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Abstract 
 

This article introduces a new location-scale regression model based on a log-Fréchet distribution. Maximum likelihood and Jackknife 

methods are used to estimate the new model parameters for censored data. Martingale and deviance residuals are obtained to check mod-

el assumptions, data validity, and detect outliers. Moreover, global influence is used to detect influential observations. Monte Carlo simu-

lation study is provided to compare the performance of the maximum likelihood and jackknife estimators for different sample sizes and 

censoring percentages. The empirical distribution of the martingale and deviance residuals of the proposed model is examined. A real 

lifetime heart transplant data is analyzed under the log-Fréchet regression model to illustrate the satisfactory results of the proposed mod-

el. 
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1. Introduction 

The study of the effect of covariate variables on survival time is 

crucial in many practical applications. Many regression models 

help to measure this effect. The log-location-scale model is con-

sidered as an important type of parametric regression model and 

commonly used in clinical trials, see Lawless [1]. This model 

assumes a linear relationship between the log of lifetime T and the 

covariate variables. 

Several studies were conducted using the log-location-scale re-

gression models. These include the log-Burr XII regression model 

with censored data analysis by Silva et al. [2], the log-modified 

Weibull regression models with censored data by Carrasco, Ortega 

and Paula [3], the log-generalized modified Weibull regression 

model with censored analysis by Ortega, Cordeiro and Carrasco 

[4], the log-exponentiated Weibull regression model with interval-

censored analysis by Hashimoto et al. [5], the log-Weibull extend-

ed regression model with censored data analysis by Silva, Ortega 

and Cancho [6], the log-Burr XII regression model with grouped 

survival data analysis by Hashimoto et al. [7], log-odd log-logistic 

Weibull regression model with censored data by Cruz, Ortega and 

Cordeiro [8], log-odd log-logistic generalized half-normal regres-

sion model with censored data by Pescim et al. [9]. 

 In this paper, based on log-location-scale regression model and 

Fréchet distribution, the log-Fréchet (LF) regression model is 

proposed. Fréchet distribution is considered as type II of the ex-

treme value distribution.There are many applications for extreme 

value distributions in several fields such as floods, earthquakes, 

rainfall, sporting, wind speed, queues in supermarkets, and others, 

see Kotz and Nadarajah [10]. Moreover, the aspects of classical 

analysis for modeling censored data based on LF regression mod-

els are examined. Asymptotic distribution of the maximum likeli-

hood (ML) estimators is carried out which is useful for small sam-

ple size since the normality assumptions is not easy to validate. 

Therefore, the use jackknife estimator is explored for the LF re-

gression model for censored data. Moreover, it is important to 

examine the assumptions and performs a diagnosis approach after 

modeling in order to detect influential and outlying observations, 

see Cook [11]. 

The article is structured as follows: 

Section 2 displays the log-Fréchet distribution. The log-Fréchet 

regression model is introduced in Section 3. Section 4 presents 

estimates of model parameters using maximum likelihood and 

jackknife methods based on censored data. Global sensitivity 

analysis is discussed in Section 5. In Section 6, residuals analysis 

is conducted to assess departures from the underlying log-Fréchet 

model and to detect outliers. Section 7 presents simulation study 

to estimate model parameters. In Section 8, a medical data set is 

investigated to show the flexibility and practically of the new re-

gression model. Finally, concluding remarks are presented in Sec-

tion 9. 

2. The log-Fréchet distribution 

This distribution was introduced by Maurice Fréchet (1878-1973). 

Assuming that the random variable T follows the standard Fréchet 

distribution with parameters 𝜆 and 𝛾. The cumulative distribution 

function (CDF) and the corresponding probability density function 

(PDF) are respectively given by: 

 

𝐹(𝑡; 𝜆, 𝛾) = 𝑒𝑥𝑝 {− (
𝛾

𝑡
)
𝜆
}  𝑡 > 0,  

𝑓(𝑡; 𝜆, 𝛾) = 𝜆𝛾𝜆𝑡−(𝜆+1)𝑒𝑥𝑝 {−(
𝛾

𝑡
)
𝜆
}.                                         (1) 

Then the random variable 𝑌 = 𝑙𝑜𝑔 (𝑇) will have log-Fréchet dis-

tribution (LFD) with transformation parameter 𝜎 = 1 𝜆⁄  and 𝜇 =
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𝑙𝑜𝑔 (𝛾). Therefore, the PDF and CDF for LFD are given as fol-

lows: 

 

𝐹(𝑦; 𝜎, 𝜇) = 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [−(
𝑦−𝜇

𝜎
)]} , −∞ < 𝑦 < ∞ ,  

  

