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ESTIMATION AND CONFIDENCE REGIONS FOR PARAMETER SETS
IN ECONOMETRIC MODELS*

VICTOR CHERNOZHUKOVf HAN HONG§ ELIE TAMER*

Abstract. The paper develops estimation and inference methods for econometric models

with partial identification, focusing.on models defined by moment inequalities and equalities.

Main applications of this framework include analysis of game-theoretic models, revealed pref-

erence, regression with missing and mismeasured data, auction models, bounds in structural

quantile models, bounds in asset pricing, among many others.

Specifically, this paper provides estimators and confidence regions for minima of an econo-

metric criterion function Q{9). In applications, Q{d) embodies testable restrictions on eco-

nomic models. A parameter 9 that describes an economic model passes these restrictions if

Q{9) attains the minimum value normalized to be zero. The interest therefore focuses on

the set of parameters 0/ that minimizes Q{0), called the identified set. This paper uses

the inversion of the sample analog Q„{6) of the population criterion Q{6) to construct the

estimators and confidence regions for 0/. We develop consistency, rates of convergence, and
inference results for these estimators and regions. The results are shown to hold under general

yet simple conditions, and practical procedures are provided to implement the approach. In

order to derive these results, the paper also develops methods for analyzing the asymptotics

of sample criterion functions under set identification.
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1. Introduction

Parameters of interest in econometric models can be defined as values that minimize a

population criterion function. If this criterion function is minimized uniquely at a particular

parameter vector, then one can obtain confidence regions for this parameter using a sample

analog of this function. This paper extends this criterion-beised estimation and inference to

econometric models where the objective function is minimized on a set of parameters, the

identified set. (The terminology follows Manski (2003).) Our goal is to estimate and make

inferences directly on the identified set. The development focuses on moment condition models

defined by either moment inequalities or moment equalities.

This paper uses the inversion of the sample criterion functions as the building principle

for estimators and confidence regions. The resulting estimators and confidence regions are

appropriate contour sets of the sample criterion functions. The paper develops consistency,

rates of convergence, and inference results for these sets. Specifically, this paper shows that an

appropriate lower contour set of the sample criterion function converges in Hausdorff metric

to the identified set at (an exact or an arbitrarily close to) l/\/n rate, in moment condition

problems, and at polynomial rates, more generally. The paper develops a method for de-

termining the appropriate level of the contour set so that it covers the identified set with a

prespecified probability. For this purpose, the paper derives the asymptotics of several infer-

ential statistics which quantiles determine the appropriate level of the contour set. The lack

of equi-continuous behavior of the sample criterion functions in moment inequality problems

poses challenges to this analysis.

The primary applications of the estimation and inference methods developed in this paper

are in such areas as (1) empirical game-theoretic models, (2) empirical revealed preference

analysis, (2) econometric analysis with missing and mis-measured data, (3) bounds analysis

in auction models, (4) structural quantile models and other simultaneous equation models

without additivity, (5) bounds analysis in asset pricing models, and (6) the inference on

dominance regions in stochastic dominance analysis, among others. In most of these problems,

the economic models of interest satisfy a collection of moment inequalities, and the resulting

criterion functions are typically minimized on a set. Our paper develops estimators and

confidence regions for these sets.



In the context of estimation of games and revealed preference analysis, our methods have

already been employed by several substantive empirical studies. Bajari, Benkard, and Levin

(2006) estimated a dynamic Markov game where the observed action of each player satis-

fies discrete optimality conditions for equilibrium, which result in moment inequahty condi-

tions. Beresteanu and Ellickson (2006) presented a further application to a study of dynamic

oligopolistic competition. Ciliberto and Tamer (2003) analyze empirical entry models with

multiple equilibria. They do not make the equilibrium selection assumptions, which leads

to moment inequality conditions and set identification. Cohen and Manuszak (2006) esti-

mate a game in which firms may enter as different types and which has multiple equilibria in

types. They also do not impose equilibrium selection assumptions. Borzekowski and Cohen

(2004) estimate a model of strategic complementarity between credit unions in their choice of

adopting a technology or outsourcing it. In the context of simultaneous equation models with

non-additive disturbances, Chernozhukov and Hansen (2004) estimate a demand model where

a partial identification occurs. In fact, they use the pointwise versions of the inference methods

developed here. Econometric analysis with missing and mismeasured data is another area of

applications of our methods: Molinari (2004) apphed our methods to construct a confidence

region for the identified set in a causal model with missing treatments. In auction analysis,

the very nature of auction mechanisms also often leads to the missing data framework, see

Haile and Tamer (2003).

In addition to these existing applications, there appear to be many more potential appli-

cations to the revealed preference analysis, e.g. see Varian (1982, 1984), McFadden (2005),

Blundell, Browning, and Crawford (2005), and Bajari, Fox, and Ryan (2006). A potentially,

important application is the inference on the set of asset pricing models that satisfy mean

and volatility bounds developed in Hansen, Heaton, and Luttmer (1995). Yet another area

of potential applications is in the analysis of stochastic dominance relations, e.g. see Linton,

Post, and Wang (2005).

The relationship of this paper to the econometric literature on inference under partial

identification is as follows.^ The concepts of set identification go back to Frisch (1934) and

Marschak and Andrews (1944). Marschak and Andrews (1944) constructed the identified set

^Manski (2003) for a detailed introduction to partial identifiability.
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as a collection of parameters representing different production functions that can not be re-

jected by the data and that are consistent with functional restrictions the authors consider.

Frisch (1934) constructs consistent interval bounds on parameters of structural regression

equations that are subject to measurement error. Klepper and Learner (1984) generalized

the Frisch bounds to multivariate regression models with measurement errors and constructed

consistent estimates. Gilstein and Leamer (1983) provided set consistent estimation in a class

of nonlinear regression models where the identified set is an interval of parameters that are

robust to misspecification of the distribution of the error term. In a different development,

Phillips (1989) suggested that multi-collinearity may be a cause for partial identification in

a number of econometric models and provided some asymptotic results for Wald statistics

under such conditions. Hansen, Heaton, and Luttmer (1995) proposed an estimator for the

region of feasible means and variances of pricing kernels in asset pricing model and proved its

consistency. Manski and Tamer (2002) developed a number of models with interval-censored

data, as well as derived several consistency results. In a previous version of this paper, Cher-

nozhukov, Hong, and Tamer (2002) developed consistency and inference results for linear

moment inequality models, using inversion of the econometric criterion functions, and devel-

oped an empirical apphcation. Imbens and Manski (2004) investigated a problem of Wald

inference in the case of a scalar mean parameter bounded above and below by other scalar

means. Recently, Andrews, Berry, and Jia (2004) and Pakes, Porter, Ishii, and Ho (2006)

investigated the inference problem using projection methods, which proceeds bj^ constructing

a region for point-identified high-dimensional nuisance parameter and then further projecting

it with the purpose of obtaining a confidence region for the partially identified functionals of

this parameter, such as the identified set. This projection method tends to be conservative

relative to the methods developed in this paper. ^ Beresteanu and Molinari (2006) develop

inference methods for the linear regression model with interval-censored outcomes, using the

Wald statistic that measures the Hausdorff distance between the identified set and a set-valued

estimator. These methods differ from the criterion-based inference studied in this paper. Our

paper is also related to the literature on the weak identification problem, see notably Dufour

Conservativity of projection methods in the point-identified setting is discussed in Romano and Wolf

(2000).



(1997) and Staiger and Stock (1997). However, the problem studied here considerably dif-

fers fi-om the latter, as the nature of failure of point identification in our main applications

typically can not be approximated by the weak identification framework.

The relationship of this paper to the statistical literature is as follows. Hannan (1982)

has pointed out the multi-collinearity (i.e. set-identification) problems in several time series

models. Redner (1981) and Hannan and Deistler (1988) showed that a maximum likelihood

estimator eventually converges to a point in the identified set 0/, though obviously it is

not consistent for estimation of 9/. Veres (1987), Dacunha-Castelle and Gassiat (1999),

and Liu and Shao (2003) investigated the behavior of the likelihood ratio test under loss of

identifiability in correctly specified likelihood models, with a special focus on the mixture

and ARMA models. These results do not apply or extend in any obvious way to moment

condition models analyzed in this paper. Fukumizu (2003) pointed out that the likelihood

ratio has an unusually large stochastic order in multi-layer neural networks, which does not

apply to the moment condition problems analyzed in this paper. Also, the literature on image

processing considers the problem of support estimation of a density, e.g. Korostelev, Simar,

and Tsybakov (1995) and Cuevas and Fraiman (1997), though the structure of such problem

is different from that arising in the moment condition models analyzed here.

The rest of the paper is organized as follows. Section 2 presents the moment condition

models and several examples that will serve to illustrate the analysis. Section 2 also outlines

informally the main results of the paper. Section 3 develops consistency, rates of convergence,

and inference results that apply generically. The results require that simple high-level condi-

tions on the econometric criterion functions are met. Section 4 analyzes the moment inequality

and moment equality models in detail and verifies the conditions of Section 3. Appendix col-

lects proofs and a definition of notations used in the paper, and also discusses pointwise

confidence regions (confidence regions for particular parameter values in the identified set).

2. Problem Definition and Informal Discussion of the Main Results

Consider a nonnegative population criterion function Q{6) which attains its minimal value

on a set 0/, that is 0/ = {^ G : Q{9) = 0}. The set 0/ generally consists of many

parameter values, and thus is a singleton. Suppose there is also a sample analog Qn{6) of this

function. The parameter 9 belongs to the parameter space 0, which is a compact subset of the
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Euclidean space IR'^. Every in 0/ indexes an economic model that passes testable empirical

restrictions that the criterion Q{9) typically embodies in economic applications. This paper

investigates the estimators and confidence regions for 0/ constructed using the contour sets of

the sample criterion function Qn- (Appendix also discusses a related problem of constructing

confidence regions for a particular point d* in 0/.)

This section begins with a review of the main econometric models and economic examples

that motivate the framework described above. Then, the section gives an informal review of

the methods and the results obtained in this paper.

2.1. Moment Condition Models. This paper is primarily concerned with applications to

two main types of econometric structural models: moment inequalities and moment equalities.

In empirical analysis, the moment inequalities, much like moment equalities, represent testable

restrictions on economic models. Economic models are described by the finite-dimensional

parameters ^ e C IR'^, where is the parameter space. We are interested in the set of

parameters 0/ C that satisfy the testable restrictions.

