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ESTIMATING TRUE-SCQRE DISTRIBUTIONS IN PSYCHOLOGICAL 

TESTING (AN IMPIRICAL BAYES ESTIMATION FROBIEM) 

Abstract 

The following problem is considered: Given that the frequency 

distribution of the errors of measurement is known, determine or estimate 

the distribution of true scores from the distribution of observed scores 

for a group of examinees* Typically this problem does not have a unique 

solution. However, if the true-score distribution is "smooth", then 

any two smooth solutions to the problem will differ little from each 

other. Methods for finding smooth solutions are developed a) for a 

population and b) for a sample of examinees. The results of a number of 

tryouts on actual test data are summarized. 

« 



ESTIMATING TRUE-SCORE DISTRIBUTIONS IN PSYCHOLOGICAL 

TESTING (AN EMPIRICAL BAYES ESTIMATION PROBLEM)* 

When a large group of individuals has been tested, the examiner 

usually finds the frequency distribution of observed test scores to Be 

of sane interest, however, he would usually prefer to look at the 

frequency distribution of true scores, if this were possible. Is the 

true-score distribution bimodal? For a multiple-choice test, do some 

individuals have true scores below the "chance" level (the score that 

would be expected if they responded entirely at random)? 

Although an estimated true-score distribution is of interest for 

itself, it is more often of practical value as an intermediate step in 

the prediction of more tangible results. As pointed out by Lord (1965)* 

the estimated true-score distribution "can be used 

1. To estimate the frequency distribution of observed 

scores that will result when a given test is lengthened. 

2. To equate true scores on two tests by the equipercentile 

method. 

5. To estimate the frequencies in the scatterplot between 

two parallel (nonparallel) tests of the same psychological trait, 

using only the information in a (the) marginal distribution(s). 

4. To estimate the frequency distribution of a test for a 

group that has taken only a short form of the test (this is 

useful for obtaining norms). 

»The writer wishes to thank Diana Lees and Virginia lennon, who wrote 
the computer programs, carried out some of the mathematical derivations, and 
helped with other important aspects of the work. This work was supported 
in part by contract Nonr-2752(00) between the Office of Naval Research and 
Educational Testing Service. Reproduction, translation, use and disposal in 
whole or in part by or for the United States Government is permitted. 
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5. To estimate the effects of selecting individuals on a 

fallible measure. 

6. To effect matching of groups with respect to true score 

when only a fallible measure is available. 

7. To investigate whether two tests really measure the same 

psychological function when they have a nonlinear relationship. 

8. To describe and evaluate the properties of a specific 

test considered as a measuring instrument." 

An additional use, of some interest, is 

9. To estimate the item-true score regression for particular 

items, without strong prior assumption as to its mathematical form. 

Practical applications of true-score theory will not be discussed 

further here. The present article defines the problem (section l), 

outlines some of the obstacles to a satisfactory solution (sections 2, 

5), suggests some solutions to the mathematical problem (sections 3, M 

und to the related statistical problem (section 6). Some empirical 

checks of actual results are described and discussed (sections 8-13). 

Certain of the mathematical details are spelled out in the appendix. 

1. The Basic Mathematical Model 

Let X = 0,1,...,n be the number of right answers given by an examinee 

on an n -item test; let Ç , 0 < | < n , be the true score of the 

examinee. The mathematical formulation will be in terms of Ç « l/n , 

which also will be called the true score. [The identity sign will be 

used to denote a definition, as well as with its usual meanings. ] 
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Let ♦(x) denote the proportion of the population of examinees with 

observed score x , let h(x|Ç) denote the corresponding conditional pro¬ 

portions for fixed true score, and let g(Ç ) be the noncumulative frequency 

distribution of true scores« Ordinarily Ç is a continuous variable, cov¬ 

ering the range 0<a<Ç<b<l (an a>0 and a b<l, while net 

mathematically essential, are sometimes helpful in practical applications). 

It follows that 

b 

(1) *(x) » TgU) h(xU) dÇ y 
a 

for x ■ 0,1,..., n . The basic problem is: Given some h(x|Ç) andan 

observed-score distribution *(x) , infer from (l) the true-score distri- 
j 

bution g(0 • 

Most of the theoretical results to be obtained will be written down 

without specifying the form of h(x| Ç) . To obtain practical results, 

however, it is necessary that the form of h(x| 0 be known. As in 

Lord (1965), it is assumed that h(x| Ç) is a compound binomial distri¬ 

bution. In actuality, applied results are obtained by using a four-term 

Taylor series approximation to the compound binomial (Lord, I965, eq. l6). 

The details necessary for computing this approximation, ¿iven by Lord and 

Lees (1967a), will not be considered further here. 

Lord (1965) assumed that g(Ç) was a four-parameter beta distribution. 
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The range of this distribution is given by two parameters, a and b, having 

♦he same meaning as in (l). It now appears from studies of widely varied 

test administrations (Lord 4 Lees, 1967a) that this assunçtion works well 

when the estimates a and b obtained from the ob served-score distribution 

fall in the permissible range 0 < a < b < 1 • When a<0 or b>l, 

however, the obvious reestimation procedure under the requirement that 

a « 0 or b ■ 1 frequently does not yield good results. This is hardly 

surprising since in such cases one is in effect fitting only a three- 

rather than a four-parameter distribution. 

It seems preferable to start without assuming a specified mathe¬ 

matical form for g(£) • Let us see what can be done without any such 

assumption. 

2. Multiplicity of Solutions* 

If X were a continuous variable and if equation (l) held for all 

values of x in some interval, then (l) would be a Fredholm integral 

equation of the first kind (e.g., see Tricomi, 1957). Any function g(0 

satisfying (l) is called a solution to the integral equation. In the 

actual case, x is limited to the integers 0,1,...,n . Let x be a 

continuous variable and let t(x) be any continuous function of x in 

the interval 0 < x < n such that tf(x) ■ ♦(x) when x ■ x ■ 0,1,...,n • 

♦Section 2 and major portions of sections 5 and 5 are abstracted, with 
minor revisions, from Lord and Lees (1967b). 
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Then any solution to 

b 

Hi) ‘ Je(î) h(ï| U dÇ 

a 

is automatically a solution to (l). If there is any solution to (l), there 

will in general be an infinite number of solutions when x is integer-valued. 

If h(x|0 is binomial, the first n moments of g(Ç) are given 

(Skellam, 19^8) by 

(2) ^r “ "ff} (r - 1,2,...,n) , 
n 

where M^rj is the r -th factorial roomer.* of »(x) and 

(3) a n(n - l)...(n - r + l) • 

A similar but more complicated result holds for che four-term series ap¬ 

proximation to the compound binomial used here (see Lord & Lees, 1967a, 

eq. 4l). Thus the first n moments of the observed-score distribution 

are determined by the first n moments of the true-score distribution. 

