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ABSTRACT 

Plantation edges are a tangible landscape feature that can be manipulated 

by altering harvest strategies, stand delineation, and regulation methods on a 

landscape scale. Determining whether a difference in biodiversity values exist 

between structurally varied edge types created by pine plantations in East Texas 

could identify forest management improvements for wildlife biodiversity. 

Biodiversity has been estimated within varied endemic and exotic plantation 

systems but few studies have evaluated plantation edges of contrasting rotational 

stages.   

An individual large Timberland Investment Management Organization 

(TIMO) manages a fragmented strip of pine plantations between the Davy 

Crockett and Angelina National Forests of East Texas. These plantations are of 

specific interest because of their abundance, similar management objectives, 

and uniform silvicultural practices. Lack of a clear understanding of how, or if, 

wildlife biodiversity varies in the edges between plantations prompted this 

evaluation of biodiversity. Structural differences between plantation edges are 

presumed to be the main mechanism that would create observed differences in 

the diversity and abundance of wildlife.
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Diversity and abundance of vertebrate species and family richness of 

invertebrates was estimated amongst three loblolly pine (Pinus taeda L.) 

plantation edge types of contrasting rotational phases. Three edge types 

weredefined based on combinations of structurally different stands created via 

forest thinning on sampled lands (A=pre-thin/post thin, B= pre-thin/pre-clearcut, 

and C=post thin/pre-clearcut).  

For two summer seasons (May-August, 2015-2016) richness and 

abundance data was collected on birds, medium sized-mammals, and small 

mammals, using double observer point counts, motion camera traps, and 

Sherman traps, respectively. Invertebrate families were sampled for richness 

using pitfall traps. Utilizing richness and abundance data collected, two indices of 

diversity (Shannon’s, Simpson’s reciprocal), two measures of species evenness 

(Shannon’s, Simpson’s reciprocal), and two measures of community dominance 

(Beta diversity, Berger-Parker index) were calculated. The two samples for each 

animal group observed were also extrapolated out to six samples using sample 

based rarefaction curves (SBRC) generated with the software EstimateS.  

Data analysis was designed to determine which edge type had the most 

species detected (richness, alpha diversity), the dissimilarity between edge type 

species (beta diversity), and the dissimilarity between the number of individuals 

within each edge type (Berger-Parker Index). Information about how the rarity or 

commonness of species observed within each edge type affected each’s 

diversity (Shannon Index, Simpson’s Reciprocal Index) was also calculated. The 
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richness of each animal group within each edge type based on extrapolated 

samples (SBRC) was estimated to account for the small sample size. 

Richness and abundance of vertebrates was similar amongst edges 

during 2015 and increased with stand ages during 2016. However, diversity 

indices, community dominance, and evenness of vertebrates failed to detect a 

difference amongst edge types for each season. Additionally, confidence 

intervals for sample based rarefaction curves for the three edge types 

overlapped, preventing the identification of a difference with only six extrapolated 

samples. However, twenty-one of the fifty-five invertebrate families were found 

exclusively in edge type B. 

Regardless, no one-edge type emerged as having elevated value for 

wildlife. Rather, each edge type provided a piece of the open pine habitat 

conditions to which many of these species are accustomed. The similar ratio and 

evenly distributed spatial orientation of stand types amongst sampled lands on 

the landscape provide a variety of stand structures for wildlife. The landscape 

heterogeneity of structurally varied stands, throughout the sampled matrix, can 

be attributed to forest certification standards adopted by the land managers. 

According to these findings, timberlands between the Davy Crockett and 

Angelina National Forests are already being managed with landscape scale 

considerations; however, this study is only a snapshot of biodiversity estimates 

for a two-year span encompassing six similar but varied sites. Increasing the 
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number of replicates through subsequent sampling would allow for the statistical 

analysis of any detectable differences between edge types.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

 

 

ACKNOWLEDGMENTS 

 

I have to begin by recognizing Dr. Daniel Scognamillo and Dr. Gary 

Kronrad for reaching out to me during the final semester of my undergraduate 

degree at Stephen F. Austin State University and inquiring if I had considered 

continuing my education. I do not know where life would have led if the two of 

you had not expressed your confidence in me. I have gained patience, 

knowledge, invaluable experience, and confidence from your mentorship and 

friendships.  

This study evolved from a simple idea into a very specific, complicated, 

and challenging project that was formed by the collaboration and collective 

expertise of several people along the way. I would like to thank Dr. Roger Masse 

for your input while I was determining how to tackle the challenging task of 

devising a plan and techniques for sampling four different animal groups on six 

sites over two seasons. You were always available when I needed a sounding 

board and were very prompt while we corresponded.  I would also like to thank 

Dr. Jeremy Stovall for helping me with the silvicultural aspects of this endeavor. 

Your input was insightful while I was defining the edges to be sampled and what 

silvicultural implications would come from my results. Special thanks go out to 

the entire staff here at the Arthur Temple College of Forestry for providing the 

logistics and moral support needed to see this project to the end. Tish Bell, Jeff 



 

vi 

 

Williams, and Ricky Luna deserve special recognition for their individual efforts 

assisting me along the way. This project required the use of several vehicles, 

numerous field tools, and the use of GIS and several computer programs, all of 

which were always available to me with a smile.  

My student workers and other employees performed admirably during the 

two summers working long hours in extreme heat without complaint. Mellissa 

Griffith not only conducted the 2015 bird counts with me but also handpicked my 

entire field crew for both years. Your friendship and support the past two years is 

greatly appreciated. Rae Lynn Hester led my field crews for two years and 

committed more hours to this project than anyone besides myself. Thank you for 

keeping me honest. Nick Abshire, K’shell Bell, Mikey Harrison, Kaitlyn Yates, 

Marshall Woodruff, Bella Reyes, Chris Longman, and Cassey Edwards all 

contributed to cutting the 12 kilometers of sampling lanes, setting up game 

cameras, small mammal trapping, birding, insect trapping, and data analysis in 

the lab. Thanks for getting up early and driving to Diboll with me all summer.  

This study would not have been possible without funding from the 

Sustainable Forestry Initiative who strives to improve conditions for wildlife 

through research and direct involvement with land managers. Campbell Global 

deserves hearty thanks for allowing us to sample wildlife on their pine 

plantations. Thanks to Don Dietz, Johnathan Grace, and Rob Hughes for helping 

me to locate my sites, provide maps, and pull me out of the mud as needed.  



 

vii 

 

I am grateful to my fellow graduate students who have all helped me along 

the way. Having a cohort to navigate this thing that is grad school with has been 

extremely beneficial. Each of you helped me either scholastically, professionally, 

and/or personally and I am better for knowing each of you.  

Last, but not least, I have to recognize my friends and family who have 

supported me in each of my endeavors along the way. Thank you for allowing me 

to succeed and fail on my own without overwhelming me with advice or telling me 

how I need to do things. This is my journey and my story and I am so glad you 

are all here for it. 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

 

TABLE OF CONTENTS 

ABSTRACT ..................................................................................................................................... i 

ACKNOWLEDGMENTS ............................................................................................................... v 

LIST OF FIGURES....................................................................................................................... ix 

LIST OF TABLES ........................................................................................................................ xii 

RICHNESS AND DIVERSITY OF PLANTATION EDGES ................................................... 13 

INTRODUCTION ....................................................................................................................... 1 

METHODS ............................................................................................................................... 13 

Study Area ............................................................................................................................ 13 

Sampling Techniques ......................................................................................................... 16 

Measurements of Richness and Diversity ....................................................................... 19 

Habitat Variables ................................................................................................................. 29 

RESULTS ................................................................................................................................. 32 

Sample Size ......................................................................................................................... 32 

Richness ............................................................................................................................... 35 

Proportional Abundances of Individuals Amongst Species and Edges ...................... 36 

Diversity and Evenness ...................................................................................................... 38 

Sample Based Species/Family Accumulation Curves ................................................... 44 

Habitat Variables ................................................................................................................. 45 

Digital Hemispheric Canopy Photography ....................................................................... 46 

DISCUSSION ........................................................................................................................... 77 

LITERATURE CITED.............................................................................................................. 96 

VITA......................................................................................................................................... 104 

 



 

ix 

 

LIST OF FIGURES 

 

Figure 1: Plantation matrix of interest between two national forests in  
Angelina County, TX………………………………………………………................48 

Figure 2: Map of 2015-2016 study sites near Diboll, TX………………………….49 

Figure 3: Map of available edges created by the combination of stand ages…..50 
  
Figure 4: Map of stands that create edge type A within the study area from 
2014……………………….…………………………………………………………….51 

Figure 5: Map of stands that create edge type B within the study area from 
2014…….……………………………………………………………………………….52 

Figure 6: Map of stands that create edge type C within the study area from 
2014………………………………………………………………………………….….53 

Figure 7: Detail of section of selected edge that was sampled for  
invertebrates, birds, small and medium mammals..……………………………….54 

Figure 8: Orientation of double observer point counts for birds in 2015-16  
near Diboll, TX. Four 25 m fixed radius plots were sampled for 10 minutes  
each per site/survey………………………………………………………………...…55 
 
Figure 9: Triangular coordinate graph of small mammal species found during  

the summers of 2015-2016 near Diboll, TX…………………………………………56  

Figure 10: Triangular coordinate graph of medium mammal species found  
during the summers of 2015-2016 near Diboll,TX…………………………………57  
 
Figure 11: Triangular coordinate graph of bird species found during the  

summers of 2015-2016 near Diboll, TX……………………………..………………58  

Figure 12: Edge type A species richness by side of edge for 2015 data. 
Invertebrates were identified to family…………………………..…………...……...59  

Figure 13: Edge type B species richness by side of edge for 2015 data. 
Invertebrates were identified to family……………………………….……………...59



 

x 

 

Figure 14: Edge type C species richness by side of edge for 2015 data. 
Invertebrates were identified to family. ………………………….………………….59 

Figure 15: Edge type A species richness by side of edge for 2016 data. 
Invertebrates were identified to family……………..……………………...………...60 

Figure 16: Edge type B species richness by side of edge for 2016 data. 
Invertebrates were identified to family…………………………………….………...60 

Figure 17: Edge type C species richness by side of edge for 2016 data. 
Invertebrates were identified to family……………………………….……………...60  

Figure 18: Comparison of Shannon Index values with each edge type’s 
corresponding species richness. Data collected in the summers of 2015-2016 
near Diboll, Texas……………………………………………………………………..61 

Figure 19: Comparison of Simpson’s Reciprocal Index values with each edge 
type’s corresponding species richness. Data collected in the summers of  
2015-2016 near Diboll, Texas……….……………………………………………….61  

Figure 20: Sample based rarefaction curve with 95% confidence intervals for    

edge type A observed from 2015-2016 in Diboll, TX. Samples 3-12 were 

generated via sample based rarefaction using EstimateS Version 9.………..….62   

Figure 21: Sample based rarefaction curve with 95% confidence intervals for   

edge type B observed from 2015-2016 in Diboll, TX. Samples 3-12 were 

generated via sample based rarefaction using EstimateS Version 9……………63   

Figure 22: Sample based rarefaction curve with 95% confidence intervals for   

edge type C observed from 2015-2016 in Diboll, TX. Samples 3-12 were 

generated via sample based rarefaction using EstimateS Version 9……………64   

Figure 23: Sample based rarefaction curve for invertebrate families trapped  
from 2015-2016 in Diboll, TX. Samples 3-6 were generated using EstimateS 
Version 9.1………….………………………………………………………………….65 

Figure 24: Sample based rarefaction curve with 95% confidence interval for 

invertebrate families trapped on edge type A from 2015-  2016 in Diboll, TX. 

Samples 3-6 were generated using EstimateS Version 9.1…….………….……66  

Figure 25: Sample based rarefaction curve with 95% confidence interval for 

invertebrate families trapped on edge type B from 2015-2016 in Diboll, TX. 

Samples 3-6 were generated using EstimateS Version 9.1..……….….…………67  



 

xi 

 

Figure 26: Sample based rarefaction curve with 95% confidence interval for 

invertebrate families trapped on edge type C from 2015-2016 in Diboll, TX. 

Samples 3-6 were generated using EstimateS Version 9…………………………68  

Figure 27: Comparison of direct site factor (DSF) and basal area of stands  
for the older side of each edge type for 2015-2016………………………………..69  
 
Figure 28: Comparison of direct site factor (DSF) and basal area of stands  
for the older side of each edge type for 2015-2016………………………………..70  



 

xii 

 

LIST OF TABLES 

 

Table 1: List of bird species found in each edge type and season along with  
their abundances……………………………………………………………………...71 
 
Table 2: List of medium mammal (MM) and small (SM)species found in each 
edge type and season along with their abundances……………………………....72 

Table 3: List of invertebrate families captured during 2015-2016 near Diboll, 
Texas……………………………………………………………………………………73  

Table 4: Alpha (α), gamma (ƴ), and beta (β) diversity for vertebrate groups 
sampled summers of 2015 and 2016 near Diboll, TX …………………………….74 

Table 5: Number of species (S), total number of individuals (N) and values of 
species diversity indices of vertebrates observed in loblolly pine plantations 
during the summers of 2015-2016 near Diboll, Texas ………………………...….74 

Table 6: Vegetation measurements for sampled pine plantations near Diboll, 
Texas from the summers of 2015 and 2016………………………………………..75 

Table 7: Digital hemispheric canopy photography results from three edge  
types sampled in Diboll, TX August of 2016. Values for Indirect site factors  
(ISF), direct site factors (DSF) and global site factors (GSF) range from 0-1  
with 0= no radiation reaching forest floor and 1= total radiation exposure. 
Analysis conducted using Hemi-View Canopy Analysis Software Version 2.1....76 

 



 
  

 

 

RICHNESS AND DIVERSITY OF PLANTATION EDGES 

 

 

 

 

 

 

 

 

 



 

1 

 

INTRODUCTION 

It is estimated that half of the terrestrial flora and fauna on Earth are found 

in forested ecosystems (Hassan et al. 2005); however, global deforestation 

trends and conversion of natural forests to agriculture or plantation monocultures 

are major threats to global wildlife biodiversity (Stephens and Wagner 2007). As 

of 2007, the global area of natural or semi-natural forests was decreasing at a 

rate of 13 million hectares each year, only 2-3 million hectares of which are being 

converted to plantation forestry (Thompson et al. 2011, FAO 2007, FAO 2006). 