The moment restrictions are computed with respect to the population probability law P

of the data and take the form

Ep[mi{e)] < 0, (2.1)

where mi{9) = m{9, lUi) is a vector of moment functions parameterized by 9 and determined by

a vector of real random variables Wi. Therefore the set of parameters 6 that pass restrictions

(2.1) is given by 0/ = {^ G : Ep[mi{e)] < 0}.

It is interesting to comment on the structure of the set 0/ in this model. When the moment

functions are linear in parameters, the set 0/ is given by an intersection of linear half-spaces;

and could be a triangle, trapezoid, or a polyhedron, as in Examples 1 and 2 introduced below.

When moment functions are non-linear, the set 0/ is given by an intersection of nonlinear

half-spaces which boundaries are defined by nonlinear manifolds.

The set 0/ can be characterized as the set of minimizers of the criterion function^

Qi9) := \\Ep[mm'W'/\9)\\l, (2.2)

Let ||a;||+ = ||(a;)+|| and ||x||_ = ||(x)_||, where {x)+ := max(a;,0) and (a;)_ := max(— x,0).
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where W{6) is a continuous and diagonal matrix with strictly positive diagonal elements for

each 9 e Q. Therefore, the inference on 0/ may be based on the empirical analog of Q:

Qr,{9) := \\E„[mm'K^\ml, £^nK(0)] := -X^m,(^), (2.3)

t=\

where Wn{9) is a uniformly consistent estimate of W{9). In applications Wn{9) can be taken

to be an identity matrix or chosen to weigh the individual empirical moments by estimates of

inverses of their individual variances.

Moment equalities are more traditional in empirical analysis. The economic models, in-

dexed by 9, are assumed to satisfy the set of testable restrictions given by moment equalities:

Ep[mi{e)] = 0, that is Qi = {9 e Q : Ep[mi{9)] = 0}. (2.4)

When the moment functions are linear in parameters, the set 0/ is either a point or a

hyperplane intersected with the parameter space 0. 'V\nien moment functions are non-linear,

the set 0/ is typically a manifold, which also includes the case of isolated points (a zero-

dimensional manifold).

The set 0/ can be characterized as the set of minimizers of the generalized method of

moments function

Q{9) := \\Ep[mm]'W'/m\\\
.

(2.5)

where W{9) is a continuous and positive-definite matrix for each 9 E Q. The inference on 0/

is based on the conventional generalized method-of-moments function

Qr.{9):=\\E^[m,{9)]'K^'m\ (2.6)

where Wn{9) is a uniformly consistent estimate of W{9). In applications Wn{9) can be an

identity matrix or an estimate of the inverse of the asymptotic covariance matrix of empirical

moment functions.

In many situations, we can also use the modified objective function for inference:

Q„(0)- mf^g„(e')-

This modification is useful in cases where Qn does not attain value in finite samples.^

"^In such cases,, using the modified objective function typicallj' leads to power improvements, as is well-known

in point-identified cases.
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2.2. Motivating Examples. There are several interesting examples for the moment condi-

tion models described above, where the identified set 9/ is naturally a collection of points,

rather than a single point.

Example 1 (Interval Data). The first example is motivated by missing data problems, where

Y is an miobserved real random variable bracketed below by Yi and above by I2, both of

which are observed real random variables. The parameter of interest 9 = £'p[V] is known to

satisfy the restriction

Ep[Y,\ < 9 < Ep[Y2].

Hence the identified set is an interval, Qj = {9 : Ep[Yi] < 9 < Ep[Y2]}. This example falls in

the moment-inequality framework with moment function

mi{e) = {Yu-9,9~Y2^)'.

Therefore, 6/ can be characterized as the set of minimizers of Q{9) = \\Ep[mi{9)]\W =

{Ep[Yu]-9)l + iEp[Y2i]-9)l, with the sample analog g„(0) = {Er,[Yu] - 9)% + {E^^lY^^] - 9)1

.

Example 2 (Interval Outcomes in Regression Models). A regression generalization of the

previous example is immediate. Suppose a regressor vector Xi is available, and the conditional

mean of unobserved Yi is modeled using linear function X19. The parameters of this function

can be bounded using inequality £'p[Yii |Xj] < X19 < Ep[Y2i\Xi]. These conditional restrictions

imply the following inequalities are valid:

Ep[YuZ,] < 9'Ep[XiZi] < Ep[Y2.Z,],

where Zi is a vector of positive transformations of Xi, for instance, Zj = {l{Xi < Xj),j =

1, ..., jy, for a suitable collection of values Xj. These inequalities define the identified set 9/,

which is therefore given by an intersection of hnear half-spaces in H'^. This example also falls

in the moment inequality framework, with the moment function given by

m,{9) = {{Yu - 9'X,)Z[, -(F., - 9'X,)Z[)'.

In auction analysis, the bracketing of the latent response Y - bidder's valuation - by

functions of observed bids, Yi and Y2, is very natural and occurs in a variety of settings, see

Haile and Tamer (2003). Analogous situations occur in income surveys, where only income

brackets are available instead of true income, see Manski and Tamer (2002). Chernozhukov,

Hong, and Tamer (2002) analyze this linear moment inequality set up in detail.
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Example 3 (Optimal Choice of Economic Agents and Game Interactions). Analysis of the

optimal choice behavior of firms and economic agents is another area of applications of (2.1).

Suppose that a firm can make two choices Di = or Di — 1. Suppose that the profit of

the firm from making the choice Z?j is given by n {Wi, Di,9) + Ut, where Ui is a disturbance

such that Ep[Ui\Xi] = 0, for Xj representing information available to make the decision, and

Wi are various determinants of the firm's profit, some of which may be included in Xi. For

example, W^ may include actions of other firms that affect the firm's profit. From a revealed

preference principle, the fact that the firm chooses Di necessarily implies that

EpItt {Wi, A, 0) \Xi] > Ep[n {Wi, 1 - Di, 9) |X,]. (2.7)

Therefore, we can take the moment condition in (2.1) to be

m,{d) = {'n{W,,l-Di,B)-T:{Wi,D,,d))Zi, (2.8)

where Zi is the set of positive instrumental variables defined as positive transformations of

Xi, as in the previous example.

This simple example highlights the structure of empirically testable restrictions arising

from the optimizing behavior of firms and economic agents. These testable restrictions are

given in the form of moment inequality conditions. It could be noted that this simple example

also allows for game-theoretic interactions among economic agents. The moment inequahty

conditions of the above kind are ubiquitous, and are known to arise in (more realistic) dynamic

settings, see Bajari, Benkard, and Levin (2006), Ciliberto and Tamer (2003), and Ryan (2005).

Similar principles are used in Blundell, Browning, and Crawford (2005) to analyze bounds on

demand functions. Related ideas also appear in the area of stochastic revealed preference

analysis, e.g. see Varian (1984) and McFadden (2005).

Example 4 (Structural Equations). Consider the structural instrumental variable estima-

tion of returns to schooling. Suppose that we are interested in the following example where

potential income Y is related to education E through a flexible quadratic functional form,

8



Y = 9q + e^E + e2E'^ + t = X'e + e, for 9 - (^0,^1,^2) and X = {l,E,E^y. Although par-

simonious, this simple model is not point-identified in the presence of the standard quarter-

of-birth instrument suggested in Angrist and Krueger (1992).^ In the absence of point iden-

tification, all parameter values 6 consistent with the instrumental orthogonality restriction

Ep[{Y — d'X)Z] = are of interest for purposes of economic analysis. Phillips (1989) devel-

ops a number of related examples. Similar partial identification problems arise in nonlinear

moment and instrumental variables problems, see e.g. Demidenko (2000) and Chernozhukov

and Hansen (2005). In Chernozhukov and Hansen (2005), the parameters 9 of the structural

quantile functions for returns to schooling satisfy the restrictions:

Ep[{t-1{Y <X'9))Z] = 0,

where r G (0, 1) is the quantile of interest. This is an example of a nonlinear instrumental

variable model, where the identification region, in the absence of point identification, is gen-

erally given by a nonlinear manifold. Chernozhukov and Hansen (2004) and Chernozhukov,

Hansen, and Jansson (2005) analyze an empirical returns-to-schooling example and a struc-

tural demand example where such situations arise.

2.3. Informal Discussion of Results. The objective of this paper is to construct sets C„

for 6/ that are consistent estimates of 0/, converge to 0/ at fastest rates, and have the

confidence interval property lim inf„_oo -P(0/ Q Cn) = a, for a prespecified confidence level

a G (0, 1).^ The sets C„ we construct take the form of a contour set Cn{c) of level c of the

sample criterion function Q„:

Cn{c):={0ee:anQniO)<c},

for some appropriate normalization a„, where a„ = n in Examples 1-4. In order to simplify

the discussion, assume a„ = n in this section only.

^The instrument is the indicator of the first quarter of birth. Sometimes the indicators of other quarters of

birth are used as instruments. However, these instruments are not correlated with education (correlation is

extremely small) and thus bring no additional identification information.

Robustness to perturbing P is also discussed in the Addendum to this paper, which obtains the conditions

under which coverage holds under contiguous perturbations of P. In addition, Andrews and Guggenberger

(2006) establish global robustness of the subsampling confidence regions proposed in this paper in a class

of moment inequality problems. Sheikh (2006) establishes global robustness of our subsampling regions in

Example 1.
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In order to estimate 0/ consistently, the level c = c (which can be data-dependent) needs

to be diverging to infinity slowly; for concreteness, we can set c = Inn. However, in a class

of problems, c'does not need to be diverging, so we can set < c = Op(l) and even c" = 0.

E.g., in Example 1, c = gives us C„(0) = [Enp'i], £'„[y2]], which clearly is consistent for the

region [£Jp[Yi],Ep[y2]]. Generally, whether c can be non-diverging in order to maintain con-

sistency depends on whether the sample criterion function a„Q„(^) has degenerate behavior,

i.e. vanishes, over contractions of 9/ in large samples, as formally stated in Section 3. In

particular, the latter property does not hold in Example 4, but typically holds in Examples

1-3, under conditions formally stated in Section 4.

The analysis of the rates of convergence and consistency makes use of the Hausdorff dis-

tance between sets, which is defined as

dH{A, B) := max sup d[a, 5), sup d{b, A)
a^A beB

where d{b,A) := inf \\b — a\\,
a£,4

and dniA, B) ;= oo if either A or B is empty. The motivation for the use of this metric comes

from it being a natural generalization of the Euclidean distance and its previous uses by other

authors in the consistency analysis in the context of set estimation, see Hansen, Heaton, and

Luttmer (1995). The general consistency result

c?i7(C„(c),e;)-.pO,

obtained in this paper follows from the uniform convergence of the sample function Q„ to the

limit continuous function Q over the compact parameter space 0, where the rate of conver-

gence over set 0/ is l/a„. Such uniform convergence condition is conventional in econometric

literature, and is thus easilj' verifiable.