Since the frequency distribution of a bounded integer-valued variable is 

determined by its moments (see Riordan, 195Ô, ch. 2, eq. 32), it follows 

that any true-score distribution with the proper moments up through order 

n will be a solution to the integral equation (l). The same statement holds 

if h(xU) is compound binomial. Thus (again), even given an infinite 

number of observations, it is impossible by means of (l) to determine the 

true-score distribution from the observed distribution of number-right scores. 
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Ib there sane further criterion that can be used to determine the 

true-score distribution? In almost any practical situation we would 

expect the true-score distribution to be "smooth” in some vaguely defined 

sense, best evaluated by visual inspectiont Thus we may require that the 

solution to (l) shall not be obviously irregular. Among other things, we 

may require that it be unimodal. These restrictions still will not provide 

a unique method of determining the true-score distribution. 

However, consider any two "smooth" solutions, g1(Ü) and gg(0 > 

to equation (l). Since these two distributions have the same moments up 

through order n , they also have the same best-fitting polynomial of 

degree n in the least-squares sense (Kendall & Stuart, 1958, sect. 

Denote this polynomial by P(£ )• Typically, n > 15 • Now if a distri¬ 

bution is "smooth" in the ways ordinarily expected, without peculiar 

irregularities, it should be possible to fit it very closely by a poly¬ 

nomial of degree n > 15 . We would expect to find that e1 = Max g^Ç) - 

P(Ç) and eg « Max g2(5) - P(5) ar® b0**1 very small quantities. This seems 

a natural part of what is meant by "smoothness". Consequently, g^(0 

and gg(0 can differ at most by UJ + |e2| , a small quantity. 

In summary, we can not hope to determine the true-score distribution 

uniquely. Given enough observations, however, we can reasonably hope 

that for the values of n encountered in practice, any acceptable 

solution will differ from any other acceptable solution by an amount 

negligible for most practical purposes. 

j., |j|||lUbü»l; 
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3« Solving the Integral Equation 

Equation (l) is really n + 1 equations—one for each integer 

0,1,...,n . Choose any function t(u,Ç) such that i) the integrals 

b 

(4) 

a 

exist; ii) the inverse of the matrix Ik^ll exists. It will be seen 

in later sections that functions t(u, Ç) satisfying these two conditions 

can be found, at least for the case where h(x| £) is binomial or com¬ 

pound binomial* 

let m301 denote a typical element of the inverse of II • The 

function 

n 
(5) 6(0« Z wt(u,£) 

U 

will satisfy equation (l) provided the weights vu are obtained from 

n 
(6) wu * E m 4>(v) (u ■ 0,1,...,n) . 

v-0 

To prove this, substitute (5) and (6) into (l), obtaining after some 

rearrangement 

a 

Use (4) and let 
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(7) 
il if V = X 

) = I } 
^ (O if V jí X 

finding that 

v»0 ufO 

n 

= «(x) (x * 0,1,...,n) , 

which completes the proof. 

Thus for any given observed-score distribution ♦(x) (x = 0,1,...,n) , 

for any conditional distribution h(xU) , and for any chosen function t(u,£) 

satisfying the stated conditions, one can determine from (4), 

invert this matrix, determine the weights wu from (6), and use (5) to 

write down a g(£) satisfying equation (l). In the special applications 

to be treated here, it will be seen that t(u,0 and the solution 

g(Ç) are polynomials in Ç • 

If the g(0 so determined is nonnegative in the range a < Ç < b , 

then it is automatically a frequency distribution satisfying the condition 

b 

(8) 
a 

We can prove this by summing (l) on x , obtaining 
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4. The Smoothest Solution 

If one believes that the true-score distribution is smooth, a good 

approximation to it might be found by choosing, from among the infinite 

number of solutions to (l), the solution that is smoothest in some sense. 

First some measure of "smoothness" is necessary. There does not seem to 

be any uniquely good way to define smoothness. A cover-all measure of 

the unsmoothness of a function g(£) is 

where g^(0 is the r -th derivative of g(0 and where the wr(Ç) > 0 

are weighting functions at the disposal of the statistician. 

After choosing some wr(Ç) , r * 0,1,...,R , we then try to find 

the g(0 that will minimize S subject to the restriction that g(Ç) 

satisfies (l) for x «= 0,1,...,n . This is a problem in the calculus of 

variations (e.g., see Pars, I962), which, by Euler's rule, is equivalent 

to the problem of choosing g(0 so as to minimize 

(10) 

where the ^ (like Lagrange multipliers) are constants to be determined. 

Consider the simplest case where R » 0 , in which case 
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to 

(H) s - f v(o tg(î)]2 a . 
a 

Define 7(0 s l/w(0 • Since 7(0 is at our disposal, we may without 

loss of generality require that in which case 7(0 is 

automatically a frequency distribution on the interval (a,to) . Since 
to 
g(0 d£ « 1 also, it is easily found (after expansion) that 

(12) 
a 

differs from S by a constant. This last expression is a familiar 

distance measure, being the analog for continuous frequency distributions 

of a chi square between g(0 and 7(0 • 

The foregoing result suggests that we should choose 7(0 to be some 

smooth first approximation to the true g(0 • The procedure of minimizing 

S will then make the estimated g(0 as much like 7(0 as possible, in 

the metric defined by (12), while still satisfying (l) for all x . In 

particular, when y(0 is near zero, the presence of 7(0 in the de¬ 

nominator of (12) will force the difference g(0 - 7(0 to be very small. 

In practical work, we shall frequently take 7(0 to be a rectan¬ 

gular distribution, that is, 7(0 = constant. If the resulting estimated 

g(0 vanishes at Ç = 0 and at Ç ■ 1 , then the estimate obtained is not 

changed drastically by using the triangular distribution r(0 * Ç or 
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7(C) « 1 - C instead of 7(C) * 1 . The same is true of the parabola 

7(C) « C(1 " 0 • Bell-shaped distributions such as 7(C) « C (l “ C) 

will sometimes be used in work with fallible data to prevent the appearance 

of implausible bumps in the tails of estimated true-score distributions. 

