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Estimating Value at Risk and Expected Shortfall Using Expectiles  

Abstract 

Expectile models are derived using asymmetric least squares. A simple formula relates the expectile to the 

expectation of exceedances beyond the expectile. We use this as the basis for estimating expected shortfall. It 

has been proposed that the θ quantile be estimated by the expectile for which the proportion of observations 

below the expectile is θ. In this way, an expectile can be used to estimate value at risk. Using expectiles has 

the appeal of avoiding distributional assumptions. For univariate modelling, we introduce conditional 

autoregressive expectiles (CARE). Empirical results for the new approach are competitive with established 

benchmarks methods. 
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Value at risk (VaR) measures the maximum potential loss of a given portfolio over a prescribed 

holding period at a given confidence level, which is typically chosen to be 1% or 5%. Therefore, assessing 

VaR amounts to estimating tail quantiles of the conditional distribution of a series of financial returns. 

Although VaR has become the standard measure of financial market risk, it has been criticised for reporting 

only a quantile, and thus disregarding outcomes beyond the quantile. In addition, VaR is not a subadditive 

risk measure. This property concerns the idea that the total risk on a portfolio should not be greater than the 

sum of the risks of the constituent parts of the portfolio (see Artzner, Delbain, Eber, and Heath, 1999; Acerbi 

and Tasche, 2002). Expected shortfall (ES) is a risk measure that overcomes these weaknesses, and that is 

becoming increasingly widely used. ES is defined as the conditional expectation of the return given that it 

exceeds the VaR (see Yamai and Yoshiba, 2002). 

A recent development in the VaR literature is the conditional autoregressive value at risk (CAViaR) 

class of models (see Engle and Manganelli, 2004). This approach to VaR estimation has strong appeal in that 

it provides a modelling framework and does not rely on distributional assumptions. However, the focus is 

solely on VaR estimation, and it is not clear how to estimate the corresponding ES.  

In this paper, we present a new modelling approach, which also avoids distributional assumptions, 

and which delivers estimates for both VaR and ES. The approach involves the use of asymmetric least 

squares (ALS) regression, which is the least squares analogue of quantile regression. The solution of an ALS 

regression is known as an expectile. This name was given by Newey and Powell (1987) who note that the 

ALS solution is determined by the properties of the expectation of exceedances beyond the solution. We use 

this as the basis for estimating ES. It has been shown that there exists a one-to-one mapping from expectiles 

to quantiles. In view of this, Efron (1991) proposes that the θ quantile be estimated by the expectile for 

which the proportion of in-sample observations lying below the expectile is θ. This idea can be used to 

enable VaR estimation from expectiles.  

As the basis for conditional VaR and ES modelling, we introduce a new class of univariate expectile 

models: conditional autoregressive expectiles (CARE). Therefore, this paper can be viewed as developing, 

for conditional ES modelling, the analogue of the conditional VaR models provided by CAViaR. 
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In Section 1, we briefly review the literature on VaR and ES estimation. Section 2 describes how 

expectiles can be used to estimate VaR and ES, and Section 3 introduces the new class of expectile models. 

Section 4 uses stock indices to illustrate implementation of the new approach, and to evaluate its accuracy. 

Section 5 provides a summary and concluding comments. 

 

1.  A Review of Methods for Estimating VaR and Expected Shortfall 

Manganelli and Engle (2004) divide VaR methods into three categories: parametric, semiparametric 

and nonparametric. Parametric approaches involve a parameterisation of the behaviour of prices. 

Conditional quantiles are estimated using a conditional volatility forecast with an assumption for the shape of 

the distribution. GARCH models are very often used to forecast the volatility (see Poon and Granger 2003). 

The distribution is typically chosen to be Gaussian or the Student-t distribution, and for these choices it is 

straightforward to calculate the ES.  

Included in the semiparametric VaR category are methods based on extreme value theory (EVT) or 

quantile regression. The straightforward application of EVT is hampered by the heteroskedasticity present in 

series of financial returns. To overcome this, Diebold, Schuermann, and Stroughair (2000) and McNeil and 

Frey (2000) propose that the peaks over threshold EVT method be applied to residuals standardised by 

GARCH conditional volatility estimates. Using the derived exceedance distribution, the approach delivers an 

analytical formula for the ES (see McNeil, Frey and Embrechts, 2005, p. 283).  

A recent proposal using quantile regression is the class of conditional autoregressive value at risk 

(CAViaR) models introduced by Engle and Manganelli (2004). Three of Engle and Manganelli’s CAViaR 

models are presented in expressions (1) to (3). CAViaR models have similar structures to GARCH models, 

with the Asymmetric Slope model designed specifically to model the asymmetric leverage effect, which is 

the tendency for volatility to be greater following a negative return than a positive return of equal size.   

Symmetric Absolute Value CAViaR:      12110 )()( −− ++= ttt yQQ βθββθ .     (1) 

Asymmetric Slope CAViaR:            .   (2) −
−

+
−− +++= )()()()( 1312110 tttt yyQQ ββθββθ

Indirect GARCH CAViaR:            ( )( )( )2
1

2
12

2
110 )(5.021)( −− ++<−= ttt yQIQ βθββθθ , βi>0. (3) 
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Qt(θ) is the θ quantile conditional upon Ψt-1, the information set up to time t-1; the βi are parameters; I(x) is the 

indicator function; and (x)+ = max(x,0) and (x)- = -min(x,0). Note that we are modelling here a residual term, yt, 

defined as yt=rt–E(rt|Ψt-1), where rt is the return and E(rt|Ψt-1) is the conditional expectation, which is often 

assumed to be zero or a constant. Expression (4) presents a CAViaR model proposed by Kuester, Mittnik and 

Paolella (2006), which aims to model autocorrelation in the conditional mean of the returns series. The 

autocorrelation is captured by the parameter α1. 

Indirect ARGARCH CAViaR: 

    ( )( ) ( ) ( )( )2
1

2
2112

2
2111011 )(5.021)( −−−−− −+−+<−+= tttttt rrrQIrQ αβαθββθαθ ,      βi>0. (4) 

CAViaR model parameters are estimated using the quantile regression minimisation in the following 

expression, which was introduced by Koenker and Bassett (1978):  

( )( )( ) ( )∑ −<−
t

tttt QyQyI )(min θθθ
β

,     (5) 

where yt is the target variable; β is a vector of parameters in the model for Qt(θ). Although CAViaR models 

provide an attractive means of estimating the conditional quantile, by their very nature they provide only a 

model for the quantile, and it is not clear how to calculate the corresponding ES.  

