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ESTIMATING TRUE-SCORE JISTRIBUTIONS IN PSYCHOLOGICAL
TESTTNG (AN EMPIRICAL BAYES ESTIMATION PROBLEM)

Abstract

%

The following problem is considered: Given that the frequency

distribution of the errors of measurement is known, determine or estimate
the distribution of true scores from the distribution of observed scores
for a group of examinees. Typically this problem does not have a unique
solution. However, if the true-score distribution is "smooth", then

any two smooth solutions to the problem will differ little from each
other. Methods for finding smooth solutions are developed &) for a
population and b) for a sample of examinees. The results of a number of

tryouts on actual test date are summarized.




ESTIMATING TRUE-SCORE DISTRIBUTIONS IN PSYCHOLOGICAL

TESTING (AN EMPIRICAL BAYES ESTIMATION PROBLEM J*

When a large group of individuals has been tested, the examiner
usually finds the frequency distribution of observed test scores to be
of some interest. ilowever, he would usually prefer to look at the
frequency distribution of true scores, if this were possible. 1Is the
true-score distribution bimodal? For a multiple-choice test, do some
{ndividuals have true scores below the "chance" level (the score that
would be expected if they responded entirely at random)?

Although an estimated true-score distribution is of interest for
itself, it is more often of practical value as an intermediate step in
the prediction of more tangible results. As pointed out by Lord (1965),
the estimated true-score distribution "can be used

1. To estimate the frequency distribution of observed
scores that will result when a given test is lengthened.

2. To equate true scores on two tests by the equipercentile
method.

%, To estimate the frequencies in the scatterplot between
two parallel (nonpa.ra.llel) tests of the same psychclogical trait,
using only the information in a (the) marginal distribution(s).

4, To estimate the frequency distribution of a test for a
group that has teken only a short form of the test (this is

useful for obtaining norms).

#The writer wishes to thank Diana lees and Virginia Lennon, who wrote
the computer programs, carried out some of the mathematical derivations, and
helped with other important aspects of the worke This work vas supported
in part by contract Nonr-2752(00) between the Office of Naval Research and
Educational Testing Service. Reproduction, translation, use and disposal in
whole or in part by or for the United States Government is permitted.
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5« To estimate the effects of selecting individuals on a
fallible measure.
6. To effect matching of groups with respect to true score
when only a fallible measure is available,
7. To investigate whether two tests really measure the same
psychological function when they have a nonlinear relationship.
8. To describe and evaluate the properties of a specific
test considered as a measuring instrument."
An additional use, of some interest, is
9. To estimate the item-true score regression for particular
items, without strong prior assumption as to its mathematical form.
Practical applications of true-score theory will not be discussed
further here. The present article defines the problem (section l),
outlines some of the obstacles to a satisfactory solution (sections 2,
5), suggests soue solutions to the mathemstical problem (sections 3, L)
and to the related stetistical problem (section 6). Some empirical
checks of actual results are described and discussed (sections 8-13).

Certain of the mathematical detalls are spelled out in the appendix.
1. The Basic Mathematical Model

Iet x =0,1,00eyn bé the number of right answers given by an examinee
on an n -item test; let &, O < & < n, be the true score of the
examinee. The mathematical formulation will be in terms of ¢ = &¢/n,
which also will be called the true scores [The identity sign will be

used to denote a definition, as well as with its usual meanings. )
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Let ¢(x) denote the proportion of the population of examinees with
observed score x , let h(x|§) denote the corresponding conditionel pro-
pertions for fixed true gcore, and let g(¢{) be the noncumulative frequency
distribution of true scores. Ordinarily { is a continuous variable, cov-
ering the range 0<a<!{<b<1l (an a>0 anda b <1, while nct
mathematically essential, are sometimes helpful in practical applications).
It follows that

b

1) oix) = [6(8)nxlt) &t

a
for x=0,1,...,n . The basic problem is: Given some h(x|{) and an
observed-score distribution ¢(x) , infer from (1) the true-score distri-
bution g(8) «

Most of the theoretical results to be obtained will be written down
without specifying the form of h(xl t) « To obtain practical results,
however, it is necessary that the form of h(x|§) be known. As in
Lord (1965), it is assumed that h(x|{) is a compound binomial distri-
bution. In actuality, applied results are obtained by using a four-term
Taylor series approximation to the compound binomial (Lord, 1965, eq. 16).
The details necessary for computing this approximation, 3jiven by lLord and
Lees (1967a), will not be considered further here.

Lord (1965) assumed that g({) was a four-parameter beta distribution.
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The range of this distribution is given by two parsmeters, a and b, having
the same meaning as in (1), It now appears from studies of widely varied
test administrations (Lord & Lees, 1967a) that this assumption works well
when the estimates & and b obtained from the observed-score distribution
#a1l in the permissible range 0<a<b<1l. When a<O0 or b>1,
however, the obvious reestimation procedure under the requirement that
a=0 or bwl frequently does not yield good resul:s. This is hardly
surprising since in such ceses one is in effect fitting only a three-
rather than a four-paramgter distribution,

It seems preferable to start without assuming a specified mathe-
matical form for g({) . Let us see what can te done without any ruch

assumption.

2. Multiplicity of Solutions*

If x were a continuous variable and if equation (1) held for all
values of x in some irterval, then (1) would be a Fredholm integral
equation of the first kind (e.3., see Tricomi, 1957). Any function g(¢)
satisfying (1) is called & solution to the integral equation. In the
actual case, x is limited to the integers 0,1,¢es,n + let X be &
continuous verisble and let ¥(X) be any continuous function of X 1in

the interval 0<% <n such that ¥(x) = ¢(x) when Xmxe0,l000,0

#Section 2 and major portions of sections 3 and 5 are sbstracted, with
minor revisions, from Lord and Lees (196Tb).



Then any solution to

b
#) = [ 6(8) nElt) ot

a

s automatically a solution to (1). If there is any solution to (1), there

will in general be an infinite number of solutions when x 1is integer-valued.
If n(x|{) 4is binomial, the first n moments of g({) are given

(Skellam, 1948) by

M
(2) bl = -E-.} (r = 1,2,000,n) ,

n

vhere M., is the r -th factorial momen® of ¢(x) and

(3) n[r] B n(n - l)ooo(n -+ l) .