When R = 0 , (lO) becomes 

b n 

(15) Jjv(Ç) U«)!2 - 2 ^ \ g(U h(xU)| íí 

a 

A necessary condition for finding g(C) to minimize (13), thus minimizing 

(9) subject to (1), is that g(C) satisfy the Euler equation 

(14) g(C) « 7(0 2 \h(x|C) 
x=0 

(obtained in this simple case by treating g in (13) as an independent 

variable, differentiating the integrand with respect to g , and setting 

this derivative equal to zero). The n + 1 values of ^ are to be 

determined so that (l) is satisfied for x * 0,1,...,n • Under general 

regularity conditions it can be shown further (Pars, 1962, pp. 103-104) 

that (14) is sufficient for a minimum. 

Given 7(C) and h(x|C) , the n+1 values of ^ needed for 

(14) can be determined from the n + 1 values of 4>(x) , as follows. 

Replace x in (l4) by X and substitute (l4) into (l) to obtain 

n 
(15) ♦(x) = E ^xX (x * 0,1,...,n) 

iaU iii|Iiiiiiii|iiii| llilnlüiiUiJWHUtilMOMlW«"““ 'm“‘ 
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where 

b 

(16) =^7(0 h(xU) h(xU) dÇ (x,X = 0,1,...,n) . 

a 

If the inverse of the matrix ||mexists, then the simultaneous linear 

equations of (15) can be solved uniquely for the : 

(17) ^ m^^x) (X = 0,1,...,n) , 
A x=0 

where m^ is the general element of the inverse of ilm^l . 

In order for the g(£) given by (l4) and (l?) to be useful here, it 

is of course necessary that it be nonnegative in the range a < Ç < b . 

This requirement could be imposed as part of the calculus of variations 

problem (see Kenneth & Taylor, I966, and Leitmann, I962). Further dis¬ 

cussion of this requirement will be deferred to later sections. 

The restriction that R = 0 in (9) is clearly an oversimplification 

made to keep the analysis tractable. It is possible to proceed with 

R / 0 , but no empirical work has been done for this more complicated case. 

The reader should clearly understand that the problem equations (l4) 

and (17) purport to solve is not ordinarily encountered in practical work. 

In practice, we never know the values of o(x) required in (17); we only 

have sample frequencies that approximate «Kx) . The problem where the 

population frequencies 4>(x) are assumed known will be referred to as 
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the mathematical problem; the practiced, problem where only the sample 

frequencies, to be denoted by f(x) , are known will be referred to as 

the statistical problem. It will be seen that the obvious devices 

ordinarily used in statistical inference do not usually lead to an 

acceptable solution to the statistical problem. 

5, Statistical Estimation Problems 

In practical applications, the problem is to estimate g(£) in (l), 

given the sample frequency distribution f(x) . As before, the model 

assumes that h(x|£) is known--in the present application, that it is 

a certain kind of compound binomial distribution. 

This kind of estimation problem is known as an empirical Bayes 

problem. The true-score distribution g(Ç) is the prior distribution. 

The problem of estimating the prior distribution is treated mathematically 

by Robbins (1964). Maritz (1966) uses the device of assuming g(£) to be 

a discrete distribution with Ç taking only a limited number of values. 

Here we prefer to try to make g(Ç) as smooth as possible, consistent 

with the observed data. 

It is not uncommon to solve certain estimation problems first in 

terms of population parameters, after which substitution of sample 

statistics for parameters usually leads to a useful estimation procedure. 

The discussion up to the present point has been entirely in terms of 

population distributions. Can we substitute the sample frequencies f(x) 



for ^x) in (l) and (14) or (17), obtaining a useful approximation to g(Ç)? 

It is found that such a procedure usually produces wholly unusable 

results even for very large samples. The purpose of the present section 

is to indicate the nature of the difficulty. 

First let us ask, for any given observed-score distribution, 4>(x) , 

is there always a solution--a frequency distribution, g(Ç) >0 --for 

equation (l)? For simplicity, assume that g(Ç) is a discrete distri¬ 

bution (this assumption is avoided throughout except at this point) so 

that (l) can be written 

(l8) <Kx) = 2 g(Ç.) h(x| Ç ) (x = 0,1,...,n) . 

i 

2 
Let A(|)(x) denote the second difference 

A^(x) = ¢(¾) - 2it>(x - l) + ‘Kx - 2) 

and let 

A^(x) = h(x| Ç^) - 2h(x - 1 I + h(x " 2 I ^) • 

Then from (l8) 

A^(x) = 2 g(q) A^(x) . 

For a given value of x and a known set of functions h(x| £., ) , i = 1,2,... 

2 
what is the maximum possible value of A'(x) ? 

2 
Denote by l(x) a value of i for which A^x) takes on its largest 

value for the given x . Because g(£) is a frequency distribution, 

g(£J > 0 for all i and 2 g(£ ) = 1 . Consequently, the largest pos- 

i “ i 1 
sib le A^(x) for the given x occurs when g(£j(x)) = 1 and all other 
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8(^) = O . In this case, A^(x) = A^(x) where I * l(x) . Thus for 

given x , the second difference of «(x) can under no circumstances 

exceed the second difference of h(x| where I = l(x) . 

The argument can be extended to apply to continuous g(£) * Two con¬ 

clusions follow. The first is that the actual distribution of test scores 

is incapable of mirroring any sharp fluctuations that may be present in the 

distribution of true scores. As was noted in the last section, a very ir¬ 

regular g(£) and a smooth g(Ç) may give rise to exactly the same, 

smooth <'(x) . 

The second conclusion, for given bounded functions h(x|0 > is that 

if 4>(x) is sufficiently irregular, there can be no distribution g(Ç) > 0 

satisfying (l). 

In practice, it seems that most sample frequency distributions, 

f(x) , are incompatible with (l). When f(x) is substituted for «»(x) 

in (l), any "solution" found for the resulting integral equation usually 

is irregular and contains negative frequencies. 

The following example is not atypical. A 15-item test administered 

to N = 3,155 examinees gave the reasonably smooth observed-score distri¬ 

bution shown below. The g(0 (estimated g(0) obtained from 
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c 

Fie. 1- g(0 giving exact fit to an observed-score distribution 

in sample of 5» 135 examinees. 

; 
"i 
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(14) and (17), with h(x¡ U a ccmçound binomial 

and with 7(0 s 1 , is roughly indicated in 

Figure 1. Here 25 plotted points have been 

connected by straight lines in order to avoid 

the elaborate computations needed to plot the 

curve accurately. The fluctuations are large; 

plotted on the same scale, the frequency dis¬ 

tribution of observed scores would merge into 

the horizontal axis and be virtually invisible. 

