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Abstract

Classical statistical theory ignores model selection in assessing estimation accuracy. Here we consider
bootstrap methods for computing standard errors and confidence intervals that take model selection into
account. The methodology involves bagging, also known as bootstrap smoothing, to tame the erratic
discontinuities of selection-based estimators. A useful new formula for the accuracy of bagging then
provides standard errors for the smoothed estimators. Two examples, nonparametric and parametric,
are carried through in detail: a regression model where the choice of degree (linear, quadratic, cubic,. . . )
is determined by the Cp criterion, and a Lasso-based estimation problem.

Keywords: model averaging, Cp, Lasso, bagging, bootstrap smoothing, ABC intervals, importance sam-
pling

1 Introduction

Accuracy assessments of statistical estimators customarily are made ignoring model selection. A prelimi-
nary look at the data might, for example, suggest a cubic regression model, after which the fitted curve’s
accuracy is computed as if “cubic” were pre-chosen. Here we will discuss bootstrap standard errors and
approximate confidence intervals that take into account the model-selection procedure.

Figure 1 concerns the Cholesterol data, an example investigated in more detail in Section 2: n = 164
men took cholestyramine, a proposed cholesterol-lowering drug, for an average of seven years each; the
response variable was the decrease in blood-level cholesterol measured from the beginning to the end of
the trial,

d = cholesterol decrease; (1.1)

also measured (by pill counts) was compliance, the proportion of the intended dose taken,

c = compliance, (1.2)

ranging from zero to full compliance for the 164 men. A transformation of the observed proportions has
been made here so that the 164 c values approximate a standard normal distribution,

c ∼̇N (0, 1). (1.3)

The solid curve is a regression estimate of decrease d as a cubic function of compliance c, fit by
ordinary least squares (OLS) to the 164 points. “Cubic” was selected by the Cp criterion, Mallows (1973),
as described in Section 2. The question of interest for us is how accurate is the fitted curve, taking account
of the Cp model-selection procedure as well as OLS estimation?

∗Research supported in part by NIH grant 8R01 EB002784 and by NSF grant DMS 1208787.
†Acknowlegement I am grateful to Stefan Wager for the bias correction idea in Remark J of this paper.
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Figure 1: Cholesterol data Cholesterol decrease plotted versus adjusted compliance for 164 men in Treatment arm
of the cholostyramine study (Efron and Feldman, 1991). Solid curve is OLS cubic regression, as selected by the Cp

criterion. How accurate is the curve, taking account of model selection as well as least squares fitting? (Solid arrowed
point is Subject 1, featured in subsequent calculations. Bottom numbers indicate compliance for the 11 subjects in
the simulation trial of Figure 5.)

More specifically, let µj be the expectation of cholesterol decrease for subject j given his compliance
cj ,

µj = E{dj |cj}. (1.4)

We wish to assign standard errors to estimates of µj read from the regression curve in Figure 1. A

nonparametric bootstrap estimate s̃dj of standard deviation, taking account of model selection, is developed
in Sections 2 and 3. Figure 2 shows that this is usually, but not always, greater than the naive estimate
sdj obtained from standard OLS calculations, assuming that the cubic model was pre-selected. The ratio

s̃dj/sdj has median value 1.52; so at least in this case, ignoring model selection can be deceptively optimistic.
Data-based model selection can produce “jumpy” estimates that change values discontinuously at the

boundaries between model regimes. Bagging (Breiman, 1996), or bootstrap smoothing, is a model-averaging
device that both reduces variability and eliminates discontinuities. This is described in Section 2, and
illustrated on the Cholesterol data.

Our key result is a new formula for the delta-method standard deviation of a bagged estimator. The
result, which applies to general bagging situations and not just regression problems, is described in Sec-
tion 3. Stated in projection terms (see Figure 4), it provides the statistician a direct assessment of the cost
in reduced accuracy due to model selection.

A parametric bootstrap version of the smoothing theory is described in Sections 4 and 5. Parametric
modeling allows more refined results, permiting second order-accurate confidence calculations of the BCa
or ABC type, as in DiCiccio and Efron (1992), Section 6. Section 7 concludes with notes, details, and
deferred proofs.

Bagging (Breiman, 1996) has become a major technology in the prediction literature, an excellent recent
reference being Buja and Stuetzle (2006). The point of view here agrees with that in Bühlmann and Yu
(2002), though their emphasis is more theoretical and less data-analytic. They employ bagging to “change
hard thresholding estimators to soft thresholding,” in the same spirit as our Section 2.
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Figure 2: Solid points: ratio of standard deviations, taking account of model selection or not, for the 164 values µ̂j

from the regression curve in Figure 1. Median ratio equals 1.52. Standard deviations including model selection are
the smoothed bootstrap estimates s̃dB of Section 3. Dashed line: ratio of s̃dB to ŝdB , the unsmoothed bootstrap sd
estimates as in (2.4), median 0.91.

Berk, Brown, Buja, Zhang and Zhao (2012) develop conservative normal-theory confidence intervals
that are guaranteed to cover the true parameter value regardless of the preceding model-selection procedure.
Very often it may be difficult to say just what selection procedure was used, in which case the conservative
intervals are appropriate. The methods of this paper assume that the model-selection procedure is known,
yielding smaller standard error estimates and shorter confidence intervals.

Hjort and Claeskens (2003) construct an ambitious large-sample theory of frequentist model-selection
estimation and model averaging, while making comparisons with Bayesian methods. In theory, the Bayesian
approach offers an ideal solution to model-selection problems, but, as Hjort and Claeskens point out, it
requires an intimidating amount of prior knowledge from the statistician. The present article is frequentist
in its methodology.

Hurvich and Tsai (1990) provide a nice discussion of what “frequentist” might mean in a model-selection
framework. (Here I am following their “overall” interpretation.) The nonparametric bootstrap approach
in Buckland, Burnham and Augustin (1997) has a similar flavor to the computations in Section 2.

Classical estimation theory ignored model selection out of necessity. Armed with modern computational
equipment, statisticians can now deal with model-selection problems more realistically. The limited, but
useful, goal of this paper is to provide a general tool for the assessment of standard errors in such situations.
Simple parameters like (1.4) are featured in our examples, but the methods apply just as well to more
complicated functionals, for instance the maximum value of a regression surface, or a tree-based estimate.

2 Nonparametric bootstrap smoothing

For the sake of simple notation, let y represent all the observed data, and µ̂ = t(y) an estimate of a
parameter of interest µ. The Cholesterol data has

y = {(cj , dj), j = 1, 2, . . . , n = 164} . (2.1)
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If µ = µj (1.4) we might take µ̂j to be the height of the Cp-OLS regression curve measured at compliance
c = cj .

In a nonparametric setting we have data

y = (y1, y2, . . . , yn) (2.2)

where the yj are independent and identically distributed (iid) observations from an unknown distribution
F , a two-dimensional distribution in situation (2.1). The parameter is some functional µ = T (F ), but the
plug-in estimator µ̂ = T (F̂ ), where F̂ is the empirical distribution of the yj values, is usually what we hope
to improve upon in model-selection situations.

A nonparametric bootstrap sample

y∗ = (y∗1, y
∗
2, . . . , y

∗
n) (2.3)

consists of n draws with replacement from the set {y1, y2, . . . , yn}, yielding bootstrap replication µ̂∗ = t(y∗).
The empirical standard deviation of B such draws,

ŝdB =

[
B∑
i=1

(µ̂∗i − µ̂∗· )
2

/
(B − 1)

]1/2
,

(
µ̂∗· =

∑
µ̂∗i /B

)
, (2.4)

is the familiar nonparametric bootstrap estimate of standard error for µ̂ (Efron, 1979); ŝdB is a depend-
able accuracy estimator in most standard situations but, as we will see, it is less dependable for setting
approximate confidence limits in model-selection contexts.

The cubic regression curve in Figure 1 was selected using the Cp criterion. Suppose that under “Model
m” we have

y = Xmβm + ε
[
ε ∼ (0, σ2I)

]
(2.5)

where Xm is a given n by m structure matrix of rank m, and ε has mean 0 and covariance σ2 times the
Identity (σ assumed known in what follows). The Cp measure of fit for Model m is

Cp(m) =
∥∥∥y −Xmβ̂m

∥∥∥2 + 2σ2m (2.6)

with β̂m the OLS estimate of βm; given a collection of possible choices for the structure matrix, the Cp
criterion selects the one minimizing Cp.