A similar but more complicated result holds for the four-term series ap-
proximation to the compound binomial used here (see Lord & Lees, 1967a,
eq. 41). Thus the first n moments of the observed-score distribution
are determined by the first n moments of the true-score distribution.
Since the frequency distribution of a bounded integer-valued variable is
determined by its moments (see Riordan, 1958, cite 2, eq. 32), it follows

that any true-score distribution with the proper moments up through order
n will be a solution to the integral equation (1). The same statement holds

1f n(x|f{) 1is compound binomial. Thus (again), even given an infinite
number of ohservetions, it is impossible by means of (1) to determine the

true-score distribution from the observed distribution of number-right scores.

e e
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Is there some further criterion that can be used to determine the
true-score distribution? In almost any practical situation we would
expect the true-score distribution to be "smooth" in some vaguely defined
sense, best evaluated by visual inspection. Thus we may require that the
solution to (1) shall not be obviously irregular. Among other things, we
may require that it be unimodal. These restrictions still will not provide
2 unique method of determining the true-score distribution.

Eowever, consider any two "smooth" solutions, gl(C) end ga(C) ,
to equation (1). Since these two distributions have the same moments up
through order n , they also have the same best-fitting polynomial of
degree n in the least-squares sense (Kendall & Stuart, 1958, sect. 3.34).
Denote this polynomial by P({). Typically, n 215 . Now if a distri-
bution is "smooth" in the ways ordinarily expected, without peculiar
irregularities, it should be possible to fit it very closely by a poly-
nomial. of degree n > 15 . We would expect to find that e, = Max gl(C) -
P(¢) and €, ® Max geﬂg) - P({) are both very small quantities% This seems
a natural part owahat is meant by "smoothness”. Consequently, gl(C)
and ge(g) can differ at most by Iell + |€2| , & small quantity.

In summary, we can not hope to determine the true-score distribution
uniquely. Given enough observations, however, we can reasonably hope
that for the values of n encountered in practice, any acceptable
solution will differ from any other acceptable solution by an amount

negligible for most practical purposes.
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D+ _BSolving the Integral Equation

Equation (1) is really n + 1 equations--one for each integer

0,1,sss,n « Choose any function t(u,f{) such that i) the integrals

b
(ll') mhx .ft'(u;gj h(ld £) at (u,x = ﬂlll"'!n" ’
a

exist; ii) the inverse of the matrix "mux” exists, It will be seen
in later sections that functions t(u,C) satisfying these two conditions |
can be found, at least for the case where h(x| {) is binomial or com-

pound binomial,
let n'" denote a typical element of the inverse of llmmJI o« The

function
n
(5) g(t) = ufo v b(w, )
will satisfy equation (1) provided the weights wu are obtained from
T v
(6) wu g I nm °(V) (u = O,l,...,n) ®
vel

To prove this, substitute (5) and (6) into (1), obtaining after some

rearrangement

b
'@ = T o) 2" [ew0) et at
=0 u=0 4

Use (4) and let
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l if vex

(7) 5 =
o if véx

finding that

¢(x) EH}E '
X M'J'ugommu

z )
L B _ oy
=0 s

= ¢(x) (x = 0,1,400,n) ,

which completes the proof.

Thus for any given cbserved-score distribution o(x) (x=0,1,e0s,n),
for any conditional distribution h(x|{) , and for any chosen function t(u,t)
aatirfying the stated conditions, one cen determine ”mux" from (&),
invert this matrix, determine the weights w from (6), and use (5) to
write down a g(f) satisfying equation (1), In the special applications
to be treated here, it will be seen that t(u,{) and the solution
g() are polynomials in §

If the g(l) so determined is nonnegative in the range a < t<v,

then it is automatically a frequency distribution satisfying the condition
b

(8) fg{t) =1 .

a

We can prove this by summing (1) on x , obtaining

n b n b
xfﬂttx}-l-fs{;}xfﬂn(xi;} at -;{g{u it .

a

S
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4, The Smoothest Solution

If one believes that the true-score distribution is smooth, a good
approximation to it might be found by choosing, from among the infinite
number of solutions to (l), the solution that is smoothest in some sense.
First some measure of "smoothness" is necessary. There does not seem to

be any uniquely good way to define smoothness. A cover-all measure of

the unsmoothness of a function g({) 1is

b
R
(9) a2 [w () ®0n® at

=0
a

where g(r)(C) is the r -th derivative of g({) and where the Wf(C) >0
are weighting functions at the disposal of the statistician,

After choosing some wr(C) , T=0,1,.0s,R, we then try to find
the g({) that will minimize S subject to the restriction that g({)
satisfies (1) for x = 0,1,.es,n » This is a problem in the calculus of
variations (e.g., see Pars, 1962), which, by Euler's rule, is equivalent

to the problem of choosing g({) so as to minimize

P R n
(10) I ERAGIR R RCIEL) RN
r=0 xw0

where the Ax (1ike Lagrange mnltipliers) are constants to be determined.

Consider the simplest case where R = O , in which case

e



b
(11) 5. f w(t) (e()1? at .

Define 7(¢) = 1/w({) . Since 7({) is at our disposal, we may without
b

loss of generality require that M}F 7(C) df = 1, in which case 7({) is
a

automatically a frequency distribution on the interval (a,b) . Since

b
u/H g(t) at = 1 also, it is easily found (after expansion) that
a

b
(12) U/ﬁ LEIS;TE}Z£SIIE at
a

diZfers from S by a constant. This last expression is a familisr
distance measure, being the analog for continuous frequency distributions
of a chi square between g(f{) and ¥(¢) .

The foregoing result suggests that we should choose 7({) to be some
smooth first approximation to the true g({) « The procedure of minimizing
S will then make the estimated g({) as much like y(¢%) as'possible, in
the metric defined by (12), while still satisfying (1) for all x . In
particular, when y({) is near zero, the presence of 7({) in the de-
nominator of (12) will force the difference g({) - 7({) to be very small.

In practical work, we shall frequently take 7({) to be a rectan-

guler distribution, that is, 7({) = constant. If the resulting estimated

g(¢) venishes at ¢ =0 and at £ = 1, then the estimate cbtained is not

changed drastically by using the triangular distribution y(t) « t or
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y(t) « 1 - ¢ instead of 7({) « 1 . The same is true of the parabola
y(t) « t(1 - ) . Bell-shaped distributions such as y(t) « ga(l - §)2
will sometimes be used in work with fallible data to prevent the appearance
of implausible bumps in the tails of estimated true-score distributions.

