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Capacity is one of the most important parameters in image watermarking. Different works have been done on this subject with
different assumptions on image and communication channel. However, there is not a global agreement to estimate watermarking
capacity. In this paper, we suggest a method to find the capacity of images based on their complexities. We propose a new method
to estimate image complexity based on the concept of Region Of Interest (ROI). Our experiments on 2000 images showed that the
proposed measure has the best adoption with watermarking capacity in comparison with other complexity measures. In addition,
we propose a new method to calculate capacity using proposed image complexity measure. Our proposed capacity estimation
method shows better robustness and image quality in comparison with recent works in this field.

1. Introduction

Determining the capacity of watermark in a digital image
means finding how much information can be hidden in
image without perceptible distortion, while maintaining
watermark robustness against usual signal processing manip-
ulation and attacks. Knowing the watermark capacity of
an image is useful to select a watermark with a size near
the capacity or in order to improve the robustness, we can
repeat embedding a smaller size watermark until reaching
the capacity. Usually capacity is expressed in bits per pixel
(bpp) unit which is the mean capacity of image pixels for
watermark embedding. Image quality assessment measures
like PSNR (Peak Signal to Noise Ratio), SSIM (Structural
Similarity Index Measure), and JND (Just Noticeable Dif-
ference) are used for estimating quality degradation after
watermark embedding. One of the most popular measures
for watermark robustness is Bit Error Rate (BER), which is
the percentage of error bits in extracted watermark.

However, calculating watermark capacity in images is a
complex problem, because it is influenced by many factors.
Generally, there are three parameters in watermarking that
have the most important role: capacity, quality, and robust-
ness. These parameters are not independent and have side

effect on each other. For example, increasing the watermark
robustness by repeating the watermark bits decreases the
image quality, or enhancement in quality is achieved by
decreasing the capacity and vice versa.

Recently, some works for calculating watermark capacity
are reported in the literature. Moulin used the concept
of information hiding to calculate the capacity by con-
sidering watermarking as an information channel between
transmitter and receiver [1, 2]. Barni et al. in [3, 4]
introduced methods for capacity estimation based on DCT.
Voloshynovisky introduced Noise Visibility Function (NVF)
which estimates the allowable invisible distortion in each
pixel according to its neighbor’s values [5, 6]. Zhang et
al. in [7–9] and authors in [10, 11] showed how to use
heuristic methods to determine the capacity. In addition,
some works are reported in coding system and codebooks
to reduce distortion in the watermarked image [12, 13]. We
shall note that these methods use different approaches to
find the capacity, and the estimated capacity values have a
diverged range from 0.002 bpp (bits per pixel) to 1.3 bpp [9].

Some approaches pay more attention to model the
communication channel and attacks than the image content.
We cannot neglect the fact that image content, represented
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here by the term image complexity, plays a very important
role in capacity. This encouraged us to find the relation
between complexity (image content) and capacity. This
relation will help us to understand the role of image content
in capacity estimation and can provide new aspects in
watermarking capacity beyond the limitation of information
theory which generally focuses on communication channel.

In this paper, we analyzed the relation between image
complexity and watermarking capacity. In this regard, we
studied the most important existing measures for image
complexity and found the relation between capacity and
complexity. In addition, we proposed a new complexity
measure based on Region Of Interest (ROI) concept. Exper-
imental results show that our proposed method gives better
capacity estimation according to image quality degradation
and watermark robustness.

The rest of paper is organized as follows. In Section 2, we
discuss about complexity measures and the existing methods
in image complexity and introduce a new complexity mea-
sure based on the ROI concept. In Section 3, we show how to
find the best measure for complexity estimation according to
quality degradation in watermarking. Section 4 is dedicated
to calculate the watermark capacity based on image complex-
ity. Finally conclusion is presented in Section 5.

2. Complexity Measures

There are a wide variety of definitions for image complexity
depending on its application. For example, in [14], image
complexity is related to the number of objects and segments
in image. Some works have related image complexity to
entropy of image intensity [15]. In [16], complexity has been
considered as a subjective characteristic that is represented
by a fuzzy interpretation of edges in an image. In addition,
there are some new definitions of image complexity but these
approaches are highly application dependent [17, 18].

