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Imaging through complex media is a well-known challenge, as scattering distorts a signal and invalidates imaging
equations. For coherent imaging, the input field can be reconstructed using phase conjugation or knowledge of the
complex transmission matrix. However, for incoherent light, wave interference methods are limited to small view-
ing angles. On the other hand, time-resolved methods do not rely on signal or object phase correlations, making
them suitable for reconstructing wide-angle, larger-scale objects. Previously, a time-resolved technique was dem-
onstrated for uniformly reflecting objects. Here, we generalize the technique to reconstruct the spatially varying
reflectance of shapes hidden by angle-dependent diffuse layers. The technique is a noninvasivemethod of imaging
three-dimensional objects without relying on coherence. For a given diffuser, ultrafast measurements are used in a
convex optimization program to reconstruct a wide-angle, three-dimensional reflectance function. The method
has potential use for biological imaging and material characterization. © 2014 Optical Society of America

OCIS codes: (110.3010) Image reconstruction techniques; (170.6920) Time-resolved imaging; (290.0290)
Scattering.
http://dx.doi.org/10.1364/JOSAA.31.000957

1. INTRODUCTION
Optical signal transmission through random media has many
applications, including deep-tissue imaging, underwater nav-
igation, and atmospheric sensing. Because the wave equation
is reversible, for coherent imaging, measurement of the com-
plex field can be integrated with a spatial light modulator
(SLM) to correct for strong scattering. This is the principle
behind digital phase conjugation, in which a phase-conjugated
signal propagates backward through a complex medium to
produce an image [1]. Unfortunately, these methods typically
rely on double passage through the material, embedded mark-
ers [2], or multimodal coupling [3–5]. Alternately, knowledge
of the medium’s transmission matrix [6,7] can allow for image
reconstruction numerically or for prepatterning an image be-
fore propagation through the medium to mitigate multiple
scattering and produce a focal spot [8–10]. These methods,
however, still rely on coherence and begin to break down
when the signal bandwidth is larger than D2∕L [11], where
D is the material’s diffusion constant and L is the sample thick-
ness. Therefore, they are less effective for applications with
temporally incoherent or wideband sources [12–14]. Because
of this limitation, generalization to fluorescent imaging or
white light has been limited to small angles of view via the
memory effect [15,16], precluding imaging objects larger than
a fewmillimeters. It has been suggested that correlation-based
methods are unsuitable for large-scale imaging, such as
mappings to turbulent environments [17].

By exploiting the time behavior of scattered light instead,
we do not suffer from these restrictions. In particular, we re-
construct an unknown spatially varying reflectance with a

large angle of view compared to correlation or interference
methods, whose typical scale is a few wavelengths. The
key insight comes from recognizing that time resolution is use-
ful for more than rejecting scattered light, as is done in tradi-
tional time-resolved imaging modalities such as lidar [18],
gated viewing [19], and optical coherence tomography [20].

Time delays of scattered light are naturally coupled to spa-
tial frequencies [21,22]. Therefore, per-pixel time profiles of
scattered light contain useful information about the object.
Indeed, it was shown recently that the time profile of light,
having undergone multiple scattering, can be used to recon-
struct three-dimensional geometries hidden from view [23,24].
Whereas this previous work focused on ideal diffusers and
uniform reflectors, we generalize the method here to account
for spatially varying reflectance, which is important for meas-
uring, e.g., contrast agents in clinical imaging.

2. METHODS
The experimental setup is shown in Fig. 1. A pulsed laser
source of intensity I0 is focused onto a ground glass diffuser
at point xl. Light scatters through the diffuser toward a three-
dimensional object (consisting of discrete points in Fig. 1),
which has a spatially varying reflectance R�x�. Light is scat-
tered by an object point back through the diffuser, where it
is finally imaged onto a streak camera with a 2 ps time reso-
lution. Laser scanning compensates the 1D field of view of the
camera by modeling different viewpoints [25] for a fixed
camera position.