The most widely used nonparametric VaR method is historical simulation, which requires no 

distributional assumptions and estimates the VaR as the quantile of the empirical distribution of historical 

returns from a moving window of the most recent periods. For this approach, the ES can be estimated as the 

mean of the returns, in the moving window, that exceed the VaR estimate. A difficulty with the historical 

simulation method is the choice of how many past periods to include in the moving window. Including too few 

observations will lead to large sampling error, while using too many will result in estimates that are slow to 

react to changes in the true distribution. This issue and the strong appeal in giving more weight to more recent 

observations prompted Taylor (2006) to propose exponentially weighted quantile regression, which amounts 

to simple exponential smoothing of the cumulative distribution function (cdf). For this method, ES 

estimation can be performed using the cost function of the exponentially weighted quantile regression. 
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2.  Expectiles 

2.1.  Expectiles and ALS Regression 

Before introducing expectiles, it is useful first to appreciate that the population θ quantile of a 

random variable y is the parameter m that minimises the function ( )( )( )[ ]mymyIE −<−θ , where the 

expectation is taken with respect to the random variable y. In view of this, quantile regression is the natural 

means by which to estimate parameters in a conditional quantile model. Turning to expectiles, the population 

τ expectile of y is the parameter m that minimises the function E[ ( )( )2mymyI −<−τ ]. It seems natural to 

estimate the parameters of a conditional model for expectile μt(τ) using asymmetric least squares (ALS) 

regression, which is the least squares analogue of quantile regression. The ALS minimisation is presented in 

expression (6). It was originally proposed by Aigner, Amemiya and Poirier (1976), and is considered further 

by Newey and Powell (1987). Note that for τ=0.5 expression (6) becomes the widely used (symmetric) LS 

regression. Comparing quantiles and expectiles, Koenker (2005) observes that expectiles have a more 

“global dependence on the form of the distribution”. For example, altering the shape of the upper tail of a 

distribution does not change the quantiles of the lower tail, but it does impact all of the expectiles. 

( )( ) ( )∑ −<−
t

tttt yyI 2)(min τμτμτ
β

.    (6) 

 

2.2.  Using Expectiles to Estimate VaR 

 In this paper, we use expectiles as estimators of quantiles. This was first proposed by Efron (1991) 

who was attracted by the computational simplicity of ALS relative to quantile regression. The proposal 

involves using, as an estimator of the θ quantile, the expectile for which the proportion of in-sample 

observations lying below the expectile is θ. This is based on the fact that, for each τ expectile, there is a 

corresponding θ quantile, though τ is typically not equal to θ. The existence of a one-to-one mapping from 

expectiles to quantiles is supported by the theoretical work of Jones (1994), Abdous and Remillard (1995) 

and Yao and Tong (1996). Empirical support for Efron’s proposal is provided by Sin and Granger (1999) and 

Granger and Sin (2000), using macroeconomic data and absolute financial returns, respectively. 
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2.3.  Using Expectiles to Estimate ES 

Newey and Powell (1987) provide insight into the result of the ALS minimisation in expression (6) 

by considering the case where the expectile is a scalar parameter. They consider the minimisation of the 

function E[ ( )( )2mymyI −<−τ ] over m. It is straightforward to show that the solution μ(τ) of this 

minimisation satisfies expression (7):  

( )( ) ( )( )[ ] ( ) ( )yEyIyE −=<−⎟
⎠
⎞

⎜
⎝
⎛ − τμτμτμ

τ
τ21 .    (7) 

This is a rearrangement of Newey and Powell’s expression (2.7). They explain that the expression indicates 

that the solution μ(τ) is determined by the properties of the expectation of the random variable y conditional 

on y exceeding μ(τ). This suggests a link between expectiles and ES. Expression (7) can be rewritten as 

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )yE
FF

yyE
τμτ

ττμ
τμτ

ττμ
2121

1|
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+=< , 

where F is the cdf of y. This expression provides a formula for the ES of the quantile that coincides with the 

τ expectile. Referring to this as the θ quantile, we can write F(μ(τ))=θ. and rewrite the expression as  

( ) ( ) ( ) ( ) ( )yEES
θτ

ττμ
θτ

τθ
2121

1
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+= .     (8) 

With yt defined, as in Section 1, to be a zero mean residual term, this simplifies to the following: 

( ) ( ) ( )τμ
θτ

τθ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+=
21

1ES .       (9) 

This expression relates the ES associated with the θ quantile of a zero-mean distribution and the τ expectile 

that coincides with that quantile. The expression is for ES in the lower tail of the distribution. The expression 

for the upper tail of the distribution is produced by replacing τ and θ with (1-τ) and (1-θ), respectively.  

Although expressions (8) and (9) are for the case where the expectile is a scalar parameter, similar 

expressions are satisfied by an expectile that is conditional on an information set up to period t-1. This 

conditional expectile, μt(τ), satisfies the following expression for the conditional ES: 

( ) ( ) ( ) ( ) ( )ttt yEES
θτ

ττμ
θτ

τθ
2121

1
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+= .              (10) 
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If yt is defined to be a zero mean residual term, this becomes: 

( ) ( ) ( )τμ
θτ

τθ ttES ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+=
21

1 .                (11) 

As we explained in Section 2.2, we follow Efron’s proposal of using a conditional model for the τ 

expectile to estimate the θ quantile. Expressions (10) and (11) serve as a simple way to calculate the ES 

associated with this estimate. Considering expression (11), note that it is intuitively reasonable that, over 

time, for a given value of θ, the conditional ES is proportional to the conditional quantile model μt(τ). 

Indeed, this is also the case with some other widely used models for financial returns, such as when a 

conditional volatility model is used with a Gaussian or Student-t distribution. Although regressors could be 

included in the expectile models, VaR and ES are usually estimated using univariate models. This implies a 

need for univariate expectile models. In the next section, we present a new class of such models.  