These definitions clarify that there are different
approaches for calculating image complexity depending
on the application. Since each definition, based on either
subjective or objective characteristics of the input image, uses
a distinct measurement or calculation algorithm, therefore,
there is not any agreement on image complexity definition.

Although there is not a unique method for image
complexity calculation, but there is a global agreement in
classifying images by complexity. Figure 1 shows nine images
with different complexities or details. These images are used
in our experiments.

In the next section, we describe briefly four measures
for calculating image complexity: Image Compositional
Complexity (ICC) and Fractal Dimension (FD) that are
used in general applications in image processing and Quad
Tree method. In addition we introduced a new complexity
measure named ROI that showed to be more reliable measure
to estimate the watermarking capacity.

2.1. Image Compositional Complexity (ICC). This measure is
fully described in [15]. In this method, a complexity measure
is defined as Jensen-Shannon divergence, which expresses

the image compositional complexity (ICC) of an image.
This measure can be interpreted as the spatial heterogeneity
of an image from a given partition. The Jensen-Shannon
divergence applied to an image is given by

ICC(X) = H(X)−
R
∑

S=1

ns
N
H(Is),

H(X) = −
N
∑

i=1

pi log pi,

(1)

where X is the original image, R is the number of segments, ns

is the number of pixels in segment s, Is is a random variable
associated with segment s and represents the histogram of
intensities in segment s, N is the number of total pixels in
image, and H is the entropy function.

The segmentation phase has an important role in this
method. Thus, given an image segment, we can express the
heterogeneity of an image using the JS-divergence applied to
the probability distribution of each segment. For comparison
with other methods, ICC values are normalized in (0, 1).

2.2. Quad Tree Method. We have introduced this measure in
our previous work [19]. Briefly, quad tree representation is
introduced for binary images but it can be obtained for gray
scale images, too. For a gray scale image, we use the intensity
variance in blocks as a measure of contrast. If the variance
is lower than a predefined threshold, it means that there is
not much detail in that block (i.e., pixels of the block are
very similar to each other), thus, that block is not divided
further. Otherwise, the division of that block into 4 blocks is
continued until either a block cannot be divided any more or
reaching to a block size of one pixel.

Assume that i is the level number in a quad tree with N
levels, and ni is the number of nodes in level i, then we define
the complexity as follow:

Complexity =
N
∑

i=1

(

ni × 2i
)

. (2)

The complexity values are normalized in (0, 1).

2.3. Fractal Dimension. Fractal Dimension (FD) is one of the
texture analysis tools that show the roughness of a signal.
Fractal dimension has been used to obtain shape information
and distinguish between smooth (small FD) and sharp (large
FD) regions [20, 21]. In [21], it is proposed to characterize
local complexity in subimages with FD. To compute FD for
images, we used the famous box-counting method [22].

Because there are different segments and regions in
each image with different complexities, we partitioned each
image into 16 equal subimages. The reason for selecting 16
subimages will be described in Sections 2–4. After that we
calculated FD for all 16 subimages, and the mean value of
FDs in all subimages is taken as a complexity measure for the
image. Like other methods, the value of FD is normalized in
(0, 1).
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Figure 1: Nine images with different complexities. In your opinion, how complex are these images?

2.4. Region of Interest Method. One of the interesting subjects
in image processing field is finding the regions of an image
that attracts human attention more than other regions. This
is the subject of Region of Interest (ROI) detection in images.
Usually an image is divided into equal size blocks, a block is
considered to be a region, and an ROI score is calculated for
each block representing the level of interest that a human eye
could have to that region.

We suggest the idea of finding the block scores according
to ROI measure and then estimate the image complexity
based on the total scores of blocks. To find the score of ROI
in image blocks, we used the ideas suggested by Osberger in
[23]. A brief version of our work is presented in [24].