When R =0, (10) becomes
4 n
(13) f{w(t,) (g(t))° - 2 fo A g(t) n(x|¢)} at .
X
a

A necessary condition for finding g({) to minimize (13), thus minimizing

(9) subject to (1), is that g(f) satisfy the Euler equation
n

(14) &(8) = (1) £ A n(xlt)
x=0

(obtained in this simple case by treating g in (13) as an independent
variasble, differentiating the integrand with respect to g , and gsetting
this derivative equal to zero)s The n + 1 values of %k are to be
determined so that (1) is satisfied for x = O,1,.0.,n + Under general
regularity conditions it can be shown further (Pars, 1962, pp. 103-104)
that (14) is sufficient for a minimum.

Given 7({) and h(x|{), the n + 1 values of Ax needed for
(14) can be determined from the n + 1 values of ¢(x) , as follows.

Replace x in (14) by X and substitute (14) into (1) to obtain

n
15 ¢ = x=0,1,se0yn
(15) (x) 5 Nx (x = 0,1,4.4,n)

S -



vhere
b
(16) ny = [ 7O GO BEO A (1 =0,Lmn)

If the inverse of the matrix |[m xX" exists, then the simulteneous linear

equations of (15) can be solved uniquely for the )\x :

(17) 75( e %O mXx ¢(x) (X =0,1,e00yn) ,
X=

where m> is the general element of the inverse of ||m xx” .

In order for the g(f) given by (1) and (17) to be useful here, it
is of course necessary that it be nonnegative in the range e < t<b.
This requirement could be imposed as part of the calculus of variations
problem (see Kenneth & Taylor, 1966, and Leitmann, 1962). Further dis-
cussion of this requirement will be deferred to later sections.

The restriction that R =0 in (9) is clearly an oversimplification
made to keep the analysis tractable. It is possible to proceed with
R ,‘ 0 , but no empirical work has been done for this more complicated case.

The reader should clearly understand that the problem equations (14)
and (17) purport to solve is not ordinarily encountered in practical work.
In practice, we never know the values of ¢(x) required in (17); we only
have sample frequencies that approximate ¢(x) . The problem where the

population frequencies ¢(x) are assumed known will be referred to as
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the mathematical problem; the practical problem where only the sample

frequencies, to be denoted by f(x) , are known will be referred to as

the statistical problem. It will be seen that the obvious devices

ordinarily used in statistical inference do not usually lead to an

acceptable solution to the statistical problem.

5. Statistical Estimation Problems

In practical applications, the problem is to estimate g({) in (1),
given the sample frequency distribution f(x) . As before, the model
assumes that h(xIC) is known--in the present application, that it is
a certain kind of compound binomial distribution.

This kind of estimation problem is known as an empirical Bayes

problems The true-score distribution g(t) 41s the prior distribution.
The problem of estimating the prior distribution is treated mathemetically
by Robbins (1964). Maritz (1966) uses the device of assuming g({) to be
a discrete distribution with { taking only & limited number of values.
Here we prefer to try to make g({) as smooth as possible, consistent
with the observed data.

It is not uncommon to solve certain estimation problems first in
terms of population parameters, efter which substitution of sample
statistics for parameters usually leads to a useful estimation procedure.
The discussion up to the present point has been entirely in terms of

population distributions. Can we substitute the sample frequencies f(x)
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for o(x) in (1) and (14)or (17), obtaining a useful approximetion to g({)?
It is found that such a procedure usually produces wholly unusable
results even for very large samples. The purpose of the present section
is to indicate the nature of the difficulty.

First let us ask, for any given observed-score distribution, ¢(x) ,
is there always a solution--a frequency distribution, g({) >0 --for
equation (1)? For simplicity, assume that g({) is a discrete distri-
bution (th.s assumption is avoided throughout except at this point) so

that (1) can be written

(18) o(x) = i" S(gi) h(xl Ci) (x = O)l:“':n) J

Let A&(x) denote the second difference
£2(x) = o(x) - 20(x - 1) + o(x - 2)

and let

02(x) = n(xlt,) - 2hx - 1 | ) +nlx -2 ] 8y)

Then from (18)

8ix) = 2 8(t,) ()

For a given value of x and a known set of functions h(xlgi) , i=1,2..,
what is the maximum possible value of Ai(x) ?

Denote by I(x) a value of i for which Ag(x) takes on its largest
value for the given x . Because g(t) is a frequency distribution,
g(Ci) >0 forall i and Z g(Ci) =1 . Consequently, the largest pos-

i
sible Aﬁ(x) for the given x occurs when g(CI(x)) =1 and all other
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g(t;) = 0 . In this case, Aﬁ(x) = A?(x) vhere I = I(x) . Thus for
given x , the second difference of ¢(x) can under no circumstances
exceed the second difference of h(x| QI) where I = I(x) .

The argument can be extended to apply to continuous g({) . Two con-
clusions followe The first is that the actual distribution of test scores
is incapable of mirroring eny sharp fluctuations that may be present in the
distribution of true scores. As was noted in the last section, a very ir-
reguler g({) and a smooth g({) may give rise to exactly the same,
smooth ¢(x) .

The second conclusion, for given bounded functions h(x|§) , is that

if 6(x) is sufficiently irregular, there cen be no distribution g({) >0

satisfying (1).

In practice, it seems that most sample frequency distributions,
f(x) , are incompatible with (1), When f(x) 1is substituted for ¢(x)

in (1), any "solution" found for the resulting integral equation usually

is irregular and contains negative freguencies.
The following example is not atypical. A 15-item test administered

to N = 3,135 examinees gave the reasonably smooth observed-score distri-

bution shown belowe The @&(t) (estimated g({)) obtained from

i
i
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Fig. 1. a(f) giving exact fit to an observed-score distribution

in sample of 3,135 examinees.
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(14) and (17), with h(xj%{) & compound binomial x Nf(x)
and with 7(t) = 1, is roughly indicated in 15 163
Figure 1. Here 25 plotted points have been 1 32k
13 349

connected by straight lines in order to avoid 12 363
the elasborate computations needed to plot the 11 352
curve accurately. The fluctuations are large; 10 299
9 276

plotted on the same scale, the frequency dis- 8 236
tribution of observed scores would merge into T 201
the horizontal axis and be virtually invisible. 6 189
‘ 5 126

b 110

3 88

2 Lo

1 16

0 3

If a ussble estimate, g({) , of the true-score distribution can not

be found by solving the equation

b
t(x) = [8Q) nxlt) at

a
how then shall g({) be approximated? This is a problem in statistical
inference that has not yet found a widely accepted general solution.