𝑓(𝑦; 𝜎, 𝜇) =
1

𝜎
 𝑒𝑥𝑝 {−(

𝑦−𝜇

𝜎
)}  𝑒𝑥𝑝 {−𝑒𝑥𝑝 [− (

𝑦−𝜇

𝜎
)]},              (2) 

                                                     

where 𝜎 > 0 and − ∞ < 𝜇 < ∞ are the scale and location param-

eters respectively. The survival and hazard functions respectively 

are as follows: 

𝑆(𝑦; 𝛼, 𝜎, 𝜇) = 1 − 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [− (
𝑦−𝜇

𝜎
)]},  

 

ℎ(𝑦; 𝛼, 𝜎, 𝜇) =
 𝑒𝑥𝑝{−(

𝑦−𝜇

𝜎
)−𝑒𝑥𝑝[−(

𝑦−𝜇

𝜎
)]}

𝜎[1−𝑒𝑥𝑝{−𝑒𝑥𝑝[−(
𝑦−𝜇

𝜎
)]}]

.  

  

Fig. 1 shows that the LFD has a single mode. The LFD has a 

monotonic increasing survival function and a monotonic decreas-

ing hazard function. 

 

For the variable Y, the moment generating function is: 

MY(t) = exp(tμ)  Γ(1 − tσ), tσ < 1  

 

The standardized random variable 𝑍 = (𝑦 − 𝜇) 𝜎⁄  has density 

function given by: 

𝑓(𝑧) =  𝑒𝑥𝑝{−𝑧} 𝑒𝑥𝑝{−𝑒𝑥𝑝[−𝑧]}, −∞ < 𝑧 < ∞.                      (3)                                   

 

And its survival function is: 

𝑆(𝑧) = 1 − 𝑒𝑥𝑝{−𝑒𝑥𝑝[−𝑧]}.  
 

 
Fig. 1: PDF of the LFD with Parameter 𝜇 = −1 and Different Values of 

Parameter 𝜎 = (I) 0.25, (II) 0.5, And (III)1. 

3. The log-Fréchet regression model 

In many real applications for lifetime data, investigation of the 

relation between the survival time and the independent (explanato-

ry) variables is important. Therefore, the regression model ap-

proach can be used. That is, the model in (2) can be written as 

linear log-location-scale regression model: 

 

 𝑦𝑖 = 𝛽
𝑇𝑥𝑖 + 𝜎𝑧𝑖  𝑖 = 1,2,3,… , 𝑛 ,                                                (4) 

 

where  𝑧𝑖  is the random error with density function in (3), 𝛽 =

(𝛽1, … , 𝛽𝑝)
𝑇
, 𝜎 > 0 is a vector of unknown parameters, and 𝑥𝑖 =

(𝑥𝑖1, … , 𝑥𝑖𝑝)
𝑇

is the explanatory variable vector. The parameter 

𝜇𝑖 = 𝛽
𝑇𝑥𝑖 is the location of  𝑌𝑖. The location parameter vector 𝜇 =

(𝜇1, … , 𝜇𝑛)
𝑇 can be represented as a linear model 𝜇 = 𝛽𝑇𝑋, where 

𝑋 = (𝑥1, … , 𝑥𝑛)
𝑇 is a known model matrix. In this case, the sur-

vival function of Y|x is given by: 

𝑆(𝑦|𝑥) = 1 − 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [− (
𝑦−𝛽𝑇𝑥𝑖

𝜎
)]}.  

4. Estimation 

4.1. Maximum likelihood estimation 

Let (𝑦1, 𝜏1, 𝑥1), … , (𝑦𝑛 , 𝜏𝑛 , 𝑥𝑛) be a right censored random sample 

of n observation, where   𝑦𝑖 = {
 𝑙𝑜𝑔(𝑡𝑖) 𝑖𝑓 𝜏𝑖 = 1

 𝑙𝑜𝑔(𝑐𝑖) 𝑖𝑓 𝜏𝑖 = 0
, 𝑡𝑖  and 𝑐𝑖  are 

lifetimes and censoring times respectively and 𝑥𝑖 is an explanatory 

variable. Assuming that the life times and censoring times are 

random and independent, the log likelihood function is given by: 

 

𝑙(𝜽) = −𝑟𝑙𝑜𝑔(𝜎) + ∑ 𝜏𝑖[−𝑧𝑖 − 𝑒𝑥𝑝(−𝑧𝑖)]
𝑛
𝑖=1   

+ ∑ (1 − 𝜏𝑖)𝑙𝑜𝑔[1 − 𝑒𝑥𝑝[−𝑒𝑥𝑝(−𝑧𝑖)]]
𝑛
𝑖=1 ,                      (5) 

 

where  𝑟 denotes the number of uncensored observations, 𝜽 =
(𝜎, 𝛽)𝑇 and 𝑧𝑖 = (𝑦𝑖 − 𝛽

𝑇𝑥𝑖) 𝜎⁄ . 