Table 1: Cp model selection for the Cholesterol data; measure of fit Cp(m) (2.6) for polynomial regression models
of increasing degree. The cubic model minimizes Cp(m). (Value σ = 22.0 was used here and in all bootstrap
replications.) Last column shows percentage each model was selected as the Cp minimizer, among B = 4000
bootstrap replications.

Regression model m Cp(m)− 80, 000 (Bootstrap %)

Linear 2 1132 (19%)
Quadratic 3 1412 (12%)
Cubic 4 667 (34%)
Quartic 5 1591 (8%)
Quintic 6 1811 (21%)
Sextic 7 2758 (6%)

Table 1 shows Cp results for the Cholesterol data. Six polynomial regression models were compared,
ranging from linear (m = 2) to sixth degree (m = 7); the value σ = 22.0 was used, corresponding to the
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standard estimate σ̂ obtained from the sixth degree model. The cubic model (m = 4) minimized Cp(m),
leading to its selection in Figure 1.

B = 4000 nonparametric bootstrap replications of the Cp-OLS regression curve — several times more
than necessary, see Section 3 — were generated: starting with a bootstrap sample y∗ (2.3), the equivalent
of Table 1 was calculated (still using σ = 22.0) and the Cp minimizing degree m∗ selected, yielding the
bootstrap regression curve

µ̂∗ = Xm∗ β̂
∗
m∗ (2.7)

where β̂∗m∗ was the OLS coefficient vector for the selected model. The last column of Table 1 shows the
various bootstrap model-selection percentages: cubic was selected most often, but still only about one-third
of the time.
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Figure 3: B = 4000 bootstrap replications µ̂∗
1 of the Cp-OLS regression estimate for Subject 1. The original

estimate t(y) = µ̂1 is 2.71, exceeding 76% of the replications. Bootstrap standard deviation (2.4) equals 8.02.
Triangles indicate 2.5th and 97.5th percentiles of the histogram.

Suppose we focus attention on Subject 1, the arrowed point in Figure 1, so that the parameter of
interest µ1 can be estimated by the Cp-OLS value t(y) = µ̂1, evaluated to be 2.71. Figure 3 shows the
histogram of the 4000 bootstrap replications t(y∗) = µ̂∗1. The point estimate µ̂1 = 2.71 is located to the
right, exceeding a surprising 76% of the µ̂∗1 values.

Model 1 2 3 4 5 6

mean −13.69 −3.69 4.71 −1.25 −3.80 −3.56
stdev 3.64 3.48 5.43 5.28 4.46 4.95

Table 2: Mean and standard deviation of µ̂∗
1 as a function of the selected model, 4000 nonparametric bootstrap

replications; Cubic, Model 3, gave the largest estimates.

Table 2 shows why. The cases where “Cubic” was selected yielded the largest bootstrap estimates µ̂∗1.
The actual dataset y fell into the cubic region, giving a correspondingly large estimate µ̂1. Things might
very well have turned out otherwise, as the bootstrap replications suggest: model selection can make an
estimate “jumpy” and erratic.
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We can smooth µ̂ = t(y) by averaging over the bootstrap replications, defining

µ̃ = s(y) =
1

B

B∑
i=1

t(y∗). (2.8)

Bootstrap smoothing (Efron and Tibshirani, 1996), a form of model averaging, is better known as “bagging”
in the prediction literature; see Breiman (1996) and Buja and Stuetzle (2006). There its variance reduction
properties are emphasized. Our example will also show variance reductions, but the main interest here lies
in smoothing; s(y), unlike t(y), does not jump as y crosses region boundaries, making it a more dependable
vehicle for setting standard errors and confidence intervals. Suppose, for definiteness, that we are interested
in setting approximate 95% bootstrap confidence limits for parameter µ. The usual “standard interval”

µ̂± 1.96 ŝdB (2.9)

(= 2.71 ± 1.96 · 8.02 in Figure 3) inherits the dangerous jumpiness of µ̂ = t(y). The percentile interval,
Section 13.3 of Efron and Tibshirani (1993),[

µ̂∗(.025), µ̂∗(.975)
]
, (2.10)

the 2.5th and 97.5th percentiles of the B bootstrap replications, yields more stable results. (Notice that it
does not require a central point estimate such as µ̂ in (2.9).)

A third choice, of particular interest here, is the smoothed interval

µ̃± 1.96 s̃dB (2.11)

where µ̃ = s(y) is the bootstrap smoothed estimate (2.8), while s̃dB is given by the projection formula
discussed in Section 3. Interval (2.11) combines stability with reduced length.

Table 3: Three approximate 95% bootstrap confidence intervals for µ1, the response value for Subject 1, Cholesterol
data.

Interval Length Center point

Standard interval (2.9) (−13.0, 18.4) 31.4 2.71
Percentile interval (2.10) (−17.8, 13.5) 31.3 −2.15
Smoothed standard (2.11) (−13.3, 8.0) 21.3 −2.65

Table 3 compares the three approximate 95% intervals for µ1. The reduction in length is dramatic
here, though less so for the other 163 subjects; see Section 3.

The BCa-ABC system goes beyond (2.9)–(2.11) to produce bootstrap confidence intervals having
second-order accuracy, as in DiCiccio and Efron (1992). Section 6 carries out the ABC calculations in
a parametric bootstrap context.

3 Accuracy of the smoothed bootstrap estimates

The smoothed standard interval µ̃±1.96 s̃dB requires a standard deviation assessment s̃dB for the smoothed
bootstrap estimate (2.8). A brute force approach employs a second level of bootstrapping: resampling from
y∗i (2.3) yields a collection of B second-level replications y∗∗ij , from which we calculate s∗i =

∑
t(y∗∗ij )/B;

repeating this whole process for many replications of y∗i provides bootstrap values s∗i from which we
calculate its bootstrap standard deviation.
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The trouble with brute force is that it requires an enormous number of recomputations of the original
statistic t(·). This section describes an estimate s̃dB that uses only the original B bootstrap replications
{t(y∗i ), i = 1, 2, . . . , B}.

The theorem that follows will be stated in terms of the “ideal bootstrap,” where B equals all nn

possible choices of y∗ = (y∗1, y
∗
2, . . . , y

∗
n) from {y1, y2, . . . , yn}, each having probability 1/B. It will be

straightforward then to adapt our results to the non-ideal bootstrap, with B = 4000 for instance.
Define

t∗i = t(y∗i ) [y∗i = (y∗i1, y
∗
i2, . . . , y

∗
ik, . . . , y

∗
in)] , (3.1)

the ith bootstrap replication of the statistic of interest, and let

Y ∗ij = #{y∗ik = yj}, (3.2)

the number of elements of y∗i equaling the original data point yj . The vector Y ∗i = (Y ∗i1, Y
∗
i2, . . . , Y

∗
in)

follows a multinomial distribution with n draws on n categories each of probability 1/n, and has mean
vector and covariance matrix

Y ∗i ∼
(
1n, I − 1n1

′
n/n

)
, (3.3)

1n the vector of n 1’s and I the n× n identity matrix.

Theorem 1. The nonparametric delta-method estimate of standard deviation for the ideal smoothed boot-
strap statistic s(y) =

∑B
i=1 t(y

∗
i )/B is

s̃d =

 n∑
j=1

cov2
j

1/2

(3.4)

where
covj = cov∗

(
Y ∗ij , t

∗
i

)
, (3.5)

the bootstrap covariance between Y ∗ij and t∗i .

(The proof appears later in this section.)
The estimate of standard deviation for s(y) in the non-ideal case is the analogue of (3.4),

s̃dB =

 n∑
j=1

ĉov2
j

1/2

(3.6)

where

ĉovj =
n∑
i=1

(
Y ∗ij − Y ∗·j

)
(t∗i − t∗· )

/
B (3.7)

with Y ∗·j =
∑B

i=1 Y
∗
ij/B and t∗· =

∑B
i=1 t

∗
i /B = s(y). Remark J concerns a bias correction for (3.6) that

can be important in the non-ideal case (it wasn’t in the Cholesterol example). All of these results apply
generally to bagging estimators, and are not restricted to regression situations.