 

3.  Conditional Autoregressive Expectiles (CARE) 

 The structure of the CAViaR models in expressions (1)-(4) can be used for conditional 

autoregressive expectile (CARE) models. For example, the Symmetric Absolute Value CARE model is 

shown in expression (12).  

12110 )()( −− ++= ttt yβτμββτμ .               (12) 

The model parameters can be estimated using ALS with a similar non-linear optimisation routine to 

that used by Engle and Manganelli (2004) for CAViaR models. We describe this optimisation in more detail 

in Section 4.1. Using expression (10) or (11), it is straightforward to convert the CARE models into 

conditional autoregressive ES models. For example, substituting μt(τ) from expression (11) into expression 

(12) delivers the following conditional ES model:  

( ) ( ) 12110 −− ++= ttt yESES γθγγθ ,                (13) 

where γ1=β1, and, for i = 0 and 2, 
( ) ii β

θτ
τγ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+=
21

1 . 
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In Section 2.2, we explained that in this paper, we use expectiles as estimators of quantiles. More 

specifically, we use CARE to model a conditional θ quantile. The value of τ that we select for the CARE 

model is the value for which the proportion of in-sample observations lying below the conditional expectile 

model is θ. The success of the use of CARE models for VaR and ES estimation relies on θ being a close 

approximation of the conditional coverage of the model. We test this in the empirical study of Section 4.  

 The quantile or volatility forecast from another approach could be included as a regressor within the 

CARE models. This would enable a form of forecast combining. If confidence intervals are required for 

parameter estimates, or for VaR or ES predictions, we would suggest the use of a bootstrap resampling 

approach. In addition to CAViaR models, the quantile regression literature contains several other forms of 

autoregressive quantile models (e.g. Koenker and Zhao, 1996). The structure of these models could also be 

considered for autoregressive expectile modelling.   

 

4.  Empirical Illustration and Evaluation of VaR and ES Estimation  

In this section, we describe a study that compared the accuracy of the VaR and ES estimates from 

our new methods with those from established methods. The study considered day-ahead estimation of the 

1%, 5%, 95% and 99% conditional VaR and ES. We chose these quantiles because they are widely 

considered in practice. Our focus on day-ahead estimation is consistent with the holding period considered 

for internal risk control by most financial firms.  

We used the following stock indices: the French CAC40, the German DAX30, British FTSE100, 

Japanese Nikkei225 and the US S&P500. The sample period used in our study consisted of daily data, from 

1 September 1997 to 2 May 2005. This period delivered 2000 log returns. As in the study of Kuester, Mittnik 

and Paolella (2006), we used a moving window of 1000 observations to re-estimate repeatedly parameters 

for the various methods. Day-ahead post-sample VaR and ES estimates were produced from each method for 

the final 1000 days of each stock index series. We use these post-sample predictions as the basis of our 

comparison of methods. With the exception of the Indirect ARGARCH CAViaR and Indirect ARGARCH 

CARE models, we followed common practice by not estimating models for the conditional mean of each 
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series (see Poon and Granger, 2003). For each moving window, we subtracted from each return, rt, the mean, μ, 

of the 1000 in-sample returns. The quantile estimation methods were applied to the resultant residuals, yt = rt - μ.  

In the next section, we present the methods considered in our study. Although there are many VaR 

estimation methods that we could have implemented as benchmark methods (see, for example, Kuester, Mittnik 

and Paolella, 2006), we restricted ourselves to commonly used methods for which ES estimation is 

straightforward. All methods have been implemented in Gauss code, which is available on request.  

 

4.1.  Methods Used for Estimating VaR and ES 

Benchmark Methods 

We implemented the historical simulation method using moving windows of lengths 250, 500 and 

1000 days. The VaR and ES estimates were produced from the method as described in Section 1. 

We included the GARCH(1,1) model in our study. Our use of the (1,1) specification was based on 

the general popularity of this order for GARCH models. We also implemented the asymmetric 

GJRGARCH(1,1) model of Glosten, Jagannathan and Runkle (1993), but we found that it was outperformed 

by the standard symmetric GARCH model, and so in the remainder of this paper, we do not refer to 

GJRGARCH. We considered two versions of the GARCH(1,1) model. The first version, which we refer to as 

GARCH-t, used the Student-t distribution and the second version, which we term GARCH-SKEWt, used the 

generalized asymmetric t-distribution of Mittnik and Paolella (2000) that has density of the following form: 

      ( ) ( ) ( ) ( )
( ) ( ) ( )dd vdvd

v
zCzI

v
zCzIvdzf

11

1010,,;
+−+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≥+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+<=

ψψψ ,                  (14) 

where d, v and ψ are positive parameters, ( ) ( )[ ] 11111 , −−−−+= vdBvdC dψψ , and B(.,.) is the beta function. 

Using the respective distributions, we optimised model parameters using maximum likelihood. We then used 

the distributions to produce parametric estimates of the conditional quantile and ES. For the Student-t 

distribution, expressions for the VaR and ES are presented by McNeil, Frey and Embrechts (Section 2.2.4, 

2005). For the generalised asymmetric distribution, Kuester, Mittnik and Paolella (2006) provide the 

expression for the cdf, which can be used to derive VaR estimates. They do not consider ES, but using the 
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density function in expression (14), we get the following expression for the ES corresponding to the θ 

quantile, Q(θ): 

      ( )
( ) ( )

( ) ( ) ( )( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

>−−−
−

≤−−
−

=

50.0if1,2,12,1
1

50.0if2,1,2,1

2

2

2

θ
θ

ψ

θ
ψθ

θ

dvdUFddvB
d

vC

ddvLFddvB
d

vC

ES

beta

d

beta

d

 

where ( )( )( )dQvvL ψθ−+= , ( )( ) ( )( )( )dd QvQU ψθψθ +=  and Fbeta(.,.,) is the cdf of a beta distribution, 

which is also known as the incomplete beta. In addition to the parametric estimates, for both GARCH 

versions, we also produced conditional quantile and ES estimates by applying the peaks over threshold EVT 

method to the standardised residuals (see Section 7.2.3, McNeil, Frey and Embrechts, 2005). In this approach, 

we set the threshold as the 10% unconditional quantile for the lower tail, and as the 90% unconditional 

quantile for the upper tail. The GARCH-SKEWt model, in conjunction with this EVT approach, performed 

very well in terms of VaR estimation in the study of Kuester, Mittnik and Paolella (2006).  