 

By maximizing the log likelihood in (5), the maximum likelihood 

estimate (MLE) for the parameter vector 𝜽 can be obtained. The 

nlminb function in the statistical package R is used to obtain the 

MLE. Also, the covariance estimates for �̂� is acquired from the 

Hessian matrix. Under some regularity conditions, the distribution 

of �̂� is asymptotically normal with covariance matrix that repre-

sents the inverse of the Fisher information matrix 𝐼(𝜽)−1 where 

𝐼(𝜽) = 𝐸 [− (
𝜕2𝑙(𝜽)

𝜕𝜃𝑗𝜕𝜃𝑘
)]. However, the presence of censored obser-

vations makes the computation of the Fisher information matrix 

difficult. Therefore, the second derivatives matrix of the log-

likelihood can be derived and evaluated at the maximum likeli-

hood estimator 𝜽 = �̂�. Then the asymptotic normal approximation 

for �̂� could be defined as �̂�𝑇~𝑁(𝑝+1){𝜽
𝑇 , �̈�(𝜽)−1}, where �̈�(𝜽) =

− (
𝜕2𝑙(𝜽)

𝜕𝜃𝑗𝜕𝜃𝑘
) is the (𝑝 + 1)×(𝑝 + 1) observed matrix such that: 

�̈�(𝜽) =

(

 
 
−
𝜕2𝑙(𝜽)

𝜕𝜎2
|
�̂�𝑗,�̂�

−
𝜕2𝑙(𝜽)

𝜕𝜎𝜕𝛽𝑗
|
�̂�𝑗,�̂�

−
𝜕2𝑙(𝜽)

𝜕𝛽𝑗𝜕𝜎
|
�̂�𝑗 ,�̂�

−
𝜕2𝑙(𝜽)

𝜕𝛽𝑗𝜕𝛽𝑠
|
�̂�𝑗,�̂�𝑠,�̂�)

 
 
,  

where 𝑖, 𝑗 = 1,… , 𝑝, and the submatrices are defined in Appendix 

A. 

4.2. Jackknife estimation 

Jackknife estimation is used to improve the estimate of the param-

eter by reducing the bias of the estimate. The method is based on 

“leave one out” procedure. Miller [12] uses jackknife in linear 

models to estimate the variance and bias of model parameters, see 

Tu and Shao [13]. The idea of jackknife method depends on trans-

forming the problem of estimating population parameters into the 

problem of estimating the mean of the population. 

Suppose that 𝑇1 , 𝑇2 , … , 𝑇𝑛  is a random sample and the sample 

mean �̅� = ∑
𝑇𝑖

𝑛

𝑛
𝑖=1  is used to estimate population mean. Then the 

mean sample when lth observation deleted can be obtained as: 

 

�̅�−l =
∑ 𝑇𝑖−𝑇l
𝑛
𝑖=1

𝑛−1
  for which, 

 

𝑇l = 𝑛�̂� − (𝑛 − 1)�̅�−l                                                                  (6) 

 

Let 𝜃 be the parameter estimator of the whole sample. Then 𝜃−l is 

the parameter estimate when we drop the lth observation from the 

sample. The pseudo-value of the lth observation can be calculated 

from (6) as the difference between parameter estimation from 

whole sample and parameter estimation obtained without the lth 

observation. That is: 

𝜃l = 𝑛𝜃 − (𝑛 − 1)𝜃−l  
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The Jackknife estimate of 𝜃, denoted by 𝜃𝑗𝑎𝑐𝑘  is the average of 

pseudo-values: 

𝜃𝑗𝑎𝑐𝑘 =
1

𝑛
∑ 𝜃𝑖
𝑛
𝑖=1 , 

 

for more details, see Abdi and Williams [14]. Therefore, the jack-

knife bias estimator is: 

 𝑏𝑗𝑎𝑐𝑘 = (𝑛 − 1)(𝜃𝑗𝑎𝑐𝑘 − 𝜃)  

 

An approximate 100(1 − 𝛼)%  confidence interval (CI) for 𝜃  is 

given by: 

𝜃𝑗𝑎𝑐𝑘 ± 𝑡𝛼 2⁄ ,𝑛−1
𝑠
√𝑛
⁄  , 

See Sahinler and Topuz [15] and Algamal and Rasheed [16].  

5. Sensitivity analysis 

Sensitivity represents deviation in model output with respect to 

changes in model’s input(s). Global influence is the diagnostic 

influence depend on case deletion that represent one of the tools to 

perform sensitivity analysis introduced by Cook [11]. Case dele-

tion is a popular method to investigate the influence of taking out 

the 𝑖𝑡ℎcase from the data on the parameter estimate. This method 

compare between 𝜃 and 𝜃−𝑖, where 𝜃−𝑖 is MLE when the 𝑖𝑡ℎ case 

is deleted from original data. Then the 𝑖𝑡ℎ case could be consid-

ered as influential observation if 𝜃−𝑖 is far from 𝜃.  