Most statistical estimation is carried cut by finding parameters
that provide as good a fit to the data eas possible within the restrictions
imposed by the assumptions made (by the model used). A plausible suggestion

is to try to find g({) such that
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b

(19) 3) » [8(0) n(xlt) ¢

a
is as close to f(x) as possible in some sense, subject to the restriction
that g(f) >0 for a<{<b . This procedure will get rid of the
negative values of g(t) illustrated in Figure 1, but it will not get
rid of the numerous peaks. A more complicated procedure involving
restrictions on g(f{) and also at least on its first two derivatives

should be investigated.

6. A Practical Estimation Procedure

A familier way of dealing with sampling fluctuations in f(x) is to
group adjacent values of x and replace f(x) by the corresponding
grouped frequency distribution
(20) £,® I £(x) (u = 1,2,..s,U) ,

x:u

where I denotes summation over integers x in the u -th class interval.
If f(x?Guin (1) 1s replaced by a grouped frequency distribution, and then
the method of section 4 with R = O applied to the grouped distribution,
it is readily found thet the "smoothest" g({) 1is the same as (14) with
adjacent }x equal for all x in the same group. This smoothest true-
score distribution may be written

U
(1) g(t) =7(t) = A, = n(xlt) .
u=1 XU
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Here y({) is a frequency distribution chosen by the statistician
(frequently, 7(f) = 1 --see section lt); the 7\u are U unknown parameters;
U 1is the number of class intervals (groups) in the grouped distribution

of x; and h(xl() is a known function (in the preaerit case, & compound

binomial distribution)

U
(22) g(t) = e A, B, (8)
where

H(E) = 7(8) = n(xlt) .

X:u

The important function of the grouping is to reduce the number of
independent parameters (A) to be fitted from the date, thus preventing
g(g) from mirroring too closely irregularities in f(x) due to sampling
fluctuations. This is ordinarily necessary in order to prevent §(§)
from being multimodal.

If (1) is correct, if the number of examinees is large enough, if the
grouping is coarse enough, one would expect to find no "negative frequen-
cles" in g(f) . This may require excessively coarse grouping, however.
Experience has shown that a good way to avoid negative a(;) is to

impose the requirement that

(23) }\u .>_ 0 (u = l,a,ooo,U) .

This requirement is much easier to impose than the requirement that

—— ---.F.;..mw.u-ﬂ"
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g(t) >0 for &< £ <b; it is also more effective for reducing multi-

modality. Although (23) is often more restrictive than necessary, this

has not been found to be too serious a problem in actual applications.
If the ?\u were estimated from the grouped distribution fu

using the grouped analogs of equations (15)-(17), then (assuming eq. 23

to be satisfied, or ignored) the estimated grouped distribution defined

by

x:u

b
(24) S ezt [ED RO @1z

would fit the actual grouped distribution exactly; that is, su would
equal fu for a1l u . The estimation procedure recommended here for
the }\u is an improvement on this: We shall estimate the ?\u by
maximum 1ikelihood from the ungrouped distribution f(x) (see Kendall
and Stuart, 1958, sections 30.15, 30.19). The restriction (23) is
jmposed by mathematical programming methods.

The meximum likelihood equations are given in the appendix. The
"seoring method" used in their solution is briefly discussed there.

The procedures described in this section, with or without require-

ment (23), will be referred to as Method 20.

Te Rationales of Analysis

A conventional analysis would estimate g(t) and then evaluate
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the adequacy of the model and of the estimation method by a chi square
test of significance, comparing the fitted distribution $(x) of
(19) with the actual distribution f(x) . It is sometimes objected
that since no model is perfect, it is illogical to test statistically
the null hypothesis that the model is true. It is urged that statistical
significance tests should not be mede, that the model should be evaluated
according to its practical adequacy (usually as judged subjectively by
the reader) rather than by a test of statistical significance.

Here we will consider analyses designed to answer three distinct

questions.

1. Does there exist a "smooth” g(%) that under the model would

have produced a ¢(x) sufficiently close to the observed f(x) ? The

criterion for "sufficiently close" is not defined, but is left to the
reader's practical judgment.. Superimposed graphs of g(x) and f(x)

can be shown to aid in this judgment. If no g(f) can be found for
which s(x) is sufficiently close to f(x) , then one may have to discard
the model altogether.

2, Regardless of the answer to the first question, do the present

data contain information helpful for modifying and improving the model?

If the chi square between ¢(x) eand f(x) for a particular set of data
is near or below the 50-percent level, these data cannot be of much help
in improving on the model. This can occur either because the sample is

too small or because the model needs little improvement. In order to

e« TER i
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g(t) >0 for a< {<b; it is also more ¢ffective for reducing multi-

modality. Although (23) is often more restrictive than necessary, this

has not been found to be too serious a problem in actual applications.
If the %u were estimated from the grouped distribution fu

using the grouped analogs of equations (15)-(17), then (assuming eq. 23

to be satisfied, or ignored) the estimated grouped distribution defined

by

b
(24) P ez - [EORME @=12000)
x:u &
would fit the actual grouped distribution exactly; that is, 3u would
equal fu for all u . The estimation procedure recommended here for
the hu 1s an improvement on this: We shall estimate the %u by
meximum likelihood from the ungrouped distribution f(x) (see Kendall
and Stuart, 1958, sections 30.15, 30.19). The restriction (23) is
imposed by mathematical programming methods.

The maximum likelihood equations are given in the appendix. The
"georing method" used in their solution is briefly discussed there.

The procedures described in this section, with or without require-

ment (23), will be referred to as Method 20.

7. Rationales of Analysis

A conventional analysis would estimate g({) and then cveluate
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the adequacy of the model and of the estimation metrod by & chi square
test of significance, comparing the fitted distribution o(x) of d
(19) with the actual distribution f(x) . It is sometimes objected
that since no model is perfect, it is illogical to test statistically |
the null hypothesis that the model is true. It is urged that statistical
significance tests should not be mede, that the model should be evaluated
according to its practical adequacy (usually as judged subjectively by
the reader) rather than by a test of statistical significance.