According to Hansen et al. (2010), North America experienced the greatest gross 

forest cover loss (GFCL) (forest “cover” loss indicates the clearcutting of stands 

not land conversion to other uses) during 2000-2005 with the United States 

ranking 4th globally in GFCL among countries with over one million square 

kilometers of forest cover lost. With 87% of forested lands in the southern United 

States in private ownership, biodiversity conservation cannot be accomplished on 

public lands alone (Miller et al. 2009, Zobrist et al. 2005). 

Before European settlement, an estimated 81 million hectares of pine, 

oak, and other mixed forests dominated the American South, in which longleaf 

pine (Pinus palustrus Mill.) savannah (~24 million hectares) is estimated to have
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thrived (Zobrist et al. 2005). These stands were mostly comprised of a single 

species overstory, a sparse mid-story, and a species rich understory (Zobrist et 

al. 2005). The primary disturbance regime in these forests was frequent natural 

and anthropogenic fire that perpetuated the fire resistant longleaf pines and 

allowed for large, long lived (600 years plus) trees (Zobrist et al. 2005). These 

lands were replaced with other southern yellow pine species (primarily Pinus 

taeda L.) that could better suit the needs of the timber industry. Today dozens of 

threatened or endangered wildlife species utilize the remaining 1.2 million 

hectares of longleaf pine forest, of which less than 5,000 hectares are regarded 

as old growth (Zobrist et al. 2005).  

Despite the compositional and structural differences between historic open 

pine and current intensively managed forest conditions, plantations can provide 

habitat for many forest species (Greene et al. 2016, Zobrist et al. 2005). Greene 

et al. (2016) argue that managed pine forests that receive mid-rotational 

silvicultural activities such as prescribed fire, chemical treatment, or forest 

thinning can provide habitat for wildlife species adapted to and favoring open 

pine conditions. Additionally, young planted forests provide early successional 

habitats dense with graminoid bunches, diverse forbs, and singing perches 

needed for pine-grassland avian species such as the Bachman’s sparrow 

(Aimophila aestivallis), eastern kingbird (Tyrannus tyrannus), yellow-billed 
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cuckoo, northern bobwhite, prairie warbler (Dendroica discolor), greater 

roadrunner (Geococcyx californianus), American woodcock (Scolopax minor), 

and the eastern towhee (Pipilo erythrocephalus).  

Having early successional habitat scattered throughout this matrix of 

planted pine is beneficial to other species groups as well. Small mammals and 

invertebrates benefit from the increased sunlight in early successional habitat 

that promotes dense herbaceous and forb layers that provide food and cover 

from aerial predators (Kellner and Swihart 2014). The retention of logging debris 

on cutover lands benefits avian, small mammal and insect groups by providing 

substrate and microsite movement pathways (Kellner and Swihart 2014).  

As these early successional habitats mature, they enter the stem 

exclusion stage as the canopy closes. This limits and in some cases totally 

restricts use of those stands by certain species. As the structure of these forests 

shift, so do their vegetative composition and density. Closed canopy avian 

species such as the tufted titmouse and Carolina chickadee eventually will 

replace the early successional specialists such as eastern kingbirds (Tyrannus 

tyrannus) and prairie warblers (Setophaga discolor) in growing stands. However, 

the dynamic nature of the plantation matrix allows for a mix of stand types in 

varied stages of development, in close proximity to each other, which provides a 

plethora of stand and edge types, and facilitates species dispersal.   
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Structural (density, debris abundance, canopy cover), compositional (floral 

and faunal diversity), and functional (stand stage, productivity, management 

practices) bio-indicators of forest diversity have been identified for stand level 

plantation management (Smith et al. 2008). Amongst these bio-indicators, stand 

stage, a multivariate classification of stand structure, is the most effected by 

forest thinning activities (Smith et al. 2008). Because thinning is a necessary 

management practice in planted and natural forests grown for timber, it is the 

easiest functional bio-indicator of biodiversity to change (Smith et al. 2008). 

Stand structure is strongly correlated with species richness, and so the use of a 

small number of stages (pre-thin, post-thin, pre-clearcut) can be used to 

summarize biodiversity changes over each forest cycle (Smith et al. 2008). When 

these stages of stand development created by stand age and forest thinning are 

adjacent to each other, they create unique edges of unknown value to wildlife 

diversity. 

Owens et al. (2014) argue that intensively managed pine species 

plantations can support more birds than the historically disturbed landscapes. 

Intensively managed Pinus spp. plantations are managed and maintained more 

so today than historically. Models developed to determine the relationship 

between avian richness, abundance, and breeding score (a measure of breeding 

activity) were all positively correlated with non-woody vegetation height, density, 
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and heterogeneity within planted forests (Owens et al. 2014). Successional 

changes in these young forests steadily facilitated a 15-power increase in 

breeding activity in only 5 years and avian richness doubled over this time 

(Owens et al. 2014).  

Numerous evaluations of wildlife diversity within planted forests have been 

conducted on stands of varied structure (Calladine 2009, Lindenmayer et al. 

2009, McWethy 2009, Smith et al. 2008, and Constantine et al. 2005). What we 

propose is the evaluation of wildlife diversity amongst combinations of stand 

structures, or edges, between timber stands of three stand stages. The spatial 

and temporal shifting of plantation stands within a forest-dominated landscape is 

what is so intriguing about utilizing their edges more efficiently. The value of 

edges for wildlife depends on their spatial configuration (MacDonald 2003), 

productivity (McWethy et al. 2009), and structure (Smith et al. 2008), which are 

controlled through management decisions. If managers of large land bases 

undertake stand level management for biodiversity, then their practices are likely 

to support increased biodiversity across the landscape (Zobrist et al. 2005). The 

scale for such management could extend throughout the American Southeast 

where pine species are endemic and grown commercially on 19% of privately 

owned forestlands (Greene et al 2016, Owens et al. 2014).  
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 It is widely accepted that planted forest monocultures are less biologically 

diverse than naturally regenerated primary or secondary forests (Thompson et al. 

2011, Jactel and Brockerhoff 2007, Zobrist et al. 2005, and Hartley 2002). 

Planted forests are often treated with herbicides during planting site preparation 

to reduce herbaceous and woody competition to the crop species. Prescribed 

fire, which reduces litter layers, course woody debris, and mid-story density, are 

also common in planted forest monocultures to reduce fuel loads that could 

endanger investments, limit accessibility to humans, and compete with crop 

species for space, light, and nutrients.  Additionally, these planted forests are 

often harvested prior to trees reaching sizes and ages necessary for habitation 

by several cavity nesting woodland bird, and mammal species. Despite these 

limitations, planted forests are still more beneficial to wildlife than urban or 

agricultural land uses (Hartmann et al. 2010, Brockerhoff et al. 2008, and 

Stephens and Wagner 2007). 

  Biodiversity within plantation forests is important because more 

biodiverse stands have been shown to be more productive (Hartley 2002, Jactel 

and Brockerhoff 2007) and resilient to perturbation (Hansen et al. 2001). The 

presence and abundance of several insectivorous species can offset, reduce, or 

stop damaging insect outbreaks and limit dangerous forest disease vectors that 

can have detrimental effects in monocultures (Jactel and Brockerhoff 2007). 
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Additionally, the presence and abundance of game species such as white tailed 

deer and feral hogs allow landowners to utilize their timberlands as hunting 

leases that offer annual returns on their long-term forestry investments (Zobrist et 

al. 2005). Tracking forest productivity and diversity together allow for direct 

comparisons of the benefits diverse wildlife communities provide plantation 

forests and facilitate the marriage between conservation and industry.  

Managing plantation forests as efficiently as possible can also help curb 

the loss of biodiversity from the conversion of naturally regenerated forests to 

other uses (Hartmann et al. 2010). Increasing forested patch sizes and providing 

corridors for wildlife moving through plantation forests from one natural forest 

patch to another are examples of those management strategies (Lindenmayer et 

al. 2009, Miller et al. 2009, MacDonald 2003, Hartley 2002, Lindenmayer 1999, 

Norton 1998). For instance, area of forested patches of wildlife habitat could be 

increased by establishing forest plantations of regionally endemic species 

adjacent to naturally regenerated forests (Miller et al. 2009, Norton 1998). Thus, 

intensively managed commercial plantations, which comprise 19% of privately 

owned forests in the southern United States (Greene et al. 2016), may be more 

beneficial for wildlife and ecosystem functions than currently known once spatial, 

temporal, and site specific characteristics are better understood (Stephens and 

Wagner 2007, Hartley 2002).  
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The use of plantation forests to provide ecosystem services (such as 

erosion prevention, pest control, pollination, clean water, food, mitigation of 

climate change, control of disease vectors, ecosystem stability, and goods in the 

form of timber) is becoming more and more necessary given current forestry 

trends (Thompson et al. 2011). Increased biodiversity in forest stands enhances 

the delivery of certain ecosystem services, while a reduction in diversity results in 

the degradation of certain ecosystem services (Thompson et al. 2011).  These 

trends illustrate the need and opportunity for plantation managers in North 

America to consider implementing creative management practices to promote 

wildlife biodiversity. Managing for both timber production and species 

conservation is possible, but will require insight regarding specific management 

practices and their effects on wildlife (Lindenmayer 1999, Hansen et al. 1991).   

    Biodiversity conservation efforts in the forestry industry currently include 

certification programs such as the Sustainable Forestry Initiative (SFI), which has 

become a leading force in sustainable forest management in the United States 

(SFI 2015-2019). Globally, 323 million hectares (ca. 8%) of commercial forests 

have become certified through one of the many certification agencies. These 

lands produce 25% of the world’s timber (Moore et al. 2012). Timber plantations 

and natural forests certified under such programs utilize management practices 

that are beneficial to biodiversity conservation (Hagan et al. 2005). For instance, 
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SFI certified forest lands have increased emphasis on the writing of management 

plans, controlling invasive species, adhering to best management practices 

(BMP’s) for water quality and soil retention, and planning for biodiversity and 

habitat conservation (Hagan et al. 2005).  

The notion of altering forest management practices to promote wildlife 

biodiversity, while minimizing economic loss, is not a new concept (Franklin and 

Foreman 1987). In fact, this subject has been studied in multiple ecosystems and 

with varied species compositions, rotation lengths, and harvest strategies (Pryke 

and Samways 2012, Stephens and Wagner 2007, Carnus et al. 2006, 

MacDonald 2003, Hartley 2002, Norton 1998, Hansen et al. 1991, and Franklin 

and Foreman 1987).  For example, a comparison of harvest strategies on 

Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) plantations in the U.S. Pacific 

Northwest called for the retention of biological corridors and forest patches 

among cutover lands to enhance inter-patch movement of species, reduce wind 

effects, and provide edge and cover for wildlife (Franklin and Foreman 1987). 

Similarly, Norton (1998) argued that forest management strategies in New 

Zealand could be altered to improve biological corridors without reducing timber 

production by adopting a landscape management approach and ensuring that 

there are always mature plantation stands adjacent to younger plantation stands.  
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Progress towards improving conditions for wildlife within these various 

planted forest ecosystems began with recognizing the positive relationship 

between biodiversity and forest productivity (Thompson et al. 2011, Klenner et al. 

2009, Brockerhoff et al. 2008, Jactel and Brockerhoff 2007, Stephens and 

Wagner 2007, MacDonald 2003, Hartley 2002). Several studies have been 

conducted looking at the effects of forest features and silvicultural actions on 

diversity. For instance, some of their findings indicate that the abundance of 

snags and coarse woody debris (CWD) (Hansen et al. 1991), canopy openness 

(Greene et al. 2016), rotation length (Andreu et al. 2008, Carnus et al. 2006), and  

understory composition and structure (Hartley 2002) are all linked  to forest 

biodiversity.  

Improving forest productivity by improving forest biodiversity can be a 

delicate balancing act because too much or too little of certain management 

actions can have adverse effects for both biodiversity and productivity. Limiting 

the stem exclusion stage through more severe pre-commercial and commercial 

thinning earlier in a rotation has been recommended to promote biodiversity 

through understory development (Andreu et al. 2008, Carnus et al. 2006); 

however, once the canopy is open, the mid-story hardwoods and vines will have 

to be controlled lest the understory be shaded out and diversity diminished 

(Andreu et al. 2008, Zobrist et al. 2005). Extending rotation lengths has also 



 

11 

 

been recommended for and attributed to increases in biodiversity (Carnus et al. 

2006), but doing so may not coincide with the goals of stakeholders and the 

fluctuations of timber markets (Zobrist et al. 2005, Hartley 2002). Managing for 

biodiversity within commercial timberlands does not have to be a significant 

economic burden on landowners. By identifying any detectable differences in 

wildlife diversity amongst forest edges and carefully evaluating management 

decisions such as stand delineation and regulation, we hypothesize that 

plantation stands and edges can be arranged in a way that is least detrimental to 

biodiversity and connectivity on the landscape, while maintaining viable 

production and revenue levels. 

 This case study focused on the planning for wildlife biodiversity and 

connectivity in a landscape dominated by plantation forests, specifically on the 

management of edges between plantations. We defined these edges as the 

ecotone between structurally different stands of timber being grown with the 

same management strategy but on different timelines. These edges are currently 

created over space and time depending on timber markets, site productivity, real 

estate trends, and decisions made by land managers in regulating a large 

forested land base.  

