneity in detection prob-
ability among cells for muntjac because the cell-specific
abundance value encountered (> 12 animal groups per cell)
may have been too high. We emphasize that the AOS model
approach works better when expected densities of ungulates
are low, enabling the capturing of heterogeneous detection
rates among cells that is critical for the model to work.

Our study is a preliminary step towards reliably estimat-
ing absolute abundance of large ungulate species from field
counts of signs along trails using spatial replications. While
our approach employs survey design and protocols based on
species biology, and the approach is flexible to accommo-
date for varying group sizes, we recognize that supplemen-
tary information in the form of prior data on daily
movement ranges, sizes of groups and other covariates
influencing ungulate abundance and detection rates across
space can all improve the reliability of this approach. At
another large site in the same region, Rayar (2010) has also
confirmed the reliability of this approach more recently
using additional covariates to describe cell-specific A. In
addition to density, environmental factors (substrate type,
moisture and local weather) may often be determinants
of encounter rates of animal signs (tracks, dung) during
surveys. These factors can vary widely across or within cells.
However, our approach of aggregation of survey data into
simple binary counts, combined with a systematic sampling
regime, ensures that fluctuations in sign encounter rates
do not unduly affect the estimation process. Further, if
required, all these environmental factors can be incorpo-
rated in the modelling of r4m« directly (see Royle & Nichols,
2003) under this approach. Future research in this domain
can focus on models that account for unmodelled heteroge-
neity in detection probability and spatial autocorrelation
between spatial replicates, which are not accounted for in
this study. From a practical standpoint, this approach is
most justified when the aim is to find a cost-effective
approach when animal abundance is low. Unlike in transect
surveys, whereby ‘pre-marking’ of transect lines is some-
times essential (in our case, about 3 months in the field), the
AOS method requires little preparation time, and is thus
cost-effective.
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This approach can also potentially be extended from sign
surveys to other animal detection techniques, such as
camera traps, scent stations and track-plates, which are cur-
rently used to assess populations of other animal taxa (e.g.
Nag, 2008). It has recently been applied to assess better
prevalence in wildlife disease (Lachish et al., 2012). There-
fore, the potential utility of our approach may extend to
include a wide range of animal monitoring contexts. But,
more immediately, we foresee our approach to be utilized
for studies of ungulate species of high conservation priority,
including the Sao La Pseudooryx vukongensis, Malay Tapir
Tapirus indicus or the Sumatran Rhinoceros Dicerorhinus
sumatrensis, which are very rare species and unlikely to be
surveyed well with other methods.
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Additional Supporting Information may be found in the
online version of this article:

Appendix S1. Results of simulations for 90 scenarios run on
100 datasets assuming an underlying poisson distribution
where sign-specific detection probability for the sign of an
individual group was set at equal to 0.999. The simulations
were run assuming different values for the radius of move-
ment within which signs are deposited R (represented as a
fraction of the length of a grid cell), the number of signs
deposited by each animal groups (V) and the total number
of animal groups S in the grid. The width of the detection
strip dis represented as the fraction of the length of a grid cell.
See Methods for description of other parameters.

Appendix S2. Results of simulations for 90 different sce-
narios run on 100 datasets assuming an underlying poisson
distribution where sign-specific detection probability for an
individual animal group was set at equal to 0.5. The simu-
lations were run assuming different values for the radius of
movement within which signs are deposited R(represented
as a fraction of the length of a grid cell), the number of signs
deposited by each animal cluster (N,,) and the total number
of animal clusters S in the grid. The width of the detection
strip d is represented as the fraction of the length of a grid
cell. See Methods for description of other parameters.
Appendix S3. Results of simulations for three scenarios run
on 100 datasets assuming an underlying poisson distribution.
The radius of movement within which signs are deposited R,
the number of signs deposited by each animal group (Vi)
and the cell-specific detection probability are kept constant.
The simulation scenarios are run by varying the number of
animal groups(S) and the number of grid cells(N ;).

Please note: Wiley-Blackwell is not responsible for the
content or functionality of any supporting materials sup-
plied by the authors. Any queries (other than missing mate-
rial) should be directed to the corresponding author for the
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