Here we will consider analyses designed to answer three distinct

questions.

1. Does there exist a "smooth" g(f) that under the model would

have produced & ¢(x) sufficiently close to_the observed f(x) ? The

criterion for "sufficiently close" is not defined, but is left to the
resder's practical judgment. Superimposed graphs of o(x) and f(x)
can be shown to aid in this judgment. If no g(f) can be found for

which ¢(x) is sufficiently close to f(x) , then one may have to discard

the model altogether.

2. Regardless of the answer to the first question, do the present

data contain information helpful for modifying and improving the model?

If the chi square between o(x) and f(x) for a particular set of date
is near or below the 50-percent level, these data cannot be of much help
in improving on the model. This can occur either because the sample is

too small or because the model needs little improvement. In order to

e
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answer this question, one can compute & chi square and compare its value

with its sampling distribution under the model.

3, Are all smooth g({) that are reasonebly consistent with the

date much alike? In the population, smooth g({) consistent with the

distribution of observed scores cannot be dissimilar (section 2). This
;rill also be true in sufficiently large samples, but we do not know how
large such samples must be. This is & key question, since the answer

determines our willingness to accept a smooth 2(t) consistent with the
observed sample as & good approximation to the unknown (presumed smooth)
g(t) in the population. All that is done in this direction here is to
obtain a variety of E( t) from the same data and plot them for visual

comparison.

8, Tryout with Hypothetical Data, N = 1000

.An estimated true-score distribution g(t) may differ from the
population value g(t) because of at least four distinct sources of
inaccuracy:

1. The mathematical model used here surely falls short of
perfection.

2, Since g(f) is not uniquely determined even in the
population of examinees and since "smoothness" cannot
be uniquely defined, there will be many "smooth" g(t)

that satisfy the mathematical model in the population.

"
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3, Sampling fluctuations in the data distort the estimates

of g(t) .
4, Estimation methods used may fall short of 100 percent

efficiency.
The seriousness of the last three sources of error was investigated
by generating and analyzing samples of hypothetical data with N = 1000 .
Monte Carlo procedures were used to draw a random sample of N = 1000

from the beta distribution
2 2
g(t) =30t°(1-¢) 0<t<y

For each of the 1000 resulting values of { , a "raw score” x was drawn

independently and at rendom from the conditional distribution

n(x|¢) = (x)¢*( - ¢)**

with n =24 . This process was repeated to produce eight independent
samples, each representing the observed-score frequency distribution or
1000 hypothetical examinees on a 24-item test.

An estimate g({) was obtained for each of the eight samples using
the methods of Lord and Lees (1967b). In every case good sgreement was
obtained between the fitted observed score distribution 3(x) (equation
19) and the actual f(x) . The computed chi s'qua.res between 0(x) and
f(x) ranged from the 83rd percentile of the chi square sampling distri-

bution (the 17-percent "significance level") down to the Uth percentile.
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The estimated true-score distributions obtained from the eight
samples are shown in Figures 2 and 3, together with the distribution
g(t) = 30;2(1 - §)2 used to generate the data. Clearly, there exist
substantially different smooth g({) that are consistent with data
samples of N = 1000 drawn from a single population. (This statement
holds true regardless of the fact that the g(f{) in Figs. 2 and 3
were not obtained by Method 20,) The main conclusion drawn from these
and other similar results is that it is desirable to have samples
larger than N = 1000 if a close approximation to the population g(t)

is desired.

9, Description of Tryout Data, N = 20,000

Early versions of Method 20 (described in section 6) were tried out

preliminarily on data that had not been well fitted by previously used

methods. Method 20 was at least as successful as the others in all cases,

and much more successful in some cases.

In view of the results such 2s those discussed in the preceding

section it was decided to use larger groups for the tryout of Method 20

than had been used previously. Four different grade-level groups (grades

4, 6, 8, 10) with about 40,000 pupils each were obtained for study. For

each grade, an observed-score distribution was available for each of the

5 RS RRRY A OR SN S A A R A OAONSs atomas 5 AN S — |
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following tests, composed of n four-choice items:
n Test
50 Mathematics Ability,
50 Mathematics Achievement,
50 Verbal Ability,
30 Reading Achievement,
20 English Achievement.

Grade 10 data for the last two tests were excluded from further
study because a much larger number of students scored x = O than
x =1, If there were no guessing, this could occur under the model;
but since the tests are composed of four-choice items, such a mode at
zero hardly seems plausible. It seems likely that many of the grade 10
exeminees who scored O really did rot attempt the test at all,

Defore starting the study, each total group of approximately 40,000
students was split at random into two groups of approximately 20,000 each.
This was done separately and independently for eech test at each grade
level. Trial and error procedures were used on the first-drawn samples
of 20,000, designated as the A samples, The B samples were reserved for

cross-validation purposes.
10, Results for First-Drawn Samples of 20,000

True-score distributions E(;) were estimated by Method 20 for each

of the eighteen observed-score distributions studied. Results were eval-

e e W!
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uated initially by computing from g(;) the theoretic fitted distri--
bution 3(x) (equation 19) and comparing this with the actual observed-
score distribution f£(x) . If we do not wish to make a chi square test
of significance, for reasons outlined ir. the preceding section, we can
meke the desired comparison graphically. Instead of presenting all
eighteen graphs, Figure U4 presents just the graph for the set of data
having the most improbable chi square.

The estimated true-score distribution is shown in the figure for
general ihterest. However, we are mainly concerned with the fit between
o(x) and £(x) « Could the reader draw a pleusible, smooth #(x) that
would provide a much better fit than the one shown? The it could be
visibly improved near the mode, but this would reduce the chi square only
about five percent. More then one-fourth of the total chi square comes
from the discrepancy at x =17 . It appears that there do exist g(¢)
that can (under the model) produce observed-score distributions much like
those found in the 20,000-case samples.

The g({) used are all represented by equation (22). The number of
mathematically independent parameters Au 1s for some data as low as 5
and for some data as high as 12, A more efficient procedqure could surely
reduce the number of parameters needed for most sets of data. An unnec-
essarily large number of paremeters can often be tolerated vhen n = 50, so
that the number of degrees of freedom before fitting is large., It cennot

be well tolerated when n =20 and there are not so many degrees of
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freedom to start out with. This fact presumasbly explains why most of the
fitting difficulties occurred with the English (n = 20) and with the
Reading (n = 30) tests, whereas very little difficulty was experienced
with the Verbal and with the Math tests (n = 50) .