 

CAViaR Models 

We estimated the CAViaR models presented in Section 1 using a procedure similar to that described 

by Engle and Manganelli (2004). For each model, we first generated 105 vectors of parameters from a 

uniform random number generator between 0 and 1, or between -1 and 0, depending on the appropriate sign 

of the parameter. For each of the vectors, we then evaluated the QR Sum, which we define as the summation 

in the quantile regression objective function presented in expression (5). The 10 vectors that produced the 

lowest values of the QR Sum were used as initial values in a quasi-Newton algorithm. The QR Sum was then 

calculated for each of the 10 resulting vectors, and the vector producing the lowest value of the QR Sum was 

chosen as the final parameter vector. Due to computational running times, it was impractical to implement 

this estimation procedure for each moving window in our study. However, this was not a significant issue 

because much of the procedure is aimed at deriving suitable initial values for the quasi-Newton algorithm. In 

our study, we implemented the full estimation procedure for the first moving window, and for each 
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subsequent moving window we simply performed the quasi-Newton algorithm using as initial parameter 

vector the optimal vector from the previous moving window.  

 

CARE Models 

We implemented the Symmetric Absolute Value, Asymmetric Slope, Indirect GARCH and Indirect 

ARGARCH CARE models introduced in Section 3. As with the GARCH models, we found that the 

Asymmetric Slope CAViaR and CARE models were outperformed by the symmetric versions of the models, 

and so in the remainder of this paper, we do not consider further the asymmetric models. We estimated 

CARE model parameters using the same procedure as described in the previous section for the CAViaR 

models, except that the QR Sum was replaced by the ALS summation presented in expression (6).  

As described in Section 2.2, we set, as estimator of the θ quantile, the τ expectile for which the 

proportion of in-sample observations lying below the expectile is θ. To find the optimal value of τ, we 

estimated models for different values of τ over a grid with step size of 0.0001. The final optimal value of τ 

was derived by linearly interpolating between grid values. We used just the first moving window of 

observations to optimise τ. The resulting τ values are reported in Table 1. For a given θ quantile, the table 

shows similar values of τ for the three different types of CARE model. The table shows that values of τ are 

more extreme than their corresponding values of θ, and this is consistent with Newey and Powell’s (1987) 

results for the Gaussian distribution and Granger and Sin’s (2000) results for the absolute value of financial 

returns. In Figure 1, we present a similar plot to Newey and Powell’s Figure 1. Our figure plots the 

unconditional θ quantiles and unconditional τ expectiles against θ and τ, respectively. The figure shows that 

for the unconditional θ quantile and τ expectile to be identical, the value of τ has to be more extreme than the 

value of θ.  

----------  Table 1 and Figure 1  ---------- 

Due to the need to estimate the value of τ, the estimation of CARE models would appear to be more 

computationally demanding than CAViaR models. However, it is interesting to note that, even with this extra 

task, the computational running times for one full implementation of the CARE models for each series was 
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less than for the CAViaR models. This is because the ALS minimisation is somewhat less challenging than 

the quantile regression minimisation. 

Let us now illustrate how we use a CARE model to produce predictive VaR and ES models. The 

Symmetric Absolute Value CARE model and inferred conditional ES model were presented in expressions 

(12) and (13), respectively. As indicated in Table 1, for the FTSE100 returns, the 5% VaR is estimated using 

the Symmetric Absolute Value CARE model with τ=0.0126. Expression (15) presents the model with 

parameters estimated from the first moving window of 1000 observations.  

( ) ( ) 11 107.00126.0869.000179.00126.0 −− −+−= ttt yμμ .              (15) 

Replacing ( )0126.0tμ with  in expression (15) gives the following autoregressive VaR model: ( 05.0tQ )

( ) ( ) 11 107.005.0869.000179.005.0 −− −+−= ttt yQQ . 

Substituting θ=0.05 and τ=0.0126 in expression (11) gives ( ) ( )0126.0259.105.0 ttES μ= . Using this, we can 

substitute for ( 0126.0t )μ  in expression (15) to give the following conditional ES model: 

( ) ( ) 11 135.005.0094.100225.005.0 −− −+−= ttt yESES . 

Similar steps are used with the other CARE models to produce conditional VaR and ES models. For 

the Indirect ARGARCH CARE model, note that the ES model is produced using expression (10), rather than 

expression (11), because this CARE model does not assume that the condtional mean of the returns is 

constant. 

Tables 2 and 3 provide parameters for the Symmetric Absolute Value CARE model of expression 

(12) and the Indirect GARCH CARE model, which for clarity we present in expression (16). 

( )( )( )2
1

2
12

2
110 )(5.021)( −− ++<−= ttt yI βτμββττμ ,           βi>0.            (16) 

----------  Tables 2 and 3 and Figure 2  ---------- 

Figure 2 presents the post-sample 5% and 95% VaR and ES estimates, produced for the 1000 post-

sample days of the FTSE100 returns, using the Symmetric Absolute Value CARE model. The VaR and ES 

estimates can be seen to change with the volatility in the returns. 
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4.2.  VaR Results 

To evaluate the post-sample conditional quantile estimates, we use the hit percentage and dynamic 

quantile (DQ) test. The hit percentage assesses the percentage of observations falling below the estimator. 

Ideally, for estimation of the conditional θ quantile, the percentage should be θ. We examined significant 

difference from this ideal using a test based on the binomial distribution. Engle and Manganelli’s (2004) DQ 

test is a development of the test proposed by Christoffersen (1998), which evaluates the dynamic properties 

of a conditional quantile estimator. The DQ test involves the joint test of whether the hit variable, defined as 

, is distributed i.i.d. Bernoulli with probability θ, and is independent of the conditional 

quantile estimator. Ideally, Hit

θθ −≤= ))(ˆ( ttt QyIHit

t will have zero unconditional and conditional expectations, and this is the null 

hypothesis in the test. As in the empirical study of Engle and Manganelli, we included four lags of Hitt in the 

test’s regression to deliver a DQ test statistic, which, under the null hypothesis, is distributed as χ2(6).  