Figure 2 shows that s̃dB is less than ŝdB, the bootstrap estimate of standard deviation for the un-
smoothed statistic,

ŝdB =
[∑

(t∗i − t∗· )2/B
]1/2

, (3.8)

for all 164 estimators t(y) = µ̂j . This is no accident. Returning to the ideal bootstrap situation, let L(Y ∗)
be the (n− 1)-dimensional subspace of RB spanned by the columns of the B × n matrix having elements
Y ∗ij − 1. (Notice that

∑B
i=1 Y

∗
ij/B = 1 according to (3.3).) Also define s0 =

∑B
i=1 t

∗
i /B, the ideal bootstrap

smoothed estimate, so
U∗ ≡ t∗ − s01 (3.9)

7



is theB-vector of mean-centered replications t∗i−s0. Note: Formula (3.6) is a close cousin of the “jackknife-
after-bootstrap” method of Efron (1992), the difference being the use of jackknife rather than our infinites-
imal jackknife calculations.

Corollary 1. The ratio s̃dB/ŝdB is given by

s̃dB

ŝdB
=
‖Û∗‖
‖U∗‖

(3.10)

where Û∗ is the projection of U∗ into L(Y ∗).

(See Remark A in Section 7 for the proof. Remark B concerns the relation of Theorem 1 to the Hájek
projection.)

0 

Figure 4: Illustration of Corollary 1. The ratio s̃dB/ŝdB is the cosine of the angle between t∗ − s01 (3.9) and the
linear space L(Y ∗) spanned by the centered bootstrap counts (3.2). Model-selection estimators tend to be more
nonlinear, yielding smaller ratios, i.e., greater gains from smoothing.

The illustration in Figure 4 shows s̃dB/ŝdB as the cosine of the angle between t∗ − s01 and L(Y ∗).
The ratio is a measure of the nonlinearity of t∗i as a function of the bootstrap counts Y ∗ij . Model selection

induces discontinuities in t(·), increasing the nonlinearity and decreasing s̃dB/ŝdB. The 164 ratios shown
as the dashed line in Figure 2 had median 0.91, mean 0.89.

How many bootstrap replications B are necessary to ensure the accuracy of s̃dB? The jackknife provides
a quick answer: divide the B replications into J groups of size B/J each, and let s̃dBj be the estimate
(3.6) computed with the jth group removed. Then

c̃vB =

 J

J − 1

J∑
j=1

(
s̃dBj − s̃dB·

)21/2/
s̃dB, (3.11)

s̃dB· =
∑

s̃dBj/J , is the jackknife estimated coefficient of variation for s̃dB. Applying (3.11) with J = 20
to the first B = 1000 replications (of the 4000 used in Figure 2) yielded c̃vB values of about 0.05 for each
of the 164 subjects. Going on to B = 4000 reduced the c̃vB’s to about 0.02. Stopping at B = 1000 would
have been quite sufficient. Note: c̃vB applies to the bootstrap accuracy of s̃dB as an estimate of the ideal
value s̃d (3.4), not to sampling variability due to randomness in the original data y, while s̃dB itself does
refer to sampling variability.

Proof of Theorem 1. The “nonparametric delta method” is the same as the influence function and in-
finitesimal jackknife methods described in Chapter 6 of Efron (1982). It is appropriate here because s(y),

8



unlike t(y), is a smooth function of y. With the original data vector y (2.2) fixed, we can write bootstrap
replication t∗i = t(y∗i ) as a function T (Y ∗i ) of the count vector (3.2). The ideal smoothed bootstrap estimate
s0 is the multinomial expectation of T (Y ∗),

s0 = E {T (Y ∗)} , Y ∗ ∼ Multn(n,p0), (3.12)

p0 = (1/n, 1/n, . . . , 1/n), the notation indicating a multinomial distribution with n draws on n equally
likely categories.

Now let S(p) denote the multinomial expectation of T (Y ∗) if the probability vector is changed from
p0 to p = (p1, p2, . . . , pn),

S(p) = E {T (Y ∗)} , Y ∗ ∼ Multn(n,p), (3.13)

so S(p0) = s0. Define the directional derivative

Ṡj = lim
ε→0

S (p0 + ε(δj − p0))− S(p0)

ε
, (3.14)

δj the jth coordinate vector (0, 0, . . . , 0, 1, 0, . . . , 0), with 1 in the jth place. Formula (6.18) of Efron (1982)
gives  n∑

j=1

Ṡ2
j

1/2/
n (3.15)

as the delta method estimate of standard deviation for s0. It remains to show that (3.15) equals (3.4).
Define wi(p) to be the ratio of the probabilities of Y ∗i under (3.13) compared to (3.12),

wi(p) =
n∏
k=1

(npk)
Y ∗ik , (3.16)

so that

S(p) =
B∑
i=1

wi(p)t∗i /B (3.17)

(the factor 1/B reflecting that under p0, all the Y ∗i ’s have probability 1/B = 1/nn).
For p(ε) = p0 + ε(δj − p0) as in (3.14), we calculate

wi(p) = (1 + (n− 1)ε)Y
∗
ij (1− ε)

∑
k 6=j Y

∗
ik . (3.18)

Letting ε→ 0 yields
wi(p)

.
= 1 + nε(Y ∗ij − 1) (3.19)

where we have used
∑

k Y
∗
ik/n = 1. Substitution into (3.17) gives

S (p(ε))
.
=

B∑
i=1

[
1 + nε(Y ∗ij − 1)

]
t∗i /B

= s0 + nε covj

(3.20)

as in (3.5). Finally, definition (3.14) yields
Ṡj = n covj (3.21)

and (3.15) verifies Theorem 1 (3.4). �
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The validity of an approximate 95% interval θ̂ ± 1.96σ̂ is compromised if the standard error σ is itself
changing rapidly as a function of θ. Acceleration â (Efron, 1987) is a measure of such change. Roughly
speaking,

â =
dσ

dθ

∣∣∣∣
θ̂

. (3.22)

If â = 0.10 for instance, then at the upper endpoint θ̂up = θ̂+ 1.96 σ̂ the standard error will have increased

to about 1.196σ̂, leaving θ̂up only 1.64, not 1.96, σ-units above θ̂. (The 1987 paper divides definition (3.22)
by 3, as being appropriate after a normalizing transformation.)

Acceleration has a simple expression in terms of the covariances ĉovj used to calculate s̃dB in (3.6),

â =
1

6

 n∑
j=1

ĉov3
j

/(∑
ĉov2

j

)3/2 , (3.23)

equation (7.3) of Efron (1987). The â’s were small for the 164 s̃dB estimates for the Cholesterol data,
most of them falling between −0.02 and 0.02, strengthening belief in the smoothed standard intervals
µ̃i ± 1.96 s̃dBi (2.11).

Bias is more difficult to estimate than variance, particularly in a nonparametric context. Remark C
of Section 7 verifies the following promising-looking result: the nonparametric estimate of bias for the
smoothed estimate µ̃ = s(y) (2.8) is

b̃ias =
1

2
cov∗(Q

∗
i , t
∗
i ) where Q∗i =

n∑
k=1

(Y ∗nk − 1)2 , (3.24)

with cov∗ indicating bootstrap covariance as in (3.5). Unfortunately, b̃ias proved to be too noisy to use in
the Cholesterol example. Section 6 describes a more practical approach to bias estimation in a parametric
bootstrap context.

4 Parametric bootstrap smoothing

We switch now from nonparametric to parametric estimation problems, but ones still involving data-based
model selection. More specifically, we assume that a p-parameter exponential family of densities applies,

fα

(
β̂
)

= eα
′β̂−ψ(α)f0

(
β̂
)
, (4.1)

where α is the p-dimensional natural or canonical parameter vector, β̂ the p-dimensional sufficient statistic
vector (playing the role of y in (2.2)), ψ(α) the cumulant generating function, and f0(β̂) the “carrying
density” defined with respect to some carrying measure (which may include discrete atoms as with the
Poisson family). Form (4.1) covers a wide variety of familiar applications, including generalized linear
models; β̂ is usually obtained by sufficiency from the original data, as seen in the next section.