The eighteen chi squares found for the eighteen observed-score distri-
butions were (formally) all smaller than the 98th percentile of the
sampling distribution of chi squares under the null hypothesis; that is,
all were "statistically nonsignificant" at the two-percent level. How-
ever, these g({) were obtained by a trial and error procedure that
facilitated some capitalization on chance. Thus the obtained chi squares
cannot be completely evaluated just by using the theoretical chi square

distribution.

1l. Results for Cross-Validation Samples of 20,000

In cross-validation, the 7(§) and the grouping of the x variable
chosen by trial and error in the A sample is used for the corresponding B
sample. The values of Au are now determined from the B sample. All
trial and error takes place on the A sample, none on the B sample.

When this was done, one bad result (grade 6, Reading) was obtained
out of the eighteen attempts. Figure 5 shows the next-to-worst result
(grade &4, Reading). The fit shown seems good except near the mode. Both
grade 4 and grade 6 Reading test scores have rather highly pesked distri-

butions; in both cases the mode of 3(x) is somewhat misplaced for best
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fit to the mode of f(x) in the B sample. This difficulty arises
because the mode of f(x) in the B sample is not in the same place as in
the A sample, and the grouping of the observed scores taken from sample A
is incapable of producing a sharp peak where it is needed for sample B.

Good results for both sets of data are obtained simply by using
finer grouping of x near the mode. This brings the chi square in the B
sample for the grade 6 Reading test down from the 99.9th percentile (.001
"significance level") to the 50th percentile, and the chi square for the
grede 4 Reading test down from the 96th percentile to the 88th. Such a
use of fine grouping is advantageous in most of the B samples, but it
gives rise to a new difficulty; for some data, fine grouping tends to
produce undesirably bimodal g({) . For this reason, such fine grouping
has not been used for the results reported here.

The resder will have noticed that the £(f) shown in Figure 5 are
bimodal. Since both samples A and B display similar features, both in
2(t) eand in f(x) , no attempt was made to prevent this bimodality. A
similar situation exists for tw6 other distributions. With these

exceptions, no other bimodalities appear in the £(§) reported here.

12, Uncertainty in the Estimated True-Score Distribution
for Samples of 20,000

When the grouping of the x varisble is given, the true-score

distribution has a known mathematical form with U unknown parameters
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Fig. 6. Estimated true-score distribution obteined

for Samples A and B from two groupings of the same data.
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(eqs 22), of which U - 1 are mathematically independent of each other

(see eq. 31)s The various estimated true-score distributions shown in Figures

2 and 3 all have the same mathematical form--the same grouping was used
for each distribution. They differ only because of the values agssigned
to the U -1 =14 independent peremeters. Thus the differences shown
there represent sampling fluctuations in the data. They do not indicate
what differences might result from different chbices of mathematical form
for g(L) , that is, from different groupings of the x varisble.

Many different groupings were tried out on & single set of data in
the process of trying to fit the sample-Adistributions. Commonly, the
process was terminated as soon 85 & good fit was obtained. Occasionally,
good fits were obtained for substantielly di ferent groupings. Comparisons
of the &(f) obtained indicate the extent %o which substantially different
g(t) can fit the seme set of data.

Usually it was found that eny unimodal g(t) giving a good chi
square between $(x) and f(x) was much like any ~ther. An exception
is shown in Figure 6. Even with 20,000 cases, it is impossible in sample
A to choose between the bell-shaped true-score distribution and the
"bitangential" true-score distribution. The chi squares are at the 16th
and the 63rd percentiles respectively. In semple B, the corresponding

chi squares are at the 69th and 98th percentiles.

In both samples, the observed-score distribution shows the same

irregularity that tends to produce the bump in the true-score distribution.

L3

e
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)

Fig. 7. Observed-score distribution in Sanple A and two

fitted observed-score distributions computed from the two es-

timated true-score distributions shown in Figure 6.
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The observed-score distribution for sample A appears in Figure 7, along
with the two ¢(x) generated by the two &({) of Figure 6. It is
noteworthy that the o(x) do not differ as much as do the two 2({) .
This is in line with the ideas developed in section 5.

The conclusion seems to be that even with 20,000 cases we cannot
drew firm conclusions about the detalled shape of the true-score distribution.
However, in practical applications where the true-score distribution is
used only as an intermediate step in computing some characteristic
of an observed-score distribution, it may make little difference whetl.er
the bell-shaped or the bitangential distribution is used. Just as the
bell-shaped and the bitangential distributions give rise to similar
3(x) , 80 also will they give rise to similar estimated bivariate observed-
score distributionse It is these last that provide the basis for most

practical applications (Lord, 1965).

15, Results for Samples of 200,000

In most work with mathematical models, the larger the sample size,
the more likely 1s the chi square to be significant. In the present
problem, there is some indication that Method 20 does not work well if
the sample is too small. In order to investligate the effect of sample
size, the method was applied to five observed-score distributions with
sample sizes ranging from 137,052 to 286,238, No cross-validation samples

were used for these sets of data.
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To the writer's surprise, a satisfactory &(;) was found for each
distribution. The data with the worst chi square are shown in Figure 8.
The observed-score distribution has an unusual, flat-topped appearance,
which leads to & multimodal g(f) . The g({) shown has 14 independent

parameters. It is a safe assumption that a good fit could be obtained

with fewer pérameters, and that not all of the modes are needed. However,
@he necessary effort has not been made to determine how far the E(;)
can be smoothed without destroying the fit.

It is planned eventually to use a method for finding out how many
parameters can be determined without excessive sampling error from a

given set of data. This has not yet been worked out in detail.

14, Summary

We have considered the empirical Beyesian model represented by
equation (1). In mental test theory, the problem is to estimate the true-
score distribution in a population of exeminees from the observed-score
distribution of a random sample of examinees, The estimated true-score
distribution, of interest for its own sake, can be used to draw important

practical conclusions sbout various oberved-score results.