X 

15 

Ik 

13 

12 

11 

10 

9 

8 

7 

6 

5 

k 

3 
2 

1 

0 

Nf(x) 

163 

324 

349 

363 

352 

299 

276 
236 

201 

I89 
126 
no 
88 
40 

16 

3 

If a usable estimate, g(Ç) , of the true-score distribution can not 

be found by solving the equation 

f(x) *= 9 

how then g(£) be approximated? This is a problem in statistical 

inference that has not yet found a widely accepted general solution. 

Most statistical estimation is carried out by finding parameters 

that provide as good a fit to the data as possible within the restrictions 

imposed by the assunçtions made (by the model used). A plausible suggestion 

is to try to find g(Ç) such that 
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b 

(19) î(x) h(x|0 dÇ 

a 

is as close to f(x) as possible in some sense, subject to the restriction 

that g(Ç) >0 for a < Ç < b . This procedure will get rid of the 

negative values of g(Ç) illustrated in Figure 1, but it will not get 

rid of the numerous peakc. A more complicated procedure involving 

restrictions on g(0 and also at least on its first two derivatives 

should be investigated. 

6. A Practical Estimation Procedure 

A familiar way of dealing with sampling fluctuations in f(x) is to 

group adjacent values of x and replace f(x) by the corresponding 

grouped frequency distribution 

(20) fu " Z f(x) (u = 1,2,...,U) , 
XÎU 

where 2 denotes summation over integers x in the u -th class interval. 
x:u 

If f(x) in (l) is replaced by a grouped frequency distribution, and then 

the method of section 4 with R = 0 applied to the grouped distribution, 

it is readily found that the "smoothest" g(0 is the same as (l4) with 

adjacent A equal for all x in the same group. This smoothest true- 

score distribution may be written 

g(C)-r(0 2 \ z i»(x| 5) . 
upI u x:u 

(21) 
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Here y(0 is a frequency distribution chosen by the statistician 

(frequently, y(0 s 1 —see section 4); the ^ are U unknown parameters; 

U is the number of class intervals (groups) in the grouped distribution 

of X ; and h(x|t) is a known function (in the present case, a compound 

binomial distribution). 

(22) g(0 «= 2 \\tt) 
u=l 

where 

H (0*7(0 2 h(x|0 . 
x:u 

The important function of the grouping is to reduce the number of 

independent parameters (A) to be fitted from the data, thus preventing 

g(0 from mirroring too closely irregularities in f(x) due to sampling 

fluctuations. This is ordinarily necessary in order to prevent g(0 

from being multimodal. 

If (l) is correct, if the number of examinees is large enough, if the 

grouping is coarse enough, one would expect to find no "negative frequen¬ 

cies" in g(Ç) • This may require excessively coarse grouping, however. 

Experience has shown that a good way to avoid negative g(£) is to 

impose the requirement that 

^2j) ^ ® (u ■ 1,2,...,11) • 

This requirement is much easier to impose than the requirement that 
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g(Ç) > 0 for a < Ç < b ; it is also more effective for reducing multi¬ 

modality. Although (23) is often more restrictive than necessary, this 

has not been found to be too serious a problem in actual applications. 

If the were estimated from the grouped distribution f^ 

using the grouped analogs of equations (15)-(17), then (assuming eq. 23 

to be satisfied, or ignored) the estimated grouped distribution defined 

by 

b 

(24) î S L = f g(0 HuU) àt (u = 1,2,...,11) 

“ a 

would fit the actusLl grouped distribution exactly; that is, would 

equal f for all u . The estimation procedure recommended here for 

the \ is an improvement on this: We shall estimate the \ by 
maximum likelihood from the ungrouped distribution f(x) (see Kendall 

and Stuart, 1958, sections 30.15, 50.19). The restriction (23) is 

inço sed by mathematical programming methods. 

The maximum likelihood equations are given in the appendix. The 

"scoring method" used in their solution is briefly discussed there. 

The procedures described in this section, with or without require¬ 

ment (23), will be referred to as Method 20. 

j. Rationales of Analysis 

A conventional analysis would estimate g(C) and then evaluate 

! 
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the adequacy of the model and of the estimation method by a chi square 

test of significance, comparing the fitted distribution î(x) of 

(19) with the actual distribution f(x) . It is sometimes objected 

that since no model is perfect, it is illogical to test statistically 

the null hypothesis that the model is true. It is urged that statistical 

significance tests should not be made, that the model should be evaluated 

according to its practical adequacy (usually as judged subjectively by 

the reader) rather than by a test of statistical significance. 

Here we will consider analyses designed to answer three distinct 

questions. 

1. Does there exist a ”smooth" g(!;) that under the model would 

have produced a «»(x) sufficiently close to the observed f(x) ? The 

criterion for "sufficiently close" is not defined, but is left to the 

reader's practical judgment. Superimposed graphs of o(x) and f(x) 

can be shown to aid in this judgment. If no g((;) can be found for 

A 

which 't’(x) is sufficiently close to f(x) , then one may have to discard 

the model altogether. 

2. Regardless of the answer to the first question, do the present 

data contain information helpful for modifying and improving the model? 

If the chi square between î(x) and f(x) for a particular set of data 

is near or below the 50-percent level, these data cannot be of much help 

in improving on the model. This can occur either because the sample is 

too small or because the model needs little improvement. In order to 
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g(Ç) > o for a < Ç < b ; it is also more effective for reducing multi- 

modality. Although (23) is often more restrictive than necessary, this 

has not been found to be too serious a problem in actual applications. 

If the were estimated from the grouped distribution f^ 

using the grouped analogs of equations (15)-(17), then (assuming eq. 23 

to be satisfied, or ignored) the estimated grouped distribution defined 

by 

(24) 
(u = 1,2,...,U) 

would fit the actual grouped distribution exactly; that is, (t,u would 

equal f for all u . The estimation procedure recommended here for 

the A is an improvement on this: We shall estimate the by 

maximum likelihood from the ungrouped distribution f(x) (see Kendall 

and Stuart, 1958, sections 30.15, 30.19). The restriction (23) is 

imposed by mathematical programming methods. 

The maximum likelihood equations are given in the appendix. The 

"scoring method" used in their solution is briefly discussed there. 

The procedures described in this section, with or without require¬ 

ment (23), will be referred to as Method 20. 

J. Rationales of Analysis 

A conventional analysis would estimate g(£) and then evaluate 



-20- 

the adequacy of the model and of the estimation method by a chi square 

test of significance, comparing the fitted distribution «(x) of 

(19) with the actual distribution f(x) . It is sometimes objected 

that since no model is perfect, it is illogical to test statistically 

the null hypothesis that the model is true« It is urged that statistical 

significance tests should not be made, that the model should be evaluated 

according to its practical adequacy (usually as judged subjectively by 

the reader) rather than by a test of statistical significance« 

Here we will consider analyses designed to answer three distinct 

questions. 