 By determining if biodiversity differences and/or similarities exist among 

edges in loblolly pine (Pinus taeda L.) tracts in East Texas, we will be able to 
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ascertain if changes to plantation edge ratios and locations would benefit wildlife 

on a landscape scale (Thompson et al. 2011, Jactel and Brockerhoff 2007), or if 

current management strategies already account for these factors.  Wildlife 

biodiversity estimates will reflect local stand level conditions, but the scope of this 

project will include landscape scale considerations for southern yellow pine 

plantation management in the southern United States.
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METHODS 

 

Study Area 

 The Davy Crockett and Angelina National Forests, located 

approximately 32 kilometers apart in the eastern region of the Pineywoods of 

Texas (tpwd.texas.gov), are the oldest and largest contiguous patches of forested 

lands in the region. These forests have different forest management objectives 

than the plantation matrix between them, allowing for natural regeneration and 

increased vertical structural complexity. These National Forests are 70-80 year 

old even aged forests approaching old growth conditions, where the original 

cohort is allowed to die naturally and structural conditions including large 

diameter live and dead trees, multiple cohorts, a diverse composition, and 

canopy gaps created by natural and anthropogenic disturbances develop over 

time.  

These forests are not used for timber; however, the frequent use of 

prescribed fire by forest managers has created an almost homogeneous 

structure throughout much of their total area. Prescribed fire is used to reduce 

fuel loads that could lead to dangerous wildfires, but this favors fire resistant 

floral species and contributes to the forest homogeneity. These older and larger 

forested patches benefit certain faunal species that require forest interior habitats 
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and older trees but have limited use for other early successional habitat 

specialists. Due to the heterogeneity and fragmentation of forest age ranges 

within timberlands, one may argue that these planted timberlands offer a more 

diverse range of niches for wildlife than the National Forests. This study was 

designed to estimate species’ richness, abundance and biodiversity in edges 

created within the timberlands of that matrix.  

Stand-replacing disturbance did occur on this landscape prior to the 

widespread establishment of plantation forests, but not on the same scale or 

level of fragmentation as today (Van Lear et al. 2004, and Noss1988). Stand 

rotational phases on sampled lands, based on forest thinning’s, are very similar 

and evenly distributed spatially, which is intuitive considering the constant need 

for harvestable timber stands (Figures 3-6). The similar ratio of stand rotational 

phases and distribution on the sampled landscape helps to reduce any error that 

may have occurred had there been an unequal proportion or clumping effect of 

one or more edge types.  

Edge Types and Sampling Site Selection 

Data were collected during the summer months (June-August) of 2015 

and 2016, on six 4-hectare sites, using sampling techniques targeting 

invertebrates, birds, small and medium-sized mammals. We avoided sampling 
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areas close to major roads, residential areas, and streamside management 

zones to minimize the effects of those features on observations of biodiversity. 

We also excluded sites where logging roads were inaccessible due to rutting 

from forest harvests. These limitations greatly reduced available edges to 

sample. 

Edge treatments were defined based on a chronosequence approach 

(Smith et al. 2008) that uses the thinning regime on sampled lands as a 

separator for three stand stages of development that correspond closely to stand 

age in these intensely managed forests. Current management strategies on 

sampled lands result in thinning between 11 and 18 years after planting and less 

productive sites can be clear-cut as early as 18 years post planting. This strategy 

creates three stand structural phases that occur within each rotation; pre-thin, 

post-thin, and pre-harvest, which were used to define the three edge types (pre-

thin / post-thin, pre-thin / pre-clearcut, and post-thin / pre-clearcut). Sites were 

selected based on the combination of available stand types that encompassed 

each edge type using ArcGIS software (Version 10.2.2, ESRI 2011) and maps 

provided by the land managers (Figures 1-6). The collective sites available for 

sampling yielded one dataset of the three edge types in 2015 and one replicate 

for each in 2016 (Figure 2).  
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Once edges were identified, we defined a 100m x 200m section on each 

side of each edge where sampling was conducted (Figure 7). The study area for 

each site was four hectares with two hectares on each side of sampled edges. 

Ten sampling lanes were established 20m apart in these sections to facilitate 

movement of field technicians while deploying traps (Figure 8). These sampling 

lanes also aided the detection of medium mammals with motion sensing trail 

cameras, because without them visibility would have been only a few feet in 

certain instances and the likelihood of detecting present individuals would have 

been greatly reduced. Additionally, without these sampling lanes, sampling small 

mammals systematically would not have been possible, but rather traps would 

only have been placed biasedly in areas accessible to humans.  

Sampling Techniques 

Edges were sampled for invertebrates using pitfall traps for five 

consecutive days each sampling season. Each trap array was confined to a one 

meter square comprised of five 0.47-liter plastic cups arranged with one trap in 

the center and one at each corner. One cup was placed in the ground at ground 

level; a second cup, of equal size, was placed inside the first and a few cubic 

centimeters of rubbing alcohol and water was added to kill any invertebrates that 

fell into each cup. Four trap arrays were placed along sampling lanes 

perpendicular to each edge with two arrays on either side of the edge, one at 10 
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meters and one at 20 meters, for five nights for twenty trap nights per survey per 

site. Two out of the ten sampling lanes were randomly sampled each survey. 

Samples were collected on the fifth day. Insects trapped were stored in glass 

containers filled with ethanol for identification in the lab. Once in the lab, collected 

specimens were sorted and identified to family using entomology guides for 

North America (Marshall 2006, Arnett and Thomas 2001).  

Avian biodiversity and abundance were estimated using the independent 

double observer method as described by Nichols et al. (2000). Point counts were 

located 50m from the plantation edge within each stand and 130m from each 

other to maintain sample independence (Figure 8) (Calladine et al. 2009). Each 

point was a 50m diameter circle, so every bird seen or heard within 25m of the 

point center was recorded. All sites were comprised of four point counts per 

season and each point was sampled by both observers simultaneously for ten 

minutes. The distance to detected birds and time of detection were recorded by 

each observer independently. Field data collected included: species, time, site 

number, distance to observed bird, whether detection was visible or audible, and 

weather conditions for that day. To prevent observer bias in detection probability, 

we avoided verbal and non-verbal cues between observers during surveys 

(Taulman 2013).  
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Pre-thinned stands reduced the range of visibility so we relied on 

estimations of distance from audible detections. Audio detections of birds during 

fixed radius point count sampling often overestimate distances to detected birds 

regardless of observer ability (Nichols et al. 2000, Alldredge et al. 2007, Taulman 

2013). To reduce this source of error, a 25m logger’s tape was stretched in each 

direction from each point center to mark point boundaries, allowing observers to 

visualize the boundary from the center of the point.   

To detect medium mammal species and estimate richness and 

abundance, we used 30 Reconyx Hyper-fire motion game cameras (Reconyx 

Inc. Holmen, WI) at each site for 10 consecutive days (150 trap nights per site) 

with two cameras at each trap location (Sanderson and Trolle 2005). Cameras 

were programmed to take pictures continuously, with flash as needed, for each 

ten-day sampling period. Each motion detected by the cameras triggered a five-

picture sequence. Cameras were placed randomly along sampling lanes to avoid 

bias. Cameras were placed on either side of each edge with five sets of cameras 

on even lanes on one side and five sets on odd lanes on the other. The 

remaining five camera sets were placed randomly on empty lanes on both sides 

of the edge.  

After trimming back vegetation within the camera’s flash range (5.5m), we 

placed cameras at appropriate heights (1-2m) and angles to focus on cleared 
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sampling lanes or obvious game trails and openings. The two cameras at each 

trap location were oriented to focus on the same focal point from different angles, 

to take pictures from both sides of the animal to facilitate individual 

identifications. Cameras were secured in a metal box screwed to trees and 

locked with a cable to prevent theft.  

We sampled small mammals with 8 x 8 x 22 cm Sherman traps (H.B. 

Sherman Trap, Inc., Tallahassee Fla.) baited with pre-made peanut butter balls 

encased in wax paper. We deployed 200 traps per site, equaling 1,000 trap 

nights per survey per site. We set traps 10m from each other along 10 sampling 

lanes with 10 per side of edge. We marked captured small mammals via toe 

clipping (Umetsu et al. 2006) to identify unique individuals (SFA-IACUC Protocol 

# 2016-008). Sherman traps were sprayed with insect repellant prior to use to 

reduce the amount of fire ants attracted to baits, increase trapping success, and 

increase small mammal survival.  

Measurements of Richness and Diversity 

Calculations for richness and diversity were made with replacement, 

therefore we assumed that the wildlife communities sampled were “closed”, 

meaning that immigration, emigration, births, and deaths were not occurring 

during the sampling period and that no new species were colonizing or going 

extinct in the study area. Sampling with replacement means that sampled 
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individuals were recorded, but not removed from the assemblage. Thus, the 

abundance of each observed species affected how easily or how often they were 

detected.  

Species richness was defined as the sum of vertebrate species observed on 

sampled edges within 200m x 200m blocks. Family richness was defined as the 

sum of invertebrate families observed on sampled edges. Diversity is defined as 

“an expression or index of some relation between the number of species and 

their corresponding abundances” (Spellerberg and Fedor 2003). There are two 

types of diversity indices (Itô 2007). Type 1 indices include the Shannon diversity 

index (H’, equation 1), which is most sensitive to the occurrence of rare species. 

Type 2 indices, like Simpson’s index (D, equation 3) and the Berger Parker index 

(d, equation 6), are most sensitive to changes in the abundance of the dominant 

species in each assemblage. Species dominance refers to which species 

contributes the most individuals to each assemblage. More than one dominant or 

rare species can exist at each site.  

There are two kinds of data typically used in richness studies; incidence 

data, which treats each species as detected or undetected, and abundance data, 

where the number of each species is recorded in each sample (Gotelli and 

Colwell 2011). Due to logistical, temporal, and physical restraints that limit the 
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number samples that can be taken from wildlife communities, under-sampling 

bias can occur (Gotelli and Colwell 2011). To overcome this issue we utilized 

both incidence and abundance data from my samples to estimate diversity.  

There are a few weaknesses with using diversity indices as a predictor of 

ecological diversity. It is difficult to interpret index values alone because species 

lose their identity when they are grouped together. This grouping assumes that 

all species are equal in value to the ecosystem, when in fact there are no two 

species who share identical abundances, life history traits, or habitat preferences 

(Barrantes and Sandoval 2009). Combining species into vertebrate groups does 

not fix the issue of combining species richness with abundance data into a single 

value; however if both Type 1 and Type 2 indices are used, a better 

understanding of the system can be formulated (Itô 2007). Finally, diversity 

indices lack a probabilistic basis, making it impossible to measure the accuracy 

of hypothesis using index values and thus compare them between communities 

(Barrantes and Sandoval 2009). For these reasons we elected to utilize two Type 

2 indices (Simpson’s, Berger-Parker), and one Type 1 (Shannon).  

Species diversity indices along with their corresponding evenness (Shannon 

and Simpson indices only) were calculated for each edge type. Only vertebrate 

species were considered for estimates of species diversity. Shannon’s index is a 
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measure of the character of the relationship between individual species’ 

abundances (ni) and the total number of individuals observed (N). Values for H’ 

should fall between 1.5 and 3.5 for ecological data, but can equal zero if there is 

only one species in the dataset. Higher values of H’ indicate communities that 

are more diverse.    

Shannon’s index (H’) is affected more-so by less abundant species. The 

idea behind H’ is that the more species there are, and the more equal their 

proportional abundances in the dataset, the more difficult it is to correctly predict 

which species will be the next one identified. Using the Shannon index quantifies 

the uncertainty associated with this prediction, and then it quantifies the 

uncertainty in predicting the species of a randomly selected individual taken from 

the dataset. The more unequal the abundances of the species types, the smaller 

the corresponding H’. If one species accounts for the majority of the total 

abundance, and the other species are very rare, H’ declines. When there is only 

one species in the dataset, H’ equals zero because there is no uncertainty in 

predicting the species of the next randomly chosen individual. 

Shannon’s Index of Diversity (equation 1) 

      s 
        H’ = -∑ (Pi * ln Pi) 

     i=1 
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Evenness is defined as the variability in species abundances amongst a 

sample (Magurran 2004). An “even” community would be one with an 

approximately equal number of individuals across species (Magurran 2004). 

Evenness for H’ (EH’, equation 2) was calculated by dividing H’ by H’-max. H’-max is 

defined as the maximum diversity that could occur which would require all 

species to have equal abundances (Magurran 2004) and is calculated as the 

natural log of the total number of individuals amongst all species.   

                     Evenness for the Shannon Index (equation 2) 

EH’= H’/H’- max 

      where H’ max = ln (N) 

Values for Simpson’s reciprocal index (1/D) begin at 1 and increase with 

increased diversity with the maximum value being less than or equal to the 

richness. Simpson’s index (D) is known to work well with small sample sizes and 

represents the probability of picking two different individuals of the same species 

back to back. This index gives more attention to abundant species than rare or 

cryptic species. Simpson’s index is calculated by taking the sum of squares of 

the total number of individuals in each species, divided by the total number of 

individuals in all observed species (equation 3). We used the inverse of D to 

better illustrate and compare the indices (equation 4). This makes both H’ and 

1/D positive integers with ascending values, indicating increased diversity.  
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Equation 3 is designed so that the smaller the sum of squares for ni/N, the 

larger the reciprocal form of the index, making it more sensitive to changes in the 

number of individuals in the dominant species. Species that are more abundant 

raise the sum of squares, which ultimately lowers the reciprocal index value. 

Converting Simpson’s index to its reciprocal form (1/D) allowed for both H’ and 

1/D to be translated with low index values indicating less diverse conditions and 

high index values indicating more diverse conditions.  