The expectation parameter vector β = Eα{β̂} is a one-to-one function of α, say β = λ(α), having p× p
derivative matrix

dβ

dα
= V (α) (4.2)

where V = V (α) is the covariance matrix covα(β̂). The value of α corresponding to the sufficient statistic
β̂, α̂ = λ−1(β̂), is the maximum likelihood estimate (MLE) of α.

A parametric bootstrap sample is obtained by drawing i.i.d. realizations β̂∗ from the MLE density fα̂(·),

fα̂(·) iid−→ β̂∗1 , β̂
∗
2 , . . . , β̂

∗
B. (4.3)
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If µ̂ = t(β̂) is an estimate of a parameter of interest µ, the bootstrap samples (4.3) provide B parametric
bootstrap replications of µ̂,

µ̂∗i = t
(
β̂∗i

)
, i = 1, 2, . . . , B. (4.4)

As in the nonparametric situation, these can be averaged to provide a smoothed estimate,

µ̃ = s
(
β̂
)

=

B∑
i=1

t
(
β̂∗i

)/
B. (4.5)

When t(·) involves model selection, µ̂ is liable to an erratic jumpiness, smoothed out by the averaging
process.

The bootstrap replications β̂∗ ∼ fα̂(·) have mean vector and covariance matrix

β̂∗ ∼
(
β̂, V̂

) [
V̂ = V (α̂)

]
. (4.6)

Let B be the B × p matrix with ith row β̂∗i − β̂. As before, we will assume an ideal bootstrap resampling
situation where B →∞, making the empirical mean and variance of the β̂∗ values exactly match (4.6):

B′1B/B = O and B′B/B = V̂ , (4.7)

1B the vector of B 1’s.
Parametric versions of Theorem 1 and Corollary 1 depend on the p-dimensional bootstrap covariance

vector between β̂∗ and t∗ = t(y∗),
cov∗ = B′ (t∗ − s01B) /B (4.8)

where t∗ is the B-vector of bootstrap replications t∗i = t(y∗), and s0 the ideal smoothed estimate (4.5).

Theorem 2. The parametric delta-method estimate of standard deviation for the ideal smoothed estimate
(4.5) is

s̃d =
[
cov′∗ V̂

−1 cov∗

]1/2
. (4.9)

(Proof given at the end of this section.)

Corollary 2. s̃d is always less than or equal to ŝd, the bootstrap estimate of standard deviation for the
unsmoothed estimate,

ŝd =
[
‖t∗ − s01B‖2/B

]1/2
, (4.10)

the ratio being

s̃d/ŝd = B1/2
[
(t∗ − s01B)′B(B′B)−1B′(t∗ − s01B)

]1/2 /
ŝd. (4.11)

In the ideal bootstrap case, (4.7) and (4.9) show that s̃d equals B−1/2 times the numerator on the right-
hand side of (4.11). This is recognizable as the length of projection of t∗ − s01B into the p-dimensional
linear subspace of RB spanned by the columns of B. Figure 4 still applies, with L(B) replacing L(Y ∗).

If t(y) = µ̂ is multivariate, say of dimension K, then cov∗ as defined in (4.8) is a p×K matrix. In this
case

cov′∗ V̂
−1 cov∗ (4.12)

(or ĉov′V̄ −1ĉov in what follows) is the delta-method assessment of covariance for the smoothed vector
estimate s(y) =

∑
t(y∗i )/B, also called t∗· below.

11



Only minor changes are necessary for realistic bootstrap computations, i.e., for B <∞. Now we define
B as the B × p matrix having ith row β̂∗i − β̂∗· , with β̂∗· =

∑
β̂∗i /B, and compute the empirical covariance

vector
ĉov = B′ (t∗ − t∗· 1B) /B (4.13)

and the empirical bootstrap variance matrix

V̄ = B′B/B. (4.14)

Then the estimate of standard deviation for the smoothed estimate µ̃ = s(β̂) (4.5) is

s̃dB =
[
ĉov′V̄ −1ĉov

]1/2
. (4.15)

As B →∞, ĉov→ cov∗, and V̄ → V̂ , so s̃dB → s̃d (4.9). Corollary 2, with s0 replaced by µ̃ (4.5), remains
valid.
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Figure 5: Simulation test of Theorem 2, parametric model (4.16)–(4.18), Cholesterol data; 100 simulations, 1000
parametric bootstraps each, for the 11 subjects indicated at the bottom of Figure 1. Heavy line connects observed
empirical standard deviations (4.22); dashes show the 100 estimates s̃d from Theorem 2 (4.15). Light dashed line

connects averages of the s̃d values, as discussed in Remark K.

Figure 5 reports on a simulation test of Theorem 2. This was based on a parametric model for the
Cholesterol data of Figure 1,

y ∼ N164(µ,σ
2), (4.16)

where σ2 was diagonal, with diagonal elements a cubic function of compliance c (obtained from a regression
precentile fit),

σi = 23.7 + 5.49c− 2.25c2 − 1.03c3, (4.17)

making σi about twice as large to the right as to the left. The expectation vector µ was taken to be

µ = Xβ̂(6) = µ̂(6), (4.18)

the sixth degree OLS fit for cholesterol decrease as a function of compliance in (4.16), with X the corre-
sponding 164× 7 structure matrix.
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Model (4.16)–(4.18) is a 7-parameter exponential family (4.1), with sufficient statistic

β̂ = G−1X ′(σ2)−1y
[
G = X ′(σ2)−1X

]
(4.19)

and covariance matrix (4.2)
V = G−1, (4.20)

which is all that is necessary to apply Theorem 2.
The simulation began with 100 draws y∗i , i = 1, 2, . . . , 100, from (4.16), each of which gave OLS estimate

µ̂∗i = Xβ̂∗i (6). Then B = 1000 parametric bootstrap draws were generated from β̂∗i ,

y∗∗ij ∼ N
(
µ̂∗i ,σ

2
)
, j = 1, 2, . . . , 1000, (4.21)

from which smoothed estimate µ̃i (4.5) and estimated standard deviation s̃di were calculated according to
(4.15). All of this was done for 11 of the 164 subjects, as indicated in Figure 1.

The dashes in Figure 5 indicate the 100 s̃di values for each of the 11 subjects. This is compared with
the observed empirical standard deviations of the smoothed estimates,

S̃d =

[
100∑
1

(µ̃i − µ̃·)2 /99

]1/2 [
µ̃· =

100∑
1

µ̃i/100

]
, (4.22)

connected by the heavy solid curve. The s̃d values from Theorem 2 are seen to provide reasonable estimates
of S̃d, though with some bias and variability.

There is more to the story. The empirical standard deviations S̃d are themselves affected by model-
selection problems. Averaging the 100 s̃di values (connected by the dashed line in Figure 5) gives more
dependable results, as discussed in Remark K.

Proof of Theorem 2. Suppose that instead of fα̂(·) in (4.3) we wished to consider parametric bootstrap
samples drawn from some other member of family (4.1), fα(·) (α not necessarily the “true value”). The
ratio wi = fα(β̂∗i )/fα̂(β̂∗i ) equals

wi = cα,α̂e
Qi where Qi = (α− α̂)′

(
β̂∗i − β̂

)
, (4.23)

with the factor cα,α̂ not depending on β̂∗i . Importance sampling can now be employed to estimate Eα{t(β̂)},
the expectation under fα of statistic t(β̂), using only the original bootstrap replications (β̂∗i , t

∗
i ) from (4.3),

Êα =

B∑
i=1

wit
∗
i

/
B∑
i=1

wi =

B∑
i=1

eQit∗i

/
B∑
i=1

eQ∗ . (4.24)

Notice that Êα is the value of the smoothed estimate (4.5) at parameter α, say sα. The delta-method
standard deviation for our estimate sα̂ depends on the derivative vector dsα/dα evaluated at α = α̂.
Letting α→ α̂ in (4.23)–(4.24) gives,

sα
.
=

∑
(1 +Qi)t

∗
i /B∑

(1 +Qi)/B
= sα̂ + (α− α̂)′ cov∗ (4.25)

where the denominator term
∑
Qi/B equals 0 for the ideal bootstrap according to (4.7). (For the non-ideal

bootstrap,
∑
Qi/B approaches 0 at rate Op(1/

√
B).)