1. Poes there exist a "smooth" g(0 that under the model would 

have produced a ^(x) sufficiently close to the observed f(x) » The 

criterion for "sufficiently close" is not defined, but is left to the 

Ak 

reader's practical judgment. Superimposed graphs of «(x) and f(x) 

/\ 

can be shown to aid in this judgment. If no g(Ç) can be found for 

A. 

which i’(x) is sufficiently close to f(x) , then one may have to discard 

the model altogether. 

2. Regardless of the answer to the first question, do the present 

data contain information helpful for modifying and improving the model? 

If the chi square between î(x) and f(x) for a particular set of data 

is near or below the 50-percent level, these data cannot be of much help 

in improving on the model. This can occur either because the sample is 

too small or because the model needs little improvement. In order to 
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answer this question, one can compute a chi square and compare its value 

with its sampling distribution under the model. 

3. Are all smooth g(£) that are reasonably consistent with the 

data much alike? In the population, smooth g(0 consistent with the 

distribution of observed scores cannot be dissimilar (section 2). This 

will also be true in sufficiently large samples, but we do not know how 

large such samples must be. This is a key question, since the answer 

determines our willingness to accept a smooth g(0 consistent with the 

observed sample as a good approximation to the unknown (presumed smooth) 

g(0 in the population. All that is done in this direction here is to 

obtain a variety of g(0 from the same data and plot them for visual 

comparison. 

8. Tryout with Hypothetical Data, N = 1000 

An estimated true-score distribution g(Ç) may differ from the 

population value g(Ç) because of at least four distinct sources of 

inaccuracy: 

1. The mathematical model used here surely falls short of 

perfection. 

2. Since g(C) is not uniquely determined even in the 

population of examinees and since "smoothness cannot 

be uniquely defined, there will be many "smooth" g(0 

that satisfy the mathematical model in the population. 
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3. Sampling fluctuations in the data distort the estimates 

of g(Ç) • 

k. Estimation methods used may fall short of 100 percent 

efficiency. 

The seriousness of the last three sources of error was investigated 

by generating and analyzing samples of hypothetical data with N = 1000 . 

Monte Carlo procedures were used to draw a random sample of N = 1000 

from the beta distribution 

g(0 = 5o£2(i - Ç)2 , 0 < £ < 1 • 

For each of the 1000 resulting values of Ç , a "raw score" x was drawn 

independently and at random from the conditional distribution 

hUU) = ÕçxU - on-x 

with n = 24 . This process was repeated to produce eight independent 

samples, each representing the observed-score frequency distribution of 

1000 hypothetical examinees on a 24-item test. 

An estimate g(£) was obtained for each of the eight samples using 

the methods of Lord and Lees (1967b). In every case good agreement was 

A 

obtained between the fitted observed score distribution i(x) (equation 

19) and the actual f(x) . The conputed chi squares between *(x) and 

f(x) ranged from the 83rd percentile of the chi square sanpling distri¬ 

bution (the IT-percent "significance level") down to the 4th percentile. 
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The estimated true-score distributions obtained from the eight 

samples are shown in Figures 2 and 5, together with the distribution 

g(0 = 30Ç (1 - Ç) used to generate the data. Clearly, there exist 

substantially different smooth g(£) that are consistent with data 

samples of N a 1000 drawn from a single population. (This statement 

A 

holds true regardless of the fact that the g(£) in Figs. 2 and 3 

were not obtained by Method 20. ) The main conclusion drawn from these 

and other similar results is that it is desirable to have samples 

larger than N = 1000 if a close approximation to the population g(Ç) 

is desired. 

9. Description of Tryout Data, N « 20,000 

Early versions of Method 20 (described in section 6) were tried out 

preliminarily on data that had not been well fitted by previously used 

methods* Method 20 was at least as successful as the others in all cases, 

and much mire successful in some cases. 

In view of the results such as those discussed in the preceding 

section it was decided to use larger groups for the tryout of Method 20 

than had been used previously. Four different grade-level groups (grades 

4, 6, 8, 10) with about 40,000 pupils each were obtained for study. For 

each grade, an ob served-score distribution was available for each of the 
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following tests, composed of n four-choice items: 

n Test 

50 Mathematics Ability, 

50 Mathematics Achievement, 

50 Verbal Ability, 

JO Reading Achievement, 

20 English Achievement. 

Grade 10 data for the last two tests were excluded from further 

study because a much larger number of students scored x = 0 than 

X = 1 . If there were no guessing, this could occur under the model} 

but since the tests are composed of four-choice items, such a mode at 

zero hardly seems plausible. It seems likely that many of the grade 10 

examinees who scored 0 really did not attempt the test at all. 

Before starting the study, each total group of approximately 40,000 

students was split at random into two groups of approximately 20,000 each. 

This was done separately and independently for each test at each grade 

level. Triad and error procedures were used on the first-drawn samples 

of 20,000, designated as the A samples. The B samples were reserved for 

cross-validation purposes. 

10. Results for First-Drawn Samples of 20,000 

True-score distributions g(Ç) were estimated by Method 20 for each 

of the eighteen observed-score distributions studied. Results were eval- 
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uated initially by computing from g(Ç) the theoretic fitted distri- 
A 

bution 0(x) (equation I9) and comparing this with the actual observed- 

score distribution f(x) . If we do not wish to make a chi square test 

of significance, for reasons outlined in the preceding section, we can 

make the desired comparison graphically. Instead of presenting all 

eighteen graphs, Figure 4 presents just the graph for the set of data 

having the most improbable chi square. 

The estimated true-score distribution is shown in the figure for 

general interest. However, we are mainly concerned with the fit between 

♦ (x) and f (x) . Could the reader draw a plausible, smooth $(x) that 

would provide a much better fit than the one shown? The fit could be 

visibly improved near the mode, but this would reduce the chi square only 

about five percent. More than one-fourth of the total chi square comes 

from the discrepancy at x = I7 . It appears that there do exist g(Ç) 

that can (under the model) produce observed-score distributions much like 

those found in the 20,000-case sanples. 

The g(0 used are all represented by equation (22). The nunfcer of 

mathematically independent parameters is for some data as low as 5 

and for some data as high as 12. A more efficient procedure could surely 

reduce the number of parameters needed for most sets of data. An unnec¬ 

essarily large number of parameters can often be tolerated when n ■ 50, so 

that the number of degrees of freedom before fitting is large. It cannot 

be well tolerated when n = 20 and there are not so many degrees of 
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freedom to start out with. This fact presumably explains why most of the 

fitting difficulties occurred with the English (n = 20) and with the 

Reading (n = 50) tests, whereas very little difficulty was experienced 

with the Verbal and with the Math tests (n = 50) . 