The rates of convergence follows from the existence of polynomial minorants on Qn{0)

over suitable neighborhoods of 0/, as defined formally in Section 3. Existence of quadratic

minorants on Qn occurring in Examples 1-4, as verified in Section 4, implies that

c?h(C„(c),07) = Op(v'max(c, l)/n),

which is very close to l/\/n rate of convergence, and is exactly \j \fn in many moment

inequality problems (such as Examples 1 and 2, where anQn has degenerate asymptotics

over contractions of 0/).
10



In order for C„(c) to have the confidence region property for 0/, we need to choose level

c = c{q.), such that c[a) is a consistent estimate of the a-quantile of the statistic:

Cn = sup anQn[d), '

(^2.9)

which is a quasi-likelihood-ratio type quantity. The estimates c[a) can be based on the

limit distributions of (2.9) or a generic subsampling method, which are developed, respec-

tively in Section 4 and Section 3.5. For instance, in Example 1, suppose {s/n{En\Yi\ —

Ep\Yi]), y/n{En[Y^ - Ep[Y2])) -^d (H^i, W2) = N{0, ft), then Section 3 shows that Cn^dC =

max[{Wi)\, (^^2)?.], where the distribution of C can be easily obtained by simulation methods

(see Section 4). For the cases when the limit distribution of (2.9) is not easily tractable,

the paper constructs a generic subsampling estimate c(a), which is based on subsampling an

approximation of statistic (2.9), where one uses the consistent estimate Cn(c) in place of the

unknown set 0/ in (2.9) (see Section 3.5 for a detailed description of the algorithm).

The paper characterizes the asymptotic behavior and derives the limit distribution of the

statistic C„. The paper also characterizes the limit distribution of related statistics used

to determine the probabihty of false coverage (probability of covering larger sets than 0/).

(This in turn characterizes the power properties of the testing procedure implicitly defined

by the confidence region.) The non-equicontinuous behavior of the empirical process 6 1-^

o-nQn{G) in e.g. Examples 1-3 poses a challenge to this analysis, which is addressed through

a generalization of epi-convergence and stochastic equi-semi-continuity (Knight 1999) to the

set-identified case. The "parameter-on-the-boundary" problem is another challenge in this

analysis; e.g. it arises in Example 4, where the identified set 0/, defined as an intersection of

a hyperplane with 0, generally has common points with the boundary of 0, defined relative

to H''. This challenge is addressed through an appropriate generalization of the "Chernoff

regularity"- the condition that in the point-identified case requires convergence of the local

parameter space to a cone (Chernoff 1954, Andrews 2001). The generalization requires a

convergence of a graph of the local parameter space to an appropriate limit graph.

3. General Estimation and Inference in Large Samples

This section defines the estimators and confidence regions formally and develops the basic

results on consistency, rates of convergence, and coverage properties of these regions. The
11



section develops general conditions that parallel those used in extremum estimation in point-

identified cases (Amemiya 1985, Newey and McFadden 1994, van der Vaart 1998). Section 4

illustrates and verifies these conditions for the moment condition models.

3.1. Basic Setup. The parameter space is a non-empty compact subset of 11*^ equipped

with a subspace topology relative to IR . Data w-i,...,Wn are a random vector defined on a

complete probability space {Q.,J^,P). Suppose that the sample criterion function Qn{d) =

Qn{0,w\, ..., Wn) is available, and that Q^ converges uniformly to a continuous criterion func-

tion Q > that attains minimal value on 0/. The contour sets of Qn will be used for

estimation and inference on 0/. This approach therefore employs the classical duality princi-

ple of inverting a likelihood type test statistic to obtain confidence regions.

Regarding notations used in the paper, e-expansion of 0/ in is defined as 0} := {6 e

: d{9,Qi) < e}. Unless an ambiguity arises, sup^ / is used to denote supa^^f{a). The

notions of stochastic convergence, e.g. convergence in (outer) probability, denoted as -^p, and

stochastic order symbols. Op and Op are defined with respect to the outer probability P*, as in

van der Vaart and Wellner (1996); wp —
> 1 stands for "with (inner) probability approaching

1." For any two numbers a and b, a /\b denotes min(a, b), and a V 6 denotes max(a, b). For

convenience, Appendix A collects other definitions and notations.

3.2. Consistency and Rates of Convergence in The General Cases. Let the following

assumption hold.

Condition C.l (Uniform Convergence and Continuity), (a) is a non-empty compact subset

ofJR'^, (bj Q : Q t-^ 1R_|_ is continuous and mine Q = 0; let 0/ := argmineQ, (c) Qnid) =

Qn{d, wi, ..., Wn) takes values in 1R+ and is jointly measurable in the parameter 9 and the data

wi, ...,Wn defined on a complete probability space (Q, J^, P), (d) sup© \Qn — Q\ = Op{l/bn) for

a sequence of constants 6„ —> oo , and (e) supg^ Qn = Op(l/a„) for a sequence of constants

an -^ oo.

Condition C.l assumes uniform convergence for the criterion function Qn to the limit Q.

It also identifies 0/ as the minimizer of the limit criterion function Q. The assumptions

Q > and Qn > are not restrictive.^ In C.l(c), measurability is assumed to hold with

^Given a function (5„ : © —> K and its continuous uniform limit Q : —> IR, we can define Qn{6)

Qn{0) - infs'ge Qn{9') and Q{9) = Q{6) - infg'ge Q(^') to reach this assumption.
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respect to the product of the sigma-field T and the Borel sigma-field of 0. C.l(c) guarantees

measurabihty of supe^ (5„ and related statistics; see e.g. van der Vaart and Wellner (1996),

p.47.«

Condition C.l also defines the principal quantity supg^ Q^ which plays the crucial role in

the analysis of inference. Its rate of convergence to zero a„ plays the key role in the analysis of

consistency and rates of convergence. Section 4 shows that in the models of Section 2 a„ = n.

The contour sets of a^Qn form the class of estimates we consider. The level c contour set

of anQn is defined as

C„(c):={^ee:a„(5„(^)<c}, (3.1)

where c > 0. Next let c"be a sequence of non-negative random real variables such that c ^p oo

slowly so that 'cjan —>p 0. For instance, when a„ = n, we can set c = Inn. We will discuss

the choice of c further when we consider inference. The estimates and confidence regions will

generally take the form 0/ := Cni^.

A condition that determines the rate of convergence of Cn{c) to 07 is the following.

Condition C.2 (Existence of a Polynomial Minorant). There exist positive constants {5, k, 7)

such that for any e e (0,1) there are [K^,n^) such that for all n>n^,

Qn{e)>K-[d{e,ei)A5Y<

uniformly on {9 £ Q : d(9, 0/) > n^/an },^ with probability at least 1 — e.

Condition C.2 states that Qn can be stochastically bounded below by a polynomial over

a neighborhood of 0/. C.2 parallels the conditions used to derive the rate of convergence of

estimators in the point-identified cases.

Theorem 3.1 (Coverage, Consistency, and Rates of Convergence of Cnic)). Let 0/ = Cn{c),

where c^p 00 such that cja^ -^p 0. Suppose that 0/ 7^ 0, then, (1) C.l implies that Qj C 0/

wp -> 1 and dniQi, 0/) = Op{l), and (2) C.l and C.2 imply that d//(0/, 0/) = Op{{c/ar,yl'^).

Suppose that 0/ = 0, then (3) C.l implies that dniQijQi) = wp ^ I.

The condition of joint measurability is only needed to simplify exposition, following a suggestion of a

referee. Otherwise, we can easily drop this condition, since we allow for stochastic convergence in the sense of

Hoffmann-Jorgensen. In this case, under the other assumptions stated, the primary statistics are asymptoti-

cally measurable.

When Qi = 0, this set is empty, in which case C.2 does not apply.
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Parts (1) and (2) address the case of the partial identification, when 0/ 7^ 9. In some

sense, this is the typical case for applications, and thus our interest lies primarily in this case.

The consistency results (1) and (2), stated in terms of the Hausdorff metric, generalize those

obtained for point-identified cases, see e.g. van der Vaart (1998). Both the consistency and

rate results are new for the problem studied in this paper. ^° Section 4 shows that in the

moment-condition models of Section 2, Q„ is locally quadratic, i.e. 7 = 2, and a„ = n. It

follows by Theorem 3.1 that the convergence rate can be made arbitrarily close to 1/^/n}^

Part (3) addresses the case of the complete non-identification, when 0/ = 0, in which case

the estimator converges to 0/ in the Hausdorff metric faster than any rate. This case is not

of prime interest, and is stated for completeness.

Example 1 (contd.) In Example 1, recall that Q„(6I) = {En[Yi\ - 9)\ + {Er,[Y2\ - 9f_

and Q{e) = {Ep[Y,\ - 6)1 + {Ep[Y2\ - Of^. Suppose {^{En[Y,] - Ep[Y,]), ^{E,,[Y2] -

Ep[Y2])y -d {Wi.W^y - N{0, Q). Then supe \Qn - Q\ = 0^(1/^.) while supe^ |Q„ - Q\ =

Op(l/n), so that 6„ = ^/n and a„ = n. By Theorem 3.1 C„(lnn) consistently estimates

0/ = [E'pfyi], £'p[y2]]. Further, it is simple to verify that C.2 holds with 7 = 2. Hence by

Theorem 3.1 the set C„(lnn) is consistent exactly at y'lnn/n rate. Note, however, that the

set.C„(0) = [i?„[yi], £'„[l2]] consistently estimates [£'p[yi],£'p[y2]] at l/\/n rate. Hence, in

this example and many others, but not all, it is possible to achieve the rate l/a-n exactly.

Section 3.3 below develops this point further.