We see that
dsα
dα

∣∣∣∣
α̂

= cov∗, (4.26)
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so from (4.2),
dsα
dβ

∣∣∣∣
α̂

= V̂ −1 cov∗ . (4.27)

Since V̂ is the covariance matrix of β̂∗, that is, of β̂ under distribution fα=α̂, (4.6) and (4.27) verify s̃d in
(4.9) as the usual delta-method estimate of standard deviation for s(β̂). �

Theorem 1 and Corollary 1 can be thought of as special cases of the exponential family theory in this
section. The multinomial distribution of Y ∗ (3.12) plays the role of fα̂(β̂∗); V̂ in (4.9) becomes I−1n1

′
n/n

(3.3), so that (4.9) becomes (3.4). A technical difference is that the Multn(n,p) family (3.13) is singular
(that is, concentrated on a n− 1-dimensional subspace of Rn), making the influence-function argument a
little more involved than the parametric delta-function calculations. More seriously, the dimension of the
nonparametric multinomial distribution increases with n, while for example, the parametric “Supernova”
example of the next section has dimension 10 no matter how many supernovas might be observed. The more
elaborate parametric confidence interval calculations of Section 6 failed when adapted for the nonparametric
Cholesterol analysis, perhaps because of the comparatively high dimension, 164 versus 10.

5 The Supernova data
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Figure 6: The Supernova data Absolute magnitudes of n = 39 Type Ia supernovas plotted versus their OLS
estimates from the full linear model (5.3); adjusted R2 (5.5) equals 0.69.

Figure 6 concerns a second example we will use to illustrate the parametric bootstrap theory of the
previous section, the Supernova data: the absolute magnitude yi has been determined for n = 39 Type Ia
supernovas, yielding the data

y = (y1, y2, . . . , yn)′. (5.1)

Each supernova has also had observed a vector of spectral energies xi measured at p = 10 frequencies,

xi = (xi1, xi2, . . . , xi10) (5.2)

for supernova i. The 39× 10 covariate matrix X, having xi as its ith row, will be regarded as fixed.
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We assume a standard normal linear regression model

y = Xα+ ε, ε ∼ N39(O, I), (5.3)

referred to as the full model in what follows. (For convenient discussion, the yi have been rescaled to make
(5.3) appropriate.) It has exponential family form (4.1), p = 10, with natural parameter α, β̂ = X ′y, and
ψ = α′X ′Xα/2.

Then (X ′X)−1β̂ = α̂, the MLE of α, which also equals α̂OLS, the ordinary least squares estimate of α
in (5.3), yielding the full-model vector of supernova brightness estimates

µ̂OLS = Xα̂OLS. (5.4)

Figure 6 plots yi versus its estimate µ̂OLS,i. The fit looks good, having an unadjusted R2 of 0.82. Adjusting
for the fact that we have used m = 10 parameters to fit n = 39 data points yields the more realistic value

R2
adj = R2 − 2 · (1−R2)

m

n−m
= 0.69; (5.5)

see Remark D.
Type Ia supernovas were used as “standard candles” in the discovery of dark energy and the cosmo-

logical expansion of the universe (Perlmutter et al., 1999; Riess et al., 1998). Their standardness assumes
a constant absolute magnitude. This is not exactly true, and in practice regression adjustments are made.
Our 39 supernovas were close enough to Earth to have their absolute magnitudes ascertained independently.
The spectral measurements x, however, can be made for distant Type Ia supernovas, where independent
methods fail, the scientific goal being a more accurate estimation function µ̂(x) for their absolute magni-
tudes, and improved calibration of cosmic expansion.

We will use the Lasso (Tibshirani, 1996) to select µ̂(x). For a given choice of the non-negative “tuning
parameter” λ, we estimate α by the Lasso criterion

α̂λ = arg min
α

{
‖y −Xα‖2 + λ

p∑
k=1

|αk|

}
; (5.6)

α̂λ shrinks the components of α̂OLS toward zero, some of them all the way. As λ decreases from infinity to
0, the number m of non-zero components of α̂λ increases from 0 to p. Conveniently enough, it turns out
that m also nearly equals the effective degrees of freedom for the selection of α̂λ (Efron, Hastie, Johnstone
and Tibshirani, 2004). In what follows we will write α̂m rather than α̂λ.

Table 4: Lasso model selection for the Supernova data. As the regularization parameter λ in (5.6) decreases from
infinity to zero, the number m of non-zero coordinates of α̂m increases from 0 to 10. The choice m = 7 maximizes
the adjusted R2 value (5.7), making it the selected model.

λ m R2 R2
adj

∞ 0 0 0
63 1 .17 .12

19.3 3 .74 .70
8.2 5 .79 .73
.496 7 .82 .735 (selected)
.039 9 .82 .71

0 10 .82 .69 (OLS)
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Table 4 shows a portion of the Lasso calculations for the Supernova data. Its last column gives R2
adj

(5.5) with R2 having the usual form

R2 = 1− ‖y − µ̂m‖
2

‖y − ȳ1‖2
(

˙̂µm = Xα̂m, ȳ =
∑

yi/n
)
. (5.7)

The choice m̂ = 7 maximizes R2
adj,

m̂ = arg max
m
{R2

adj}, (5.8)

yielding our selected coefficient vector α̂m̂ and the corresponding vector of supernova estimates

µ̂ = Xα̂m̂; (5.9)

note that α̂m̂ is not an OLS estimate.
B = 4000 bootstrap replications µ̂∗ were computed (again many more than were actually needed):

bootstrap samples y∗ were drawn using the full OLS model,

y∗ ∼ N39 (µ̂OLS, I) ; (5.10)

see Remark E. The equivalent of Table 4, now based on data y∗, was calculated, the R2
adj maximizer m̂∗

and α̂∗m̂∗ selected, giving
µ̂∗ = Xα̂∗m̂∗ . (5.11)

Averaging the 4000 µ̂∗ vectors yielded the smoothed vector estimates

µ̃ =

B∑
i=1

µ̂∗i
/
B. (5.12)

Standard deviations s̃dBj for supernova j’s smoothed estimate µ̃j were then calculated according to (4.15),

j = 1, 2, . . . , 39. The ratio of standard deviations s̃dB/ŝdB for the 39 supernovas ranged from 0.87 to 0.98,
with an average of 0.93. Jackknife calculations (3.11) showed that B = 800 would have been enough for
good accuracy.

At this point it pays to remember that s̃dB is a delta-method shortcut version of a full bootstrap
standard deviation for the smoothed estimator s(y). We would prefer the latter if not for the computational
burden of a second level of bootstrapping. As a check, a full second-level simulation was run, beginning
with simulated data vectors y∗ ∼ N39(µ̂OLS, I) (5.10), and for each y∗ carrying through calculations of

s∗ and s̃d
∗
B based on B = 1000 second-level bootstraps. This was done 500 times, yielding 500 values s∗k

for each of the 39 supernovas, which provided direct bootstrap estimates say S̃dk for sk. The S̃dk values
averaged about 7.5% larger than the delta-method approximations s̃dBk. Taking this into account, the
reductions in standard deviation due to smoothing were actually quite small, the ratios averaging about
98%; see the end of Remark H.

Table 5: Percentage of the 4000 bootstrap replications selecting m non-zero coefficients for α̂∗ in (5.11), m =
1, 2, . . . , 10. The original choice m = 7 is not quite modal.

m 1 2 3 4 5 6 7 8 9 10

% 0 1 8 13 16 18 18 14 9 2

Returning to the original calculations, model selection was highly variable among the 4000 bootstrap
replications. Table 5 shows the percentage of the 4000 replications that selected m non-zero coefficients
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for α̂∗ in (5.11), m = 1, 2, . . . , 10, with the original choice m = 7 not quite being modal. Several of the
supernovas showed effects like that in Figure 3.