This methodology was conducted in many statistical models, see 

for example, Christensen, Pearson and Johnson [17], Davison and 

Tsai [18], Xie and Wei [19] and Xie and Wei [20]. The case dele-

tion model for the LF regression model (4) is given by: 

 

𝑌𝐽 = 𝛽
′𝑥𝑖 + 𝜎𝑍𝑖;   𝐽 = 1,2,3,… , 𝑛, 𝐽 ≠ 𝑖                                     (7) 

For model in (7), �̂�−𝑖 = (�̂�(𝑖), �̂�(𝑖))
𝑇
 denote the ML estimator of 𝜽 

when 𝑖𝑡ℎ case is deleted. Then the generalized cook distance and 

likelihood distance are used to measure the effect of the 𝑖𝑡ℎ case 

on the ML estimator �̂� = (�̂�, �̂�)
𝑇

. 

5.1. Generalized cook distance 

Generalized cook distance is a method that measure global influ-

ence defined as the standardized norm of 𝜃−𝑖 − 𝜃. 

 

𝐺𝐷𝑖(𝜃) = (𝜃−𝑖 − 𝜃)
′
{�̈�(𝜃)}(𝜃−𝑖 − 𝜃),  

where �̈�(𝜃) is the observed information matrix. 

5.2. Likelihood distance 

The likelihood distance is another method to measure the differ-

ence between 𝜃 and �̂�−𝑖. 
 

𝐿𝐷𝑖(𝜃) = 2{𝑙(𝜃) − 𝑙(𝜃−𝑖)},  

where  𝑙(𝜃) is a log likelihood function of 𝜃  from original data 

and 𝑙(𝜃−𝑖) is log likelihood function of 𝜃 when 𝑖𝑡ℎ  case is deleted 

from original data. 

6. Analysis of residual 

Residuals analysis is an important method for checking the appro-

priateness of the proposed regression model. This will include 

studying any departure from error assumption and examine any 

existence of outliers. Several methods for residuals analysis were. 

introduced in the literature such as Collett [21]. In this study, we 

will concentrate on the Marginal and deviance methods. 

 

 

 

 

6.1. Martingale residual 

Martingale residual was proposed by Barlow and Prentice [22]. It 

is defined as the difference between the observed number of 

deaths and the expected in the interval (0,𝑡𝑖) and can be written as: 

𝑟𝑀𝑖
= 𝛿𝑖 + 𝑙𝑜𝑔 𝑆𝑌(𝑦𝑖 , 𝜃), 

where 𝛿𝑖 is the censor indicator that takes 0 if censored and 1 if 

lifetime and  𝑆𝑌(𝑦𝑖 , 𝜃) is survival function for LF regression mod-

el. Then the martingale residual for LF regression model can be 

written as: 

𝑟𝑀𝑖
= {

1 + 𝑙𝑜𝑔{1 − 𝑒𝑥𝑝[−𝑒𝑥𝑝(−�̂�𝑖)]}   𝑖𝑓 𝑖 ∈ 𝑙𝑖𝑓𝑒 𝑡𝑖𝑚𝑒

 𝑙𝑜𝑔{1 − 𝑒𝑥𝑝[− 𝑒𝑥𝑝(−�̂�𝑖)]}   𝑖𝑓 𝑖 ∈ 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑
, 

where 𝑟𝑀𝑖
takes the range between −∞ and 1 but not symmetrical-

ly distributed (skewed). Therefore, transformation of the martin-

gale residual will be used to reduce the skewness. 

6.2. Deviance residual 

Therneau, Grambsch and Fleming [23] introduced the deviance 

residuals for Cox model with no time-dependent explanatory vari-

ables. This residual is more symmetrically about zero from mar-

tingale residual and is given by: 

𝑟𝐷𝑖 = 𝑠𝑖𝑔𝑛(𝑟𝑀𝑖
){−2[𝑟𝑀𝑖 + 𝛿𝑖  𝑙𝑜𝑔(𝛿𝑖 − 𝑟𝑀𝑖

)]}
1

2  

 

In parametric regression models, the previous 𝑟𝐷𝑖  is not a compo-

nent of the deviance but can be used as a transformation of the 

martingale residual. Therefore, the deviance residual for LF re-

gression model can be written as: 

𝑟𝐷𝑖 =  

{
 
 
 
 

 
 
 
 

𝑠𝑖𝑔𝑛(1 +  𝑙𝑜𝑔{1 − 𝑒𝑥𝑝[− 𝑒𝑥𝑝(−�̂�𝑖)]})