We have assumed (subject to empirical verification) that the con-
ditional distribution of the observed scores for given true score is a
certain (approximation to a) compound binomial distribution. If this

assumption is correct, then equation (1) can be solved to express the

ey _;;M%mxt W



-31-

true-score distribution as a function of the observed-score distribution
in the population of examinees. The solution is not unique, but any
true-score distribution thus obtained will have the same moments through
order n . If we assume that the true-score distribution is "smooth"
and without peculiar bulges, then any acceptable solution to (1) cannot

differ much from any other.

Formulas for "smooth" solutions to (1) are given for an (infinite)
population of examinees. These formulas usually yleld ebsurd results
when applied to any sample observed-score distribution. The reason is
that the sampling fluctuations in the observed-score distributions re-
appear in the estimated true-score distribution in greatly magnified form.
The problem in dealing with samples is to use some smoothing process while
making & minimum of assumptions about the nature of the unknown true-score
distribution.

The procedure suggested here sterts with the formula (equation 14)
for estimating the population true-score distribution under the assumption
that it is smooth in a certain specified sense. Smoothing is achieved by
replacing the ungrouped observed-score frequencies by grouped observed-

score frequencies in this formula. The parameters of the formula are

then estimated from the ungrouped data by maximum likelihood, subject to
certain inequalities on the estimates that prevent the occurrence of

"negative frequencies" in the estimated true-score distribution.

. I T —————
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Certain characteristics of the estimation method may be listed:
1. It mekes a minimum of assumptions sbout the nature

. of g(l) . (Although one might expect that almost

any reasonsble four-parameter frequency distribution
would represent g(t) adequately for present purposes,
several years of experience with various assumed forms
_ for- g(t) has shown that this is definitely not the
case.)
2. The choice among the many different mathematical

forms available in this method is made on the basis

| of the data. Thus fhe method capitalizes on chance
to a significant extent.

3, This can be dealt with by splitting the data into
two random samples, using one sample to choose the
mathematical form of g({) , and then checking the
adequacy of the procedure on the other sample. For
the data reported here, the increase in chi square
in the cross-validation sample has been rather small

1 for most (but not all) sets of date.

1 4. In samples of N = 1000 , the method may lead to &

bumpy &({) » Although such bumps can often be

¢ avoided by repeated trial-and-error procedures, it

is more satisfactory to start with a larger sized

e
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sample (N > 10,000 , say).

5. Although relatively convenient procedures have been

worked out for selecting a mathematical form for
2(t) on the basis of the observed data, the procedures
’ are inefficient, leading to use of a g&({) having more

free parameters to be determined rrom the data than are

really neededs This represents a loss in degrees of |

freedom that is more easily tolerated in work with

longer tests (n > 40) than in work with shorter tests.
€. The procedure seems to be capsble of fitting satis-

factorily most univariate observed-score distributions.

It would be desirable to check out the effectiveness of this model
for estimating the bivariate distribution of observed scores for two
tests measuring the same psychological trait. This has not yet been
done because of the difficulty of obtaining suitable scatterplots with
a sufficiently large N . It has been fourd in the past (Lord, 196%;
Lord & Lees, 1967a, 1967b), however, that such bivariate distrilLutions
are usually fitted more readily than esre their univariate marginal dis-
tributions.
In the writer's opinion, the method appears to be ready for practical
‘ use in norming and other problems, at least where N > 10,000 « The

ability of the method to predict bivariate observed-score distributions

for two tests measuring the same trait should be checked in the course

of any such application.
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APPENDIX

Equation (21) gives the g({) that fits the grouped observed-score
distribution and is smoothest in the (very limited) sense of (11) and
(12). As pointed out in section k4, the "smoothing function" y({) can
usually be chosen to be y({) ® 1 without drastic effect on the g(t)
obtained.

If the U - 1 mathematically independent parameters )‘u were
determined from the U - 1 mathematically independent grouped frequencies
£, % f(x) , the fitted frequencies #(u) obtained from (24) would

x:u
fit the grouped frequencies exactly. We modify this procedure in two

respects:
1. We estimate the )‘u using the full information provided by

the ungrouped frequencies (see Kendall and Stuart, 1958,

sect. 30.15, 30.19).
2, We require that each }\u be nonnegative.

We start with a random sample of observations X, , X5 yeee, Xy

drawn from the frequency distribution

b
(25) = [ O @ =01
)

U

= 28. )\u )
uleu




where

(26) s I [ (0 neel) nlt) at
X
E (1 = o,l,'.‘,n; us= 1,2,..0,U) .

&
1

Equations (25) and (26) are obtained by substituting (22) into (1).

Suppose y(t) 1is chosen to have the form of a two-paramete¢~ beta

distribution:
(27) ()« da-0f ;

where d and A are chosen for convenience to be integers. The usual
case where 7({) ® constant is the special case of (27) where d =A =0 .
If h(x|{) 1is binomial, then the integral in (26) is proportional to Ii

b ~.

(28) f §d+x'+x Q- g)A+2n--x' X 4t .

"‘ |

Since the exponents are integers, this integral can be evaluated precisely

for successive values of x' and X by & convenient recursive procedure
(Jordan, 1947, sect. 25, eq. 5).

1£ h(x|f) is the series approximation to & compound binomial a

distribution used by Lord and Lees (1967a), then each integral in (26)

{8 itself a simple weighted sum of terms like (28). The weights used
) for the two-term series approximation are given in Lord (1965, ey « 56,57); I

DN
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for the four-term approximation, in Lord and Lees (19678, eq. 56).

When the (n+l) -by- U matrix of numerical values &, has been

computed, the only remaining problem is to estimate the parameters

)\1 , 7\2 yeee) 7\, of the distribution ¢(x) from the sample of ob-
servations X, , X yeees Xy ° The estimated va.,.lues of N can then be
inserted into (22) to obtain ;(;) , the estimated true-score distribu-
tion. When 7(t) is chosen to bc & beta distribution, then g&(%) 1is

seen to be & polynomial of degree n +d+4 .

Al. Maximm Likelihood Estimation

The sample frequencies fo : fl greey fn , where zxfx = N , have

e multinomial distribution proportional to

n f
(29) L= 1 [o(x)1* .
x=0

Thus the logarithm of the 1ikelihood function is

#

| (30) ugL-fOMg«w+flmgMn+

4 ces + £ log ¢(n) + constant .
£ It is effective to use Fisher's scoring method (see Rao, 1965, Chap. 5g,
i example 3) to find the values A , Ny ,eee) Ry that maximize (30).