Model averaging, that is bootstrap smoothing, still has important confidence interval effects even though
here it does not substantially reduce standard deviations. This is shown in Figure 7 of the next section,
which displays approximate 95% confidence intervals for the 39 supernova magnitudes.

Other approaches to bootstrapping Lasso estimates are possible. Chatterjee and Lahiri (2011), referring
back to work by Knight and Fu (2000), resample regression residuals rather than using the full parametric
bootstrap (5.10). The “m out of n” bootstrap is featured in Hall, Lee and Park (2009). Asymptotic
performance, mostly absent here, is a central concern of these papers; also, they focus on estimation of the
regression coefficients, α in (5.3), a more difficult task than estimating µ = Xα.

6 Better bootstrap confidence intervals

The central tactic of this paper is the use of bootstrap smoothing to convert an erratically behaved model
selection-based estimator t(·) into a smoothly varying version s(·). Smoothing makes the good asymptotic
properties of the bootstrap, as extensively developed in Hall (1992), more credible for actual applications.
This section carries the smoothing theme further, showing how s(·) can be used to form second-order
accurate intervals.

The improved confidence intervals depend on the properties of bootstrap samples from exponential
families (4.1). We define an “empirical exponential family” f̂α(·) that puts probability

f̂α

(
β̂∗i

)
= e(α−α̂)

′β̂∗i −ψ̂(α)
1

B
(6.1)

on bootstrap replication β̂∗i (4.3) for i = 1, 2, . . . , B, where

ψ̂(α) = log

 B∑
j=1

e(α−α̂)
′β̂∗i
/
B

 . (6.2)

Here α̂ is the MLE of α in the original family (4.1), α̂ = λ−1(β̂) in the notation following (4.2).
The choice of α = α̂ makes f̂α̂(β̂∗i ) = 1/B for i = 1, 2, . . . , B; in other words, it yields the empirical

probability distribution of the bootstrap sample (4.3) in Rp. Other choices of α “tilt” the empirical
distribution in direction α − α̂; (6.1) is a direct analogue of the original exponential family (4.1), which
can be re-expressed as

fα

(
β̂∗
)

= e(α−α̂)
′β̂∗−(ψ(α)−ψ(α̂))fα̂

(
β̂∗
)
, (6.3)

now with α̂ fixed and β̂∗ the random variable. Notice that ψ̂(α̂) = 0 in (6.2). Taking this into account, the
only difference between the original family (6.3) and the empirical family (6.1) is the change in support, from
fα̂(·) to the empirical probability distribution. Under mild regularity conditions, family f̂α(·) approaches
fα(·) as the bootstrap sample size B goes to infinity.

As in (4.23)–(4.24), let sα be the value of the smoothed statistic we would get if bootstrap samples
were obtained from fα rather than fα̂. We can estimate sα from the original bootstrap samples (4.3) by
importance sampling in family (4.1),

sα =

B∑
i=1

e(α−α̂)
′β̂∗i t∗i

/
B∑
i=1

e(α−α̂)
′β̂∗i

=
B∑
i=1

f̂α

(
β̂∗i

)
t∗i

(6.4)
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without requiring any further evaluations of t(·). (Note that f̂α(β̂∗i ) is proportional to wi in (4.24).) The
main point here is that the smoothed estimate sα is the expectation of the values t∗i , i = 1, 2, . . . , B, taken
with respect to the empirical exponential family (6.1).

A system of approximate confidence intervals enjoys second-order accuracy if its coverage probabilities
approach the target value with errors 1/n in the sample size n, rather than at the slower rate 1/

√
n of

the standard intervals. The ABC system (“approximate bootstrap confidence” intervals, DiCiccio and
Efron, 1992, not to be confused with “approximate Bayesian computation” as in Fearnhead and Prangle,
2012) employs numerical derivatives to produce second-order accurate intervals in exponential families. Its
original purpose was to eliminate the need for bootstrap resampling. Here, though, we will apply it to the
smoothed statistic s(β̂) =

∑
t(β̂∗i )/B (4.5) in order to avoid a second level of bootstrapping. This is a

legitimate use of ABC because we are working in an exponential family, albeit the empirical family (6.1).
Three corrections are needed to improve the smoothed standard interval (2.11) from first- to second-

order accuracy: a non-normality correction obtained from the bootstrap distribution, an acceleration
correction of the type mentioned at (3.22), and a bias-correction. ABC carries these out via p+2 numerical
second derivatives of ŝα in (6.4), taken at α = α̂, as detailed in Section 2 of DiCiccio and Efron (1992).
The computational burden is effectively nil compared with the original bootstrap calculations (4.3).
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Figure 7: Approximate 95% confidence limits for the 39 supernova magnitudes µk (after subtraction of smoothed

estimates µ̃k (5.12)); ABC intervals (solid) compared with smoothed standard intervals µ̃k±1.96s̃dk (dashed). Crosses
indicate differences between unsmoothed and smoothed estimates, (5.9) minus (5.12).

Figure 7 compares the ABC 95% limits for the supernova brightnesses µk, k = 1, 2, . . . , 39, solid lines,
with parametric smoothed standard intervals (2.11), dashed lines. (The smoothed estimates µ̃k (5.12) have
been subtracted from the endpoints in order to put all the intervals on the same display.) There are a few
noticeable discrepancies, for supernovas 2, 6, 25, and 27 in particular, but overall the smoothed standard
intervals hold up reasonably well.

Smoothing has a moderate effect on the Supernova estimates, as indicated by the values of µ̂k − µ̃k,
(5.11) minus (5.12), the crosses in Figure 7. A few of the intervals would be much different if based on
the unsmoothed estimates µ̂k, e.g., supernovas 1, 12, 17, and 28. Remark I says more about the ABC
calculations.

As a check on the ABC intervals, the “full simulation” near the end of Section 4, with B = 1000
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bootstrap replications for each of 500 trials, was repeated. For each trial, the 1000 bootstraps provided
new ABC calculations, from which the “achieved significance level” asl∗k of the original smoothed estimate
µ̃k (5.12) was computed: that is,

asl∗k = bootstrap ABC confidence level for (−∞, µ̃k). (6.5)

If the ABC construction were working perfectly, asl∗k would have a uniform distribution,

asl∗k ∼ U(0, 1) (6.6)

for k = 1, 2, . . . , 39.

Table 6: Simulation check for ABC intervals; 500 trials, each with B = 1000 bootstrap replications. Columns
show quantiles of achieved significance levels asl∗k (6.5) for supernovas k = 5, 10, . . . , 35; last column for all seven
supernovas combined. It is a reasonable match to the ideal uniform distribution (6.6).

quantile SN5 SN10 SN15 SN20 SN25 SN30 SN35 ALL

0.025 0.04 0.02 0.04 0.00 0.04 0.03 0.02 0.025
0.05 0.08 0.04 0.06 0.04 0.08 0.06 0.06 0.055
0.1 0.13 0.08 0.11 0.10 0.12 0.10 0.12 0.105
0.16 0.20 0.17 0.18 0.16 0.18 0.18 0.18 0.175
0.5 0.55 0.50 0.54 0.48 0.50 0.48 0.50 0.505
0.84 0.84 0.82 0.82 0.84 0.84 0.84 0.84 0.835
0.9 0.90 0.88 0.90 0.88 0.90 0.90 0.90 0.895
0.95 0.96 0.94 0.96 0.94 0.94 0.94 0.94 0.945
0.975 0.98 0.97 0.98 0.98 0.96 0.98 0.97 0.975

Table 6 displays quantiles of asl∗k in the 500 trials, for seven of the 39 supernovas, k = 5, 10, 15, 20, 25, 30,
and 35. The results are not perfectly uniform, showing for instance a moderate deficiency of small asl∗k
values for k = 5, but overall the results are encouraging. A U(0, 1) random variable has mean 0.500 and
standard deviation 0.289, while all 3500 asl∗k values in Table 6 had mean 0.504 and standard deviation
0.284.

The ABC computations are local, in the sense that the importance sampling estimates sα in (6.4)
need only be evaluated for α very near α̂. This avoids the familiar peril of importance sampling, that the
sampling weights in (6.4) or (4.1) may vary uncontrollably in size.