{−2 [
1 + 𝑙𝑜𝑔{1 − 𝑒𝑥𝑝[− 𝑒𝑥𝑝(−�̂�𝑖)]} +

𝑙𝑜𝑔(−𝑙𝑜𝑔{1 − 𝑒𝑥𝑝[−𝑒𝑥𝑝(−�̂�𝑖)]})
]}

1

2

 𝑖𝑓 𝑖 ∈ 𝑙𝑖𝑓𝑒 𝑡𝑖𝑚𝑒 

𝑠𝑖𝑔𝑛( 𝑙𝑜𝑔{1 − 𝑒𝑥𝑝[−𝑒𝑥𝑝(−�̂�𝑖)]})

{−2[𝑙𝑜𝑔{1 − 𝑒𝑥𝑝[− 𝑒𝑥𝑝(−�̂�𝑖)]}]}
1

2

 𝑖𝑓 𝑖 ∈ 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 

  

7. Simulation study 

Monte Carlo simulation study is conducted to estimate model 

parameters 𝜎 𝑎𝑛𝑑 𝛽1  when 𝛽0 = 2  is fixed using ML and jack-

knife methods. This simulation was implemented for different 

sample sizes, n = 30, 50, and 100, from Fréchet distribution with 

the parameters 𝜆 = 1.5 and 𝛾 = 10 using various percentages of 

censoring 10, 30 and 50. Table 1 displays ML and jackknife pa-

rameters estimates along with the corresponding standard error 

(SE) for the LF regression model given in (4). 

 

From these results, it can be noted that: 

• SE of estimates using ML method is smaller compared to 

jackknife method. 

• As percentage of censoring increased, the SE of parameter 

estimates increases at the same sample size. 

• SE of parameter estimates decreases when the sample size 

increases.  

 

In addition, simulation study is preformed to examine the form of 

the empirical distribution of 𝑟𝑀𝑖
and 𝑟𝐷𝑖  residuals at the different 

sample sizes and percentages of censoring. For 1000 samples gen-

erated, ML estimates are obtained for the parameters 𝜎, 𝛽1 when 

𝛽0 = 2 is fixed and 𝑟𝑀𝑖
 and 𝑟𝐷𝑖  residuals are calculated. Then a 

plot of the mean ordered residuals versus the expected quantiles of 

the standard normal distribution is displayed in Fig. 2 and 3. Ap-

pendix B illustrates the algorithm that computes the ML estimates 

and residuals for LF regression model. 
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Table 1: Maximum Likelihood and Jackknife Estimates of the Parameters, SE for the LF Regression Model with 𝜎 = 1/1.5 and Fixed 𝛽0 = 2. 

 
n 

 
%censoring 

 
Parameter 

MLE Jackknife 
Estimate SE Estimate SE 

30 10 𝜎 0.6462 0.1006 0.6629 0.1036 

  𝛽1 0.4694 0.2149 0.4371  0.2399 

 30 𝜎 0.6379 0.1111 0.6557 0.1153 

  𝛽1 0.4663 0.2248 0.4311 0.2542 

 50 𝜎 0.62090 0.1265 0.6414 0.1344 

  𝛽1 0.4586 0.2418 0.4111 0.2793 

50 10 𝜎 0.6533 0.0788 0.6626 0.0802 

  𝛽1 0.4578 0.1680 0.4360 0.1823 

 30 𝜎 0.6468 0.0873 0.6553 0.0888 

  𝛽1 0.4552 0.1764 0.4307 0.1923 

 50 𝜎 0.6320 0.0997 0.6445 0.1036 

  𝛽1 0.4455 0.1902 0.4194 0.2102 

100 10 𝜎 0.6593 0.0560 0.6648 0.0562 

  𝛽1 0.4512 0.1193 0.4402 0.1264 

 30 𝜎 0.6544 0.0622 0.6601 0.0624 

  𝛽1 0.4475 0.1253 0.4380 0.1332 

 50 𝜎 0.6442 0.0716 0.6525 0.0724 

  𝛽1 0.4431 0.1358 0.4303 0.1453 

 

𝑛 = 30 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 10%  

 

𝑛 = 30 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 30%  

 

𝑛 = 30 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 50%  

 
𝑛 = 50 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 10%  

 

𝑛 = 50 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 30%  

 

𝑛 = 50 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 50%  

 
𝑛 = 100 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 10%  

 

𝑛 = 100 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 30%  

 

𝑛 = 100 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 50%  

 
Fig. 2: Normal Probability Plots for the Martingale Residual at Sample Size n = 30, 50 and 100, Different Censoring Percentages =10, 30 and 50, and 

Parameter Value 𝜎 = 1/1.5 and Fixed 𝛽0 = 2. 
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𝑛 = 30 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 10%  

 

𝑛 = 30 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 30%  

 

𝑛 = 30 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 50%  

 
𝑛 = 50 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛g = 10%  

 

𝑛 = 50 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 30%  

 

𝑛 = 50 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 50%  

 
𝑛 = 100 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 10%  

 

𝑛 = 100 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 30%  

 

𝑛 = 100 𝑎𝑛𝑑 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔 = 50%  

 
Fig. 3: Normal Probability Plots for the Deviance Residual at Sample Size n = 30, 50 and 100, Different Censoring Percentages = 10, 30 and 50, and 

Parameter Value 𝜎 = 1/1.5 and Fixed  𝛽0 = 2. 