Simpson’s Index of Diversity (equation 3) D = Σ(ni/N)² 
Simpson’s reciprocal index (equation 4) 

1/D 

Evenness for the Simpson’s reciprocal index (E1/D) was calculated by 

dividing the index value by the total number of species observed (S) (equation 5). 

Values for E1/D range between 0-1.  

 Evenness for the Simpson’s reciprocal index (equation 5) 

E1/D= (1/D)/ S  

The Berger-Parker index (d, equation 6) is commonly used to assess the 

dominance of the most abundant species in a community and is equal to the 
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highest value for ni / N. This index has been used to compare differences in 

species abundances across varied communities within a similar ecosystem 

where species composition may remain similar but the number of individuals of 

each species may vary. The reciprocal form (1/d) is used more often, so that an 

increase of 1/d values represents an increase in diversity and a reduction in 

dominance (Magurran 2004). This is calculated by dividing the number of 

individuals in the most abundant species (ni max) for each edge type and year by 

the total number of individuals in each sample (Ni) and then converting to a 

reciprocal (equation 7). The greater the difference between the number of 

individuals in the most dominant species per edge and each edge’s total number 

of individuals, the higher the corresponding value for 1/d. Assemblages with the 

most dominant species, and lowest diversity, will therefore have the lowest value 

for 1/d. 

                            Berger-Parker Index of Dominance (equation 6) 

d = (ni max/ N) 

         Reciprocal form of Berger-Parker Index (equation 7) 

1/d 

Alpha, beta, and gamma diversity were calculated for each edge type and 

sampling season. Alpha diversity represents local richness per edge type 

(equation 8), gamma diversity represents richness across all sites (equation 9), 
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and beta diversity represents the dissimilarity between sites (equation 10). Beta 

values were calculated for each vertebrate group individually within each edge 

type and also for the sum of all vertebrate species found within each edge type.  

Alpha Diversity (α) (equation 8) 
α = Richness at edge A, B or C 

 
Gamma Diversity (ƴ) (equation 9) 

ƴ = Sedge A + Sedge B + Sedge C 

Beta Diversity (β) (equation 10) 
β = ƴ / α 

 
  Looking into the composition of species may become a necessity if two 

edge types have similar biodiversity indices, richness, and/or evenness. For 

instance, the proportion of resident birds versus migrants observed, nuisance 

species versus game species, predator versus prey species, or the presence of 

rare, cryptic, threatened or endangered species may supersede richness as an 

indicator of edge habitat quality for wildlife.  

Clustering of species detections amongst edges was graphed using a 

triangular coordinate system where each species’ proportional abundance 

amongst edges created a profile of three numbers in decimal form that sum to 1 

(Ex: 1,2,3=6  1/6=0.17, 2/6=0.33, 3/6=0.5). The abundance of each species per 

edge type was divided by the total number of individuals for each species among 

edges to create the triangular coordinate profiles (Ex: [0.17, 0.33, 0.50]). Profiles 
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represent individual species proportions amongst edges that are represented by 

each data point within the triangular coordinate graphs, which have three axes 

labeled from 0.0-1.0 (Greenacre 1993). Each apex point of the triangle 

represents a value of 1 for one edge and 0 for another. Data points located on 

triangle points indicate that the particular species was found exclusively within 

one edge type. These graphs allow the visualization of species detections and 

abundance between the three edge types (Figures 15-17).  

Small sample sizes in wildlife studies result from logistic, spatial and 

temporal constraints that can limit replication. It is often advantageous in these 

situations to utilize tools like accumulation curves that allow for the extrapolation 

of some asymptotic measure of richness (Colwell et al. 2004, Willott 2001). 

Software EstimateS 9.1 is used to extrapolate species richness from small 

sample sizes using sample (Species accumulation curves, SAC) based incidence 

matrix (Colwell 2013). Each curve was created using binomial data sets from 

2015 and 2016, where detection of a species was indicated with a 1 and non-

detection with a 0. These two samples were then extrapolated out to six samples, 

and fitted to a curve, to compare estimated richness differences amongst animal 

groups and edge types (Colwell et al. 2004).  
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Problems associated with extrapolation via accumulation curves include 

the lack of data regarding relative abundances of species, detection probabilities, 

or occupancy rates. The species occurrence variation among samples and non-

random patterns of co-occurrence of species are sources of heterogeneity, 

defined as “patchiness” among samples (Colwell et al. 2004). For patchy 

distributions, the individual based species accumulation curves overestimate 

richness (Ugland et al. 2003). For this reason, it is better to use sample based 

species/family accumulation curves (SBSAC, SBFAC) that will account for 

heterogeneity between samples (Ugland et al. 2003).   

Another problem associated with extrapolation is that extending the 

number of samples in empirical data sets is only recommended up to triple the 

original dataset (Colwell et al 2004). Accumulation curves must have established 

an obvious plateau to provide reliable estimates of richness (Thompson and 

Thompson 2007, Willott 2001). For the assemblages being sampled, if their 

corresponding accumulation curves had not reached an obvious plateau, then we 

would have to assume that there was inadequate sampling effort to estimate 

richness (Thompson and Thompson 2007).   

Seven curves (Figures 20-26) that illustrate the relationship between 

species/family richness and sampling effort were created using EstimateS 9.1 
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(Colwell 2013). Input for EstimateS required the construction of binomial 

incidence data for species (Colwell 2013). Estimated values for richness via 

EstimateS 9.1 were calculated as the mean of 100 randomized runs and 200 

bootstraps. Outputs from EstimateS included the estimated number of species to 

be found at each edge type (Sest) if six samples were taken based on 

extrapolation of the 2015-2016 samples. EstimateS also generated the upper 

and lower bounds of each SBRCs 95% confidence interval. EstimateS 9.1 

generated three types of curves; cumulative vertebrate SBRCs for each edge 

type (3), SBFAC for the invertebrates with all three edges plotted together (1), 

and SBRCs for the invertebrates by edge type (3) (Figures 20-26). A Student’s t-

test and corresponding probability (p) values for each vertebrate group and 

invertebrates was calculated to identify any significant differences between edge 

types.  

Habitat Variables 

We estimated vegetation variables along sampling lanes to account for 

differences in biodiversity values found between stands and edges. We selected 

three out of ten sampling lanes per side of each edge to sample vegetation.  

Vegetation sampling plots were placed at random distances inside each stand 

(10-100m), perpendicular to the edge (6 plots per site). Once plot center was 

established we selected a random azimuth to lay out the sampling transect. 
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Variables estimated included: over story density (ft²/ac), understory composition 

(%), vertical structural complexity (Nudd’s board), stand height (ft.), and below 

canopy light conditions (DSF, ISF, GSF). Over-story density was sampled using 

three averaged 10 basal area factor (BAF) prism points; canopy total height was 

averaged using three site trees (tallest trees) per stand and a Suunto clinometer.  

A Nudds’ board (2m tall x 0.5 m wide) was used to identify mid-story 

structural complexity in each stand (Nudds, 1977). The board was randomly 

placed at each plot using three random azimuths and observations from a 

distance of 10m. The proportion of the board obstructed by vegetation was 

recorded as a single digit density score, which correspond to a mean value of a 

range of quintiles (1=0-20%, 2=21-40%, 3=41-60%, 4=61-80%, 5=81-100%) 

(Nudds, 1977). The three Nudd’s board estimates at each plot were averaged.  

  CWD and understory composition was estimated using a modified version 

of the Brown method as described by Lutes and Keane (2006). The Brown 

method is typically used to monitor fuel loading for prescribed and natural fires. 

Only the CWD and understory composition estimates were utilized via this 

method, due to their direct relationship to avian and small mammal communities 

(Jones et al 2009). Duff, decay, litter height, and slope were not estimated. One 

notable difference in my methodology and Lutes and Keane’s is that we used a 
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1m square plot on each transect to sample understory composition instead of the 

“sampling cylinder”.  

 Edge types were defined based on thinning regimes, thus the amount of 

light reaching the forest floor varied between stands and edge types. Digital 

hemispheric canopy photography (DHCP), as used in Stovall et al. (2009), was 

used to characterize the proportion of canopy and the amount of light penetrating 

the canopy. Twenty four DCHP images were taken, 4 pictures for each of the six 

sites with one picture 10m inside each stand and one 40m inside of each stand. 

The sampling lane chosen to take pictures was chosen randomly at each site. 

DCHP images were taken in the early morning hours on overcast days to reduce 

errors created by direct sunlight overhead.  A Sigma-SD15 camera (Sigma Corp, 

Japan) with a Sigma DC HSM Circular Fish Eye 4.5mm: 2.8 lens (Sigma Corp, 

Japan) was placed on top of a 1m tripod to take pictures up from below the forest 

canopy.  

Pictures were then thresholded on the gray channel using Hemi-View 

version 2.1 (Rich et al, 1999) to create binary images with the tree foliage and 

branches separated from the sky. Each image was thresholded three times and 

their means were used. The use of Hemi-View 2.1 canopy analysis software 

(Rich et al, 1999, Delta T Devices 1999) provided below-canopy light metrics, 

including the proportion of direct (DSF), indirect (ISF), and global (GSF) site 
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factors (Rich et al, 1999, and Stovall et al. 2009). Direct site factor indicates the 

ratio of direct light below the canopy to direct light above, indirect site factor 

indicates the proportion of diffuse light penetrating the canopy, and global site 

factor is the ratio of total light below the canopy to the total light above (Stovall et 

al. 2009).   

 

 

 

RESULTS 

Sample Size  

A total of 339 individuals comprising 41 vertebrate species (26 birds, 10 

medium mammals, and 5 small mammals) were identified within the six sites 

during 2015-2016 (Table 1 and 2). Fifty five invertebrate families were identified 

via pitfall trapping on the six sites during the summers of 2015-2016 (Table 3).   

Vertebrate Species and Invertebrate Families  

The distributions and proportional abundances of vertebrate species 

amongst the three edge types for each year are displayed with triangular 

coordinate graphs (Figures 15-17). The Carolina wren (Thryothorus 
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ludovicianus), northern cardinal (Cardinalis cardinalis), and white-tailed deer 

(Odocoileus virginianus) were the only three vertebrate species found at all six 

sites (Table 1 and 2, Figures 9-11).  

The Carolina chickadee (Poecile carolinensis), Carolina wren, Northern 

cardinal, and tufted titmouse (Baeolophus bicolor) were the only of the 21 bird 

species detected in 2015 found in all three edges, whereas 6 out of the 23 

detected in 2016 were detected in all three edges (American crow (Corvus 

brachyrhynchos), Carolina wren, indigo bunting (Passerina cyanea), mourning 

dove (Zenaida macroura), Northern cardinal, and white-eyed vireo (Vireo 

griseus)) (Table 1). Overall, there were 12 resident bird species and 14 migratory 

species detected in the study area (Table 1). Resident avian species detected 

accounted for 67% of individuals and migrants accounted for 33% (Table 1). The 

abundance of resident species did not vary much between edge types (A=48, 

B=42, C=41), but the abundance of migrant species increased with edge stand 

ages (A=8, B=22, C=33) (Table 1).  

Edge type A was the only edge with a detection of the migrant Kentucky 

warbler (Geothlypis formosa) and edge type B was the only edge type with a 

detection of the migrant summer tanager (Piranga rubra) and black and white 

warbler (Mniotilta varia) (Table 1). The American robin (Turdus migrtorious), and 
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northern bobwhite, both resident species, along with the migrant blue-gray 

gnatcatcher (Polioptila caerulea), ruby –throated hummingbird (Archilochus 

colubris), and eastern wood pee-wee (Contopus virens), were found exclusively 

in edge type C (Table 1).  

Of the medium mammals 21 individuals were detected in edge type A, 34 

in B and 33 in C (Table 2). The most abundant species detected was white-tailed 

deer (28) followed by feral hogs (Sus scrofa) (24) (Table 2). Detections of white-

tailed deer were identical for edges A and B (8) with a slight increase in edge 

type C (12) (Table 2). Feral hog individuals were detected more in edge type C 

(14), than B (9) or A (1) (Table 2). Detections of bobcat (Lynx rufus) were 

exclusive to edge type A for both years (Table 2) and the only detection of a gray 

fox was within edge type C (2016) (Table 2).  

Small mammal captures were more abundant in edge type A (30) than B 

(12) and C (17) combined (Table 2). Deer mice (Peromyscus maniculatus) 

captures accounted for more than the other four species combined (Table 2).  

The white-footed mouse (Peromyscus leucopus) was captured exclusively in 

edge type A (Table 2).  

Of the 55 invertebrate families captured in 2015 and 2016, 21 of them 

were trapped exclusively in edge type B, including two families of spiders 
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(Pisaruidae and Theridiidae), two families of millipedes (Eurymerodesmidae and 

Spirobolidae), and seven families of beetles (Boridae, Caribidae, Cerambycidae, 

Pythidae, Staphylinidae, Tenbrionidae, and Trogossitidae) (Table 3). Seven 

families were found exclusively in edge type A, including three families of beetles 

(Lucanidae, Silphidae, and Synchroidae) (Table 3). Eight families were found 

exclusively in edge type C, including Scorpionidae (scorpions), and Ixodidae 

(ticks) (Table 3). Seven families were trapped in all edge types, including three 

cricket families (Gryllacridae, Tettigonidae, and Rhapidophoridae), two beetle 

families (Cucujidae and Scarabaeoidae), and one ant family (Formicidae) (Table 

3).  

Richness 

During 2015 the edge type with the highest vertebrate species richness 

was edge B (S=22), followed by edge types A and C, which had equal values of 

richness (S=19) (Table 5). In 2016 edge type C had the highest richness (S=28), 

followed by edge type B (S=22) and lastly edge type A (S=17) (Table 5).  