 Tables 4 and 5 present the values of the hit percentage measure for each method applied to each of 

the five stock indices for estimation of the 95% and 99% quantiles, respectively. P-values are presented in 

parentheses for the significance test with perfect hit percentage as null hypothesis. The final column presents 

a count for the number of series for which the null is rejected at the 5% level. (In all our tables of results, 

smaller counts and larger p-values are desirable.) The results are poor for the historical simulation method 

based on a moving window of 1000 days, and for the GARCH model with Student-t distribution assumption. 

The results for the latter method are improved when EVT is applied to the standardised residuals. Of the 

CARE models, the Indirect GARCH model performed particularly well for both the 95% and 99% quantiles. 

----------  Tables 4 to 7  ---------- 

 Tables 6 and 7 report the DQ test p-values for the 95% and 99% quantiles, respectively. As in Tables 

4 and 5, the final column presents a count for the number of series for which the null is rejected at the 5% 

level. The DQ test results are poor for the historical simulation approach when based on either 1000 or 500 

days in the moving window. As with the hit percentage results, the DQ results for the GARCH model, 

estimated using the Student-t distribution, were improved when EVT was used to construct the quantiles 

rather than simply using the Student-t distribution. The DQ test results in Tables 6 and 7 are a little 

disappointing for the GARCH model estimated using the skewed-t distribution. The tables show that the 
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CAViaR and CARE models performed well for both the 95% and 99% quantiles. In Section 4.4, we 

summarise the VaR results for all four quantiles.  

 

4.3.  ES Results 

To evaluate conditional ES estimation, we follow the approach of McNeil and Frey (2000), which 

focuses on the discrepancy between an observation and the conditional ES estimate for only those periods for 

which the observation exceeds the conditional quantile estimate. McNeil and Frey note that these 

discrepancies, when standardised by the conditional volatility, should be i.i.d. with a mean of zero. In order 

to avoid distributional assumptions, they use a bootstrap test to test for zero mean (see page 224 of Efron and 

Tibshirani, 1993). We were forced to adapt this test for use in our study because the CARE models do not 

involve the estimation of the conditional volatility. In our version of the test, instead of standardising with 

the volatility, we standardise using the conditional quantile estimate for each method. Manganelli and Engle 

(2004) also standardise using this estimator in their application of extreme value theory to standardised 

quantile residuals. In Tables 8 and 9, we report p-values for the bootstrap test for the post-sample conditional 

95% and 99% ES estimates.  As with the earlier tables for VaR evaluation, the final columns in these tables 

present a count for the number of series for which the null is rejected at the 5% level. Interestingly, the ES 

results for the CARE models are very competitive with the other methods.  

Unfortunately, testing whether the standardised discrepancies are i.i.d. is problematic due to the low 

number of discrepancies, and this is particularly so for 1% and 99% estimation. Indeed, McNeil and Frey do 

not perform a test for i.i.d. discrepancies. We tested for zero autocorrelation in each series of discrepancies 

corresponding to 5% and 95% estimation. For each of the methods, except historical simulation, we found 

that, when testing at the 5% level, the total number of rejections of the null hypothesis across these two 

quantiles and the five series was zero or one. For simplicity, we do not present these results in detail here. 

----------  Tables 8 to 10  ---------- 
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4.4.  Summary of VaR and ES Results  

 Table 10 is a summary, for all four quantiles, of the results for the two VaR tests and the ES test 

described in the previous two sections. The table presents the number of test rejections at the 5% significance 

level, as presented for the 95% and 99% quantiles in the final columns of Tables 4 to 9. As we used five 

indices in our study, for a given quantile, the maximum number of test rejections for any single test is five. 

For simplicity, in Table 10, we shall focus on the three columns labelled “Total”, which contain the total 

number of rejections across the four quantiles.  

The DQ test results suggest that it is inadvisable to use historical simulation regardless of the number 

of days used in the moving window. For the GARCH model estimated using a Student-t distribution, the 

results indicate that it is far preferable to construct VaR estimates using EVT than simply to use the Student-t 

distribution. By contrast with the results of Kuester, Mittnik and Paolella (2006), in our study, VaR 

estimation was not improved by the use of EVT with the GARCH skewed-t distribution. Our results also 

differ from those of Kuester, Mittnik and Paolella in terms of the CAViaR models; the Indirect GARCH 

CAViaR model performs very well, and is not outperformed by the Indirect ARGARCH CAViaR model. 

The fact that the CAViaR models are so competitive in terms of VaR estimation motivates consideration of 

models with similar characteristics that produce not only VaR estimates but also ES estimates. This is the 

motivation for CARE models. The columns corresponding to the two VaR tests indicate that each CARE 

model is slightly outperformed by its corresponding CAViaR model. This is not surprising, as the CAViaR 

models are estimated using quantile regression, while the CARE models are expectile approximations of 

quantile models. However, it is reassuring to see from the VaR results that the approximation is not poor. 

Turning to the ES estimation results, there is not a substantial difference between the methods. There 

is a suggestion that the use of EVT is beneficial for the GARCH models, and that the GARCH model 

estimated using the skewed-t distribution is a good candidate for ES estimation. This last point compliments 

the findings of Kuester, Mittnik and Paolella (2006) who promote the use of the method in the context of 

VaR estimation. Although the ES estimation results do not indicate superior performance for the CARE 

models, it is interesting to see from the final column in Table 10 that the methods are competitive in this 

respect.  
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 In the analysis reported so far, for all the methods except historical simulation we used a moving 

window of 1000 periods. We also considered windows of lengths 500 and 250 periods. In terms of VaR 

estimation, the accuracy of the various methods did not weaken when using the smaller window sizes. This 

was also the case for ES estimation, with the one exception being a reduction in accuracy when using a 

smaller window size for the approach based on the CARE models. As previously described, this approach 

requires, as estimator of the θ quantile, the τ expectile for which the proportion of in-sample observations 

lying below the expectile is θ. It seems that the smaller window size causes difficulty for the derivation of 

the optimal value of τ for a given θ quantile. This point was confirmed by the substantial improvement in the 

ES estimation accuracy from the CARE models that resulted when we reran the analysis with window size of 

250 periods using the values of τ derived from the 1000 periods immediately prior to the first forecast origin. 