In summary, to find the ROI score of subimages, we cal-
culate the following five influencing parameters to estimate
the block scores corresponding to theirs ROI attractiveness.
We refer to these parameters as ROI score parameters.

Intensity. The blocks of image which are closer to mid
intensity of image are the most sensitive to the human
eye.

Contrast. A block which has high level of contrast,
with respect to its surrounding blocks, attracts the
human attention and is perceptually more important.

Location. The central-quarter of an image is percep-
tually more important than other areas.

Edginess. A block which contains prominent edges
captures the human attention.

Texture. Flat regions have not attractiveness for
human eyes. Therefore, we concentrate on textured
areas.

In order to determine ROI, we divide the host image
into N1 × N2—we will discuss about N1 and N2 later—
subimages (blocks) and compute a quantitative measure
(M) for each one of the five ROI score parameters at each
block. The mathematical equations that we proposed to find
the quantitative measure for these parameters are described
below.

Intensity Metric. The mid intensity importance MIntensity
of a sub image Si is computed as

MIntensity =
∣

∣AvgInt(Si)−MedInt(I)
∣

∣, (3)

where AvgInt(Si) is the average luminance of sub image Si
and MedInt(I) is the average luminance of the whole image
I.

Contrast Metric. A subimage which has the highest level of
contrast with respect to its surrounding subimages attracts
the human eye’s attention and perceptually it is more
important. If AvgInt(Si) is the average luminance of sub
image Si and AvgInt(Ssurrounding i) is the average luminance of
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all its surrounding subimages, then the contrast measure can
be defined as

MContrast(Si) =
∣

∣

∣AvgInt(Si)− AvgInt
(

Ssurrounding i

)
∣

∣

∣. (4)

Location Metric. The location importance MLocation of each
sub image is measured by computing the ratio of number of
pixels in sub image that are lying in the center-quarter of the
image to the total number of pixels in the sub image. This is
because eye tracking experiments have shown that viewer’s
eyes are directed at the center 25% of screen for viewing
materials [25]. This can be expressed as

MLocation(Si) =
center(Si)

Total(Si)
, (5)

where centre(Si) is the number of pixels of sub image i lying
in central quarter of the sub image and Total(Si) is the total
number of pixels of sub image, that is, the area of sub image.
This parameter has an important role in ROI detection but
it is not too useful for comparison between two images. The
reason is that in any image, some pixels of blocks would be
in quarter center and this parameter would be equal in two
images. However, we consider this parameter for consistency
of the proposed method with ROI detection.

Edginess Metric. The edginess (MEdginess) is the total number
of edge pixels in the sub image. We used Canny edge
detection method with threshold 0.7. Using this threshold
means that minor edges which usually occur in background
have not any effect on edginess metric.

Texture Metric. The texture parameter MTexture is computed
by variance of pixel values in each sub image. Of course there
are more advanced methods to analyze textures, like Laws
filter [26], or Tamura measures [27], but these methods need
more computational time. It must be noted that our aim is
not to classify textures but only estimate textured areas and
distinguish them from flat regions. For this purpose, it has
been shown that MTexture is an appropriate measure [28]. So,
a high variance value indicates that the sub image is not flat.
This measure can be calculated as

MTexture(Si) = var
(

pixel graylevels(i)
)

, (6)

where pixel graylevels(i) is the gray level values of pixels in
sub image i.

After performing the above computations for subimages,
we assign a measure for each of the five ROI score parameters.
The measure for each parameter is normalized in the
range (0, 1). We name these normalized values as mIntensity,
mContrast, mLocation, mEdginess, and mTexture, respectively.

After normalization, we must combine these five factors
for each sub image to produce an overall Importance
Measure (IM) for each sub image.

Although many factors which influence visual attention
have been identified, little quantitative data exists regarding
the exact weighting of different factors and their relationship.
In addition, this relation is likely to be changed from one

Table 1: Complexity values calculated by ICC, Quad tree, FD
(Fractal Dimension) and ROI methods for images in Figure 1.