To determine which side of each edge contributed more vertebrate 

species and invertebrate families to their overall richness, the edges were 

separated and richness per side of each edge was graphed (Figures 9-14). With 

the exception of edge type B in 2015 (10 versus 10) and edge type A in 2016 (6 
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versus 7), each edge had more bird species in its older side, with the largest 

difference being edge type A in 2015 (9 vs 4) (Figures 9-14). Three sites had 

more medium mammals in their younger side (C-2015, A and B - 2016), two had 

equal ratios (A and B - 2015), and one (2016 - C) had more in its older side 

(Figures 9-14). Small mammals occurred at equal ratios for three sites (A and B-

2015, and A for 2016), two sites had more species in their older sides (C-2015-

16), and one had more in its younger side (B-2016) (Figures 9-14). Family 

richness in edge type B (35) for invertebrates was almost double that of A and C 

during 2015 (18) and was tied for the lowest by one family in 2016 (Figures 9-

14). During 2015 each edge had more invertebrate families in their younger side         

(Figures 9-14), but in 2016 edges A and C were the same for the sides of each 

edge (Figures 12 and 14). Edge type B favored the older side by one family 

(Figure 13). 

Proportional Abundances of Individuals Amongst Species and Edges 

 Of the small mammals detected, deer mice were found in the most equal 

proportions amongst edge types (Figure 9). Hispid cotton rats (Sigmodon 

hispidus) were only found in edges B and C, where they shared equal 

proportions of individuals (Figure 9). Two thirds of the northern pygmy mice 

(Baiomys taylori) were found in edge type A, none in B, and one third in C 

(Figure 9). Similarly, two thirds of southern short-tailed shrews (Blarina 
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carolinensis) were detected in edge A (Figure 9). White-footed mice were only 

detected in edge type A (Figure 9).  

 Of the medium sized mammals, the eastern grey squirrel (Sciurus 

carolinensis) and Virginia opossum (Didelphis virginiana) were detected in equal 

proportions amongst edge types (Figure 10). Bobcats were only detected in edge 

type A and the gray fox was only detected in edge type C (Figure 10). Half of all 

coyotes (Canus latrans) detected were within edge type A and a third were in 

edge type C (Figure 10).  Two thirds of all eastern cottontail rabbits (Sylviligus 

floridanus) and raccoons (Procyon lotor) were detected in edge type B (Figure 

10). Half of all nine-banded armadillos (Dasypus novemcinctus) were detected 

within edge type B while edges A and C shared equal proportions of individuals 

(Figure 10). More white-tailed deer and feral hogs were found in edge type C 

than in A or B, however, deer shared equal proportions of individuals in edges A 

and B (Figure 10).  

 The American robin, blue-gray gnatcatcher, eastern wood pee-wee, 

northern bobwhite, and ruby-throated hummingbird were exclusively detected in 

edge type C (Figure 11). The black and white warbler and summer tanager were 

found exclusively in edge type B (Figure 11). The Kentucky warbler was 

exclusively found in edge A (Figure 11). The mourning dove and yellow-breasted 
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chat (Icteria virens) were found in equal proportions amongst the edge types 

(Figure 11).  The hooded warbler and red-eyed vireo (Vireo olivaceus) shared the 

same profile, with two thirds of individuals (Setophaga citrina) being detected in 

edge C and one third in edge B (Figure 11). Blue jays (Cyanocitta cristata) and 

common yellowthroats (Geothylpis trichas) were detected disproportionately in 

edge type A (Figure 11). Half of all Northern cardinals, pine warblers (Setophaga 

pinus), and white-eyed vireos were detected in edge type B (Figure 11). Downy 

woodpeckers (Picoides pubescens) were found in equal proportions in edges A 

and B with zero detections in edge C (Figure 11). Half of all gray catbirds 

(Dumetella carolinensis) were found in edge type B and half in C (Figure 11). The 

majority of Carolina wrens, tufted titmice, and yellow-billed cuckoos (Coccyzus 

americanus) were found in edge type C (Figure 11).  Most American crows were 

detected in edges A and C, indigo buntings in B and C, and red-bellied 

woodpeckers (Melanerpes carolinus) in A and B (Figure 11). One more Carolina 

chickadee was detected in edge type B than in edge types A and C (Figure 11).  

Diversity and Evenness 

Cumulative vertebrate alpha diversity values reflect species richness for 

each edge type (Table 4). The highest alpha diversity for birds came from edge 

type C in 2016 (α=19, Table 4). The highest alpha diversity for medium mammals 
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came from edge type A in 2016 (α=9, Table 4). The highest alpha diversity for 

small mammals came from edge types A and C during 2015 (α=4, Table 4).  

Gamma diversity in 2015 for small mammals, medium mammals and birds 

was 5, 7, and 21 respectively (Table 4). Gamma diversity for all vertebrate 

groups combined during 2015 was 33 species (Table 4). Gamma diversity in 

2016 for small mammals, medium mammals, and birds were 2, 10, and 23 

respectively (Table 4). Gamma diversity for all vertebrate groups combined 

during 2016 was 35 species (Table 4). 

 Edges B-2015 and A-2016 had the lowest overall beta diversity amongst 

vertebrate groups, each contributing all but one of the medium mammals that 

were found amongst all sites (6/7-2015, 9/10-2016, Table 4). Beta diversity for 

birds was lowest amongst edge type C for both years (β =1.61-2015, 1.21- 

2016), while edge type B tied for lowest in 2015 (1.61) (Table 4). Edge type A 

was the least diverse for birds during both years (β=1.91-2015, 2.87-2016, Table 

4). The lowest beta values for small mammals were equal for edges A and C 

during 2015 (1.25) and for edges B and C for 2016 (2.00) (Table 4). The least 

diverse beta value amongst vertebrate groups that had at least one detection 

was medium mammals, from edge type C in 2015 (3.50 Table 4). Edge type A 



 
  

40 

 

during 2016 had zero small mammal captures, so beta diversity was not 

calculated for them.  

Shannon diversity was mathematically highest in edge type B during 2015 

(2.77) and C in 2016 (2.99) (Table 5). During 2015 the difference between the 

least diverse edge (A-2.73) and the most diverse edge (B-2.77) was only 0.04 H’ 

units apart (Table 5). In 2016 the most diverse edge (C-2.99) was only 0.3 H’ 

units more than the least diverse edge (A-2.69), and only 0.03 H’ units more than 

the middle value (B-2.96) (Table 5). Evenness for H’ was highest in edge type B 

for 2015 (0.65) and edge type A in 2016 (0.85) (Table 5).  

In 2015 edge type B had the highest richness (22) as well as the highest 

proportion of species with only one individual (41%) and yet was still the most 

even (EH’ =0.65) and diverse (H’=2.77, 1/d=7.8) amongst edge types (Table 5). 

Edge type A for the same year exhibited the lowest diversity (H’=2.73) and 

evenness (EH’ =0.62) despite having the lowest proportion of species with only 

one individual (0.11) (Table 5). Looking at the number of individuals amongst 

these two edge types and the function of equation 1 helps to illustrate how the 

less abundant species affect values of Pi (ni/N) negatively more than the 

abundant species affect Pi positively. When the proportion of individuals from 

each species out of the entire sample (Pi) is small, the less abundant species 
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create higher negative products of the natural log multiplied by Pi. The larger 

these negative products, the smaller the product of Pi times the natural log of Pi. 

These products are then summed and converted to a positive integer and the 

less abundant species drag the value of H’ down farther than the abundant 

species raise it.  

In 2016, edge types B and C shared similar values for H’ (2.96 and 2.99 

respectively) despite edge type C having six additional species than B (Table 5). 

Edge type C in 2016 had a higher proportion of species with only one individual 

than edge B (0.71 vs. 0.54) but the extra six species allowed edge type C to raise 

its H’ value 0.03 units above edge type B (Table 5). Much of the variation 

observed between edge types come from the bird species that make up the 

majority of vertebrate species identified. They also make up the majority of 

species with only one individual for each edge type, except for edge type A 

during 2015 (Table 1).  

Figure 18 illustrates the relationship between Shannon index values for 

each of the six sites and their corresponding vertebrate species richness. The 

most dramatic change in an edge type from 2015 to 2016 comes from edge type 

C, where richness increased by nine species and the sample size decreased by 

24 individuals (Figure 18). Edge type C went from having four species with one 
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individual in 2015 to 20 species in 2016 (Table 5). Despite the increased ratio of 

species with 1 individual from 2015-2016, the new species added during 2016 

raised the H’ index value by 0.24 units (Figure 18).  

Simpson’s reciprocal index (1/D) was mathematically highest in edge type 

C during 2015 (13.69) and B in 2016 (17.19), despite having three less species 

and four less individuals (Table 5). This is because edge type C was more even 

than edge type B (E1/D =0.72 and E1/D =0.58, respectively), meaning the chances 

of randomly choosing two individuals of the same species from edge type B is 

greater than that of edge type C. Edge type C had 4 out of 19 species (ratio: 

0.21) with only one individual, whereas edge type B had 9 out of 22 (ratio: 0.41) 

(Table 5). Low values of 1/D came from edge type B during 2015 (12.83) and 

from A during 2016 (12.30) (Table 5). Edge type C was the most even (E1/D) 

during 2015 (0.72), but the least even during 2016 (0.47) (Table 5). Similarly, 

edge type B was the most even (E1/D)  during 2016 (0.78) but the least even 

during 2015 (0.58) (Table 5).  

Figure 26 illustrates the relationship between the Simpson’s reciprocal 

index values for each of the six sites and their corresponding vertebrate species 

richness. This index shows a trend for edge type C that is different from the 

Shannon index (Figures 25-26). Instead of increasing from 2015 to 2016 like the 
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Shannon index did, 1/D decreased from 2015 to 2016 (Figures 25-26). 

Shannon’s index is more sensitive to changes in less abundant species, whereas 

1/D is more sensitive to more abundant species, so the increase in species with 

only one individual from 2015-2016 (16 species) increased values for H’ but 

lowered values for 1/D. 

Despite using identical sampling protocols for each season, over twice as 

many individuals were detected during 2015 than 2016 (Table 5). The individuals 

from 2016 surveys yielded the greatest difference from high to low values of 1/d 

(Table 5). Each value of 1/d from 2015 was within 0.8 1/d units, whereas 2016 

values varied as much as 4.5 1/d units, suggesting that with increased detections 

of individuals, more of a detectable difference of 1/d can be observed between 

edge types. This can be observed by considering 1/d values from 2016 for edge 

types A and B, where during 2016 edge type A had a difference of 19 individuals 

between ni-max and Ni (23-4=19), which yielded a 1/d value of 5.8, and edge type 

B for 2016 had a difference of 34 individuals between ni-max and Ni (38-4=34), 

which yielded a 1/d value of 9.5 (Table 5). Berger-Parker index values (1/d) for 

each year were least dominate in edge type B (7.8-2015, 9.5-2016) (Table 5). 

Dominate values for 1/d were found in edge type A during 2015 (7.0) and C 

during 2016 (5.0) (Table 5).  
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Edge type C had less species with a more abundant assemblage of 

individuals than B, which lowered its sum of squares and increased the inverse 

value for D. In 2016 edge type B was more diverse (1/D and 1/d) than the other 

two edges, despite having six less species than edge type C (Table 5). This can 

be attributed to edge type B’s low proportion of species with one individual 

(12/22=0.54) and its evenness (E1/D=0.78), along with edge type C having 20 

species with one individual (E1/D=0.47) (Table 5). Edge type C for 2016 exhibited 

the greatest richness (28) but was only 0.85 1/D units away from the least 

diverse edge (A) that had 11 less species (Table 5).   

The highest number of species with only one individual per edge comes 

from edge type C in 2016 (20); however, edge type A during 2016 had the 

highest proportion of species with only one individual (14/17=0.82) (Table 5). The 

edge with the lowest proportion of species with one individual (0.11) came from 

edge type A during 2015 (Table 5).  

Sample Based Species/Family Accumulation Curves 

Extrapolated species richness means for all three vertebrate groups 

combined was highest in edge type A (41.22 ± 15.14), followed by C (38.94 ± 

8.25), and lastly B (34.57 ± 6.2), however overlapping confidence intervals 

prevent the identification of the richest edge through extrapolation (Figures 20-
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22). Student’s t-test and p values for each vertebrate group did not find a 

significant difference between edge types. The highest estimated invertebrate 

extrapolated family richness means after six samples came from edge type B 

(154.15 ± 68.32), followed by A (109.87 ± 58.42), and lastly C (73.11 ± 43.00), 

however the means never reached an asymptote and overlapping confidence 

intervals prevented the identification of the richest assemblage of families 

through extrapolation (Figure 23). A significant difference was found between 

edge types B and C using the Student’s t-test and p values, however failure of 

the curves to reach an asymptote negates this finding.    

Habitat Variables 

The highest basal area (ft²/ac) in 2015 was found amongst the stands that 

comprise edge type C (83, 83, Table 6). The highest basal area in 2016 was 

found amongst the stands that comprise edge type A (93, 83, Table 6). The 

lowest basal area for 2015 was amongst the stands that comprise edge type B 

(50, 90, Table 6) and for 2016 it was edge type C (60, 70, Table 6). The greatest 

difference in diameter at breast height (2015 - 10” vs 5”, 2016 – 11” vs 8”) and 

total height (2015 – 62’ vs 28’, 2016 – 75’ vs 52’) within each edge’s two stands 

come from edge type B each year (Table 6). Understory density (Nudd’s board 1-
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5) from each edge’s two stands was highest in edge B during 2015 (5, 5), and 

edge A in 2016 (4, 5) (Table 6).  

Individual stand age differences for each edge type between the 2 

seasons were ≤ 3 years (Table 6).  Stand heights varied as much as 30’ (edge 

B’s younger side) and as little as 6’ (edge A’s older side) between the 2 seasons 

(Table 6). Basal area averages varied as much as 23 ft²/ac (edge C’s older 

sides) and as little as 3 ft²/ac (edge A’s younger sides) (Table 6). Average DBH 

values varied as much as 3” (edge B’s younger side) and as little as 0” (edge C’s 

younger sides) (Table 6). Understory density (Nudd’s board 1-5) was identical for 

edge type A’s younger sides and edge type C’s older sides (Table 6). The 

greatest dissimilarity for understory density was found in edge type A’s older 

sides (3) (Table 6).  