(These values of τ were used in the initial analysis with moving window size of 1000 periods.)  

 

5.  Summary and Concluding Comments 

In this paper, we have introduced a new approach to estimating conditional VaR and conditional ES 

using ALS regression. Following the suggestion of Efron (1991), we estimate the θ quantile by the expectile 

for which the proportion of in-sample observations lying below the expectile is θ. The main contribution of 

this paper is that we show that the corresponding ES estimator is a simple function of the expectile. 

Therefore, a conditional expectile estimator can be used as a conditional quantile estimator, and also, after a 

simple transformation, as a conditional ES estimator. A further contribution of the paper is the introduction 

of CARE, which is a new class of univariate expectile models inspired by Engle and Manganelli’s CAViaR 

models. CARE models enable conditional autoregressive ES modelling. Our empirical study suggests that 

the CARE models are competitive in terms of both VaR and ES estimation.  
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Figure Legends 

Figure 1 Unconditional θ quantiles and τ expectiles plotted against θ and τ, respectively, for the first 

moving window of 1000 daily FTSE100 daily stock index returns.  

 

Figure 2 FTSE100 daily stock index returns for the 1000 post-sample days with VaR and ES estimates 

from the Symmetric Absolute Value CARE model and the inferred conditional ES model, 

respectively.  
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Table 1 For a given θ quantile, optimal values of ALS parameter τ (×100) for the three CARE 
models, derived using the first moving window of 1000 days.  

 
 

      CARE model CAC40 DAX30 FTSE100 NIKKEI225 S&P500 Mean for 
each model 

Mean for 
each 

quantile 

1% quantile        

      Sym Abs Value 0.110 0.125 0.115 0.245 0.260 0.171  

      Indirect GARCH 0.110 0.163 0.100 0.237 0.320 0.186 0.182 

      Indirect ARGARCH 0.100 0.170 0.102 0.240 0.330 0.188  

5% quantile        

      Sym Abs Value 1.330 1.350 1.260 1.540 1.910 1.478  

      Indirect GARCH 1.310 1.510 1.360 1.480 1.800 1.492 1.493 

      Indirect ARGARCH 1.410 1.370 1.348 1.540 1.870 1.508  

95% quantile        

      Sym Abs Value 98.690 98.395 99.110 98.000 98.660 98.571  

      Indirect GARCH 98.750 98.510 98.855 98.140 98.377 98.526 98.520 

      Indirect ARGARCH 98.745 98.420 98.690 98.110 98.348 98.463  

99% quantile        

      Sym Abs Value 99.845 99.800 99.890 99.780 99.900 99.843  

      Indirect GARCH 99.850 99.770 99.880 99.760 99.880 99.828 99.823 

      Indirect ARGARCH 99.865 99.710 99.890 99.670 99.850 99.797  
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Table 2 For the Symmetric Absolute Value CARE model presented in expression (12), parameter 
estimates derived using the first moving window of 1000 days.  

 
 

 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 

1% quantile      

τ × 100 0.110 0.125 0.115 0.245 0.260 

β0 -0.00162 -0.00513 -0.00748 -0.00232 -0.00863 

β1 0.900 0.691 0.716 0.870 0.505 

β2 -0.189 -0.631 -0.135 -0.208 -0.977 

5% quantile      

τ × 100 1.330 1.350 1.260 1.540 1.910 

β0 -0.00055 -0.00227 -0.00179 -0.00141 -0.00773 

β1 0.911 0.763 0.869 0.856 0.508 

β2 -0.155 -0.354 -0.107 -0.198 -0.253 

95% quantile      

τ × 100 98.690 98.395 99.110 98.000 98.660 

β0 0.00171 0.00144 0.00010 0.00057 -0.00013 

β1 0.819 0.857 0.943 0.922 0.893 

β2 0.214 0.149 0.110 0.115 0.245 

99% quantile      

τ × 100 99.845 99.800 99.890 99.780 99.900 

β0 0.00957 0.00305 0.00064 0.00106 0.00021 

β1 0.585 0.863 0.935 0.925 0.906 

β2 0.372 0.150 0.113 0.199 0.283 

 
 

 22



Table 3 For the Indirect GARCH CARE model presented in expression (16), parameter estimates 
derived using the first moving window of 1000 days.  

 
 

 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 

1% quantile      

τ × 100 0.110 0.163 0.100 0.237 0.320 

β0 0.000065 0.000052 0.000295 0.000115 0.000354 

β1 0.890 0.832 0.645 0.844 0.570 

β2 0.415 0.896 0.400 0.403 0.933 

5% quantile      

τ × 100 1.310 1.510 1.360 1.480 1.800 

β0 0.000068 0.000065 0.000095 0.000069 0.000153 

β1 0.782 0.714 0.753 0.773 0.528 

β2 0.363 0.645 0.098 0.351 0.360 

95% quantile      

τ × 100 98.750 98.510 98.855 98.140 98.377 

β0 0.000071 0.000067 0.000048 0.000068 0.000033 

β1 0.706 0.758 0.720 0.772 0.730 

β2 0.409 0.267 0.440 0.321 0.477 

99% quantile      

τ × 100 99.850 99.770 99.880 99.760 99.880 

β0 0.000261 0.000057 0.000032 0.000024 0.000017 

β1 0.606 0.896 0.899 0.882 0.871 

β2 0.718 0.263 0.264 0.872 0.658 
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Table 4 Evaluation of estimators of 95% VaR. Hit percentage for 1000 post-sample estimates of 
95% conditional quantile (p-values in parentheses). 