Our light source is a mode-locked 795 nm Ti:sapphire laser
with pulses of approximately 50 fs in duration at a repetition
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rate of 75 MHz. A lens focuses this beam onto a ground glass
diffuser (Edmund Optics, 120 grit). The incident laser spot is
scanned across the diffuser with a pair of galvo-actuated
mirrors. The detector is a Hamamatsu C5680 streak camera
that captures a space-time (x–t) image of 672 × 512 pixels.
The camera’s nominal time resolution is 2 ps. The integration
time for a streak image (one for each laser position) is 10 s to
obtain sufficient SNR.

A portion of the beam is split and focused onto the diffuser
directly in the line of view of the camera. This acts as a cal-
ibration spot to account for systematic fluctuations (laser
intensity fluctuation and timing jitter) during acquisition.
Images are normalized by the peak intensity of this calibration
spot, and the time bins in each streak image (corresponding to
a different incident laser position) are shifted so that the cal-
ibration spot in each image is centered at the same location.

Theoretically, in the geometric approximation [23] with no
occlusions, the time-resolved streak image Il�x; t� for a given
incident laser position xl is

Il�x; t� � I0

Z
g�xl; x; x0�R�x0�δ�ct − �rl�x0� � rc�x0���dx0; (1)

where rl�x0�≡ ‖xl − x0‖ and rc�x0�≡ ‖x0 − x‖ are the (time-
independent) distances from laser point xl to object point
x0 and from x0 to diffuser point x, respectively. The delta func-
tion restricts the integrand to those light paths that reach the
detector at time t. Thus, Il�x; t� is a weighted integral of R�x0�
over the curve ‖xl − x0‖� ‖x0 − x‖ � ct, i.e., Eq. (1) represents
a tomography problem with a baseline limited by the diffuser
area. Here, g�xl; x; x0� is a physical weighting factor that de-
pends on only the scene geometry and diffuser properties:

g�xl; x; x0� � cos�ζ�xl��N�θin�

×
cos�γ�x0�� cos�β�x0�� cos�α�x0��

π2r2l �x0�r2c�x0�
N�θout�; (2)

where the angles α, β, γ, and ζ are due to contributions from
the projected area of illumination, and θin∕out � θin∕out�xl; x; x0�
is the angle between the input/output ray and the diffuser nor-
mal (Fig. 2). N�·� is the averaged intensity profile emanating
from the diffuser. For the ground glass diffuser considered
here, it is Gaussian, N�θ� � exp�−�θ − μ�2∕2σ2�, where σ is
the divergence of the diffuse light and μ is an offset of the
central beam direction due to manufacturing tolerances of the
diffuser thickness.

In principle, from Eq. (1), there are two possible unknown
functions: the scattering profile and the object reflectance
function. Thus, the inverse problem that we address consists
of measuring Il�x; t� for l � 1; 2;…; L and reconstructing the
unknown reflectance function R�x0� and scattering profile
N�·�. We solve a convex optimization problem (as described
in Section 3.B) to minimize the error norm

argmin
R�x0�;N�·�

1
L

XL
l�1

‖Îmeas
l − κlÎ

num
l ‖2; for 0 ≤ R�x0� ≤ 1: (3)

In Eq. (3), L is the number of captured streak images, Îmeas
l is

the vectorized measured streak image for incident laser posi-
tion l, and Înuml is the vectorized form of the corresponding
numerical image [calculated directly from Eq. (1)]. The value
of L was chosen experimentally by comparing the robustness
of the reconstruction due to noise and the total acquisition
time. κl is an unknown gain factor, determined simultaneously
during reconstruction, to account for second-order experi-
mental effects, including variation of the beam profile for dif-
ferent incident positions and the tolerance of the diffuser
thickness. Because the geometry can be estimated from the
streak images using similar methods [23,24], we assume the
geometry to be known throughout. (The influence of geom-
etry errors on the reflectance recovery is discussed in
Section 4.) Therefore, Eq. (3) represents a cost functional with
the unknown functions N�·� and R�x0�, contained implicitly in
Î
num
l , to be determined.