Digital Hemispheric Canopy Photography  

During 2015 edge type A exhibited the highest averaged solar radiation 

values for each category (ISF=0.283, DSF=0.285, GSF=0.358, Table 7), 

whereas during 2016 edge type C had the highest averaged values for each 

category (ISF=0.282, DSF=0.295, GSF=0.294, Table 7). The highest DSF value 

estimated came from edge type B in 2016 (0.416) and the lowest came from 

edge type B in 2015 (0.149) (Table 7).  
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The most dramatic difference in DSF from 2015-2016’s younger side of 

each edge occurred in edge type A and the least dramatic difference came from 

edge type B (Table 7, Figure 27). Amongst the older sides of each edge, the 

largest change in DSF between stands was also found in edge type A and the 

most similar DSF values were found in edge type B (Table 7, Figure 28). The 

largest difference in basal area (ft²/ac) came from edge type C for both sides of 

its edge (Table 6, Figures 27-28). It is important to note that amongst the three 

edge types the most dramatic changes in basal area (ft²/ac), between sampling 

seasons, did not account for the most dramatic changes in DSF. For both sides 

(older-younger) of each edge, stands with lower basal area (ft²/ac) had higher 

estimates of DSF.  



 
 

 
 

4
8
 

 
Figure 1: Plantation matrix of interest between two national forests in Angelina County, Texas. 
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Figure 2: Map of 2015-2016 study sites near Diboll, Texas.  
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 Figure 3: Map of available edges created by the combination of stand ages. 
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 Figure 4: Map of stands that create edge type A within this study area from 2014.  
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 Figure 5: Map of stands that create edge type B within the study area from 2014.  
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Figure 6: Map of stands that create edge type C within the study area from 2014.  
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Figure 7: Detailed section of edge that was sampled for invertebrates, birds, 
small and medium-mammals.  
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                       Stand type 1                                               Stand type 2 

Transect 1 Road  

T2   

T3   

T4   

T5                              133 m  100 meters 

T6 200
m 

 

T7   

T8   

T9                                        50 m    

T10                                 

Figure 8: Orientation of double observer point counts for birds in 2015-16 near 
Diboll, TX. Four 25 m fixed radius plots were sampled for 10 minutes each per 
site/survey.  
*Points were located 50m from the tree line on either side. Road width varied between sites. 
Points were spaced as far apart as possible (133 m) along each stand type. 
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Species 

1) Deer Mouse 
2) Hispid Cotton Rat 
3) Northern Pygmy Mouse 
4) Southern Short Tailed Shrew 
5) White Footed Mouse 

Figure 9: Triangular coordinate system graph of small mammal species captured during the 

summers of 2015-2016 near Diboll, TX 
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Species 

1) Bobcat 
2) Coyote 
3) Eastern Cottontail Rabbit 
4) Eastern Grey Squirrel 
5) Gray Fox 
6) Nine Banded Armadillo 
7) Raccoon 
8) Virginia Opossum 
9) White-Tailed Deer 
10) Feral hog 

Figure 10: Triangular coordinate system graph of medium sized mammal species detected during the 

summers of 2015-2016 near Diboll, TX. 
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Species 

1) AMCR 
2) AMRO 
3) BGGN 
4) BLJA 
5) BLWA 
6) CACH 
7) CAWR 
8) COYE 
9) DOWO 
10) EWPE 
11) GRCA 
12) HOWA 
13) INBU 
14) KEWA 
15) MODO 
16) NOBO 
17) NOCA 
18) PIWA 
19) RBWO 
20) REVI 
21) RTHU 
22) SUTA 
23) TUTI 
24) WEVI 
25) YBCH 
26) YBCU 

Figure 11: Triangular coordinate system graph of bird species found during the summers of 

2015-2016 near Diboll, TX 
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Figure 12: Edge type A species richness by side of edge for 2015 data. 
Invertebrates were identified to family. 
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Figure 13: Edge type B species richness by side of edge for 2015 data. 
Invertebrates were identified to family. 
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Figure 14: Edge type C species richness by side of edge for 2015 data. 
Invertebrates were identified to family. 
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Figure 15: Edge type A species richness by side of edge for 2016 data. 
Invertebrates were identified to family.
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Figure 16: edge type B species richness  by side of edge for 2016 data. 
Invertebrates were identified to family. 
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Figure 17: Edge type C species richness for 2016 data.
Invertebrates were identified to family. 
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Figure 18: Comparison of Shannon Index values with each edge type's 
corresponding species richness. Abundance is in parenthesis. Data 
collected in the summers of 2015 and 2016 near Diboll, Texas.
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Figure 19: Comparison of Simpson's Reciprocal  Index values with each 
edge type's corresponding species richness. Abundance is in 
parenthesis. Data collected in  the summers of 2015- and 2016 near 
Diboll, Texas. 
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Figure 20: Sample based species accumulation curve with 95% confidence interval for 
edge type A observed from 2015-2016 in Diboll, TX. Samples 3-6 were generated using 
EstimateS Version 9.1. 

-------------------------------Extrapolated Samples-------------------------
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Figure 21: Sample based species accumulation curve with 95% confidence interval for 
edge type B observed from 2015-2016 in Diboll, TX. Samples 3-6 were generated 
using EstimateS Version 9.1. 

-------------------------------Extrapolated Samples---------------------------
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Figure 22: Sample based species accumulation curve with 95% confidence interval for 
edge type C observed from 2015-2016 in Diboll, TX. Samples 3-6 were generated using 
EstimateS Version 9.1. 

-------------------------------Extrapolated Samples---------------------------
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Figure 23: Sample based family accumulation curve for invertebrates captured during 
2015-2016 in Diboll, TX. Samples 3-6 were generated using EstimateS Version 9.1.
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Figure 24: Sample based family accumulation curve with 95% confidence interval for 
invertebrate families captured in edge type A from 2015-2016 in Diboll, TX. Samples 3-6 
were generated using EstimateS Version 9.1. 

----------------------------Extrapolated Samples------------------------
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Figure 25: Sample based family accumulation curve with 95% confidence interval for 
invertebrate families captured in edge type B from 2015-2016 in Diboll, TX. Samples 
3-12 were generated using EstimateS Version 9.1. 

-------------------------Extrapolated Samples---------------------
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Figure 26: Sample based family accumulation curve with 95% confidence interval for 
invertebrate families captured in edge type C from 2015-2016 in Diboll, TX. Samples 3-6 
were generated using EstimateS Version 9.1. 

-------------------------------Extrapolated Samples---------------------------
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Figure 27: Comparison of direct site factor (DSF) and basal area (ft²/ac) of stands for the 

younger side of each edge type for 2015-2016. 
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Figure 28: Comparison of direct site factor (DSF) and basal area (ft²/ac) of stands for 

the older side of each edge type for 2015-2016. 
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Table 1: List of bird species and number of individuals found in each edge type 
and season along with their abundances. Residents (R) and migrants (M) are 
indicated in parenthesis. 

Species 
S=26 

Edge A 
2015       2016 

Edge B 
2015         2016 

Edge C 
2015        2016 

American crow (R) 
(Corvus brachyrhynchos) 

8 1  3 8 1 

American robin (R) 
(Turdus migratorious) 

     1 

Blue Jay (R) 
(Cyanocitta cristata) 

7 1   4  

Carolina chickadee (R) 
(Poecile carolinensis) 

5  4 2 4 1 

Carolina Wren (R) 
(Thryothorus ludovicianus) 

3 1 4 2 6 1 

Downy woodpecker (R) 
(Picoides pubescens) 

2  2    

Mourning dove (R) 
(Zenaida macroura) 

 3  3 1 2 

Northern bobwhite (R) 
(Colinus virginianus) 

     1 

Northern cardinal (R) 
(Cardinalis cardinalis) 

2 1 3 2 1 1 

Pine warbler (R) 
(Setophaga pinus) 

9  9 3  3 

Red bellied woodpecker (R) 
(Melanerpes carolinus) 

2  1 1  1 

Tufted titmouse (R) 
(Baeolophus bicolor) 

3  2 1 3 2 

Blue-gray Gnatcatcher (M) 
(Polioptila caerulea) 

     1 

Black and white warbler (M) 
(Mniotilta varia) 

   1   

Common yellowthroat (M) 
(Geothlypis trichas) 

3   1 2  

Eastern wood-pe-wee (M) 
(Contopus virens) 

     1 

Gray catbird (M) 
(Dumetella carolinensis) 

  1   1 

Hooded warbler (M) 
(Setophaga citrina) 

   2 3 1 

Indigo bunting (M) 
(Passerina cyanea) 

 1 1 2  3 

Kentucky warbler (M) 
(Geothlypis formosa) 

2      

Red-eyed vireo (M) 
(Vireo olivaceus) 

  2 1 6  

Ruby-throated hummingbird (M) 
(Archilochus colubris) 

    1 1 

Summer tanager (M) 
(Piranga rubra) 

  1    

White-eyed vireo (M) 
(Vireo griseus) 

 1 5 3 5 2 

Yellow-breasted chat (M) 
(Icteria virens) 

 1 1   1 

Yellow-billed cuckoo (M) 
(Coccyzus americanus) 

   1 4 1 
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Table 2: List of medium (MM) and small (SM) mammal species found in each edge 
type and season along with their abundances.  

Species 
MM S=10, SM S=5 

Edge A 
   2015       2016 

Edge B 
   2015          2016 

Edge C 
   2015        2016 

Bobcat 
(Lynx rufus) 

1 1     

Coyote 
(Canus latrans) 

2 1 1   2 

Eastern cottontail 
(Sylvilagus floridanus) 

 1 1 1   

Eastern grey squirrel 
(Sciurus carolinensis) 

 1  1  1 

Gray fox 
(Urocyon cinereoargenteus)  

     1 

Nine-banded armadillo 
(Dasypus novemcinctus) 

 1 1 1  1 

Raccoon 
(Procyon lotor) 

1 2 7 1  1 

Virginia opossum 
(Didelphis virginiana) 

 1  1  1 

White-tailed deer 
(Odocoileus virginianus) 

4 4 4 4 6 6 

Feral hog 
(Sus scrofa) 

 1 9  4 10 

       
Deer mouse 

(Peromyscus maniculatus) 
12  8 1 10  

Hispid cotton rat 
(Sigmodon hispidus) 

  2  2  

Northern pygmy mouse 
(Baiomys taylori) 

4    1 1 

Southern short-tailed shrew 
(Blarina carolinensis) 

8  1  3  

White-footed mouse 
(Peromyscus leucopus) 

6      
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Table 3: List of invertebrate families captured during 2015-2016 near Diboll, Texas. 
Ratios of families found exclusively in one or more edge type are listed at the 
bottom. 

Spiders/ 
scorpions 

Beetles 
Flies/Bees/ 

Gnats/wasps 
Crickets 

Moths/ 
Butterflies 

Other 

AgelenidaeAB 

(spiders) 
BoridaeB 

(conifer bark 
beetles) 

ApidaeAB 

(bees) 
GryllidaeAB 

(crickets) 
ArctiidaeA 

(moths) 
ArmadillidiidaeB 

(woodlice) 

AraneidaeBC 

(orb weaver 
spiders) 

CaribidaeB 

(ground beetles) 
CalliphoridaeB 

(blow flies) 
GryllacridaeABC 

(leaf-rolling 
crickets) 

ErebidaeC 

(moths) 
BlatellidaeAB 

(cockroaches) 

ButhidaeB 

(scorpions) 
CantharidaeC 

(soldier beetles) 
CephidaeB 

(stem sawflies) 
TettigoniidaeABC 

(bush crickets) 
NymphalidaeAC 

(butterflies) 
CurculionidaeB 

(weevil) 

GnaphosidaeAB 

(ground 
spiders) 

CerambycidaeB 

(longhorn beetles) 
MantispidaeC 

(mantidflies) 
RhaphidophoradaeABC 

(crickets) 
EurymerodesmidaeB 

(millipedes) 

LycosidaeABC 

(wolf spider) 
CucujidaeABC 

(flat bark beetles) 
MuscidaeB 

(house flies) 
  ForficulidaeA 

(earwigs) 

PhalangidaeAC 

(harvestmen) 
LucanidaeA 

(stag beetles) 
MycetophilidaeC 

(fungus gnats) 
  FormicidaeABC 

(ants) 

PisauridaeB 

(Nursery web 
spiders) 

MelandryidaeBC 

(false darkling 
beetles) 

SarcophagidaeAB 

(flesh flies) 
  HelicidaeAB 

(snails) 

ScorpionidaeC 

(scorpions) 
PythidaeB 

(dead log bark 
beetles) 

ScoliidaeB 

(scoliid wasps) 
  IxodidaeC 

(ticks) 

TheridiidaeB 

(tangle web 
spiders) 

ScarabaeoideaABC 

(scarab beetles) 
  LabiidaeB 

(little earwigs) 

 SilphidaeA 

(carrion beetles) 
   LepismatidaeA 

(silverfish) 

 StaphylinidaeB 

(rove beetle) 
   LithobiidaeA 

(centipedes) 

 SynchroidaeA 

(synchroa bark 
beetles) 

   MachilidaeC 

(bristletails) 

 TenbrionidaeB 

(darkling beetle) 
   MeinertellidaeC 

(rock 
bristletails) 

 TrogossitidaeB 

(beetles) 
   NabidaeB 

(damsel bugs) 

A only=7/55 A and B=8/55 A, B and 
C=7/55   

PolygyridaeB 

(land snails) 

B only=21/55 A and C=2/55 
Total=55 
families   

RedaviidaeAB 

(assassin 
bugs) 

C only=8/55 B and C=2/55  
  

SpirobolidaeB 

(millipedes) 

 
*Superscript letters indicate in which edge(s) each invertebrate family was captured. 
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Table 4: Alpha (α), gamma (ƴ), and beta (β) diversity for vertebrate groups sampled 
summers of 2015 and 2016 near Diboll, TX.  
  