Before proceeding, note that vhen we sum (25) on x , we find that

T AL ORI = A A AP £ BB A A v e e st SN G A Y



U n
(31) z Auxu = 2 ¢x)=1
u=l x=0
where
n
(32) Au = xzw Gxu (u = 1,2,...,U)‘.

Thus there is a restriction on the A a only U -1 of the )‘u are
mathematically independent. The remaining parsmeter is determined from
the others by use of (31).

We will need the efficient scores

g oologl
u N,

for eny U -1 of the A o From (30) and (25),

n U
(33) logL= Z £ log I a_A + constant .
xndy x u=l s

Let us treat the first U - 1 of the )‘u as the independent parameters
to be determined.
From (25) and (31))

o
NERTCS B S P

b : Il = -
! ) N Y N, Ny b A,

u
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The value of 8 1is then (see Rao) conveniently obtained from

n 0;(::)
(35) 8, xfo & 29

The maximum likelihood estimates 7\u , L= 1,2,000,U-1, are the
solutions to the equations Su =0, u=1l,2.ee,U-1 . The iterative

procedure for solving these equations requires the information matrix

vhose elements are

n OL(x) 0;(x)
=2 fuy = ::O *(x) .

The scoring procedure proceeds by solving for A](_r) ’ Aér),--u AE,I:{

the linear equations

(317) U;:J; I\(’:;)A“rr) - s&r) (w=1,2,000,U-1),
Ve

where Sﬁr) denotes the r -th trial value. New trial values are ob-

tained from
(38) AL A alr)

In the present case, initial trial values 7\‘(11) were obtained by

solving the U linear equations




(39) £ = L £(x) 2 A1) g (w=1,2,000,U)
9 - X) = v am u yCyvee, .
X:u v=l x:u

With this starting point, the iterations were found in practice to converge

in practically every case tried. é
The estimated true-score distribution is now obtained by substituting

A for N in (22). Thus values of g&({) are computed from

U .
(40) )= £ Roa@) .

U=l

A2, Restricted Maximum Likelihood Estimation

The following procedure was used to keep i&r) 20 . First of all,
any negative initial trial values iﬁl) obtained from (39) were replaced
by & small positive constant, after which all values of it(xl) were
decreased proportionately to satisfy equation (31).

The scoring procedure was then applied to these nonnegative ’)‘\‘(11)

If at any stage the scoring procedure produced negative trial values
?\‘(lrﬂ) , whese were discarded and instead all values of Agﬂl) were
decreased proportionately in absolute value, just enough so that one

')\\1(1”1) computed from (38) was exactly zero while all others were

nonnegative.

Suppose that '7\\‘(1”1) becomes exactly zero in this way. It is then

) .
temporarily assumed that 7\u° is known to be zero. Thus (25) is replaced

by




40~
(k1) o(x) = u;‘iu LI 7\u
! o
Y and the number of unknown parameters to be estimated is reduced by one.

The obvious modifications of the likelihood function a.d of the scoring
¢ procedure corresponding to (41) are made and the iterative process is
continued ﬂth one less unknown parsmeter.
In the course of repetition of the foregoing, several A are likely
to be fixed at zero. The iterative process finally converges; assigning

positive values to the remaining M .

At this point, one A , previously fixed at zero, is reintroduced
as a parameter to be estimated along with the currently nonzero pa-
rameters. The whole process already described is repeated. This rein-
troduction of parameters is systematically continued until a point
(7\1, Agyoes ,7\1) is reached such that the 1ikelihood function (29)
cannot be increased by any small change in any A , within the restriction
that )‘u >0 .+ Such a point gives a restricted maximum of the likelihood
function.

It has not been shown that such a maximum is a global rather than
merely a local maximum. In practice, it has been found that when the
iterative process is repeated starting with different initial trial

values, the same maximum is found again.
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A3. Estimating the Parameters a and b

The range of the true score is 0<a<{ <1 . Ideally it should
be possible to set a=0 and b =1 . Any true score with an effec-
tive range shorter than [0,1] would simply have g({) = O outside its
effective range. In practice, it is usually preferable when possible
to set a = .02 and f) = .98 since the four-term approximation to the
compound binomial may produce a slightly negative h(x|{) for certain
values of x when { 1s too extreme.

If no restrictions are placed on the A, it is sometimes found
that use of a =0 or a=.02 and b=1 or b=.98 leads to
negative va 2s in the tails of g(f{) . This difficulty can frequently
be avoided by choosing less extreme values for a end b . A trial
and error process usually seems quite adequate for this purpose. The
values of & and b could be estimated by maximum likelihood, if
desired.

When the A are required to be nonnegative, the values a =0,

b-1 of &= .02,b=.9 usually seem to be satisfactory.

A, The Sampling Variance of the Estimated

True-Score Distribution

When the M are unrestricted, the variance-covariance matrix of

any set of U - 1 estimators Xu is the inverse of the corresponding

|
|
%
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Taeble 1

Sampling Error of Estimated True-Score Distribution

at Various lLevels of True Score

¢ g(t) v varlg(t)lt)
o9 6 035
85 1.5 0Ll
o5 1.7 032
| .65 1.6 029
.55 1.3 033
A5 1.2 028
35 1.1 032
25 0.7 018
15 0.2 .022
05 0.1 01k
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matrix || Iuv" . This last is automatically computed by (36) as part

of the scoring procedure.

By (31)
) A l U'l ;\
(ha = l - o 8 A .
)\J AU u=l uu
Thus
~ 1 U-.1l U-1 PN
(43) R AASoVA )
A A 1 U-1 A A
(k) COV()\],)‘u) =-= I AVCOVO\u, }\V) (u= 1,2,404,U-1)

AU v=1

From this, the variance-covariance matrix of all U estimators can be

written down.

The sampling variance of @(;) for any fixed value of ¢ cen now

be written down from (40), at least for the case where it is permitted

that ?\u <0

R u u
(45) ver(g(t)lt) = = I H(C)H(L) Cov(A,A)

u=1l v=l

The sampling variance of 'é(;) has been computed for various values
of § for many of the distributions studied. The results for one
distribution are listed in Table 1. The standard errors found are too
small to justify a graphical presentation. Such sempling variances snould
not be confused with discrepancies arising from different choices of
funcfional form for &(;) -- that is, from differently chosen groupings

of the obseived-score variasble.
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