3. RESULTS
A. Reconstructing Diffuser Properties
To simplify the recovery, we first calibrate the algorithm using
a known object, a small square patch (15 × 15 mm) of unity

Fig. 1. Experimental setup. Pulses from a Ti:sapphire laser are
focused onto a ground glass diffuser. The scattered light strikes a
three-dimensional scene (here, a collection of point objects Pj) and
is scattered back through the diffuser, which is imaged onto a streak
camera. A streak image is recorded for 16 different laser positions
incident on the diffuser (top left inset). The streak camera has a
one-dimensional aperture and records the time profile of a horizontal
line (dotted green line) of the diffuser. Bottom right inset: a simulated
streak image for the point cluster. Sample pixels A, B, and C

record the time profile of every Pj at those positions. Scale: 20 mm
(horizontal), 100 ps (vertical).

Fig. 2. Ray optics model for simulating image formation. The model
uses the angles and distances of the relevant scene for each object
point x0.
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reflectance, and treat only the diffuser parameters as un-
knowns in an iterative quadratic program. That is, we assume
R�x0� is known but N�·� is unknown. For a single white object
point at x0, the reflectance reduces to a delta function,
R�x0� → δ�x0 − x0�, so that Eq. (1) becomes

Il�x; t� → I0g�xl; x; x0�δ��ct − �rl�x0�� − rc�x0���: (4)

The argument of the delta function implies that the impulse
response of our time-resolved system is a hyperbola in the
x−t plane. An example of a measured streak image for a given
laser position is shown in Fig. 3(a). Increasing time corre-
sponds to the vertical axis. Note that the intensity profile
along the hyperbola is determined by g, which, for a known
geometry, contains as unknowns the diffuser parameters μ
and σ. Using these measured data, we recover optimal values
of μ and σ via Eq. (3). The resulting error map, shown in
Fig. 3(b), shows that these optimized values are μ � 0.48°
and σ � 8.33°, which agree well with the values measured
from the far-field intensity pattern. Other values of σ increase
the mean normalized l2 error (E) between forward rendering
and actual data significantly, especially in the tails of the
streak image, as shown in Fig. 4. The estimated parameters
are then fixed for all future experiments. Thus, with a
known input and measured output, we see that the statistical

properties of an unknown scattering material can be acquired,
allowing for diffuser characterization and identification.

Although the results presented here use single scattering
layers, the technique has potential for use in the multiple scat-
tering regime. As an example, we replaced the ground glass
with a sheet of paper, which has a thickness of 100 μm and
a mean free path of 2 μm. We compared the measured streak
image through paper and through the glass, and we find that
the temporal blur is virtually the same [Fig. 3(a), bottom].
Indeed, this means that, for our given system, the time reso-
lution is limited by the camera PSF (slit width, streaking blur-
ring, aberrations, etc.) rather than by the diffuser itself. In
contrast, the extension of using incoherent or broadband light
to multiple scattering has been limited to thin layers [12,13].
The bandwidth limit in our case is purely a technological limit,
whereas the correlation-based methods are inherently limited
to (quasi) monochromaticity until wideband algorithms can
be demonstrated.

B. Reconstructing Object Reflectance
With the diffuser properties known, we can estimate the un-
known object reflectance as follows. Each measured streak
image is vectorized by stacking the columns of the Nx × Nt