Edge type 
 Vertebrate 

Group 

2015 2016 

α ƴ β α ƴ β 

A 

SM 4 5 1.25 0 2 NA 

MM 4 7 1.75 9 10 1.11 

Birds 11 21 1.91 8 23 2.87 

Total-A 19 33 1.74 17 35 2.06 

B 

SM 3 5 1.66 1 2 2.00 

MM 6 7 1.16 6 10 1.66 

Birds 13 21 1.61 15 23 1.53 

Total-B 22 33 1.50 22 35 1.59 

C 

SM 4 5 1.25 1 2 2.00 

MM 2 7 3.50 8 10 1.25 

Birds 13 21 1.61 19 23 1.21 

Total-C 19 33 1.74 28 35 1.25 

*α = local richness per edge, ƴ = richness across all edges, β = dissimilarity between edges (ƴ/α). 
 

 
Table 5: Number of species (S), total number of individuals (N) and values of 
species diversity indices of vertebrates observed in loblolly pine plantations during 
the summers of 2015-2016 near Diboll, Texas.  

Edge 
Type 

S 
S  

S(n=1)/S N 
n(i) 
max 

H’ EH’ 1/D E1/D   1/d 
(n = 1 ) 

A (2015) 19 2 0.11 84 12 2.73 0.62 12.97 0.68 7.0 

B (2015) 22 9 0.41 70 9 2.77 0.65 12.83 0.58 7.8 

C (2015) 19 4 0.21 74 10 2.75 0.64 13.69 0.72 7.4 

                      

A (2016) 17 14 0.82 23 4 2.69 0.85 12.30 0.72 5.8 

B (2016) 22 12 0.55 38 4 2.96 0.81 17.19 0.78 9.5 

C (2016) 28 20 0.71 50 10 2.99 0.76 13.15 0.47 5.0 
* S(N=1)= # of species with only 1 detected individual, N(i)max = # of individuals in the most 
abundant species, 1/D= Simpson's reciprocal index, H= Shannon Index, 1/d=Berger-Parker Index, 

E=evenness. 
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Table 6: Vegetation measurements for sampled pine plantations near Diboll, Texas from the summers of 2015 and 2016.  

Edge types  
and ages 

Basal 
area 

(ft²/ac)  

Diameter at 
breast 
height 

(Inches) 

  

Understory  
Density        
(Nudd's 

board 1-5) 

Understory composition 

Total 
height 
(feet) 

Live 
woody 

(%) 

Dead 
woody 

(%) 

Live 
non-

woody 
(%) 

Dead 
non 

woody 
(%) 

Average 
woody 
height 
(feet) 

Average 
non-woody 

height 
(inches) 

2015 Sites                     

Edge A -15 yr. 83 10 46 2 65 0 32 3 12 10 

Edge A -  8 yr. 80 7 25 5 100 0 13 0 13 5 

Edge B - 22 yr. 50 10 62 5 100 7 13 0 16 12 

Edge B -  8 yr. 90 5 28 5 78 32 30 2 8 3 

Edge C - 21 yr. 83 11 65 5 44 8 20 0 9 6 

Edge C - 13 yr. 83 9 58 4 78 0 10 0 8 13 

2016 Sites                     

Edge A - 12 yr. 93 8 40 4 77 0 9 0 7 5 

Edge A -   6 yr. 83 6 35 5 50 12 33 0 4 4 

Edge B - 23 yr. 56 11 75 4 62 7 5 0 5 3 

Edge B - 10 yr. 100 8 52 4 72 7 0 0 9 6 

Edge C - 21 yr. 60 9 48 4 53 0 82 0 3 11 

Edge C - 15 yr. 70 9 44 2 5 7 63 2 1 15 
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Table 7: Digital hemispheric canopy photography results from three edge types sampled in Diboll, TX August 
of 2016. Values for Indirect site factors (ISF), direct site factors (DSF) and global site factors (GSF) range 
from 0-1 with 0= no radiation reaching forest floor and 1= total radiation exposure. Analysis conducted using 
Hemi-View Canopy Analysis Software Version 2.1   

Edge Type 
Yards from 

edge 
Stand  
Ages 

2015 Stand  
ages 

2016 

ISF DSF GSF ISF DSF GSF 

A 

40 8 0.288 0.361 0.352 6 0.250 0.264 0.263 
10 8 0.245 0.359 0.346 6 0.200 0.210 0.209 
10 15 0.288 0.354 0.346 12 0.165 0.186 0.184 
40 15 0.314 0.399 0.389 12 0.204 0.189 0.191 

B 

40 8 0.233 0.331 0.320 10 0.208 0.272 0.264 
10 8 0.225 0.221 0.222 10 0.180 0.189 0.188 
10 22 0.254 0.198 0.205 23 0.202 0.256 0.250 
40 22 0.264 0.331 0.323 23 0.211 0.259 0.254 

C 

40 13 0.259 0.270 0.269 15 0.271 0.321 0.315 
10 13 0.229 0.150 0.160 15 0.270 0.283 0.282 
10 21 0.181 0.149 0.153 21 0.241 0.163 0.173 
40 21 0.246 0.266 0.264 21 0.348 0.416 0.408 

   Averages                 A = 0.283     0.285     0.358                             0.204     0.212    0.211     
              B = 0.244     0.270     0.267                   0.200     0.244    0.239 
              C = 0.228     0.208     0.211                   0.282     0.295    0.294 
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DISCUSSION 

The goal of this study was to determine if biodiversity differed between 

plantation edges with stands of varied age ranges. Measuring biological features 

(richness and abundance) of the juxtaposition of structurally varied stand types 

within a plantation forest-dominated landscape, as proposed by Brokerhoff et al. 

(2008) and Smith et al. (2008), intended to identify similarities or differences 

amongst current forest management practices on sampled lands. The 

opportunity to better utilize the plantation edges in this study area as not only 

economic investments but as localized areas of higher diversity, or stepping 

stones for wildlife traveling between non-plantation forest remnants, was and is 

worth investigating. Careful consideration of the spatial and temporal patterns of 

plantation harvesting could create another tool for managers to improve 

biodiversity conservation in this and other plantation forest-dominated 

landscapes (Zobrist et al. 2005).  

Managing individual timber stands for features of non-plantation forests 

including the retention of logging debris, snags, and legacy trees, increasing 

rotation lengths, maintaining understory plant diversity, and planting native crop 

species, can improve habitat conditions for some wildlife species, whereas
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managing landscape characteristics such as the distribution and composition of 

edge types, increasing connectivity, targeting reforestation on former cutover 

lands, and retaining various sizes of protected natural forests can improve habitat 

for other, more wide-ranging species (Flaspohler and Webster 2011). No specific 

forest type or structure maximizes diversity; rather various species require 

various types of habitats to thrive (Zobrist et al. 2005). Likewise, even individual 

species require various habitats to survive and reproduce (Zobrist et al. 2005). 

That being so, it is not surprising that no difference was found amongst the three 

edge types, but rather each edge type benefits biodiversity in its own way.  

The whole premise of this study is based on the notion that throughout 

plantation rotations, the thinning of sampled forests alters stand structure, which 

effects wildlife diversity in varied ways (Greene et al. 2016, Hartman et al. 2010, 

McWethy et al. 2009, Carnus et al. 2006, Hartley 2002, Hansen et al. 1991). 

Some of the subtle differences and similarities found for species richness, 

diversity, abundances, and assemblages for each edge could be partially 

explained by habitat variables found in sampled stands. For instance, productivity 

(McWethy et al. 2009, Carnus et al. 2006), the abundance of snags and CWD 

(Flaspohler and Webster 2009, Smith et al. 2008, Carnus et al. 2006, Hansen et 

al. 1991), canopy openness (Greene et al. 2016, Carnus et al. 2006, Hartley 

2002), rotation length (Andreu et al. 2008, Carnus et al. 2006, Zobrist et al. 
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2005), and understory composition and structure (Hartley 2002) are all linked to 

forest biodiversity.  

The microclimate conditions created beneath a forested canopy are 

typically cooler, moister, and more uniform than non-forested lands. This effect 

varies with the distance from the edge of the canopy (Murcia 1995). Light 

availability, air temperature, soil moisture and vapor pressure deficit vary 

between forest edges and interiors (Murcia 1995). This effect has been shown to 

disappear 50m into some forest fragments, while in others there is no change in 

these variables with varied distances from the edge (Murcia 1995). Research 

conducted on the effects of forested microhabitat post-logging determined that 

increased light from silvicultural disturbances lead to a denser understory 

composed of fast-growing, opportunistic plants (Kellner and Swihart 2014, 

Zobrist et al. 2005). Each sampled stand in this study exhibited more sunlight 

penetrating the canopy at 40m inside the stand than at 10m (Table 7), which 

could be due to differences in vegetation density resulting from increased 

sunlight closer to each edge.  

One flaw in the methodology for sampling vegetation, was not measuring 

vegetation variables at the same locations as the light metrics to allow for 

adequate comparison of the two factors. These edges were bisected by primitive 
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logging roads, which created gaps between stands and allowed sunlight to reach 

the understory at varied levels, depending on the aspect. This increase in 

sunlight could allow woody and herbaceous plants to grow thick along edges, 

which could explain the decrease in light at the 10m interval versus 40m (Table 

7).  

This effect could offer more habitat structure and food for certain wildlife 

species, with the potential of making certain forest edges richer than the forest 

interior. For studies conducted on small mammals, researchers failed to detect 

edge effects within edges comprising young stands (0-5 years) (Constantine et 

al. 2005, Sekgororoane and Dilworth 1995); however, edge effects were detected 

in edges 6-10 years post clearcut (Sekgororoane and Dilworth 1995). The 

positive relationship that bird and small mammal abundance have with 

understory non-woody vegetation (Kellner and Swihart 2014) could possibly 

explain these findings for edge type A (8 years old, 2015), which had the highest 

percent of live non-woody plants (Table 6) and recorded the most bird (S=46, 

Table 1) detections and small mammal (S=30, Table 2) captures for any site.   

A quantitative benefit of forest thinning for small mammals, invertebrates 

(Kellner and Swihart 2014), and birds (Owens et al. 2014) is the increase in CWD 

on the forest floor (Hinkleman et al. 2012, Jones et al. 2009). This debris includes 

fallen logs, treetops, limbs, and leaf litter substrate that provide ideal movement 
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pathways and habitat for small mammals and invertebrates (Kellner and Swihart 

2014). Definitive information on use of each stand’s CWD post-thinning or 

clearcut is unknown; however, observations during sampling suggest CWD is left 

on site post-thinning. Edge type B had the highest percentage of dead and live 

woody materials in the understory for both seasons (Table 7), which may partially 

explain why so many invertebrate families were exclusively found there (Table 3); 

however, it fails to explain why the two thinned stands of edge type C would not 

show elevated invertebrate, and small mammal abundance. A reduction in cover 

from predators in edge type C’s two thinned stands may explain the lack of 

elevated small mammal abundance.  

Constantine et al. (2005) found that small mammal captures did not 

demonstrate discrete peaks at southern pine plantation corridor edges but rather 

peaked within harvested stands with retained logging debris. Small mammal 

trapping was most successful during 2015 on edge type A (Table 2), which also 

had the most sunlight penetrating the canopy (Table 7), the highest percent of 

live non-woody growth, the highest average woody height, and tied with edge 

type B for the highest average non-woody height (Table 6). This increased 

understory growth exhibited by edge type A during 2015 may have facilitated its 

use by small mammals that benefited from better cover from predators, 

temperature regulation, movement pathways, and food sources. 
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Sites where CWD is left on site post-harvest have been shown to support 

as much as 45% more bird species at 50% higher densities than sites where 

CWD was shredded or removed (Owens et al. 2014). Resident bird species 

abundance between edges declined from A-C (48, 42, and 41) but not at a 

profound rate (Table 1), suggesting resident species utilize stand and edge types 

in equal proportions. Migrant avian species abundance increased from A-C (8, 

22, and 33) (Table 1), which may suggest detected migrant avian species are 

seeking out older forest characteristics. Calladine et al. (2009) found that within 

thinned 18-32 year conifer plantations in Scotland no significant difference of 

avian species occurrence rates or abundance was found for any bird species, 

which may suggest that once stands reach canopy closure and are thinned, their 

value as bird habitat plateaus. While researching bird densities between clearcut 

forest edges in the Pacific Northwest, Hansen et al. (1991) found that avian 

density was significantly higher in forest and clearcut interiors rich with CWD than 

at edges, suggesting that forest patch size and fragmentation, not edge effects, 

are more responsible for avian abundance.  

For the species assemblage sampled during 2015-2016, a few 

observations can be made in regards to the largest and most economically 

important species detected. The generalist white-tailed deer and pest feral hog 



 
 

83 

 

were the most abundant medium-sized mammals detected (Table 2). Not 

surprisingly, the white tailed deer was found in equal proportions amongst edges 

A and B and increased their abundance by one third in edge type C (Table 2). 

Feral hogs, on the other hand, were detected increasingly with edge stand ages 

(A=1, B=9, C=14) (Table 2). The overwhelmingly greater percentages of live non-

woody vegetation recorded in edge type C during 2016 (older stand =82% and 

younger stand =63%, Table 6) may help explain these trends. Although no 

analysis was done on available browse, hard or soft mast amongst edges, 

several of the camera images of these two species recorded them eating 

blackberries (Rubus repens (L) Kuntze) growing in the understory. These two 

species are of the most economic value because they are game species for 

which hunters will pay a per acre fee to lease plantations, providing annual 

returns on long-term investments (Zobrist et al. 2005). In some cases, these 

funds help to pay for management actions that directly and indirectly benefit a 

wide range of species.     