Renicirk 3.1. (A counter-example) The following example shows why it is not possible to

achieve the sharp rate of convergence \/aJ"' by setting c= Op{\) in all cases. Setting c = Op(l)

may in general lead to inconsistency. Consider the following trivial example that illustrates

the source of the inconsistency. Let = [0,3], Q{9) = for each 9 E [0,2] and Q{9) = 1 for

each d G (2,3], so that 0/ = [0,2]; Qn{9) = xVn for 6 G [0,1], Q„(0) = for 9 € (1,2], and

Qn{0) = 1 for e (2,3], where x^ is a chi-square variable. Then Theorem 3.1(1) applies with

a„ = n to claim that C„(lnn) is consistent. However, Cn(c) for a fixed c > is not consistent,

since (ii/(C„(c), 0/) = d//([l, 2], 0/) = 1 with the asymptotic probabihty Pr{x^ > c) > 0,

"^The consistency result differs from an earlier result by Manski and Tamer (2002) that derives consistency

of the set {6 £ Q : Qj, {9) < c/b„ } where hn = \fn in regular cases. We in fact show consistency of smaller sets

replacing 6„ with a„ » hn, where a„ = n in regular cases. More generally, 6„ and a„ are defined by C.l(d,e).

^^In other examples like the ones considered in Kim and Pollard (1990), a„ = r?!'^ and 7 = 2, giving the

rate of convergence v}!'^

.
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while dH{Cn{c),Qi) — c?7^([0, 2], 9/) = with the asymptotic probabihty Pr{-)^ < c) < 1.

Therefore, with a positive probabihty the set Cn[c) does not cover substantial portions of

the set 0/, and the Hausdorff distance between Cn{c) and 0/ does not converge to 0. The

inconsistency of this kind extends to more general cases such as Example 4. Thus, Z-^^p oo is

needed to achieve consistency generally.

3.3. Consistency and Rates of Convergence with "Degenerate Interior". In many

moment inequality problems, the exact rate of convergence l/a„ can be attained by setting

c = Op(l) or even c = 0. The discussion of Example 1 above provides the simplest instance

where this is possible. The reason is that in moment-inequahty problems, criterion function

Qn can have degenerate asymptotics, i.e. vanish, over subsets of the identified set 0/ that

can approximate 0/. Consistency and rate results then follow, because C„(c) includes these

subsets even when c = 0.

In order to discuss this property formally, consider the following condition:

Condition C.3 (Degeneracy). There exists a constant 77 > and a collection of subsets

{07', e e [0,ri]} ofQj such that (a) dH{Qj',Qi) < e for all e G [0,77], (h) for any e G [0,7?],

there is n^ such that for all n > n^, P{suPq-£ anQn = 0} = 1, (c) there exists 7 > such

that for any e > there are constants {k^^u^) such that for all n > n^ F{sup _^ -i/-, anQn =

0}>l-£.

In the remainder of the paper, we take 07^ to be an e-contraction of the set 0/, that is

Qj':={deej:d{e,e\ei)>e}, (3.2)

where e > 0,'^^ although, in principle. Condition C.3 does not require the sets 07"^ to be

e-contractions of 0/. C.3(a-b) typically arises in the moment inequality models due to all

finite-sample moment inequalities satisfied on e-contractions 07^ with probability converging

to 1, which makes the criterion function vanish on 07^ Condition C.3(c) further puts a

rate assumption on exactly how this happens. Section 4 verifies this condition in our main

applications.

Theorem 3.2 (Consistency and Rates of Convergence of C„(c) with Degenerate Interiors). Let

0/ denote Cn{Z) where c' > with probability 1 and c' —>p c > 0. Then, (1) C.2 and C.3(a,b)

Note that this set is always well-defined, although it may be an empty set.
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imply that d//(6/,0/) = Op{l), and (2) C.2 and C.3 imply that dH(©/,©/) = Op{l/al/'').

Moreover, if Qj = Q and sup@^ cinQn = wp —^ 1, then (3) dniOi, Qi) = wp ^>- 1.

Parts (1) and (2) contain the results of primary interest, which state that if C.3 holds, the

rate l/on is achieved exactly. In particular, the smallest contour set, C„(0), is consistent and

converges to 0; at the rate l/a„ . Section 4 shows that in many moment inequality examples,

C.3(b) and C.3(c) hold with 7 = 2 and a„ = n, yielding the rate of convergence l/y/n. Part

(3) addresses the less typical case of the complete non-identification, 0/ = 0, and degenerate

behavior of UnQn on 0/; in which case the estimator converges to 0/ in the Hausdorff metric

faster than any rate. This case is not of prime interest; we state it for completeness.

Example 1 (contd.) To clarify the role of C.3, recall Example 1. Clearly, for a sufficiently

small e > 0, 07' = [Ep[Yi] + e,Ep[Y2] - e] can approximate 0/ = [£;p[yi], E'pfyo]] in the

Hausdorff metric, provided 0/ is not a singleton. Since Q„(0) = (£'„[Yi] — 0)\+ {En[Y2] — ^)i,

with probability converging to 1, Qn = on ©7*^. Further, for any £ > 0, a constant k^ can

be found such that Qn = on 07';=' v" _ [^'^jy^j _|_ K^/^^Ep[Y2] — K^/y/n\ with probabihty

at least 1 — e in large samples. Thus, Cn{c) is consistent at rate l/\/n in this example.

3.4. Confidence Regions. The question that arises next is how to choose c to guarantee that

Cn{c) has a confidence region property. The inferential properties of sets Cn{c) are determined

by the statistic

Cn = sup anQniO). (3.3)

Indeed, Lemma 3.1 below shows that event {C„ < c} is equivalent to event {0/ C Cn{c)}.

If quantiles of C„ or good upper bounds on them are known, finite-sample inference can be

conducted. ^^ This paper provides asymptotic estimates of quantiles of C„, using either a

generic subsampling method, developed in Section 3.5, or the asymptotic limits for C„ in the

moment condition problems, developed in Section 4.

The following basic condition is required to hold.

Condition C.4 (Convergence of C„). Suppose that P{Cn < c} ^ P{C < c} for each c E

[0,oo), where the distribution function of C is nan-degenerate and continuous on [0, oo).

^^For instance, the upper bounds on quantiles can be obtained using the maximal inequalities for empirical

processes.
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Section 4 verifies C.4 for moment condition models.

Lemma 3.1 (Basic Large Sample Confidence Regions). (1) Under C.l event {C„ < c]

is equivalent to event {Cn{c) covers 0/}. (2) Suppose that C.4 holds. Then for any c —
>p

c{a) := inf{c > : P{C < c} > a} for a £ (0, 1), such that c > with probability 1, we

have that lim„ P{0/ C Cn{c)} = lim„P{C„ < c} = P{C < c{a)} = a if c{a) > 0, and

liminf„ P{Qi C C„(c)} = liminf„ P{C„ <c}> P{C = 0} > a if c{a) = 0.

3.5. Generic Estimation of the Critical Value based on Subsampling. This section

develops a generic subsampling method for consistent estimation of the critical value. The

method estimates the quantiles of C„ using many data subsamples of size b. The following

condition facilitates the construction.

Condition C. 5 (Approximability of C„). For C„(5„) := sup 1/7 anQn, we have that

P[Cn{5n) < c] = P[C < c] + 0(1) for any (5„ [ and any c > 0. // C.3 holds, in addi-

tion require that this condition holds for any (5„ t 0.

Section 4 verifies Condition C.5 for models of Section 2. C.5 implies that it suffices to apply

subsampling to a feasible statistic sup^'^/^-) a^Qb in place of the infeasible statistic supg,^ abQb-

Generic Subsampling Algorithm. At a preliminary stage, for cases when data {Wt} is

i.i.d. sequence, consider all subsets of size 6 C n.^^ Denote the number of subsets by 5„. For

cases when {Wt} is a stationary strongly mixing time series, construct i?„ = n — b+1 subsets of

size b of the form {Wj, ..., Wj+b-i}. The algorithm has four steps: (1) Initialize some starting

value Co, which can be data-dependent, such that cq -^p cq > 0. Set k^ = In n. If C.3 is known

to hold, we can also set Cq = and /t„ = 0. (2) Compute Cj as the a-quantile of the sample

{Cj,b,n := suPe€Cr,{c) ^bQj,b,n{^), j = l,...,5n}, usiug c = Cq + «;„, where Qj^b,n denotes the

criterion function evaluated using j-th subsample. (3) (Optional/Asymptotically Equivalent

Iterations) Repeat Step 2 for ^ = 2, ...,L by computing q from Step 2 using c = q_i + k„.

(4) Report Cn{cL + k„) as a consistent estimator and a confidence region. Report Cn{cL) as

a confidence region. (The latter region may be inconsistent as an estimator, if C.3 does not

hold).

In applications, since number of such subsets is large, it suffices to consider a smaller number, 5„, of

randomly chosen subsets of size b such that 5„ —> 00 as n —» 00.
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Remark 3.2. Chernozhukov, Hong, and Tamer (2002) discuss implementation and compu-

tation in further detail. Using Example 2 as the basis for simulations, they find that a small

number of iterations, L ~ 1 or 2, setting cq to a-quantile of a y^ variable with degrees of

freedom equal to the number of moment equations, and using h = 300 and b — 400, led to

good coverage and estimation results for samples of size 1000 and 2000. Politis, Romano, and

Wolf (1999) describe calibration methods for choosing b in practice.

Theorem 3.3 (General Validity of Subsampling). Suppose (a) {Wi, ..., W„} is either i.i.d. or

a stationary and strongly mixing series, (b) b -^ cxd, b/n —^ at polynomial rates as n ^f oo,

and (c) On —> oo ai least at a polynomial rate in n. Suppose C.l, C.2, C.4, and C.5 hold. Let

a E (0, 1) denote the desired coverage level. Then, for any finite iteration L of the algorithm

described above, the following is true: (1) ci -^p c{a.) := inf{c > ; P{C < c} > a), (2)

lim„P{e/ C Cn{c)] = a if c{a) > 0, and liminf„P{e/ C Cn{c)} > a if c{a) = 0.

Therefore, any finite iteration of the algorithm produces consistent estimates of c{a). The

iterations are asymptotically equivalent and thus, for the purposes of asymptotics, form a

single step procedure. The resulting regions Cnici) cover 0/ with P-probability a in large

samples. Further, in order to get confidence regions that also consistently estimate 9/, we

should expand them, namely take Cn{cL + i^n) for «„ defined above. (When C.3 is known to

hold, we do not need to expand them, so we can set «;„ = 0.)

Remark 3.3. It follows from the proof of Theorem 3.3 that Conditions C.l and C.4 alone

suffice for C„(cl) to cover 0/ with P-probability at least a.

Remark 3.4. If the researcher does not know whether C.3 holds, he can still use the algorithm

with the expansion constant «;„ = In n.