The eighteen chi squares found for the eighteen observed-score distri¬ 

butions were (formally) all smaller than the 98th percentile of the 

sampling distribution of chi squares under the null hypothesis; that is, 

all were "statistically nonsignificant" at the two-percent level. How¬ 

ever, these g(0 were obtained by a trial and error procedure that 

facilitated some capitalization on chance. Thus the obtained chi squares 

cannot be completely evaluated just by using the theoretical chi square 

distribution. 

11. Results for Cross-Validation Samples of 20,000 

In cross-validation, the 7(0 and the grouping of the x variable 

chosen by trial and error in the A sample is used for the corresponding B 

sample. The values of ^ are now determined from the B sample. All 

trial and error takes place on the A sample, none on the B sample. 

When this was done, one bad result (g^ade 6, Reading) was obtained 

out of the eighteen attempts. Figure 5 shows the next-to-worst result 

(grade 4, Reading). The fit shown seems good except near the mode. Both 

grade 4 and grade 6 Reading test scores have rather highly peaked distri¬ 

butions; in both cases the mode of ♦(x) is somewhat misplaced for best 
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fit to the mode of f(x) in the B sample. This difficulty arises 

because the mode of f(x) in the B sample is not in the same place as in 

the A sample, and the grouping of the observed scores taken from sample A 

is incapable of producing a sharp peak where it is needed for sample B. 

Good results for both sets of data are obtained simply by using 

finer grouping of x near the mode. This brings the chi square in the B 

sample for the grade 6 Reading test down from the 99*9^ percentile (.001 

"significance level") to the 50th percentile, and the chi square for the 

grade 4 Reading test down from the 96th percentile to the 88th. Such a 

use of fine grouping is advantageous in most of the B samples, but it 

gives rise to a new difficulty; for some data, fine grouping tends to 

produce undesirably bimodal g(Ç) . For this reason, such fine grouping 

has not been used for the results reported here. 

The reader will have noticed that the g(0 shown in Figure 5 are 

bimodal. Since both samples A and B display similar features, both in 

g(£) and in f(x) , no attempt was made to prevent this bimodality. A 

similar situation exists for two other distributions. With these 

exceptions, no other bimodalities appear in the g(Ç) reported here. 

12. Uncertainty in the Estimated True-Score Distribution 

for Samples of 20,000 

When the grouping of the x variable is given, the true-score 

distribution has a known mathematical form with U unknown parameters 

I 
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Fig. 6. Estimated true-score distribution obtained 

for Samples A and B from two groupings of the same data. 
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(eq. 22), of which U - 1 are mathematically independent of each other 

(see eq. 5l)« The various estimated true-score distributions shown in Figures 

2 and 5 all have the same mathematical form—the same grouping was used 

for each distribution. They differ only because of the values assigned 

to the U - 1 = 4 independent parameters. Thus the differences shown 

there represent sampling fluctuations in the data. They do not indicate 

what differences might result from different choices of mathematical form 

for g(C) , that is, from different groupings of the x variable. 

Many different groupings were tried out on a single set of data in 

the process of trying to fit the sample-Adistributions. Commonly, the 

process was terminated as soon as a good fit was obtained. Occasionally, 

good fits were obtained for substantially different groupings. Comparisons 

of the g(0 obtained indicate the extent bo which substantially different 

g(t;) can fit the same set of data. 

Usually it was found that any unimodal g(0 giving a good chi 

square between *(x) and f(x) was much like any other. An exception 

is shown in Figure 6. Even with 20,000 cases, it is impossible in sample 

A to choose between the bell-shaped true-score distribution and the 

"bitangential" true-score distribution. The chi squares are at the l6th 

and the 65rd percentiles respectively. In sample B, the corresponding 

chi squares are at the 69th and 98th percentiles. 

In both samples, the observed-score distribution shows the same 

irregularity that tends to produce the bung? in the true-score distribution. 
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Fig. 7. Observed-score distribution in Sanple A and 

fitted observed-score distributions cooputed front the two 

timated true-score distributions shown in Figure 6. 
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The observed-score distribution for sample A appears in Figure 7; along 

with the two $(x) generated by the two g(Ç) of Figure 6. It is 

noteworthy that the î(x) do not differ as much as do the two g(Ç) . 

This is in line with the ideas developed in section 5* 

The conclusion seems to be that even with 20,000 cases we cannot 

draw firm conclusions about the detailed shape of the true-score distribution. 

However, in practical applications where the true-score distribution is 

used only as an intermediate step in computing some characteristic 

of an observed-score distribution, it may make little difference whether 

the bell-shaped or the bitangential distribution is used. Just as the 

bell-shaped and the bitangential distributions give rise to similar 

î(x) , so also will they give rise to similar estimated bivariate observed- 

score distributions. It is these last that provide the basis for most 

practical applications (Lord, 1965). 

13. Results for Samples of 200,000 

In most work with mathematical models, the larger the sample size, 

the more likely is the chi square to be significant. In the present 

problem, there is some indication that Method 20 does not work well if 

the sample is too small. In order to investigate the effect of sample 

size, the method was applied to five observed-score distributions with 

sample sizes ranging from 137*052 to 286,238. No cross-validation samples 

were used for these sets of data. 
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To the writer's surprise, a satisfactory g(£) was found for each 

distribution. The data with the worst chi square are shown in Figure 8. 

The observed-score distribution has an unusual, flat-topped appearance, 

which leads to a multimodal g(Ç) . The g(Ç) shown has 14 independent 

parameters. It is a safe assumption that a good fit could be obtained 

with fewer parameters, and that not all of the modes are needed. However, 

the necessary effort has not been made to determine how far the g(0 

can be smoothed without destroying the fit. 

It is planned eventually to use a method for finding out how many 

parameters can be determined without excessive sampling error from a 

given set of data. This has not yet been worked out in detail. 

14. Summary 

We have considered the empirical Bayesian model represented by 

equation (l). In mental test theory, the problem is to estimate the true- 

score distribution in a population of examinees from the observed-score 

distribution of a random sample of examinees. The estimated true-score 

distribution, of interest for its own sake, can be used to draw important 

practical conclusions about various oberved-score results. 

We have assumed (subject to empirical verification) that the con¬ 

ditional distribution of the observed scores for given true score is a 

certain (approximation to a) compound binomial distribution. If this 

assumption is correct, then equation (l) can be solved to express the 
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true-score distribution as a function of the observed-score distribution 

in the population of examinees* The solution is not unique, but any 

true-score distribution thus obtained will have the same moments through 

order n . If we assume that the true-score distribution is "smooth" 

and without peculiar bulges, then any acceptable solution to (l) cannot 

differ much from any other. 