Image name
Complexity Measure

ICC Quad tree FD ROI

Baboon 0.76 0.78 0.92 0.93

Moon 0.65 0.45 0.49 0.32

Flowers 0.82 0.91 0.92 0.90

Lena 0.59 0.65 0.85 0.68

City 0.83 0.83 0.89 0.95

Couple 0.68 0.61 0.57 0.57

Peppers 0.48 0.73 0.77 0.62

Parrots 0.53 0.57 0.62 0.71

Butterfly 0.79 0.80 0.84 0.89

image to the other. Therefore, we choose to treat each factor
as having equal importance. However, if it was known that a
particular factor had a higher importance, a suitable weight
could be easily incorporated [24].

To highlight the importance of regions having higher
ranks according to some of the ROI score parameters, we
introduced (7) in which each parameter is squared. The
reason is that a simple averaging of the ROI scores will
not keep the importance of highly ranked regions. We have
therefore chosen to square and sum the scores to produce the
final IM for each sub image Si as described by the following
equation:

IM(Si) = mIntensity(Si)
2 + mContrast(Si)

2 + mLocation(Si)
2

+ mEdginess(Si)
2 + mTexture(Si)

2.
(7)

The calculated IM values for all subimages are sorted and
the sub image having the highest value of IM is selected as the
perceptually most important region. We divided the input
image into 16 equal size subimages (blocks) and calculated
IM for each block in order to rank them. These rankings
are shown in Figure 2 for two images, Couple and Lena.
(Note that only the first 8 highest score blocks are shown by
numbers 1· · · 8 on upper left corner of blocks).

Finally, for calculating the complexity of an image, we
sum IM(Si) of 16 blocks. The reason for choosing 16 blocks is
that we assume there are not more than 16 interesting regions
in natural images. However, we calculated the ROI scores
while 9(3×3) or 24(4×6) blocks were selected for each image
too. But the IM values were very close to the scores calculated
with 16 blocks (i.e., about %7 tolerance).

After calculation of ROI score in each sub image, as a
rule of thumb, we find out that the mean of all sub image
scores will give a good estimation for image complexity. This
means that images with high contrast, edginess, and texture
could be considered as images with high complexity. Table 1
shows the result of complexity for 9 standard images of
Figure 1, calculated by the four above mentioned complexity
methods (ICC, Quad tree, Fractal Dimension, and ROI). All
complexity measures are normalized in (0, 1).
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Figure 2: Ranking of subimages (blocks) based on ROI score calculation.

3. Image Complexity and Quality Degradation

In this section, we use three famous watermarking algo-
rithms which work in different domains for finding the
relation between complexity measures and watermarking
artifacts on images. These algorithms are amplitude modu-
lation [29] in spatial domain, Cox method in DCT domain
[30], and Kundur algorithm in wavelet domain [31]. For
simplicity, we will refer to these algorithms as Spatial, DCT,
and Wavelet in the rest of this paper.

We use 2000 images with different resolutions and
sizes from the Corel database and calculated the com-
plexity measure of each image using the four measures
discussed in Section 2. Then we watermark each image using
three mentioned watermarking methods (Spatial, DCT, and
Wavelet). To compare the visual quality of host image and
watermarked image, we use the SSIM (Structural Similarity
Index Measure) [32] and Watson JND (Just Noticeable
Difference) [33] measures that are two state-of-the-art image
quality assessment measures. These measures consider the
structural similarity between images as human visual system
and provide better results compared to the traditional
methods such as PSNR (Peak Signal to Noise Ratio) [34].

In our experiment, we use a watermark pattern with
256 bits (a usual watermark size) in all three watermarking
methods. To compare the results, Figures 3–10 show the
relation between each complexity measure and the visual
quality degradation measures (SSIM and JND) averaged on
2000 images mentioned before.

However, we must emphasis that in this section no water-
marked image is degraded by any manipulation (attacks).
Therefore, we can extract all bits of watermark without error,
which means that the Bit Error Rate (BER) is zero. We will
discuss about the robustness of proposed method in more
detail in Section 4.