Remark 3.5 (Variations). Recently Sheikh (2006) proposed a step-down variant of our al-

gorithm, which is numerically equivalent to our algorithm, except that it employs the choice

of constants Cq oc a„ and «;„ = 0, where the very conservative choice cq cx a„ is used to avoid

estimation of the set 0/. The finitely-iterated step-down algorithm is typically more con-

servative (hence less powerful) than the original procedure. The infinitely-iterated step-down
18



algorithm has the same asymptotic properties as our algorithm, but it is more computationally

expensive.
^^

3.6. Asymptotics of C„ and Related Inferential Statistics. This section develops meth-

ods for obtaining the limits of C„ and related inferential statistics that determine the prob-

abilities of false coverage. Such a task faces two major difficulties: one is the failure of the

usual stochastic equicontinuity conditions of the underlying empirical process and another is

the parameter on the boundary problem, as defined below. This section outlines a frame-

work for obtaining these limits by relying on concepts of stochastic equi-semi-continuity and

generalizations of Chernoff (1954) type conditions on the parameter space O.

Consider the statistic C„(5) := sup 1/7 a„Qn, where 9/"" is 5/a„ -expansion of 9/.
0J-

"

Since C„ = C„(0), C„ is a special case of this statistic. Suppose that for each ^ >

Cn{S) -^d C{5) in IR. (3.4)

Relation (3.4) implies that the probability that the confidence region for 9/ covers false local

(5/
'''•'

region 9/""^ satisfies

p|0j/a.
^ Cn{c{a))} = P{ sup anQn < c{a)} -^ P{C{5) < c{a)},

.3 5>^

^'''
C Cr.[c{a))} = P{

as long as c{a) is the continuity point of the distribution oiC{5). Then asymptotic probability

of false coverage satisfies P{C{5) < c{a)} < P{C < c{a)}, with strict inequality holding if

the distribution function of C{5) differs from the distribution function of C at c{a). From a

testing prospective, we can view 9/ " as a local alternative to 9/, so that statements about

false coverage translate in an obvious way to statements about local power.

The starting value Cq oc a„ in tlie step-down algorithm is very conservative. Iteration of the algorithm

reduces tliis critical value; in the limit of iteration, the critical value is essentiallj' the same as the critical value

c{a) + Op(l) produced by our algorithm. Clearly, when the number of iterations is insufficient, the finitely-

iterated step-down algorithm provides confidence regions that are more conservative than our confidence

regions. Thus, in practice our confidence regions are often smaller than the finitely-iterated step-down regions.

More formally, when C.3 holds, starting with cq = and «„ = 0, our algorithm produces the asymptotically

valid critical value Ci = c{a) +Op{l) in merely a single iteration, and cj is less than the critical value produced

by the step-down variant in any finite number of iterations. When C.3 does not hold, the infinitely-iterated

step-down procedure which aggressively sets «„ = asymptotically agrees with our critical value c{a) + Op(l)

with probability at least a. However, conditional on the event that the step-down region does not cover 0/,

which occurs with probability at most 1 — a, the step-down critical values may be smaller than c{a) + Op(l).

Thus, since the discrepancy between step-down and our regions occurs only when Type I error does, the

discrepancy is irrelevant.
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The analysis focuses on the asymptotic behavior of the empirical process:

in{e,\):=anQr,{e + \/a]l'^), (^,A)eV;^ (3.6)

where

Kf := {(^, A) : ^ e 07, A € ^f (0)}, Vl{B) := ay^(e -9)0 Bs, (3.7)

where Bs denotes the closed ball in IR'^ of diameter 5 centered at the origin and an''{Q — 6)

denotes the parameter space translated by 9 and multiplied by the scahng rate a]/'' }^ The

parameter A represents the local deviation from 9 and ranges over the local parameter space

V^{9). The parameter 9 ranges over the identified set 9/. The inferential statistics in (3.4)

are suprema of the empirical process (8.4) over the set (3.7):

Cr,{5)= sup 4(^,A).

The limit properties of C„(^) will therefore depend on the limit properties of V^. Observe

that V^ is the graph of the correspondence 9 =t Kf(^), defined over domain 6/, and let V'^

denote the graph of some other correspondence 6 ^ V^iO), also defined over domain 0j.

The condition below requires that V^ "converges" to V^, where the notion of convergence is

motivated statistically.

Condition S.l (Generalized Chernoff Regularity). (A) Qn is defined on a neighborhood Q'

of m IR , and is jointly measurable in 6 ^ Q' and data Wi,...,Wn defined on a complete

probability space {^,J-,P). (B) For any e > and 5 > there exists n^ such that for all

n > n^, P{\ SXVpys (.n
— SUPv'i ^n| > f} < £

In S.l (A) is needed to make sure that £„ is well defined over 0/ x Bs for large n and hence

over V^. S.l(B) is obviously satisfied when 5 = 0, a case which is relevant for asymptotics of

C„ = C„(0), since in this case Y^ = V^ = 0; x {0}.

Next, suppose there exists 5 > such that Bs{9) C for each 9 E Qj, where Bs{0) is a

closed ball in IR'^ of radius 6 centered at 9. Then,

V^ = V^ = Qi X Bs for all sufficiently large n, (3.8)

and S.l(B) also holds trivially. This case will be called the parameter in the interior case. It

appears to be reasonable in many applications, where e.g. is a rectangle or a convex body

^^That is - 61 is Minkowski difference of set 9 and set {6'}.
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in IR'^ and 9/ is in the interior of 0. The case where the parameter in the interior condition

fails to hold will be called the parameter on the boundary case. This definition extends the

definition of Chernoff (1954) and Andrews (1999) to the present context. In this case the limit

graph V^ will have a form that depends on the structure of ©.

The parameter on the boundary case arises in many problems. One example is the linear

instrumental variable model (Example 4) with given by a rectangular region. There, iden-

tified set 0/ and the boundary of necessarily have common points, so that (3.8) does not

hold. Another example is the case where is itself defined by a manifold, so that (3.8) does

not hold. Lemmas 4.1 and 4.2 in Section 4 derive V^ for the moment condition models of

Section 2, covering the cases in which the parameter on the boundary problem does occur.

Condition S.2. (Weak Sup-Convergence) For any finite set A C [0, oo), (sup^^^ in, 5 E A) —s-^

(sup^,^ ^tx),'^ £ A) in IR' ', where {9,X) >—> (^oo{d,\) is a non-negative stochastic process}"^

The process i^o will be referred to as the sup limit of £„. The sup convergence is more

general than uniform convergence, namely the convergence in L°°[Qj x B5), which is implied

by finite-dimensional convergence and stochastic equicontinuity of in-^^ In particular, the

uniform convergence fails in the moment inequahty model, while the sup convergence does

not; see, for instance, discussion of Example 1 below. The following condition is helpful in

verifying sup convergence.

Condition S.3. (Weak Finite-Dimensional Convergence and Approximahility)

A. (Fidi Convergence) For any 5 > Q and any finite subset M ofV^, [in{Q, A), {9, A) € M) -^^

(^oo(^) ^)-, (^) •^) G ^) in^^ ', where {9, A) i-^ ^oo(^, ^) is a non-negative stochastic process.

B. (Fidi Approximahility) For any e > and 5 > there is a finite subset M[e) of V^ such

that for all n G [n^, 00] .• Pjsupj^i In — "^^^Mie) C > £^} < £

These conditions imply that the finite-dimensional limit and the sup-limit coincide. Oth-

erwise, the two limits may disagree in general. The finite-dimensional approximabihty is

^'''Here |^| denotes cardinalitj' of the finite set A.

'^This notion of sup convergence could be modified to yield what is known as weak hypo-convergence,

which may then be used to study the convergence of hypo-graphs of ^„ to those of. £00 as random closed sets,

e.g. extending the approach in Molchanov (2005) for the present problem. However, the weak convergence of

hypo-graphs is not of interest per se in this paper.

21



motivated and extends the Knight's (1999) notion of stochastic equi-semi-continuity to set-

identified models.

Lemma 3.2. (1) Condition S.l and S.2 imply (3.4) with the limit variables given by C{5) —

supyd ioo, 'in particular C = C(0) = supg^g^ ^oo(^,0). (2) Condition S.3 implies condition S.2.

Example 1 (contd.) In Example 1, Q„(0) = {En[Yi] - d)l + (E^fFs] - Of_. Then

4(^,A) = n{Er,[Yi] - e- X/^)l + n{En[Y2] -9 - \/^f_. Suppose that {y/^[E„[Y^\ -

Ep\Y^]), ^{Er,[Y2] - Ep[Y2\))' -^d [WuWn)' = N{0,n). Then the finite-dimensional limit of

4(6*, A) is given by

i^{0, A) = [W, - A)^l(^ = Ep[Y,]) + {W2 - Xtl{9 = Ep[Y2]).

The limit is not continuous in at ^ = -EpfVi] and at ^ = jE'p[y2], hence ^„(^,A) can

not be stochastically equicontinuous and uniform convergence fails. Suppose that 0/ =

[Ep[Yi], Ep[Y2]] is in the interior of 9. Then S.l holds, since V^ = V^ = Gi x Bs for

all sufficiently large n. Also, finite-dimensional approximability S.3(B) can be easily veri-

fied. Therefore S.2 holds, so that the finite-dimensional limit ^oo(^>A) is also the sup-limit of

£n{9, A). By Lemma 3.2 we have that C„((5) —>-d C{5) — supi^gx)^eixBs ^oo{9, A), in particular

Cn^dC= sup e^{e,0) = max ((VKi)^, {W2t) .

4. Analysis of Moment Condition Models

4.1. Moment Equalities. We begin the discussion with moment equalities. Recall the

moment-equality set-up in Section 2, where the identification region takes the form 0/ =

{^ G : Ep['mi{9)] = 0]. Suppose there exist positive constants C and 5 such that for all

9 eQ

||^pK(^)]||>C-(d(^,0/)A<^). (4.1)

This is a partial identification condition, which states that once 9 is bounded away from 0/,

the moment equations are bounded away from zero.

In the point-identified case, the full rank and continuity of the Jacobian VeEp[mi{9)] near

0/ ordinarily imply (4.1). In the set-identified case, the Jacobian may be degenerate, which

requires a more involved condition (4.1). For example, in the linear IV model of Example 4

we have that Ep[mi{9)] = Ep[ZX']{9 — 9*), where 9* is the closest point to ^ in 0/. Provided
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that \\6* - 9\\ > 0, vector {6 - 6*) is orthogonal to the hyperplane {v : Ep[ZX']v = 0}. Hence

if rank Ep[ZX'] is non-zero, we have \\Ep[ZX']{9 -e*)\\>C- \\9 -9*\\, where C is the square

root of the minimal positive eigenvalue of Ep[X Z']Ep[ZX'].