 
 

 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 
Number 

significant 
at 5% level

Benchmark methods       

        Hist Sim 1000 94.8 
(0.773) 

94.5 
(0.471) 

95.7 
(0.312) 

96.4 
(0.042) 

96.9 
(0.006) 2 

        Hist Sim 500 95.2 
(0.773) 

94.9 
(0.886) 

96.2 
(0.082) 

96.2 
(0.082) 

96.7 
(0.013) 1 

        Hist Sim 250 95.7 
(0.312) 

95.4 
(0.564) 

96.3 
(0.059) 

96.6 
(0.020) 

95.7 
(0.312) 1 

        GARCH Student-t 97.3 
(0.001) 

96.4 
(0.042) 

97.3 
(0.001) 

97.6 
(0.000) 

97.1 
(0.002) 5 

        GARCH Student-t EVT 94.9 
(0.886) 

94.9 
(0.886) 

95.6 
(0.387) 

96.1 
(0.111) 

94.9 
(0.886) 0 

        GARCH Skew-t 96.3 
(0.059) 

95.8 
(0.248) 

96.0 
(0.148) 

96.3 
(0.059) 

95.8 
(0.248) 0 

        GARCH Skew-t EVT 96.2 
(0.082) 

95.3 
(0.666) 

96.0 
(0.148) 

96.3 
(0.059) 

95.4 
(0.564) 0 

CAViaR models       

         Sym Abs Value CAViaR 95.2 
(0.773) 

94.6 
(0.564) 

95.9 
(0.193) 

95.5 
(0.471) 

95.0 
(1.000) 0 

         Indirect GARCH CAViaR 95.3 
(0.666) 

94.5 
(0.471) 

95.8 
(0.248) 

95.5 
(0.471) 

95.0 
(1.000) 0 

         Indirect ARGARCH CAViaR 95.2 
(0.773) 

94.6 
(0.564) 

95.2 
(0.773) 

95.7 
(0.312) 

95.1 
(0.886) 0 

CARE models       

         Sym Abs Value CARE 94.8 
(0.773) 

94.0 
(0.148) 

96.3 
(0.059) 

94.3 
(0.312) 

95.7 
(0.312) 0 

         Indirect GARCH CARE 95.2 
(0.773) 

94.4 
(0.387) 

95.8 
(0.248) 

94.7 
(0.666) 

95.2 
(0.773) 0 

         Indirect ARGARCH CARE 95.0 
(1.000) 

93.8 
(0.082) 

94.9 
(0.886) 

94.5 
(0.471) 

94.8 
(0.773) 0 
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Table 5 Evaluation of estimators of 99% VaR. Hit percentages for 1000 post-sample estimates of 
99% conditional quantile (p-values in parentheses). 

 
 

 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 
Number 

significant 
at 5% level

Benchmark methods       

        Hist Sim 1000 98.2 
(0.010) 

98.1 
(0.004) 

98.3 
(0.024) 

99.8 
(0.010) 

99.1 
(0.760) 4 

        Hist Sim 500 98.5 
(0.114) 

98.6 
(0.211) 

98.3 
(0.024) 

99.4 
(0.221) 

99.2 
(0.539) 1 

        Hist Sim 250 98.7 
(0.353) 

98.7 
(0.353) 

98.7 
(0.353) 

99.6 
(0.055) 

98.8 
(0.539) 0 

        GARCH Student-t 99.5 
(0.114) 

99.5 
(0.114) 

99.8 
(0.010) 

99.8 
(0.010) 

99.8 
(0.010) 3 

        GARCH Student-t EVT 98.7 
(0.353) 

99.2 
(0.539) 

99.1 
(0.760) 

99.8 
(0.010) 

99.5 
(0.114) 1 

        GARCH Skew-t 98.9 
(0.760) 

99.1 
(0.760) 

99.5 
(0.114) 

99.8 
(0.010) 

99.5 
(0.114) 1 

        GARCH Skew-t EVT 98.8 
(0.539) 

99.1 
(0.760) 

99.2 
(0.539) 

99.8 
(0.010) 

99.5 
(0.114) 1 

CAViaR models       

         Sym Abs Value CAViaR 98.3 
(0.024) 

98.9 
(0.760) 

98.9 
(0.760) 

99.5 
(0.114) 

99.3 
(0.353) 1 

         Indirect GARCH CAViaR 98.4 
(0.055) 

98.9 
(0.760) 

99.0 
(1.000) 

99.5 
(0.114) 

99.0 
(1.000) 0 

         Indirect ARGARCH CAViaR 98.3 
(0.024) 

98.8 
(0.539) 

98.8 
(0.539) 

99.5 
(0.114) 

99.2 
(0.539) 1 

CARE models       

         Sym Abs Value CARE 98.4 
(0.055) 

98.9 
(0.760) 

98.9 
(0.760) 

99.7 
(0.024) 

99.7 
(0.024) 2 

         Indirect GARCH CARE 98.5 
(0.114) 

98.7 
(0.353) 

99.1 
(0.760) 

99.4 
(0.211) 

99.6 
(0.055) 0 

         Indirect ARGARCH CARE 98.3 
(0.024) 

98.3 
(0.024) 

99.0 
(1.000) 

99.3 
(0.353) 

99.5 
(0.114) 2 
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Table 6 Evaluation of estimators of 95% VaR. DQ test p-values for 1000 post-sample estimates of 
95% conditional quantile. 

 
 

 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 
Number 

significant 
at 5% level

Benchmark methods       

      Hist Sim 1000 0.000 0.000 0.000 0.116 0.003 4 

      Hist Sim 500 0.002 0.000 0.000 0.723 0.012 4 

      Hist Sim 250 0.687 0.062 0.000 0.178 0.261 1 

      GARCH Student-t 0.024 0.222 0.011 0.008 0.022 4 

      GARCH Student-t EVT 0.562 0.850 0.099 0.253 0.192 0 

      GARCH Skew-t 0.044 0.084 0.002 0.235 0.121 2 

      GARCH Skew-t EVT 0.020 0.161 0.002 0.081 0.065 2 

CAViaR models       

      Sym Abs Value CAViaR 0.494 0.839 0.442 0.961 0.501 0 

      Indirect GARCH CAViaR 0.946 0.796 0.478 0.962 0.308 0 

      Indirect ARGARCH CAViaR 0.845 0.970 0.672 0.432 0.456 0 

CARE models       

      Sym Abs Value CARE 0.521 0.525 0.178 0.829 0.684 0 

      Indirect GARCH CARE 0.831 0.746 0.036 0.891 0.417 1 

      Indirect ARGARCH CARE 0.758 0.586 0.257 0.849 0.539 0 
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Table 7 Evaluation of estimators of 99% VaR. DQ test p-values for 1000 post-sample estimates of 
99% conditional quantile. 