The relation between image quality degradation and
complexity after watermark embedding is shown in Figures
3–10 using the four different complexity measures.
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Figure 3: Relation between SSIM and ICC complexity measure
(averaged on 2000 images).
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Figure 4: Relation between SSIM and Quad tree complexity
measure (averaged on 2000 images).
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Figure 5: Relation between SSIM and Fractal complexity measure
(averaged on 2000 images).
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Figure 6: Relation between SSIM and ROI complexity measure
(averaged on 2000 images).

Table 2: The correlation coefficient between complexity measures
(ICC, Quad tree, Fractal Dimension (FD) and ROI) and image qual-
ity measures (SSIM and JND) according to different watermarking
methods (Spatial, DCT and Wavelet).

Complexity SSIM JND
Mean

measure Spatial DCT Wavelet Spatial DCT Wavelet

ICC 0.80 0.81 0.83 0.75 0.85 0.81 0.81

Quad tree 0.74 0.76 0.81 0.82 0.78 0.82 0.79

FD 0.81 0.81 0.90 0.79 0.84 0.81 0.83

ROI 0.93 0.94 0.92 0.89 0.91 0.94 0.92

In the following we describe the results of Figures 3–10 in
detail.

(a) In Figures 3–10, a simple relation between image
complexity and visual quality can be understood. That is,
when complexity of an image is higher, then the visual quality
of watermarked image is higher too (e.g. higher SSIM or
JND). This shows that complex images have higher capacity
for watermarking.

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9

1

Complexity

JN
D

ICC complexity

Spatial

Wavelet

DCT

Figure 7: Relation between JND and ICC complexity measure
(averaged on 2000 images).
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Figure 8: Relation between JND and Quad tree complexity measure
(averaged on 2000 images).

(b) In ICC, Quad tree and Fractal dimension methods
(Figures 3, 4, 5, 7, 8, and 9), there are some irregularities
or nonlinear relation between complexity and visual quality
measures, but the ROI measure can give better estimation
on capacity because as seen in Figures 6 and 10, the curves
have a straight linear shape. For better comparison of
different methods, we calculate the correlation coefficient
between each complexity measures and quality degradation
in different watermarking methods (achieved from 2000
images). The result is presented in Table 2. As it is seen
the correlation coefficient of ROI method is much better
than other measures. This means that the ROI complexity
measure has a very close to linear relation with watermarking
capacity as its correlation coefficient is 0.92. So we can
estimate the quality degradation with ROI measure much
better than other methods.

(c) Wavelet method shows a better match with quad tree
measure. This is concluded because of more regularity in
its curve compared to curves related to Spatial and DCT
as shown in Figure 4. This is a logical fact, because the
complexity measure based on Quad tree uses similar concept
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Figure 9: Relation between JND and Fractal complexity measure
(averaged on 2000 images).
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Figure 10: Relation between JND and ROI complexity measure
(averaged on 2000 images).

of dividing an image into 4 blocks as used in multiscale
watermarking methods such as wavelet.

4. Capacity Estimation

Finally for calculating image capacity, we consider water-
marking as communication channel with side information
[2]. Briefly, in this approach, watermarking is a form of
communications. The requirement that the fidelity of the
media content must not be impaired implies that the
magnitude of the watermark signal must be very small
in comparison to the content signal, analogous to power
constraint in traditional communications. This characteristic
of watermark detection and considering the content (host
image) as noise has led us to think of watermarking as a
form of communications. But when the media content is
considered as noise, no advantage is taken of the fact that the
content is completely known to the watermark embedder.

Therefore, it is better to consider watermarking as an
example of communication with side information. This
form of communication was introduced by Shannon who
was interested in calculating the capacity of a channel.

Modeling watermarking as a communication with side
information allows more effective watermarking algorithms
to be designed and originally introduced in [2].

Here we used a modified version of the famous Shannon
channel capacity equation (8) as used by many other
researchers to estimate the watermark capacity [1, 3, 9].