The main stochastic assumption is that {mi{9),9 G 0'} is a P-Donsker class of functions,

where 6' is a neighborhood of in IR'^. By this we mean the following: (1) In the metric

space L°°(0')

Gn[mm := ^^(E„K(^)] - Ep[m.,{e)]^ ^ A{9), (4.2)

where A(^) is a mean zero Gaussian process with a.s. continuous paths and Varp[A{9)] >

for each 9 G 0'. (2) The probabihty space (r2,jF, P) is rich enough (or has been suitably

augmented)-'^ so that there exists a map A„ : Q ^ L°°(0') such that A„(^) =ci G„[m,;(6')] and

A„(^) = A(^) + Op{l) in L°°(0'). ^° The second condition does not involve loss of generality

due to the Skorohod-Dudley-Wichura Construction, see Theorem 1.10.4 in van der Vaart and

Wellner (1996) or Dudley (1985). Other conditions are given in the following assumption.

Condition M.l. Suppose the following conditions hold for the moment equality m.odel of

Section 2: (a) Q is a non-empty compact subset o/lR , and the real-valued criterion function

Qn{6) is defined on a neighborhood 0' of m R, , and is jointly measurable in 9 E Q' and

data Wi, ...,Wn defined on a com.plete probability space {fl.,J^, P), (b) is such that the graph

of the local parameter space V^ converges to some set V^ in Hausdorff metric, where V^

is non-decreasing in 5 > 0, (c) {mi{6),9 G 0'} satisfies P-Donsker condition stated above,

(d) Ep[mi{9)\ satisfies partial identification condition (4-i) and has a continuous Jacobian

G{9) = VeEp[mi{9)\ for each 9 G 0', and (e) Wn{9) = W{e) + Op(l) uniformly in 9 e Q'

where W{9) is positive definite and continuous for all 9 E Q'.

Most of these assumptions are conventional. We needed them to verify C.l, C.2, C.4,

C.5, and other main conditions. Condition M.l(b) is a generalization of the Chernoff (1954)

condition, which is needed for the analysis of false coverage, as discussed in Section 3.6, and

for the second part of Theorem 4.1 below. 'M.l(b) also holds trivially in the parameter in the

interior case, as defined in Section 3.6, in which case V^ = 0/ x B^. M.l(b) can be replaced by

^^We shall use {fl,J-, P) to denote the augmented probability space.

^"Notation =4 means equality in law: given two maps X and Y that map fi to a metric space D, X =d y
if Ep^\f[X)\ = Ep-[f{Y)] for every bounded / : ID >-+ M, where Ep- denotes outer expectation with respect

to P, see van der Vaart and Wellner (1996), p. 60.
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the classical assumption that is convex, in which case V^ has a very simple form stated in

Lemma 4.1. The convergence imposed in M.l(b), known in variational analysis as a graphical

convergence of correspondences, is a fairly weak notion of convergence for correspondences, for

instance it is considerably weaker than the uniform convergence sup^^g^ d//(V"^(^), K^(^)) =

o(l) (Rockafellar and Wets 1998). Lemma 4.1 stated below provides further discussion of

M.l(b).

Theorem 4.1 (Moment Equations). (1) Conditions M.l(a,c,d,e) imply C.l, C.2, C.4, C.5

with 7 = 2, a„ = n, and bn = y/n. If condition M.l(h) also holds, then S.1-S.3 hold, and the

sup-limit ofin{9,X) := nQ„(^ + X/^/E) is given by: i^{9,X) =
\\
{A{e) + Gie)X)' W^/\e)\\'^.

In particular,

c := sup ue,o) = sup \\A{9yw'/'{e)\\' u 3)

where A{9) is a zero-mean Gaussian process defined in (4-2).

(2) \¥hen Qn{9) = Qn{d) — infe'ee Qnl^') is used for inference, condition M.l implies

C.l, C.2, C.4, and C.5, with 7 = 2, a„ = n, 6„ = y/n, and the sup-limit 0/ ^„(^, A) :=

nQn{9 + X/s/n) - ninf^'ee <3n(^') is given by: 1^{9,X) = io^{9,X) - mi(^e\x')ev^ ^^{9' ,X'),

where V^ :— lim^foo ^cxj- -^'^ particular,

C := sup loo(^,0) = sup \\A{9yW^'\9)\\'' - inf ||(A(^) + G{e)X)'W'!\9)\\\ u 4)

The most basic implications are that, for c —>-p c{a), the confidence region Cn{c) has

asymptotic coverage a (it need not be consistent). The estimator Cn{c + Inn) is consistent

at ^J\n n/n rate with respect the Hausdorff distance, and has asymptotic coverage of 1. The

sup-limit £00 of the empirical process in obtained by the theorem describes the limit behavior

of related inferential statistics, following Section 3.6. Lastly, note that compactness of 9/

insures that the limit variable C is finite.

The quantiles of C in (4.3) can be estimated by the generic subsampling method of Section

3.5 or by simulating the limit distribution. The latter method is generally more accurate than

subsampling.

RerriEirk 4.1. (Quantiles of (4.3) by Simulation) For instance, if the data are i.i.d., we can

estimate the distribution of C by making the simulation draws of

C: := sup C:{9), C:{9) := \\Al{9)'WS~m\
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where A*(6') = n ^^'^^'^^i['miiO)zi], and {zi,i < n) is a n-vector of i.i.d. A''(0, 1) vari-

ables. Note that A*(^) is a zero-mean Gaussian process in L°°{Q) with covariance function

En[mi{e)mi{e'y]. Then En[mi{0)mi{0'y] = Ep[m{e)m,{e'y] + Op(l) uniformly in {9,6') G

9x0. Thus the distance between the law of A* (6') and the law of A(^), in the weak conver-

gence metric, converges in probability to zero. Since A* (6') is stochastically equicontinuous,

dniQi, Qi) = Op{l), and supg^Q ||Ty„(6') — VK(0)|| = Op(l), the distance between the law of C*

and the law of C, in the weak convergence metric, converges in probability to zero. The same

argument applies if the distribution of A (6') is estimated by the nonparametric bootstrap with

recentering.

Remark 4.2 (Quantiles of (4.4) by Simulation). We can estimate the quantiles of C in (4.4)

by simulating the distribution of the variable

C: := sup Qie), cm := \\A:{9yW^/\9)r - inf ||(A*(^) + G{9)XyW^/\9)f,

where G{9) is a uniformly consistent estimate of \/eEp[mi{9)].

The form of plays an important role as it determines the limit form of local parameter

spaces and statistics C„.((5) which behavior determines the probability of false coverage.

'Lemma 4.1 (Chernoff Regularity for Moment Equations). Sufficient conditions for V^ to

converge in the Hausdorff metric to some set V^, which is non-decreasing in S > 0, include

either one of the following: (1) Suppose there exists 5 > such that Bs{9) C for each

9 gQi. Then, V^ ^V^^OjxBs for all sufficiently large n. (2) Suppose = 0g nf^i [9 e

IR'^ : gr{9) = 0}, where Qg is a compact and convex set, Qt \ Q'g -^ IR'^ has a continuous

Jacobian Vgr{9) with a constant row rank over Q'g, a neighborhood of Qg in WC^. Then the

above convergence holds with V^ that has V^{9) = {X E Bs : X £ \/rii{Qg — 0) for some n' >

l,V,5,(0)A = O,r = l,...,i?}.

Lemma 4.1 provides the sufficient condition for S.l to hold. Case (1) is the parameter in

the interior case that may arise e.g. when 0/ is a collection of isolated points that lie in the

interior of (defined relative to W^), in which case V^ has a trivial form. Case (2) addresses

the parameter on the boundary case, and covers the convex parameter space Qg as well as the

parameter space generated by an intersection of Qg with several manifolds representing various

restrictions imposed on the parameter space; in this case, the limit local parameter space V^{9)
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is given (up to a closure) by a tangent cone of 9 at ^ intersected with the ball Bs- This extends

the results obtained for the point-identified cases (Chernoff 1954, Geyer 1994, Andrews 1997).

4.2. Moment Inequalities. Recall the setup of the moment-inequality model in Section 2.

We have 0/ = {^ G 9 : ||£'p[mi(^)]||+ = 0}. Assume there are positive constants (C, 5,r}) such

that for all 9 eQ

\\Ep[mi{e)\\\+> C-idie,Qj)A5), (4.5)

and, recalling that m.i{0) is a J-vector with components {mij{6),j = 1, ..., J),

m&-KEp[m.ij{e)] < -C {d{e,e\ 9/) A 5), for all 9 eQi :

(4.6)

d(97^9/) < e for all ee [O,??].

Equation (4.5) is the partial identification condition. Equation (4.6) states that moment

equations are strictly negative for all 9 in the contractions of 9/ and that these contractions

97"^ can approximate 9/. Equation (4.6) needs not hold generally, but it is satisfied in many

empirical examples listed in Section 2.^^

In order to state the regularity conditions define

Qj := {9eQj: Ep[m,j{9)] = Vj G J, Ep[m,,j{9)] < Vj G J'},

where J is any (non-empty) subset of {1,T.., J} and J'^ is the complement of J' relative to

{I,..; J}.

Condition M.2. Suppose the following conditions hold for the moment inequality model of

Section 2: (a) Q is a non-empty compact subset of JR , and the criterion function Qn{9) is

defined on a neighborhood Q'ofQinJR, and is jointly measurable in 9 ^ Q' and data Wi, ...,Wn

defined on a complete probability space {Q,,T,P), (b) 9 is such that the graph of the local

parameter space^^ V^\9 G Qj converges to some set V^\9 G Qj in the Hausdorff metric, where

V^\9 G Qj is non-decreasing in 5 > 0, for each J ,
(c) {mi{9),9 G 9'} satisfies P-Donsker

condition stated in Section 4-1, (d) Ep[m.i{9)\ satisfies partial identification condition (4-5)

and has continuous Jacobian G{9) = VeEp\m,i{9)] for each 9 G 9', (e) Wn{9) = W{9) + Op{l)

uniformly in 9 E Q' , where W{9) is a diagonal matrix with positive diagonal elements and is

continuous for all G 9', and (f) condition (4-6) holds.

^"A detailed illustration and verification of this condition for the linear moment inequality framework has

been provided in the previous version of this paper (Chernozhukov, Hong, and Tamer 2002).