 

From Fig. 2 and 3, we conclude the following: 

• The empirical distribution of the deviance residual has close 

agreement to the standard normal distribution (SND) com-

pared to the martingale residual.  

• As the censoring percentage increases, the empirical distri-

bution of the deviance residual moves away from the SND. 

• As the sample size increases, the empirical distribution of 

the deviance residual approaches the SND. 

8. Application 

The Stanford heart transplant data is displayed in Kalbfleisch and 

Prentice [24] is used to illustrate the performance of the LF re-

gression model. This data represents the survival time of 103 pa-

tients since acceptance into transplant program to death. The ex-

planatory variables for each patient consist of age of patient at 

acceptance and two binary variables prior surgery and transplant. 

  

The following variables in the study are: 

𝑡𝑖: Survival time (in days). 

𝑦𝑖: log survival time (in days). 

𝑠𝑡𝑎𝑡𝑢𝑠𝑖: Censoring indicator (0=censoring, 1=dead). 

𝑥𝑖1: Age of patients (in years). 

𝑥𝑖2: Previous surgery (0=No, 1=Yes). 

𝑥𝑖3: Transplant (0=No, 1=Yes). 

8.1. Model validation 

To check model validity, a plot of the empirical survival function 

by Kaplan Meier (KM) estimates and the estimated survival func-

tion based on fitting the Fréchet model is shown in Fig. 4. It can 

be seen from Fig. 4 that the logarithms of the times to event fol-

low the LF distribution. 

Therefore, the model fitted can be written as: 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝜎𝑧𝑖 ,  𝑖 = 1,2, … ,103,          (8)                              

 

where 𝑦𝑖 follows the LF distributions given in (2). 

8.2. Maximum likelihood and Jackknife estimation 

Maximum likelihood and jackknife methods are used to estimate 

model parameters using nlminb function in R program. SE, 95% 

CI and p-value for each parameter are computed. The results are 

shown in the Table 2 and 3. It can be observed that the explanato-

ry variables 𝑥1 and 𝑥3 are significant for the model at the signifi-

cance level 5% for each method but 𝑥2 is not significant. Also, the 

estimates from the two methods appear to be very similar. 
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Fig. 4: Plot the Survival Function by Fitting the Fréchet Distribution and 

KM Function for Leukemia Data. 
 

 

 
 

8.3. Global influence 

The results of influence measure index plots using heart transplant 

data for LF regression models are shown in Fig. 5. It is clear that 

observations 15, 38 and 74 are possible influential observations in 

LF regression model. 

8.4. Analysis of residual 

The deviance residual for the fitted model is represented in Fig.6 

(A). It indicates that all observations fall on the interval (−3, 3) 

except observation 38 and are distributed randomly about zero. 

Therefore, it is expected that observation 38 is outliers. 

8.5. Goodness of fitting 

Fig.6 (B) represents the normal plot for deviance residual with a 

generated envelope simulation that illustrated in Appendix C. This 

plot shows that the LF model is suitable to fit the data, since all 

observations located inside the envelope. 

Table 2: The ML Estimates for the Parameters of the LF Regression Model. 

Parameter Estimate SE 95% CI p-value 

𝜎 1.7457 0.1484 (1.4548 , 2.0366) - 

𝛽0 4.2129 0.9153 ( 2.4189 , 6.0069 ) < 0.001 

𝛽1 − 0.0431 0.0189 (−0.0801 , − 0.0061 ) 0.023 

𝛽2 0.6902 0.5034 (− 0.2965 , 1.6769) 0.170 

𝛽3 2.6572 0.3782 (1.9159 , 3.3985) < 0.001 

 

 
Table 3: The Jackknife Estimates for the Parameters of the LF Regression Model. 

Parameter Estimate SE 95% CI 

𝜎 1.8237 0.1839 ( 1.4633 , 2.1841 ) 

𝛽0 4.2039 0.9893 ( 2.2643 , 6.1429 ) 

𝛽1 − 0.0436 0.0211 ( − 0.0850 , − 0.0022) 

𝛽2 0.5695 0.6821 ( − 0.7674 , 1.9064 ) 

𝛽2 2.7046 0.4555 ( 1.8118 , 3.5974 ) 

 

 

 
(A) 

 
(B) 

Fig. 5: Plot Index of (A) Generalized Cook Distance and (B) Likelihood Distance for LF Regression Model. 
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(A) 

 
(B) 

Fig. 6: (A) Index Plot of Deviance Residual. (B) Normal Probability Plot for the Deviance Residual with Envelopes. 