image. The result is a set of L �NxNt� × 1 vectors, labeled
Î
meas
l in Eq. (3). We then solve the constrained minimization
problem in Eq. (3) using the interior point method and the
fmincon solver from the MATLAB Optimization Toolbox.
We provide a random initial guess for all unknown reflectan-
ces R�x0� with the constraint 0 ≤ R�x0� ≤ 1. The solver then
finds the values of R�x0� that minimize the mean normalized
l2 error between the forward simulation [Eq. (1)] and the cap-
tured data. We terminate the optimization program either
when the change in values of the objective function during
a step is less than 10−15, or when the difference between
the reflectance function with its value in the previous step
(i.e., jR�x0�i�1 − R�x0�ij) is less than 10−15. These constraints
are provided to fmincon using the stopping criteria “TolFun”
and “TolX,” respectively. The convergence time of the optimi-
zation algorithm depends on the number of unknowns, the de-
sired reconstruction accuracy (defined by the termination
constraints), and quality of the random initial guess provided
to the algorithm. For example, ∼80 iterations are required for
the scene in Fig. 8 given these termination constraints.

For the single layer case, other parametric models can be
used for the diffuser, but the two parameters considered
here are sufficient, as validated by two experiments (Fig. 5).
First, with a single patch, we repeat the measurement with
increasing angle θ of the patch normal with respect to the
diffuser (cos θ � nw · nd in Fig. 2). The streak image is
highly sensitive to such angular variation [Fig. 5(a)], with
the mean percent error between numerical and measured in-
tensity low and relatively constant up to a patch angle of 60°
[Fig. 5(b)].

We next recover an unknown object, two frontoparallel
patches of different reflectance values R1 and R2, to demon-
strate wide field reconstruction. We keep the location of the
first patch (R1 � 1) fixed and shift the second patch (R2 � .7)
laterally. Both are located approximately 20 cm behind the
diffuser. For a given incident laser position, there is significant
change in the streak image [Fig. 6(a)], but the estimated reflec-
tance R2 is successfully recovered [Fig. 6(b)] for object

Fig. 3. (a) Top, experimentally measured streak image for a single
incident laser position and single object point for a ground glass dif-
fuser. Bottom, same as above with the ground glass diffuser replaced
by a multiple scattering paper sheet. Scale bars: 100 ps, 20 mm. Color
scale same as in Fig. 1 inset. (b) Error map showing the calculated
optimal diffuser parameters. We use convex optimization to minimize
the mean normalized l2 error between simulation and captured data,
and obtain the central direction (μ) and scattering width (σ) of the
Gaussian. This error plot shows different errors for Gaussian param-
eters with the minimum marked by a white cross, for μ � 0.48° and
σ � 8.33°, both comparable with the expected specifications.

Fig. 4. Reconstruction errors in algorithm due to incorrect charac-
terization of diffuser. Top row, reconstructed streak of a single white
patch. Bottom row, error map for (a) σ � 1.8°, (b) σ � 8.8°, and
(c) σ � 15.8°. Color scale same as in Fig. 1 inset.
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separations as low as 17 mm and as large as 125 mm, showing
the method to be amenable for large angles of view.

We show further validation of our ray-optics-based model
for image formation in Fig. 7. The mean absolute error be-
tween true and computed intensity of pixels is low (<20%)
for high intensities, while it is much higher only for low inten-
sities at the edges. This can be attributed to the high additive
noise introduced by the camera during the integration proc-
ess. The ray-optics-based model can calculate accurate values
for high intensities robustly.

For more complex scenes, the streak image consists of a
linear combination of hyperbolas from each object point Pi

(Fig. 1, inset). In general, the system in not shift-invariant, with
the curvature and the intensity profile of a given hyperbola
changing with respect to object point locations. For well-
separated points, it is relatively straightforward to reconstruct
the scene, as individual hyperbolas themselves are separable
(e.g., at green x0s along pixels A and C in Fig. 1, inset). In gen-
eral, however, this is not so and any given pixel can contain
contributions frommultiple points (at green x along B). There-
fore, for a particular scene, there may not be enough pixels
that record only a single contribution from each scene point
to reliably recover the reflectance of all scene points. In such
cases, it is not possible to recover the reflectance of all the
scene points using only time-of-arrival information, as in gated
imaging, making computational techniques necessary.