Formulas for "smooth" solutions to (l) are given for an (infinite) 

population of examinees* These formulas usually yield absurd results 

when applied to any sample observed-score distribution* The reason is 

that the sampling fluctuations in the observed-score distributions re¬ 

appear in the estimated true-score distribution in greatly magnified form. 

The problem in dealing with samples is to use some smoothing process while 

main ng a minimum of assumptions about the nature of the unknown true-score 

distribution. 

The procedure suggested here starts with the formula (equation 14) 

for estimating the population true-score distribution under the assumption 

that it is smooth in a certain specified sense. Smoothing is achieved by 

replacing the ungrouped observed-score frequencies by grouped observed- 

score frequencies in this formula. The parameters of the formula are 

then estimated from the ungrouped data by maximum likelihood, subject to 

certain inequalities on the estimates that prevent the occurrence of 

"negative frequencies" in the estimated true-score distribution. 
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Certain characteristics of the estimation method may be listed: 

1. It makes a minimum of assumptions about the nature 

of g(Ç) . (Although one might expect that almost 

any reasonable four-parameter frequency distribution 

would represent g(0 adequately for present purposes, 

several years of experience with various assumed forms 

for g(t) has shown that this is definitely not the 

case*) 

2. The choice among the many different mathematical 

forms available in this method is made on the basis 

of the data. Thus the method capitalizes on chance 

to a significant extent. 

5. This can be dealt with by splitting the data into 

two random samples, using one sample to choose the 

mathematical form of g(Ç) , and then checking the 

adequacy of the procedure on the other sample. For 

the data reported here, the increase in chi square 

in the cross-validation sample has been rather small 

for most (but not all) sets of data. 

4. In sasples of N = 1000 , the method may lead to a 

bunpy g(0 • Although such bumps can often be 

avoided by repeated trial-and-error procedures, it 

is more satisfactory to start with a larger sized 

• »i nni—Miiiiiii imiwiiiiiwiiiiiiiiiiwnirim nitiiwriwiMiiffliiBWMOTFraHt* 
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sample (N > 10,000 , say). 

5. Although relatively convenient procedures have been 

worked out for selecting a mathematical forai for 

g(Ç) on the basis of the observed data, the procedures 

are inefficient, leading to use of a g(£) having more 

free parameters to be determined from the data than are 

really needed. This represents a loss in degrees of 

freedom that is more easily tolerated in work with 

longer tests (n > 40) than in work with shorter tests. 

6. The procedure seems to be capable of fitting satis- 

factorily most univariate observed-score distributions. 

It would be desirable to check out the effectiveness of this model 

for estimating the bivariate distribution of observed scores for two 

tests measuring the same psychological trait. This has not yet been 

done because of the difficulty of obtaining suitable scatterplots with 

a sufficiently large N . It has been fourd in the past (lord, 1^5» 

Lord & Lees, 1967a, 1967b), however, that such bivariate distributions 

are usually fitted more readily than are their univariate marginal dis¬ 

tributions. 

In the writer's opinion, the method appears to be ready for practical 

use in norming and other problems, at least where N > 10,000 . The 

ability of the method to predict bivariate observed-score distributions 

for two tests measuring the same trait should be checked in the course 

of any such application. 
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APPENDIX 

Equation (2l) gives the g(0 that fits the grouped ob served-score 

distribution and is smoothest in the (very limited) sense of (ll) and 

(12). As pointed out in section 4, the "smoothing function" y(0 can 

usually be chosen to be /(£) ® ^ without drastic effect on the g(!>) 

obtained. 

If the U - 1 mathematically independent parameters ^ were 

determined from the U - 1 mathematically independent grouped frequencies 

f s E f(x) , the fitted frequencies *(u) obtained from (24) would 
U \ ’ 

X«\l 
fit the grouped frequencies exactly. We modify this procedure in two 

respects: 

1. W. estimate the \ using the full information provided by 

the ungrouped frequencies (see Kendall end Stuart, 1958, 

sect. 30.15; 30.19)* 

2. We require that each ^ be nonnegative. 

We start with a random sample of observations x1 , Xg ,..., Xjj 

drawn from the frequency distribution 

♦ (x) - 

D J g({) h(jt|Ç) dt 

u 
E a A , 
, xu u 

u«l 

(25) 
(x * 0,1, •••yn) 
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where 

(26) 

b 

a - 2 T r(0 hU'U) h(*IS) 
xu x,.u J 

(x ■ 0,1,.••i0» u ^ * 

Equations (25) and (26) are obtained by substituting (22) into (l). 

Suppose r(0 is chosen to have the form of a two-paramrte- beta 

distribution: 

(27) r(0 « £d(i • 0A > 

where d and A are chosen for convenience to be integers. The usual 

case where r(0 ■ constant is the special case of (27) where d ■ A « 0 • 

If h(x|Ç) is binomial, then the integral in (26) is proportional to 

(28) /^U-OA^-*'-*« - 

a 

Since the exponents are integers, this integral can be evaluated precisely 

for successive values of x' and x by a convenient recursive procedure 

(Jordan, 19^7, sect. 25, eq. 5). 

If h(x| 0 is the series approximation to a conçound bincnial 

distribution used by Lord and Lees (1967a), then each integral in (26) 

is itself a simple weighted sum of terms like (28). The weights used 

for the two-term series approximation are given in Lord(1965, ec, . 56,57), 
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for the four-term approximation, in Lord and Lees (196?&> e1* 56). 

When the (n+l) -by- U matrix of numerical values a^ has been 

computed, the only remaining problem is to estimate the parameters 

^ \ >•••> \ of thè distribution ♦(x) from the sanple of ob¬ 

servations xx , x2 ,..., Xj, . The estimated values of * can then be 

inserted into (22) to obtain ¡(0 , the estimated true-score distribu¬ 

tion. When y(Ç) is chosen to bo a beta distribution, then g(0 is 

seen to be a polynomial of degree n + d + A . 