 

8.6. Comparison between log-weibull and LF regression 

models 

In Cruz, Ortega and Cordeiro [8], analysis has been conducted on 

the previous heart transplant survival time data under log-Weibull 

regression model. Therefore, we conduct a comparison between 

log-Weibull and LF regression model based on AIC and BIC crite-

ria. Table 4 displays the results of these criteria which show that 

the LF regression model is more appropriate model compared to 

the log-Weibull regression model with smaller values of AIC and 

BIC. 

 
Table 4: Statistics AIC and BIC for Comparing the Log-Weibull and LF 

Regression Models. 

Model AIC BIC 

Log-Weibull 353.4208 366.5944 
LF 349.1578 362.3314 

8.7. Final model 

Based on this analysis, we conclude that the LF regression models 

are more appropriate for fitting these data compared to log-

Weibull. Moreover, it can be noted that 𝛽2 is not significant for 

this model at the level of 5%, see Table 2. Therefore, the final 

model fitted is: 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽3𝑥𝑖3 + 𝜎𝑧𝑖 , 𝑖 = 1,2, … ,103,                         (9)                                               

where yi follows the LF given in (2).  

 

Table 5 is represents the ML estimates of the parameters in the 

final model (9). It can be concluded that the log survival time 

increases for young patients who have received a heart transplant. 

Fig. 7 represents the survival function corresponding to explanato-

ry variables for the fitted LF regression model. 

 

 
Table 5: The ML Parameter Estimates of the LF Regression Model – Final Model. 

Parameter Estimate SE p-value 95% CI 

𝜎 1.7492 0.1498 - (1.4555 , 2.04288) 

𝛽0 4.2728 0.9029 < 0.001 (2.50314 , 6.04239) 

𝛽1 -0.0410 0.0186 0.028 (−0.0774, −0.0045) 

𝛽3 2.5562 0.3696 < 0.001 (1.8319 , 3.2805) 

 

 
(A) 

 
(B) 

Fig. 7: Fitted Survival Functions from the LF Regression Model for the Heart Transplant. (A) for x1 = Age, (B) for x3 = Transplant. 
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From Fig. 7(A), it can be seen that Ŝ(4|age = 8) = 0.6205, which 

means that approximately 62% of the patients at age equal to 8 

years will be alive at y = 4 (≈ 55 days). Moreover, for patients at 

age to 44 and 64, Ŝ(4|age = 44) = 0.3408 and Ŝ(4|age = 64) = 

0.2295, that is, the percentages of the patients that will be alive at 

y = 4 decreased to 34% and 23%, respectively. Similarly, Fig. 

7(B), it can be noted that Ŝ(6|transplant = 0) = 0.3110, which 

means that about 31% of the patients who did not receive a trans-

plant will be alive at y = 6 (≈ 403 weeks), while for patients who 

received a transplant, Ŝ(6|transplant = 1) = 0.7994, the survival 

percentage increases approximately to 80% at y = 6. 

9. Concluding remarks 

In this article, a LF regression model with right censored lifetime 

data is introduced. ML and jackknife methods were used to esti-

mate model parameters. In addition, Monte Carlo simulation is 

carried out and has indicated that the empirical distribution of the 

deviance residual approaches the standard normal distribution.  

Moreover, the robustness features of the ML estimator from the 

fitted LF regression model are discussed through residuals and 

sensitivity analysis. The heart transplant data is used to illustrate 

the performance of the LF regression model. Goodness of fit is 

conducted for the data by constructing normal probability plot 

with simulated envelope where we observe that almost all obser-

vations fall within the envelope. Finally, the results of analysis 

showed that the proposed model provided more flexible and ap-

propriate fit for the heart transplant data compared with the log-

Weibull regression model using AIC and BIC criteria. 
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Appendix A: Matrix of second derivatives �̈�(𝛉) 

𝜕2𝑙(𝜃)

𝜕𝜎2
=

𝑟

𝜎2
+ ∑ 𝜏𝑖[−2 �̈�𝑖 − �̇�𝑖

2 𝑒𝑥𝑝(−𝑧𝑖) + 2 �̈�𝑖𝑒𝑥𝑝(−𝑧𝑖)]
𝑛
𝑖=1 +  

∑ (1 − 𝜏𝑖)
𝑛
𝑖=1 (

𝜎(1−ℎ𝑖)[−�̇�𝑖𝐿𝑖+𝑧𝑖𝐿𝑖(�̇�𝑖−�̇�𝑖𝑒𝑥𝑝(−𝑧𝑖))]−𝑧𝑖𝐿𝑖[(1−ℎ𝑖)+𝜎 �̇�𝑖𝐿𝑖]