 
 

 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 
Number 

significant 
at 5% level

Benchmark methods       

      Hist Sim 1000 0.000 0.000 0.000 0.321 0.001 4 

      Hist Sim 500 0.000 0.000 0.000 0.924 0.070 3 

      Hist Sim 250 0.051 0.000 0.000 0.690 0.304 2 

      GARCH Student-t 0.001 0.863 0.368 0.350 0.376 1 

      GARCH Student-t EVT 0.087 0.978 0.094 0.353 0.627 0 

      GARCH Skew-t 0.022 0.724 0.000 0.365 0.684 2 

      GARCH Skew-t EVT 0.006 0.857 0.021 0.351 0.637 2 

CAViaR models       

      Sym Abs Value CAViaR 0.018 0.981 0.226 0.861 0.951 1 

      Indirect GARCH CAViaR 0.043 0.678 0.181 0.847 0.999 1 

      Indirect ARGARCH CAViaR 0.021 0.979 0.284 0.863 0.992 1 

CARE models       

      Sym Abs Value CARE 0.003 0.743 0.019 0.553 0.554 2 

      Indirect GARCH CARE 0.011 0.692 0.066 0.945 0.727 1 

      Indirect ARGARCH CARE 0.003 0.057 0.168 0.984 0.856 1 
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Table 8 Evaluation of estimators of 95% ES. Bootstrap test p-values for zero mean standardised 
discrepancies based on 1000 post-sample estimates of conditional 95% ES. 

 
 

 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 
Number 

significant 
at 5% level

Benchmark methods       

      Hist Sim 1000 0.004 0.015 0.002 0.077 0.520 3 

      Hist Sim 500 0.056 0.153 0.008 0.081 0.916 1 

      Hist Sim 250 0.126 0.455 0.097 0.158 0.733 0 

      GARCH Student-t 0.997 0.076 0.075 0.014 0.006 2 

      GARCH Student-t EVT 0.467 0.498 0.765 0.102 0.042 1 

      GARCH Skew-t 0.994 0.470 0.012 0.067 0.048 2 

      GARCH Skew-t EVT 0.356 0.756 0.837 0.139 0.075 0 

CARE models       

      Sym Abs Value CARE 0.776 0.395 0.076 0.000 0.659 1 

      Indirect GARCH CARE 0.207 0.698 0.422 0.006 0.299 1 

      Indirect ARGARCH CARE 0.358 0.269 0.601 0.009 0.140 1 
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Table 9 Evaluation of estimators of 99% ES. Bootstrap test p-values for zero mean standardised 
discrepancies based on 1000 post-sample estimates of conditional 99% ES. 

 
 

 CAC40 DAX30 FTSE100 NIKKEI225 S&P500 
Number 

significant 
at 5% level

Benchmark methods       

      Hist Sim 1000 0.392 0.572 0.398 0.488 0.983 0 

      Hist Sim 500 0.047 0.247 0.271 0.227 0.787 1 

      Hist Sim 250 0.112 0.623 0.046 0.252 0.762 1 

      GARCH Student-t 0.019 0.306 0.511 0.507 0.511 1 

      GARCH Student-t EVT 0.022 0.454 0.413 0.511 0.288 1 

      GARCH Skew-t 0.029 0.065 0.114 0.511 0.152 1 

      GARCH Skew-t EVT 0.048 0.347 0.559 0.507 0.288 1 

CARE models       

      Sym Abs Value CARE 0.383 0.536 0.093 0.751 0.609 0 

      Indirect GARCH CARE 0.070 0.911 0.032 0.209 0.703 1 

      Indirect ARGARCH CARE 0.292 0.128 0.063 0.169 0.764 0 
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Table 10 Summary of VaR and ES results. Number of test rejections at 5% significance level for 
each of the four θ quantiles. Note that CAViaR models produce only VaR estimates. 

 
 

 
VaR Hit % Test 

 
VaR DQ Test  ES Bootstrap Test 

 θ (×100)   θ (×100)   θ (×100)  
 1 5 95 99 Total  1 5 95 99 Total  1 5 95 99 Total

Benchmark methods                

      Hist Sim 1000 1 0 2 4 7  4 5 4 4 17  0 0 3 0 3 

      Hist Sim 500 0 1 1 1 3  3 5 4 3 15  0 0 1 1 2 

      Hist Sim 250 0 0 1 0 1  4 4 1 2 11  0 0 0 1 1 

      GARCH Student-t 1 2 5 3 11  1 0 4 1 6  0 0 2 1 3 

      GARCH Student-t EVT 0 0 0 1 1  0 0 0 0 0  0 0 1 1 2 

      GARCH Skew-t 1 0 0 1 2  0 0 2 2 4  0 0 2 1 3 

      GARCH Skew-t EVT 1 0 0 1 2  0 0 2 2 4  0 0 0 1 1 

CAViaR models                  

      Sym Abs Value CAViaR 0 0 0 1 1  0 1 0 1 2  - - - - - 

      Indirect GARCH CAViaR 0 0 0 0 0  0 0 0 1 1  - - - - - 

      Indirect ARGARCH CAViaR 0 1 0 1 2  1 0 0 1 2  - - - - - 

CARE models                  

      Sym Abs Value CARE 0 1 0 2 3  1 2 0 2 5  0 0 1 0 1 

      Indirect GARCH CARE 0 1 0 0 1  0 2 1 1 4  0 0 1 1 2 

      Indirect ARGARCH CARE 1 0 0 2 3  1 1 0 1 3  0 1 1 0 2 
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Figure 1 Unconditional quantiles, Q(θ), and expectiles, μ(τ), plotted against θ and τ, respectively, 
for the first moving window of 1000 daily FTSE100 daily stock index returns.  
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Figure 2 FTSE100 daily stock index returns for the 1000 post-sample days with VaR and ES 
estimates from the Symmetric Absolute Value CARE model and the inferred conditional 
ES model, respectively.  
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	Figure 1 Unconditional quantiles, Q(), and expectiles, (), plotted against  and , respectively, for the first moving window of 1000 daily FTSE100 daily stock index returns.  
	 
	  
	 
	 
	 
	 
	 
	Figure 2 FTSE100 daily stock index returns for the 1000 post-sample days with VaR and ES estimates from the Symmetric Absolute Value CARE model and the inferred conditional ES model, respectively.  