C =W log

(

1 +
PS
PN

)

. (8)

Zhang and et al. in [9] suggested that the watermark
power constraint Ps should be associated with the content
of an image. He introduced Maximum Watermark Image
(MWI) in which the amplitude (value) of each pixel is
the maximum allowable distortion calculated by Noise
Visibility Function [3]. Then the watermark capacity could
be calculated by

C =W log

(

1 +
σ2
w

σ2
n

)

, (9)

where σ2
w is the variance of MWI and σ2

n is the variance of
noise. W is the bandwidth of channel. In an image with M
pixels, W = M/2 according to Nyquist sampling theory [9].
We used Equation (9) but instead of σ2

w we used σ2
w as (10)

σ2
w =

1

16

16
∑

i=1

(

IM(Si)× σ2
wi(Si)

)

, (10)

where IM(Si) is the Importance Measure as (7) and σ2
wi is

the variance of intensity values in Si (sub image i). In other
words, we calculate the average variance of 16 subimages
(σ2

w), as a weighted mean of σ2
wi where, IM(Si) (importance

measure according to ROI method) is considered as weight.
Comparison of capacity results for “Lena” and “Fishing boat”
are shown in Table 3.

Although the capacity values estimated by Zhang are
higher than our method, but in the following we show that
our method gives a more precise limit for the capacity.

To compare the preciseness of capacity estimation of
Zhang and our method; according to watermark robustness
against noise, we watermarked 2000 images in Spatial,
Wavelet, and DCT domains using 10 random watermarks
with different sizes (64, 128, 256, 1024, and 2048 bits). This
process provides 20,000 watermarked images. Note that in
all of the watermarked images the quality is acceptable due
to SSIM, JND, and PSNR. We calculated the Bit Error Rate
(BER) of our proposed method by applying Gaussian noise
with different variances and compared the results with that
of Zhang method (as reported in [9]).

This comparison is presented in Figure 11. It shows that
in equal watermark capacity estimated by Zhang and our
proposed method, the BER of our method is always lower
than Zhang method. We conclude that, the higher capacity
estimation in [9] is too optimistic and our method gives
better robustness in equal capacity. It means that our method
estimates the capacity more accurately.
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Table 3: Comparison of watermarking capacity estimation in bits (images are 256× 256).

Noise variance σ2
n

Capacity in bits, in Zhang method [9] Capacity in bits, in proposed method

Fishing boat Lena Fishing boat Lena

1 128,032 80,599 106,619 73,896

2 110,410 65,541 90,411 60,917

3 98,309 55,724 78,400 52,143

4 89,214 48,677 70,417 45,387

5 82,005 43,319 64,944 41,189

6 76,088 39,082 58,886 36,950

7 71,106 35,635 55,405 34,635

8 66,833 32,769 51,439 32,340

9 63,113 30,344 47,735 29,423

10 59,835 28,263 45,607 28,370

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.001

0.01

0.1

1

10

100

1000

×10−3

Capacity (bpp)

Bit error rate comparison

B
it

er
ro

r
ra

te
(B

E
R

)

Zhang

Proposed

Figure 11: Comparison of Bit Error Rate via Capacity (in bpp).

5. Conclusion

Determining the capacity of watermark in a digital image
means finding how much information can be hidden in
the image without perceptible distortion and acceptable
watermark robustness. In this paper, we introduced a new
method for calculating watermark capacity based on image
complexity. Although a few researchers have studied image
complexity independently, in this paper we proposed a
new method for estimating image complexity based on the
concept of Region Of Interest (ROI) and used it to calculate
watermarking capacity. For this purpose, we analyzed the
relation between watermarking capacity and different com-
plexity measures such as ICC, Quad tree, Fractal dimension,
and ROI. We calculated the degradation of images with
SSIM and JND quality measures with different watermarking
algorithms in spatial, wavelet and, DCT domains.

Our experimental results showed that using the ROI
measure to calculate the complexity provides more accurate
estimation for watermark capacity. In addition, we proposed
a method to calculate the capacity in bits per pixel unit
according to the complexity of images by considering

image watermarking as a communication channel with side
information.

The experimental results show that our capacity estima-
tion measure improves the watermark robustness and image
quality in comparison with the most recent similar works.
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