Al. Maadmm Likelihood Estimation 

The sanple frequencies Íq , f^ ,.. , fn , where ^xfx = ^ > have 

a multinomial distribution proportional to 

n fx 
(29) L « n [«(x)] 

x»0 

Thus the logarithm of the likelihood function is 

(30) log L » fQ log *(0) + tx log ♦(!) + 

.,, + f log *(n) + constant • 
n 

It is effective to use Fisher’s scoring method (see Rao, 1965, Chap. 5g, 

example 3) to find the values \ , \ \ that 

Before proceeding, note that when we sum (25) on x , we find that 
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(51) 

u 
E 
u=l 

A ^ 
u u 

Z ♦(*) = 1 
XpO 

irtiere 

(52) u 

n 
2 a. 
JK> 

xu 
(u * 1,2,...,0) • 

Thus there is a restriction on the >u : only U - 1 of the ^ are 

mathematically independent. The remaining parameter is determined from 

the others by use of (51 )• 

We will need the efficient scores 

U 

> 

for any U - 1 of the . From (50) and (25), 

n U 
(33) log L - 2 f log E a * + constant • 

x*0' u-1 

Let us treat the first U - 1 of the ^ as the independent parameters 

to be determined. 

From (25) and (31)» 

(54) •>> ■ rr • V 
äu 

, ò »(x) 
ò\ u 

t 
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The value of Su Is then (see Rao) conveniently obtained from 

(35) 
n ♦jx) 

S - Z f - 
u x-0 X^(x) 

The naxigua likelihood estimates , v. = 1,2, ...,11-1 , are the 

solutions to the equations ■ 0 , u ■ 1,2, ...,11-1 . The iterative 

procedure for solving these equations requires the information matrix 

whose elements are 

(36) 
n ^,00 ♦OO 

I - N Z —--- 
uv x^O ♦(x) 

The scoring procedure proceeds by solving for 

the linear equations 

U-l 

(37) L 
v=l 

UV V 
(u b 1,2,...,U-l), 

where denotes the r -th trial value. New trial values are ob¬ 

tained from 

(38) 
^(r+1) . + A(r) 
u u u 

;(i) In the present case, initial trial values V were obtained by 

solving the U linear equations 
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(39) f = Z fix)* Z Z a (u = 1,2,...,U) . 
u x:u v=l x:u 

With this starting point, the iterations were found in practice to converge 

in practically every case tried. 

The estimated true-score distribution is now obtained by substituting 

% for A in (22). Thus values of g(£) are confuted from 

U . 
(40) g(0 = 2 * H (Ç) 

Uol 

A2. Restricted Maximum Likelihood Estimation 

The following procedure was used to keep 7 > 0 . First of all, 
/s/l) 

any negative initial trial values V ' obtained from (39) were replaced 

by a small positive constant, after which all values of ^ were 

decreased proportionately to satisfy equation (31)* 

The scoring procedure was then applied to these nonnegative ^ 7 . 

If at any stage the scoring procedure produced negative trial values 

^(r+l) ;hese were discarded and instead all values of 4f.r+^ were 

decreased proportionately in absolute value, just enough so that one 

computed from (38) was exactly zero while all others were 

nonnegative. 

Suppose that ^r+1^ becomes exactly zero in this way. It is then 
o 

temporarily assumed that is known to be zero. Thus (25) is replaced 
0 

by 



and the number of unknown parameters to be estimated is reduced by one. 

The obvious modifications of the likelihood function a».d of the scoring 

procedure corresponding to (4-1 ) are made and the iterative process is 

continued with one less unknown parameter. 

In the course of repetition of the foregoing, several A are likely 

to be fixed at zero. The iterative process finally converges, assigning 

positive values to the remaining A , 

At this point, one A , previously fixed at zero, is reintroduced 

as a parameter to be estimated along with the currently nonzero pa¬ 

rameters. The whole process already described is repeated. This réin¬ 

troduction of parameters is systematically continued until a point 

(A^'Ag,...jAy) is reached such that the likelihood function (29) 

cannot be increased by any small change in any A , within the restriction 

that A^ > 0 . Such a point gives a restricted maximum of the likelihood 

function. 

It has not been shown that such a maximum is a global rather than 

merely a local maximum. In practice, it has been found that when the 

iterative process is repeated starting with different initial trial 

values, the same maximum is found again. 



-M.- 

A3« Estimating tr.e Parair.eters a and b 

The range of the true score is • Ideally it should 

be possible to set a = 0 and b = 1 . Any true score with an effec¬ 

tive range shorter than [0,l] would simply have g(Ç) = 0 outside its 

effective range. In practice, it is usually preferable when possible 

to set a = .02 and b = .98 since the four-term approximation to the 

compound binomial may produce a slightly negative h(x|^) for certain 

values of x when Ç is too extreme. 

If no restrictions are placed on the A , it is sometimes found 

that use of a = 0 or a = .02 and b = 1 or b = .98 leads to 

negative va. is in the tails of g(Ç) . This difficulty can frequently 

A A 

be avoided by choosing less extreme values for a and b . A trial 

and error process usually seems quite adequate for this purpose. The 

values of a and b could be estimated by maximum likelihood, if 

desired. 

When the A are required to be nonnegative, the values a * 0 , 

b - 1 or a = .02 , b = .98 usually seem to be satisfactory. 

A4. The Sampling Variance of the Estimated 

True-Score Distribution 

When the A are unrestricted, the variance-covariance matrix of 

any set of U - 1 estimators ^ is the inverse of the corresponding 
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Table 1 

Saapling Error of Estimated True-Score Distribution 

at Various Levels of True Score 

•95 

.85 

.75 

.65 

• 55 

.45 

.55 

.25 

• 15 

g(C) V Var[g(OUl 

.6 

1.5 

1.7 

1.6 

1.5 

1.2 

1.1 

0.7 

0.2 

.055 

.041 

.052 

.029 

.055 

.028 

.052 

.018 

.022 
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matrix Il IuvJ| . This last is automatically computed by (36 ) as part 

of the scoring procedure. 

By (51) 

A . U-l A 

(42) = 1 - ^ ¿ Au XU * 

Thus 

A U-l U-l A A 

(43) Var ^ = 2 2 A^Cov^, Ay) 
Ay upI v=l 

-- i a A 

(44) Cov(VV = ' ^ ^ AvCov(Au'V (u = 1,2,...,U-l) 

From this, the variance-covariance matrix of all U estimators can be 

written down. 

The sampling variance of g(Ç) for any fixed value of Ç can now 

be written down from (4o), at least for the case where it is permitted 

that Ä < 0 : u 

U U 
(45) Var[g(OU]= 2 2 HjÇ) Hy(U Cov(Au, Ay) 

u=l v=l 

The sampling variance of g(£) has been computed for various values 

of Ç for many of the distributions studied. The results for one 

distribution are listed in Table 1. The standard errors found are too 

small to justify a graphical presentation. Such sampling variances should 

not be confused with discrepancies arising from different choices of 

functional form for g(Ç) -- that is, from differently chosen groupings 

of the observed-score variable. 
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