𝜎2(1−ℎ𝑖)
2 )  

 
𝜕2𝑙(𝜃)

𝜕𝛽𝑘𝜕𝛽𝑗
=

1

𝜎2
∑ 𝜏𝑖[− 𝑥𝑖𝑗 𝑥𝑖𝑘  𝑒𝑥𝑝(−𝑧𝑖)]
𝑛
𝑖=1 +

1

𝜎2
∑ (1 −𝑛
𝑖=1

𝜏𝑖)  𝑥𝑖𝑗 {
(1−ℎ𝑖)𝐿𝑖 𝑥𝑖𝑘[1−𝑥𝑝(−𝑧𝑖)]−𝐿𝑖

2 𝑥𝑖𝑘

(1−ℎ𝑖)
2 }  

 
𝜕2𝑙(𝜃)

𝜕𝜎𝜕𝛽𝑗
=

−1

𝜎2
∑ 𝜏𝑖  𝑥𝑖𝑗[1 −  𝑒𝑥𝑝(−𝑧𝑖)]
𝑛
𝑖=1 −

1

𝜎
∑ 𝜏𝑖  𝑥𝑖𝑗�̇�𝑖  𝑒𝑥𝑝(−𝑧𝑖)
𝑛
𝑖=1  −

1

𝜎2
∑ (1 − 𝜏𝑖) (

 𝑥𝑖𝑗𝐿𝑖

1−ℎ𝑖
)𝑛

𝑖=1   

 +
1

𝜎
∑ (1 − 𝜏𝑖) 𝑥𝑖𝑗 {

(1−ℎ𝑖)𝐿𝑖�̇�𝑖[1− 𝑒𝑥𝑝(−𝑧𝑖)]−𝐿𝑖
2�̇�𝑖

(1−ℎ𝑖)
2 }𝑛

𝑖=1 ,  

 

where  𝑧𝑖 = (𝑦𝑖 − 𝛽
𝑇𝑥𝑖) 𝜎⁄ , ℎ𝑖 = 𝑒𝑥𝑝[−𝑒𝑥𝑝(−𝑧𝑖)],  

�̇�𝑖 = (𝑦𝑖 − 𝛽
𝑇𝑥𝑖) 𝜎

2⁄ ,  �̈�𝑖 = (𝑦𝑖 − 𝛽
𝑇𝑥𝑖) 𝜎

3⁄ ,   
𝐿𝑖 = 𝑒𝑥𝑝[−𝑧𝑖 − 𝑒𝑥𝑝(−𝑧𝑖)]. 
 

Appendix B: Algorithm ML estimation and 

residual analysis for the parameters of LF re-

gression model 

1) For a given values of the parameters 𝜆 = 1.5 and 𝛾 = 10, 

𝑇1, 𝑇2, … , 𝑇𝑛 are lifetimes generated from Fréchet distribu-

tion given in (1). 

2) Generate the explanatory variable 𝑥𝑖 from a standard uni-

form distribution. 
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3) Generate 𝐶1, 𝐶2, … , 𝐶𝑛  as a censoring time from uniform 

distribution [0, 𝜌], where 𝜌 was adjusted until obtaining the 

required censoring percentages. 

4) The log lifetimes considered in each fit were calculated 

as 𝑦 = 𝑚𝑖𝑛{𝑙𝑜𝑔 (𝑇𝑖), 𝑙𝑜𝑔 (𝐶𝑖)}. 
5) Estimate model parameter given in (4) by ML method using 

nlminb function in R program. 

6) Compute the standard error for each estimate using hessian 

function in R program. 

7) Compute the standardized, Martingale and deviance residu-

als.  

8) The above steps are repeated 1000 times. 

9) Plot the martingale and deviance residuals against the ex-

pected quantiles of normal distribution. 

Appendix C: Algorithm of envelope simulation 

for normal probability plots for the deviance 

residual 

1) Fit the LF regression model (4) to the observed lifetime   

data. 

2) Using the parameter estimates obtained from the fitted 

model, will generate a sample of n independent                 

observations. 

3) Fit the model to generated sample in step (2) based on da-

ta set (τi , xi). 
4) Compute the values of deviance residuals and ordered them.  

5) Repeat steps (2 – 4), m times. 

6) Consider the n sets of the m ordered statistics, compute the 

mean, minimum, and maximum values across each set. 

7) Plot these values and the ordered residuals of the original 

data against the normal scores. 

 

The minimum and maximum values of the m ordered statistics 

constitute a simulated envelope to guide assessment of the model 

adequacy.  

See, Ortega, Cordeiro and Carrasco [4]and Zhao et al. [25]. 