As an example, consider the scene in Fig. 8, a set of six
patches that span a lateral field of 150 mm × 60 mm and a
depth range of 13 mm. The convex optimization problem

Fig. 5. Validation of model and reconstruction algorithm. (a) Streak
data for single patch rotated at an increasing angle relative to the dif-
fuser normal. Color scale same as in Fig. 1 inset. (b) Mean percent
error between the captured data and forward simulation is low across
a 60° range. Scale bars: 50 mm (horizontal), 200 ps (vertical).

Fig. 6. Validation of model and reconstruction algorithm. (a) Streak
data for two patches with increasing separation Δx (in mm). Color
scale same as in Fig. 1 inset. (b) Reflectance is reconstructed success-
fully for separation up to 125 mm. The error in reflectance estimation
is random and arises due to background noise and calibration errors.
Scale bars: 50 mm (horizontal), 200 ps (vertical). Color map same as in
Fig. 1 inset.

Fig. 7. Our geometric-optics-based model accurately simulates the
streak image formation. The first column shows streak images cap-
tured for different θ using the configuration described in Fig. 4(a).
The second column shows the pixel-wise percent error between
the measured and computed intensity. Pixels with intensity below
an absolute threshold (1% of maximum intensity) are set to zero,
to avoid background noise. Scale bars: 25 mm (horizontal), 24 ps
(vertical).
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[Eq. (3)] allows for accurate reconstruction of all six patch
reflectances, shown in Fig. 9. Note that, although there are
six individual patches, only three individual streaks appear

visible in the measured data [Fig. 8(b)], with the others
“buried” in these dominant contributions. However, as shown
in Fig. 9(b), we see that the reconstructed reflectances agree
with the expected ones.

4. DISCUSSION
As noted previously, SLM-based methods are limited by the
bandwidth of the source, whereas the time-resolved case pre-
sented here is limited by the bandwidth of the sensor as
follows. Theoretically, we can expect the model to break
down when the time T spent in the diffuser material exceeds
the camera resolution Tc. Using the same dimensional analy-
sis of the diffusion equation as in the coherent case, T ∼L2∕D.
For a sample thickness of 100 μm, average refractive index of
n ∼ 1.4, and reduced scattering length of 10∕cm, we calculate
that T ∼ 100 fs. This is 20 × less than the pixel resolution
(2 ps) of the streak sensor, meaning that multiple scattering
for biological samples of interest can be handled here. The
incoherent method here has the advantage of not producing
unwanted speckle in the measured and reconstructed
images [26], which invariably occurs for transmission matrix
methods [8].

For time-resolved imaging, the sensor’s time resolution can
decrease for nonideal conditions, including misfocus and
aberrations. For the given setup here, robust reflectance re-
covery of centimeter-size scenes with depth variation on
the order of millimeters requires a time resolution of
δt < 10 ps. We demonstrate this by generating streak images
(with 10% additive white Gaussian noise in intensity) for dif-
ferent time resolutions of t � f2; 20; 200 psg for the six-patch
object from Fig. 8. We solve for scene reflectances using the
same quadratic program and summarize the results in Fig. 10
and Table 1. This experiment also validates the robustness of
our reconstruction algorithm to intensity noise.

Fig. 8. Reconstruction of a complex scene. (a) Experimental setup
of scene. (b) Streak data for four different incident laser positions
(spatial configuration as seen in Fig. 1). Inset: frontal view of occluded
scene with white light illumination. Occluded objects are not visible to
the naked eye. Scale bars: 50 mm (horizontal), 200 ps (vertical). Color
scale for (b) same as in Fig. 1 inset.

Fig. 9. Reconstruction of a complex scene. (a) Depthmap of scene in
Fig. 8, which is 110 mm wide with total depth variation 13 mm.
(b) Comparison of reconstructed (blue circles) and ground truth
(red squares) reflectances. (c) Ground truth and (d) reconstructed
reflectance maps. Scale bars: 15 mm.

Fig. 10. Reflectance reconstruction for the scene in Fig. 8, simulating
different time resolutions.