22The set V^\e e @j is defined as {(61, A) eV^-.O e Qj).
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Most of these assumptions are conventional. We need them to verify C.l, C.2, C.4, C.5

and other main conditions. Condition M.2(b) is an assmiiption of Chernoff type, which is

needed for the analysis of false coverage, as discussed in Section 3.6, and for the second

part of Theorem 4.2 below. Lemma 4.2 stated below provides further discussion of M.2(b).

Condition M.2(b) can be replaced by the classical assumption that is convex, in which case

V^ has a very simple form stated in Lemma 4.L Condition M.2(f) is needed to verify the

"degenerate interior" condition C.3.

Theorem 4.2 (Moment Inequalities). (1) Conditions M.2(a,c,d,e) imply C.l, C.2, C.4, C.5

with J = 2, ttn = n, and h^ — \/n. Iffurther condition M.2 (f) holds, then C.3 holds. Iffurther

condition M.2(h) holds, then S.1-S.3 holds, and the sup-limit of in{0, A) := nQn{9 + A/'i/n) is

given by: £^{9,X) =
\\
{A{e) + G{9)\ + ({9))' W^-^^{9)\\1. In particular,

C=snpi^{9,0) = sup \\{A{9)+a9)yw'/'~{9)\\l, uj)

where A(^) is a zero-mean Gaussian process defined in (4-2) and ^{9) — {^j{9),j < J) with

(j{9) = -oo if Ep[m^j{9)] < and ^j{9) = if Ep[m,j{9)] = 0.

(2) When Qn{9) — inf^/ge (5n(^') t-s used for inference, conditions M.2(a,b,c,d,e) imply

C.l, C.2,' C.4, C.5, and S.1-S.3. In particular, 7 = 2, a„ = n, bn = \fn, and the sup-

limit of ln{9,X) := nQn{9 + A/y^) - nmfe>(.QQn{9') is given by: loo{9,X) = £co{9,X) -

mi(0>^x')ev^ ^00(6"', A'), where V^ := lim^^oo V^. In particidar C = supg^Q^ ^00(6*, 0), i.e.

c = sup \\{A{9)+mrw'/'mi-,j^i \\{A{9)-^G{9)x+myw'/'{9)\\i, (4.8)

where the second term equals zero if M. 2(f) holds.

Therefore, for c ^p c{a), the region Cn{c) is consistent at l/\/n rate with respect to the

Hausdorff distance as an estimator, and has asymptotic coverage q as a confidence region.

The theorem also obtains the sup-limit £00 of the empirical process in, which describes the

limit behavior of the related inferential statistics. Following Section 3.6, the latter results are

needed to describe the probability of false coverage.

The quantiles of C in (4.7) can be estimated by either the generic subsampling method of

Section 3.5 or simulating the limit distribution. The latter method is generally more accurate

than subsampling.
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Remark 4.3 (Quantiles of (4.7) by Simulation). If the data are i.i.d., we can simulate the

limit distribution of C„ by making the simulation draws of

CI := sup cm, CM := ||(A;(0) + m)'Wl'\e)\\l,

where A*(^) = n"^''^ X^"^j7nj(^)zj], and {zi,i < n) is a n-vector of i.i.d. i'V(0, 1) vari-

ables. Note that A*(^) is a zero-mean Gaussian process in L°°(0) with covariance function

En\mi{e)mi{e')% as discussed in Remark 4.1. ^{9) := {ij{9),j = 1,..., J)' with ^j{9) := -oo

if En[mij{9)] < —Cj\ogn/^/n, and (j{9) := if En{mij{9)] > —CjlognJ s/n, for some positive

constants Cj > 0.

Remark 4.4 (Quantiles of (4.8) by Simulation). If the data are i.i.d., we can simulate the

limit distribution of C by making the simulation draws of

C::=supQ(e), C:{9) := mi{e)+m'Wll\9)f,- Inf \\[K{6)+G{9)\+myWl'\e)\\\

where G{9) is a uniformly consistent estimate of VeEp[m.,{9)].

The form of plays an important role in determining the limit form of local parameter

spaces and of the statistic C„(5), which behavior determines the probability of false coverage.

Lemma 4.2 (Chernoff Regularity for Moment Inequalities). Sufficient conditions for the

graph of the local parameter space V^\9 € Qj to converge in the Hausdorff metric to some

set V^\9 G Qj that is non- decreasing in 5 > include either one of the following: (1)

Suppose there exists 5 > such that Bs{9) C for each 9 e Qj. Then, V^ = V^ —

Qj X Bs for all sufficiently large n. (2) Suppose Q = Qg fl^^j {9 elR'^ : gr{9) = 0}, where Qg

is a compact and convex set, gr :
Q' —^ ^ "^ has continuous Jacobian Vgr{9) with a coTistant

row rank over Q' a neighborhood of Qg in IR''. Then the above convergence holds with V^

that has ¥^{9) = {X E B5 : X e y/n'{Qg-9) for some n' > l,Vegr{d)X = Q,r = l,...,R].

Lemma 4.2 is similar to Lemma 4.1 and the comments that are similar to those stated

after Lemma 4.1 apply here.

5. Appendix A: Notation

The following standard notation for empirical processes will be used:
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The notions of convergence and outer and inner probabilities, P* and P*, are defined as in van der

Vaart and Wellner (1996). For instance, —>p denotes convergence in outer probability, wp —> 1 means

"with the inner probability approaching 1"; the stochastic order notations Op(l) and Op(l) are with

respect to P* , unless otherwise stated. Notation =d means equality in law: given two elements X
and Y that map fi to a metric space ^, X =,1 Y if Ep*[f[X)] — Ep'[f{Y)] for every bounded

/ : D I—> IR, where Ep* denotes outer expectation with respect to P. Let ||a:||+ = ||max(x,0)|| and

||x||_ =
II
max(— a;,0)||, where in the case of vectors the max operations are elementwise. Bs denotes

a closed ball of diameter 5 centered at the origin. In many instances, we use abbreviated notation

sup^ / to mean suP(jg^/(a), unless an ambiguity arises, in which case the latter notation is used.

The Hausdorff distance between sets is defined as

dH{A,B) :— max sup d{a, 5), sup d{h, A) , where d{h,A) :— inf ||6

and dH{A,B) := oo if either A ov B is empty. The e-expansion of G/ is defined as 0j :— {0 £ 9 :

d{0, Qi) < e}, and the e-contraction of 9/ as 97^ :=-- {9 eQi : d{e, 9 \ 9/) > e}, where e > 0.

6. Appendix B: Proofs

6.1. Proof of Theorem 3.1: PROOF OF Part (1). Step (a). Wp -> 1 by C.l(e) and by c-^p oo,

supe^ Qn = Op(l/a„) < c/an, which implies 9/ C 9/, which implies supg^g^ d(6, 9/) — 0.

Step (b). For any e > 0, infQ\^0j Q„ =(j) infe\ee Q + Op(l) >(jj) (5(e) + Op(l) for some 6{e) > 0,

where (i) follows from uniform convergence as assumed in C.l(d) and (n) from Q being minimized on

9/ as assumed in C.l(b). Similarly, supg Q = supg Qn + Op(l) <(j) c/an + Op(l) =(ij) Op(l), where

(i) holds by construction of 9/ and (ii) holds by c/ttn ^p 0. Hence supg Q < 6{e) = infe\e= Q
where 6{e) > 0, wp —* 1. Hence 9/ n (9 \ 9f) — wp —> 1, which implies 9/ C 9j. Given Step (a),

this implies supgQ(i(0, 9/) < e.

Combining Steps (a) and (b), ci/f(9/,9) < e wp —> 1. Since e > is arbitrary, the result is

proven. D
Proof of Part (2). For any £ > there exist positive constants {n^,K,^,K) such that for all

n > Tie we have c/an < ^ and c/an > i^e/cin, by c/un —>p and c -^p oo ; so that, with probabihty

larger than 1 — e.

inf anQn[0) >u) n- an- [\c/{ann)f''^ A 5] ^ui) c,

where (i) follows by C.2 and (ii) follows by c/o„ -^p 0. By construction of 9/, we have that

supa anQn < 2". Hence 9/ C 0^^'''""^'"
. Hence, combining with Step (a) of the Proof of Part (1),

we have that dH(9/,9/) < [c/(an«:)]i/T. Therefore diy(9/,9/) = Op([c/a„]i/T). D

Proof of Part (3). When 9 = 9/, by Step (a) of Proof of Part (1), 9/ = 9 wp ^ 1, so

dHi@i,Q) = Owp^l. D
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6.2. Proof of Theorem 3.2. . PROOF OF Part (1). Fix any e £ (0,77]. It follows that wp
—> 1, ©7^ Q{i) C'n(c') C(;j) Cn{c) C(jjj) G|, where c is from Theorem 3.1. Inclusion (i) follows since

supg-t anQn = < c* wp —
> 1, by C.3(b), (ii) follows from c > c' wp -^ 1, and (iii) follows from Part

1 of Theorem 3.1. Since dH{Qj^,@i) < e by Condition C.3(a) and dH{Q%©i) < e by definition of

6}, it follows that d//(67,C„(c')) < e. Part (1) follows. D
Proof of Part (2). Let e„ = inf{e : supg-e a„Q„ = 0}. By Condition C.3(c) e„ exists

and e„ = Op{an^^'^). Hence by C.3(a) and C.3(c), d//(0"'",e/) = Op{an^^''). Then we have that

©7^" C CnC^) Q Cn{c') wp —
+ 1, where c' > c and ? = c + Op(l). It can be shown, similarly to the

Proof of Part (2) of Theorem 3.1 that for any e > 0, there exist {5i:,n^) such that for all n > ng, we

have that Cn[c') C Qfl<'^^"\ Conclude that dH{Cn{c), 9/) = Op{an^'''). D
Proof of Part (3). Under the stated condition, it is immediate that 9/ = 0/ = 9 wp -^ 1.

Hence dn {&!,&) wp —
> 1. D

6.3. Proof of Lemma 3.1. PROOF OF Part (1). Clearly, C„ = sup^g©^ a„Q„(0) < c implies

9/ C. Cn{c) = {9 € Q : anQn{9) < c}. Conversely, 9/ C Cn{c) implies C„ — supg^Q^ a,nQn{9) < c by

compactness of 9/. D
Proof of Part (2). The result is elementary and its proof is therefore omitted. D

6.4. Proof of Theorem 3.3. PROOF OF Part (1). It suffices to prove the result for ci only. The

proof for any subsequent step is identical to this proof, since c\ is allowed to be data-dependent.