If one is willing to ignore the peril, full bootstrap standard errors for the smoothed estimates µ̃ (4.5),
rather than the delta-method estimates of Theorem 2, become feasible: in addition to the original para-
metric bootstrap samples (4.3), we draw J more times, say

fα̂(·) −→ β̃∗1 , β̃
∗
2 , . . . , β̃

∗
J , (6.7)

and compute the corresponding natural parameter estimates α̃∗j = λ−1(β̃∗j ), as following (4.2). Each α̃∗j
gives a bootstrap version of the smoothed statistic sα̃∗j , using (6.4), from which we calculate the usual
bootstrap standard error estimate,

s̃dboot =

 J∑
j=1

(
sα̃∗j − s·

)2/
(J − 1)

1/2

, (6.8)

where s· =
∑
sα̃∗j /J . Once again, no further evaluations of t(·) beyond the original ones in (4.5) are

required.

19



Carrying this out for the Supernova data gave standard errors s̃dboot a little smaller than those from
Theorem 2, as opposed to the somewhat larger ones found by the full simulation near the end of Section 5.
Occasional very large importance sampling weights in (6.4) did seem to be a problem here.

Compromises between the delta method and full bootstrapping are possible. For the normal model
(5.3) we have β̃∗j ∼ N (β̂,X ′X) in (6.7). Instead we might take

β̂∗j ∼ N
(
β̂, cX ′X

)
(6.9)

with c less than 1, placing α̃∗j nearer α̂. Then (6.8) must be multiplied by 1/
√
c. Doing this with c = 1/9

gave standard error estimates almost the same as those from Theorem 2.

7 Remarks, details, and proofs

This section expands on points raised in the previous discussion.

A. Proof of Corollary 1 With Y ∗ = (Y ∗ij) as in (3.2), let X = Y ∗ − 1B1
′
n = (Y ∗ij − 1). For the ideal

bootstrap, B = nn,
X ′X/B = I − 1′n1n, (7.1)

the multinomial covariance matrix in (3.3). This has (n− 1) non-zero eigenvalues all equaling 1, implying
that the singular value decomposition of X is

X =
√
BLR′, (7.2)

L and R orthonormal matrices of dimensions B×(n−1) and n×(n−1). Then the B-vector U∗ = (t∗i −s0)
has projected squared length into L(X)

U∗′LL′U∗ = BU∗′
L
√
BR′R

√
BL′

B2
U∗

= B
(
U∗′X/B

) (
X ′U∗/B

)
= Bs̃d

2
,

(7.3)

verifying (3.10).

B. Hájek projection and ANOVA decomposition For the ideal nonparametric bootstrap of Section 3,
define the conditional bootstrap expectations

ej = E∗ {t(y∗i )|y∗ik = yj} , (7.4)

j = 1, 2, . . . , n (not depending on k). The bootstrap ANOVA decomposition of Efron (1983, Sect. 7) can
be used to derive an orthogonal decomposition of t(y∗),

t(y∗i ) = s0 + L∗i +R∗i (7.5)

where s0 = E∗{t(y∗)} is the ideal smoothed bootstrap estimate, and

L∗i =
n∑
j=1

Y ∗ij(ej − s0), (7.6)

while R∗i involves higher-order ANOVA terms such as ejl − ej − el + s0 with

ejl = E∗ {t(y∗i )|y∗ik = yj and y∗im = yk} . (7.7)
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The terms in (7.5) satisfy E∗{L∗} = E∗{R∗} = 0 and are orthogonal, E∗{L∗R∗} = 0. The bootstrap
Hájek projection of t(y∗) (Hájek, 1968) is then the first two terms of (7.5), say

H∗i = s0 + L∗i . (7.8)

Moreover,

L∗i =
n∑
j=1

Y ∗ij covj (7.9)

from (3.5) and the ratio of smoothed-to-unsmoothed standard deviation (3.10) equals

s̃dB
/

ŝdB =
[
var∗{L∗i }

/
(var∗{L∗i }+ var∗{R∗i })

]1/2
. (7.10)

C. Nonparametric bias estimate There is a nonparametric bias estimate b̃iasB for the smoothed statistic
s(y) (2.8) corresponding to the variability estimate s̃dB. In terms of T (Y ∗) and S(p) (3.13)–(3.14), the
nonparametric delta method gives

b̃iasB =
1

2

n∑
j=1

S̈j
n2

(7.11)

where S̈j is the second-order influence value

S̈j = lim
ε→0

S (p0 + ε(δj − p0))− 2S(p0) + S (p0 − ε(δj − p0))
ε2

. (7.12)

See Section 6.6 of Efron (1982).
Without going into details, the Taylor series calculation (3.18)–(3.19) can be carried out one step

further, leading to the following result:

b̃iasB = cov∗(D
∗
i , t
∗
i ) (7.13)

where D∗i =
∑n

1 (Y ∗ij − 1)2.
This looks like a promising extension of Theorem 1 (3.4)–(3.5). Unfortunately, (7.13) proved unstable

when applied to the Cholesterol data, as revealed by jackknife calculations like (3.11). Things are better
in parametric settings; see Remark I. There is also some question of what “bias” means with model
selection-based estimators; see Remark G.

D. Adjusted R2 Formula (5.5) for R2
adj, not the usual definition, is motivated by OLS estimation and

prediction in a homoskedastic model. We observe

y ∼ (µ, σ2I) (7.14)

and estimate µ by µ̂ = My, where the n × n symmetric matrix M is idempotent, M2 = M . Then
σ̂2 = ‖y − µ̂‖2/(n −m), m the rank of M , is the usual unbiased estimate of σ2. Letting y◦ indicate an
independent new copy of y, the expected prediction error of µ̂ is

E
{
‖y◦ − µ̂‖2

}
= E

{
‖y − µ̂‖2 + 2mσ̂2

}
(7.15)

as in (2.6). Finally, the usual definition of R2,

R2 = 1− ‖y − µ̂‖2
/
‖y − ȳ1‖2 (7.16)

is adjusted by adding the amount suggested in (7.15),

R2
adj = 1−

{
‖y − µ̂‖2 + 2mσ̂2

}/
‖y − ȳ1‖2 , (7.17)

and this reduces to (5.5).
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E. Full-model bootstrapping The bootstrap replications (5.10) are drawn from the full model, y∗ ∼
N39(µ̂OLS, I), rather than say the smoothed Lasso choice (5.12), y∗ ∼ N39(µ̃, I). This follows the general
development in Section 4 (4.3) and, less obviously, the theory of Sections 2 and 3, where the “full model”
is the usual nonparametric one (2.3).

An elementary example, based on Section 10.6 of Hjort and Claeskens (2003), illustrates the dangers
of bootstrapping from other than the full model. We observe y ∼ N (µ, 1), with MLE µ̂ = t(y) = y, and
consider estimating µ with the shrunken estimator µ̃ = s(y) = cy, where c is a fixed constant 0 < c < 1, so

µ̃ ∼ N (cµ, c2). (7.18)

Full-model bootstrapping corresponds to y∗ ∼ N (µ̂, 1), and yields µ̃∗ = cy∗ ∼ N (cµ̂, c2) as the bootstrap
distribution. However the “model-selected bootstrap” y∗ ∼ N (µ̃, 1) yields

µ̃∗ ∼ N
(
c2µ̂, c2

)
, (7.19)

squaring the amount of shrinkage in (7.18).
Returning to the Supernova example, the Lasso is itself a shrinkage technique. Bootstrapping from the

Lasso choice µ̃ would shrink twice, perhaps setting many more of the coordinate estimates to zero.
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Figure 8: Schematic diagram of large-sample bootstrap estimation. Observed vector y has expectation µ. Ellipses
indicate bootstrap distribution of y∗ given µ̂ = y. Parameter of interest θ = t(µ) is estimated by θ̂ = t(y). Solid
curves indicate surfaces of constant value of t(·).

F. Bias of the smoothed estimate There is a simple asymptotic expression for the bias of the bootstrap
smoothed estimator in exponential families, following DiCiccio and Efron (1992). The schematic diagram
of Figure 8 shows the main elements: the observed vector y, expectation µ, generates the bootstrap
distribution of y∗, indicated by the dashed ellipses. A parameter of interest θ = t(µ) has MLE θ̂ = t(y).
Isoplaths of constant value for t(·) are indicated by the solid curves in Figure 8.