Table 1. Reflectance Reconstruction Using Time
Resolutions in Fig. 10 Becomes Worse with

Poorer Time Resolution

Patch Depth (mm) 239 246 235 237 238 243

True Reflectance 1 0.6 0.5 0.1 0.7 0.9
t � 2 ps 1 0.596 0.499 0.0982 0.7 0.875
t � 20 ps 1 0.597 0.473 0.0941 0.756 0.809
t � 200 ps 1 0.62 0.422 0.0999 0.758 0.763
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Here, we have assumed the location of the unknown ob-
jects to be known. Our quadratic-program-based approach
for reflectance reconstruction is robust to small errors in
ground truth geometry. It is possible that the input geometry
of the scene is not accurate if it is obtained using time-
resolved reconstruction or due to other experimental errors.
We simulate this case by introducing random errors in geom-
etry. The reconstruction is poor if we solve for reflectance
assuming the input geometry is correct. However, we can im-
prove the reconstruction by solving a quadratic program
jointly for both reflectance and geometry. The results are
summarized in Fig. 11.

Further, we note that unknown patches can be accounted
for by inputting into the algorithm more patches than
expected. A spatially varying reflectance can, theoretically,
include reflectance values of 0, which correspond to the
absence of a patch. If no point is present at these locations,
the reflectance value should be 0 (or comparable to the noise
floor). For example, we simulate the expected streak images
for the six-patch geometry shown in Fig. 8, but in the
reconstruction algorithm, we assume there are ten unknown
patch reflectances to recover. As shown in Fig. 12, the

erroneous four patch locations yield a negligible reflectance
for each. Thus, the presence or absence of an object (i.e., the
shape) can be recovered at a given depth. The full generaliza-
tion, to an unknown 3D shape and reflectance, can be com-
pleted through, e.g., sparsity-based methods [27], in which
each unknown patch is parameterized by three spatial coor-
dinates and one reflectance value. This is the subject of
future work.

Conceptually, there is a much wider range of feature sizes
that can be reconstructed. On one hand, the algorithm can be
modified to include diffractive effects and is robust to small
geometry measurement errors, making it amenable for exten-
sions to smaller objects. On the other hand, because we rely
on time resolution (Δt), larger features (Δz) are easier to iden-
tify (Δz ∼ cΔt). Experiments would scale up using higher-
power lasers and a wider camera aperture, as the measured
intensity scales as the aperture divided by distance squared.

However, for biological applications, care must be taken
not to damage the samples. The main limitation of the system
is not time resolution, but dynamic range and noise, which
worsens with multiple scattering. For this reason, the use
of a microchannel plate (MCP) for gain is imperative. We ex-
pect that positive results can be obtained using similar power
levels as found in time-resolved diffuse optical tomography
[28], though recent nonlinear extensions to imaging suggest
that stochastic resonance effects can enhance the signal using
the noise energy [29].

With the discrete objects and scattering layer considered
here, we expect that the method will become highly useful
for imaging point-like sources via photoswitchable fluoro-
phores for super- resolution [30,31], high-speed particle flow
imaging [32,33], and lifetime fluorescence tomography [34], or
for noninvasive in vivo imaging of volumes made transparent
with hydrogels [35]. The diffuse reflectance calculations can
also be generalized to reconstruct the four-dimensional reflec-
tance function for anisotropic objects [36]. Furthermore,
optical mode locking and feedback might provide an alterna-
tive means for addressing spatiotemporal coding [37].

5. CONCLUSION
In conclusion, time-resolved measurements of scattered light
were used in a numerical inversion algorithm to reconstruct
the wide-field, spatially varying reflectance of a three-
dimensional scene through a scattering layer. The method
does not rely on the memory effect or coherence, but instead
utilizes computational optimization techniques that are suit-
able for large objects. We expect this result to prove useful
for new methods in image acquisition and processing of opti-
cal signals in scattering media.
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