For each edge type, the year that had the higher basal area also had 

lower amounts of DSF (Figures 27 and 28). This relationship is intuitive 

considering basal area is a measure of tree density in each stand. Forest 

thinning reduces basal area and opens the canopy allowing more light to reach 

the forest floor and support herbaceous and woody growth from the understory. 
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Unfortunately, data on the time elapsed since the thinning on each sampled 

stand was not available, so interpreting woody and herbaceous responses from 

thinning operations is limited to conditions found during sampling.  

Considering the two stand types that create edge type B are at opposite 

sides of their rotations, it is expected that edge type B rank second in variables 

(ISF, DSF, and GSF) for the proportion of light penetrating the canopy (Table 7). 

This variation creates an ecotone, with both older and younger forest 

characteristics that benefit both early successional species and species that 

require mature forest conditions. Edge type B, with the highest observed 

vertebrate richness for 2015, was also the only edge to have positive 

identifications of the insectivorous, forest edge-specialist gray catbirds and 

summer tanagers (Table 1). This could be partially explained by the elevated 

understory density (2015, Table 6) and large proportion of invertebrate families 

found exclusively in edge type B (Table 3). Richness of edge type B in 2015 can 

also be attributed to it being the only edge to have identifications of the eastern 

cottontail rabbit and nine-banded armadillo (Table 2). 

In 2016 edge type C had the highest richness due to birds found 

exclusively there during the 2016 season, including the American robin, northern 

bobwhite, blue-gray gnatcatcher, the eastern wood-peewee, and the ruby-
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throated hummingbird (Table 1). All of these species except the hummingbird 

prefer the open pine forest conditions created post-logging, with a thick grass 

understory (Kershner 2012, Brennan 1999, McCarthy 1999, and Sallabanks and 

James 1999). Blue-gray gnatcatchers and northern bobwhites in particular do not 

inhabit coniferous forests lacking in understory development (Kershner 2012, 

Brennan 1999). Due to the lowest basal areas (ft²/ac) and combined understory 

density score (Nudd’s board) for 2016, edge type C exhibited the highest 

percentage of live non-woody vegetation, and the tallest average non-woody 

height (inches) (Table 6), which likely facilitated its use by these open pine forest 

specialist birds.  

Edge type C may have elevated richness (2016) but this is likely a product 

of the positive relationship richness has with stand age (Hartmann et al., Carnus 

et al. 2006). Older timber stands benefit spatial and vertical heterogeneity, better 

developed soil layers, fungal floras, and increased large diameter trees and CWD 

(Jones et al. 2009) required by some indigenous species (Norton 1998). Two of 

the bird species in edge type C are forest interior specialists (blue-gray 

gnatcatchers, northern bobwhites) that require larger forested patch sizes and 

older structural characteristics (Kershner 2012, Brennen 1999). When stands that 

create edge type C are adjacent to other mature forests, they increase patch 
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sizes for the species that prefer forest interiors and, in turn, increase habitat 

availability and connectivity across differently managed forests.    

Understory habitat (Nudd’s board, live woody percent and average height, 

and live non-woody percent and height) variables estimated within edge type B 

with the lowest recorded basal areas amongst older stands (2015-2016), 

corroborate the notion that more severe thinnings lead to increased percentages 

of understory hardwoods and reduced percentages and average heights of non-

woody vegetation (Table 6) (Andreu et al. 2008, Zobrist et al. 2005). This effect 

can also be supported using edges A (2015) and C (2016) where the averaged 

below canopy light metrics (DSF, ISF, GSF) were highest (Table 7). During 2015 

edge A had the highest number of individuals (84), of which 12 were deer mice, 

whom may have been drawn to the edge by the elevated sunlight (Table 7), 

resulting in a higher percentage of live non-woody vegetation (Table 6). In these 

edges, the Nudd’s board readings were the lowest (A-2015, C-2016), percent of 

live non-woody vegetation was the highest (A-2015, C-2016), average woody 

height was the lowest (C-2016), and average non-woody height was the highest 

(C-2016) (Table 6). Current management strategies on sampled lands did not 

include the use of mid-rotation prescribed fires or broadband herbicide 
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application to control hardwoods, which allowed for a less biased visualization of 

these vegetative effects post-thinning.  

  Previously mentioned limitations for the use of diversity indices, including 

the assumption that species are substitutable for each other, that the indices lack 

a probabilistic basis, and that they lack data regarding detection probabilities and 

false absences, limit their interpretive use in this study (Barrantes and Sandoval 

2009). Lack of replication is another common problem with diversity studies 

utilizing indices that combine abundance and richness (Gotelli and Colwell 2011) 

and, with only two replicates; it is fair to assume that may be the case here. 

Furthermore, intra-specific differences among individuals such as age and sex 

could be potential sources of bias, if you consider that there are differences in 

habitat use by old and young, and male or female individuals (Barrantes and 

Sandoval 2009). Focusing indices on specific guilds does not alleviate the bias 

created by combining richness with abundance (Barrantes and Sandoval 2009). 

For these reasons, and for the lack of a detectable difference amongst edge 

types utilizing three indices (Shannon, Simpson’s reciprocal and Berger Parker) 

interpretation of diversity amongst edges is limited. Barrantes and Sandoval 

(2009) suggest that richness may provide a better indication of value for each 

edge type than indices values.  
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Using richness as a measure of ecosystem health or stability can be an 

intuitive and cost effective means of monitoring ecosystem health; however, 

caution should be taken when doing so. Limiting analysis to the idea that higher 

richness is always better than lower richness fails to account for species 

composition. An over-abundance of invasive pest or predatory species could 

elevate richness, but hinder ecosystem functions.  Managing an ecosystem for 

richness is very different from managing for diversity or evenness. Are edges 

with higher richness more valuable than edges with a more proportional 

assemblage of species? Are those extra species that make up the richest edge 

of a conservation concern? Having more species may be detrimental to an 

ecosystem if they are undesirable or destructive species, such as nest predators 

like the brown-headed cowbird (Molothrus ater). On the other hand, measuring 

diversity by the proportion of individuals found amongst the species is flawed, 

because the landscape does not need an equal proportion of bird species and 

mammalian predators. In such instances species being evenly distributed could 

be detrimental to ecosystem stability.  

With these caveats in mind, richness results from the two seasons fail to 

single out one edge type over the others. The richness and abundance of 

species found in 2015 were very similar, despite edge B having over twice the 

number of species with only one individual than edge C and over four times that 
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of C (Table 5). In contrast to results from 2015, richness and abundance 

increased with edge stand ages during 2016 and edge type B had the lowest 

proportion of species with only one detected individual (Table 5). While 2016 

data corroborates the hypothesis that richness and abundance increase with 

stand age (Hartmann et al., Carnus et al. 2006), 2015 data does not, which limits 

the interpretive value of this small dataset. One possible explanation for the 

variation between replicates is that they were sampled in different years that had 

different weather patterns.   

 An attempt was made to correct for any error caused by to limited 

replication using extrapolation and, while each vertebrate SBSAC generated 

reached a plateau around the sixth sample, captured invertebrate families 

extrapolated to six samples failed to reach an asymptote for any edge (Figures 

20-26). Curves generated to illustrate extrapolated vertebrate richness of each 

edge type suggest that edge type A may harbor more vertebrate species 

(S=41.21 at 6th sample) than edges C (S=38.94 at 6th sample) and B (S=34.57 at 

6th sample), however, considering the confidence intervals for each edge type, 

one can see that each edge’s extrapolated richness falls within the other edges 

95% confidence interval (Figures 20-22). This means that, despite a six species 

difference from the low estimate (edge B, S= 34.57) to the high estimate (edge A, 
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S=41.21), no real detectable statistical difference in extrapolated richness for 

vertebrates exists between the three edges (Figures 20-22). Student’s t-test and 

p values for each vertebrate group corroborated the lack of statistical differences 

between edge types.   

The estimates of invertebrate families may be attributed to the small 

sample size (Thompson and Thompson 2007); however, a study conducted in 

slash pine (Pinus elliottii Engelm.) and Camden white gum (Eucalyptus benthamii 

Maiden and Cambage) plantations in Louisiana found 127 invertebrate families 

using both pitfall trapping and insecticide knockdown methods (Messick et al. 

2016). Using family richness estimates from all six EstimateS extrapolated 

samples, we found that there was an average richness of 112 families (A=110, 

B=154, C=73), which insinuates that our estimates may be a true representation 

of invertebrate family richness amongst these edge types given the sample size 

(Figures 23-26). Student’s t-test and p values were calculated for invertebrate 

families found between edge types, and despite finding a significant difference 

between edges B and C with 6 extrapolated samples, we cannot know if the 

difference would still exist once curves reach an asymptote. More samples would 

be required to determine at which richness a true asymptote forms for 

invertebrates amongst each edge type.  
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The slope of each edge’s increase in invertebrate family richness, from the 

second to the sixth sample, shows that edge type B had the greatest new 

number of families added to its assemblage with each additional sample (20 

families / sample), edge type A added 15 new families per sample, and edge 

type C added 8 (Figures 24-26). Eventually these rates of increase should 

reduce with each additional sample until they reach an asymptote. Without 

additional samples all we can deduce is that edge type B, which was the 

exclusive host for 21/55 families, was advantageous for more invertebrate 

families than the other edge types. One explanation our habitat variables can 

offer regarding this is that edge type B had the highest percent of live and dead 

woody vegetation in its understory, both of which are positively correlated with 

invertebrate richness and abundance (Jones et al 2009). 

  Abiotic (microclimate alteration from edge to interior), biological (species 

richness and abundance), and indirect (predation, herbivory, pollination, and 

seed dispersal) edge effects may be more pronounced in sites of varying 

productivity (McWethy et al. 2009). The biomass accumulation hypothesis 

proposed by Hansen and Rotella (2000) suggests that edge effects for birds 

have the highest magnitude of influence in edges of higher biomass 

accumulation. Biomass accumulation, according to McWethy et al. (2009), 

“appears to represent a syndrome of ecosystem characteristics that increase the 
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magnitude of edge effects”. Comparison of productivity amongst the edge types 

is not possible with current data, however land managers on sampled lands 

should have long-term data on the productivity of their stands and could discern 

between sites of low and high biomass accumulation.  

Currently the most productive lands are utilized for agriculture, while 

forestlands exist within marginal lands that are either of lower productivity or not 

geographically feasible for croplands (high slopes, unfavorable land 

fragmentation, proximity to water for irrigation etcetera.). Additionally, many 

forest managers of large land bases attempt to divest themselves of low 

productivity sites in favor of high productivity sites. Despite this, there is still 

variation amongst timber stand productivity and accessibility that could offer an 

alternative to edge management for landscape scale biodiversity management.  

There is logic in the notion that sites that are more productive, better serve 

plantation managers in intensively managed timber production, and less 

productive sites, which may not be of high priority to managers, could be 

managed more for conservation (Pawson et al. 2013, Thompson et al. 2011, 

McWethy et al. 2009, Carnus et al. 2006, Lindenmayer 1999). Allowing less 

productive or accessible sites to grow on longer rotations, planting on otherwise 

degraded lands, planting mixed species stands, retaining CWD, legacy trees, 

and snags, and thinning early and heavier than normal would provide variety and 



 
 

93 

 

balance to an otherwise monoculture landscape. Doing so would also help meet 

many of the standards for conservation required by the many different forest 

certification groups.  

 What this all may mean regarding the current management strategies on 

sampled lands is that these considerations are already being addressed. The 

green up requirement held by the Sustainable Forestry Initiative for the Southern 

United States already ensures three years pass, or crop trees reach 5 feet in 

height, prior to adjacent stands being clearcut, which allows adjacent stands to 

vary in age and structure amongst SFI certified forests (SFI 2015-2019). This 

requirement promotes heterogeneity of stand ages and structures, which 

ultimately benefit wildlife through niche diversity. Re-evaluation of the minimum 

age and height requirements for SFI’s green up requirement may reveal 

increased benefits for wildlife in further separating the age of adjacent stands. If 

increased heterogeneity of stand structure is desired, then using SFI’s green up 

requirement may be the best current method to generate the desired result.  

To better study the effects varied forest edges have on wildlife 

biodiversity, we recommend choosing a few vertebrate and invertebrate groups 

to use as indicators of diversity to focus long term monitoring efforts. Animal 

groups with increased sensitivity to disturbance or increased rarity are often the 

first to disappear from all but undisturbed areas, which limits their use as an 
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ecological disturbance indicator (Gardner 2010). Likewise, groups that are 

resilient and generalist in nature are also of little use as indicators (Gardner 

2010). For these reasons, we recommend using an easily detectable, 

economically feasible, and diverse group like birds or invertebrates to compare 

responses to management 1) over time and 2) between managed and 

unmanaged (control) sites (Gardner 2010, and Lindenmayer et al 2008b). These 

groups are also important to ecosystem services, such as seed dispersal and 

pollination, which directly affect forest productivity and floral diversity (Thompson 

et al 2011). Identifying which vertebrate and invertebrate groups have the 

strongest interactions amongst species, and are area, dispersal, and resource 

limited, may be key to identifying suitable subjects for long-term surveys 

(Gardner 2010). 

This research suggests that managing for wildlife biodiversity does not 

include the preference of one specific edge or stand rotation phase, but instead 

should focus on management for a diversity of stand and edge types with 

considerations for landscape scale and spacing. If diversity of wildlife within 

planted forests is the goal, then it is intuitive that a diversity of forest structures 

and ages would be required. Timberland managers whom oversee numerous 

planted tracts have the unique opportunity to have in rotation stands of varied 



 
 

95 

 

ages, structural features, and management strategies, which benefit a wider 

range of local wildlife species.  
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