The asymptotic mean and variance of the MLE θ̂ = t(y) as sample size n grows large is of the form

θ̂ ∼
(
θ +

b(µ)

n
,
c2(µ)

n

)
+Op

(
n−3/2

)
. (7.20)

Here the bias b(µ)/n is determined by the curvature of the level surfaces near µ. Then it is not difficult
to show that the ideal smoothed bootstrap estimate θ̃ =

∑
t(y∗i )/B, B →∞, has mean and variance

θ̃ ∼
(
θ + 2

b(µ)

n
,
c2(µ)

n

)
+Op

(
n−3/2

)
. (7.21)
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So smoothing doubles the bias without changing variance. This just says that smoothing cannot improve
on the MLE θ̂ in the already smooth asymptotic estimation context of Figure 8.

G. Two types of bias The term b(µ)/n in (7.20) represents “statistical bias,” the difference between
the expected value of t(µ̂) and t(µ). Model-selection estimators also involve “definitional bias”: we wish
to estimate θ = T (µ), but for reasons of robustness or efficiency we employ a different functional θ̂ =
t(y), a homely example being the use of a trimmed mean to estimate an expectation. The ABC bias
correction mentioned in Section 6 is correcting the smoothed standard interval µ̃± 1.96s̃eB for statistical
bias. Definitional bias can be estimated by t(y)−T (y), but this is usually too noisy to be of help. Section 2
of Berk et al. (2012) makes this point nicely (see their discussion of “target estimation”) and I have followed
their lead in not trying to account for definitional bias. See also Bühlmann and Yu (2002), Definition 1.2,
for an asymptotic statement of what is being estimated by a model-selection procedure.

Figure 9: Estimation after model selection. The regions indicate different model choices. Now the curves of constant
estimation jump discontinuously as y crosses regional boundaries.

H. Selection-based estimation The introduction of model selection into the estimation process disrupts
the smooth properties seen in Figure 8. The wedge-shaped regions of Figure 9 indicate different model
choices, e.g., linear, quadratic, cubic, etc. regressions for the Cholesterol data. Now the surfaces of constant
estimation jump discontinuously as y crosses regional boundaries. Asymptotic properties such as (7.20)–
(7.21) are less convincing when the local geometry near the observed y can change abruptly a short distance
away.

The bootstrap ellipses in Figure 9 are at least qualitatively correct for the Cholesterol and Supernova
examples, since in both cases a wide bootstrap variety of regions were selected. In this paper, the main
purpose of bootstrap smoothing is to put us back into Figure 8, where for example the standard intervals
(2.11) are more believable. (Note: Lasso estimates are continuous, though non-differentiable, across region
boundaries, giving a picture somewhere between Figure 8 and Figure 9. This might help explain the
smooth estimators’ relatively modest reductions in standard error for the Supernova analysis.)

Bagging amounts to replacing the discontinuous isoplaths of θ = t(µ) with smooth ones, say for
θbag = s(µ). The standard deviations and approximate confidence intervals of this paper apply to θbag,
ignoring the possible definitional bias.
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I. The ABC intervals The approximate bootstrap confidence limits in Figure 7 were obtained using the
ABCq algorithm, as explained in detail in Section 2 of DiCiccio and Efron (1992). In addition to the
acceleration a and bias-correction constant z0, ABCq also calculates cq: in a one-parameter exponential
family (4.1), cq measures the nonlinearity of the parameter of interest θ = t(β) as a function of β, with
a similar definition applying in p dimensions. The algorithm involves the calculation of p + 2 numerical
second derivatives of sα (6.4) carried out at α = α̂. Besides a, z0, and cq, ABCq provides an estimate of
statistical bias for sα.

If (α, z0, cq) = (0, 0, 0) then the ABCq intervals match the smoothed standard intervals (2.11). Other-
wise, corrections are made in order to achieve second-order accuracy. For instance (a, z0, cq) = (0,−0.1, 0)
shifts the standard intervals leftwards by 0.1−σ̂. For all three constants, values outside of ±0.1 can produce
noticeable changes to the intervals.

Table 7: Summary statistics of the ABCq constants for the 39 smoothed Supernova estimates µ̃k (5.12).

a z0 cq bias

mean .00 .00 .00 .00
stdev .01 .13 .04 .06

lowest −.01 −.21 −.07 −.14
highest .01 .27 .09 .12

Table 7 presents summary statistics of a, z0, cq, and bias for the 39 smoothed Supernova estimates µ̃k.
The differences between the ABCq and smoothed standard intervals seen in Figure 7 were primarily due
to z0.

J. Bias correction for s̃dB The nonparametric standard deviation estimate s̃dB (3.7) is biased upward
for the ideal value s̃d (3.4), but it is easy to make a correction. Using notation (3.3)–(3.9), define

Z∗ij =
(
Y ∗ij − 1

)
(t∗i − s0) . (7.22)

Then Z∗ij has bootstrap mean covj (3.5) and bootstrap variance say ∆2
j . A sample of B bootstrap replica-

tions yields bootstrap moments

ĉovj =
1

B

B∑
i=1

Z∗ij ∼∗
(
covj ,∆

2
j/B

)
, (7.23)

so

E∗s̃d
2

B = s̃d
2

+
1

B

n∑
j=1

∆2
j . (7.24)

Therefore the bias-corrected version of s̃d
2

B is

s̃d
2

B −
1

B2

n∑
j=1

B∑
i=1

(
Z∗ij − ĉovj

)2
. (7.25)

K. Improved estimates of the bagged standard errors The simulation experiment of Figure 5 can also
be regarded as a two-level parametric bootstrap procedure, with the goal of better estimating sd(µ̃k), the
bagged estimates’ standard deviations for subjects k = 1, 2, . . . , 11 in the Cholesterol study. Two possible
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estimates are shown: (1) the empirical standard deviation S̃d (4.22), solid curve, and (2) the average s̃d·
of the 100 second-level s̃di values (4.15), dashed curve. There are two reasons to prefer the latter.

The first has to do with the sampling error of the standard deviation estimates themselves. This was
about 10 times larger for S̃d than s̃d·, e.g., 5.45± 0.35 compared to 5.84± 0.03 for subject 1. (Note: The
two curves in Figure 5 do not differ significantly at any point.)

The second and more important reason has to do with the volitility of model-selection estimates and
their standard errors. Let σ(β) denote the standard deviation of a bagged estimator µ̃ in a parametric
model such as (4.16)–(4.17). The unknown true parameter β0 has yielded the observed value β̂, and then
bootstrap values β̂∗i , i = 1, 2, . . . , 100, and second-level bootstraps β̂∗ij , j = 1, 2, . . . , 1000. The estimate

s̃d100 obtained from the β̂∗i ’s (4.15) is a good approximation to σ(β̂). The trouble is that the functional
σ(β) is itself volatile, so that σ(β̂) may differ considerably from the “truth” σ(β0).

This can be seen at the second level in Figure 5, where the dashes indicating s̃di values, i = 1, 2, . . . , 100,
vary considerably. (This is not due to the limitations of using B = 1000 replications; the bootstrap “internal
variance” component accounts for only about 30% of the spread.) Broadly speaking, β̂∗i values that fall
close to a regime boundary, say separating the choice of “Cubic” from “Quartic,” had larger values of
σ(β̂∗i )

.
= s̃di.

The preferred estimate s̃d· effectively averages σ(β̂∗i ) over the parametric choice of β̂∗i and β̂. Another

way to say this is that s̃d· is a flat-prior Bayesian estimate of σ(β0), given the data β̂. See Efron (2012).
Of course s̃d· requires much more computation than s̃dB (4.15). Our 100 × 1000 analysis could be

reduced to 50×500 without bad effect, but that is still 25000 resamples. In fact, s̃d· was not much different
from s̃dB in this example. The difference was larger in the nonparametric version of Figure 5, which showed
substantially greater bias and variability, making the second level of bootstrapping more worthwhile.
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