Step 1 is special to our problem, while Step 2 is standard for subsampling.

Step 1. By Theorem 3.1 or Theorem 3.2 wp -> 1, we have that 9^" C Cn{c) C 9^", where

e„ :— (Inn/ttn)^/''' and 7?„ := — e„, if C.3 holds, and ??„ := 0, if C.3 dofes not hold. Hence wp —> 1,

Cb„ := supafcQj^b^n < Cj^h,n = sup abQj,b,n < Cj,b,„ := sup abQj^b,n, for all j < B„,
97" Cn{c) Q]^

where index j denotes that the statistic was computed using j-th subsample; total number of sub-

samples is Bn- Define G(,^„(x) := B~^ Si=i ^{^j,b,n < 2;}. Hence wp —
> 1

G^Jx) := B-'^ l{C,,b,n <x}< Gb,n{x) < GbA^) :- B'' Y, H^^An < ^}-

By Step 2 below Gi,„(x) ^p G{x) = P{C < x] and Gf,,„(x) ~>p G{x) = P{C < x), for each a; > 0.

This proves that

Gb,n{x) -^p G{x) = P{C < x} for each x > 0. (6.1)

Convergence of the distribution function at continuity points implies convergence of the quantile

function at continuity points. By C.4 c{a) := G"~^(a) is continuous in a £ (0,1). Hence, (6.1)

implies that c := G^^{a) —
>p G^^{a) for each a S (0, 1).

Step 2. Define C_^ := supQ^n abQb and Cb — supgcn a^Qb- Write Gt_„(x) = £'p[G{,„(x)] -|-

— (21

Op(l) = P{Cb < x} + Op(l) = P{C < x} -I- Op(l) at each x > 0. Conclusion (1) follows by

Varp(S~'^ J2j=i l{^j,M < x}) — o(l). For i.i.d. data, this follows from Bn —* oc and the Hoeffding
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inequality for bounded l/'-statistics; for stationary a-mixing series, this follows from i?„ —> oo and

an upper bound on covariance given in the proof of Theorem 3.2.1 in Politis, Romano, and Wolf

(1999). Conclusion (2) follows by C.5 and C.4 and by e„ = o{l/a^ ) and 77„ = o(l/aj ) arising due

to restrictions on the subsample size b and the rate a„ stated in conditions (b,c) of this theorem.

Likewise, conclude Gb^ni'x) —*p ^(2;) == P{C < x}. D
Proof of Part (2). The result follows from Lemma 3.1 D

6.5. Proof of Lemma 3.2. PROOF OF Part (1). Conditions S.l and S.2 immediately imply

(3.4). D
Proof of Part (2). This part shows that S.3 imphes S.2. Note that for any 6 >0 and e >

there exists a finite set M(e) C V^ such that

lim sup P{sup £„ < r} <(j\ limsupP{max^„ < r} <(jj) P{max£(x> < ^} <(m) P{sup^oo < r + e} + e,

n-*oo v^ n^oo M(£) M(e) ys^

where inequality (i) follows from sup^d in ^ sup;j,|/£\ in, (h) from the finite-dimensional convergence

condition S.3(A), and (iii) from the finite-dimensional approximability condition S.3(B) applied for

n — 00. Since e is arbitrary, hmsup„^QoP{supv<5 in < r} < P{supyi ^00 < r}. Further, for any

(5 > and e > there exists a finite set M{£) C V^ such that

lim inf Pjsup £„ < r} >(i\ liminf P{max£„ < r — e} — e
n-»oo ys "• ' n-*oo M{e)

>/u) P{max^oo <r-6} -e y/m) Pjsup^oo <r-e} -e,
M(e) yS

where inequality (i) follows from the finite-dimensional approximability condition S.3(B), (ii) from

finite-dimensional convergence condition S.3(A), and (iii) from sup^s i^ > su^p{^^^^^irx:, Since e is

arbitrary, hminf„^oo P{supy« in < 1^} > P{sup^,^5 £00 < ^}- Conclude by the Portmanteau lemma

that supys in —^d supys i^o- The joint convergence of (supys £„, (5 G A) for finite set A in S.2 follows

similarly. D

6.6. Proof of Theorem 4.1. PROOF OF PART (1). The proof is organized in the following steps.

Step 1 verifies C.l and C.2. Step 2 gives an auxiliary basic approximation for £„. Using Step 2, Step

3 verifies C.4, Step 4 verifies C.5, and Step 5 verifies S.1-S.3.

Step 1. (C.l and C.2: Uniform Convergence and Quadratic Minorants) Condition C.l is imme-

diate from condition M.l(a,c,d,e). In particular, uniform convergence and the rates of convergence

an — n and 6„ = y/n in C.l follow from {mi{9), 9 G Q} being P-Donsker and having Ep[mi(9)] —
on ©;. To verify C.2 observe that wp —^ 1, uniformly in 9 G Q

nQn{9) = ||(Gn[m,(0)] + y^Ep[m,{9)]yW^/^i9)f by definition

> C \\Gn[mi{9)] + V^Ep[mi{9)]f by inf mineig Wni9) > C > 0, wp ^ 1, by M.l(e)

> C- |v^||^p[mi(0)]|| - \\Gn[mi{e)]\\\^ by inequality \\x + y\\ > \\\y\\
- ||x|||

>C-\C-V^{d{9,ei)A5)-Op{l)f, hysnp\\Gn[mi{9)]\\ = 0p{l) and M. 1(d),
eee

(6.2)
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where sup^gg ||G„[mj(^)]|| ~ Op{l) follows from P-Donskerness. Therefore, for any £ > we can

choose (Kejne) large enough so that for all n > n^ with probabUity at least 1 - e

nQniO) >l-C-C^-n- [d{9, 0;) A 6f uniformly on {0 G 9 : d{e, 9/) > Ke/n^^~}.

This verifies C.2.

Step 2 (An Auxiliary Expansion). Write £^{0, A) = \\^/nEn[m^{e+X/^/ii)]'Wn^'^{e+\/^)\\^ =

II
{Gn[mi{e + A/v^)] + -/nEplm^ie + X/y^)])' Wn^^{e + X/^)f. For any non-empty compact sub-

set K oiJR'^, we have uniformly in (6', A) £QxK: (1) Gn[mi{0 + X/^/n)] = Gn[mi{9)] + 0p{l), by the

stochastic equicontinuity arising due to P-Donskerness, (2) Wn{0+X/^/n) = W{6)+0p{l), by M.l(e),

and (3) G„[mj(^)] =d A{9) -t-Op(l) in ^"^(9), by P-Donskerness, where A{9) is the Gaussian process

defined in the statement of the theorem, and (4) ^/nEp[mi{9 + X/y/n)] = G{9)X + o(l), by M.l(d)

and by Ep[mi{9)] = for all ^ £ 9/. These results imply that

4(^,A) ^d \\{A{9) + G{9)Xyw'/\9)f +Op{l) in L-(9/ x K).

^oo(e,A)

Note that^oo(0, A) is stochastically equicontinuous in L°° (9/ x/i'), because (0, A) \-^ {A{9),G{9)X,W{9))

is stochastically equicontinuous in L°°(97 x K).

Step 3 (C.4: Convergence of C„). By Step 2, C„ =d sup^gQ^ ||A(^)'Tyi/2(0)||2+Op(l) = C-f Op(l),

where C > a.s. and has a continuous distribution function by Theorem 11.1 of Davydov, Lifshits,

and Smorodina (1998). This verifies C.4.

Step 4 (C.5: Approximability of C„). By expansions in Step 2

Cn{5n) = sup nQn{9) =d sup \\A{9)'W^'\9)\\ + Op{l) =d sup \\A{9)'W'I\9)\\ +Op(l),

C

where the last equahty follows by stochastic equicontinuity of i-> A{9yW^/'^{9). This verifies C.5.

Step 5 (S.1-S.3: Limits of Related Statistics) This step shows that if M.l(b) holds in addition

to M.l(a,c,d,e), then S.l and S.3 hold. S.3 implies S.2 by Lemma 3.2. M.l(b) states dH{V^,V^) =

o(l). Then, for some e„ j 0, Isup^-^^^ - sup^^^^j < supi\i^gx)-{e',\')\\<en I4(^,A) -4(6i',A')| =

suP||(6),A)-(e',A')||<en Koo(^, A) - ^00(6*', A') + Op(l)| + Op(l) = Op(l) by Step 2 and stochastic equiconti-

nuity of ^oo(6',A). This verifies S.l(B). Condition M.l(a) implies S.l(A).

By Step 2, the finite-dimensional limit of 4(6', A) equals £00(6*, A) = ||(A(6I) + G{9)XyW^/^{9)f.

This verifies S.3(A).

Finally, note that by stochastic equicontinuity of £oo(^, A) and Step 2, finite-dimensional approx-

imability condition S.3(B) is trivially satisfied. D
Proof of Part (2). The proof is similar to the proof of Part (1), and it is therefore omitted. In

particular, we have that nQn{9) = nQn{9) — ninfg'ge Qn{^'), where asymptotic approximations for

the first term are identical to the proof of Part (1). The second term inf^/ggnQn (&') can be arbitrarily

well approximated by mi,Q^^s^y6 nQn{9+X/^/n) for a sufficiently large 5. Then as in Part (1) it follows

that inf(5i ;^)gv'4 nQn{9 + X/^/n) —d mf(^gx)QV^ ^oo{9, X) + Op(l). Setting 5 arbitrarily large gives that

infg/ge nQn{9') = inif^gx-j^yx, ioo{9, A) -I- Op(l). The limit \rd(^gx)&v^ ^oo(^, A) exists and is tight due
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to monotone convergence: as 5 t cxd, V^ f V^, and mf(^g)^)^Y^ioo{9,X) [ mi^g\)^v^^oo{d,X) >

a.s. n

6.7. Proof of Lemma 4.1. PROOF OF PART (1). This part holds trivially. D
Proof of Part (2). Consider the simplest case where G = 9^ is convex and compact. Define

VM ^ {X e Bs : X € V^iQg - 9) for some n'}. Define V^ = {(6',A) : 6 eQi,Xe v^(0g - 6)}.

Note that V^ C V^ by convexity of Qg and V^ t V^ monotonically in the set-theoretic sense. This

implies convergence in the Hausdorff distance because V^ and V^ are subsets of a compact set.

Further, let V^^ denote V^ from the convex case. Define V^ := V^^ nf^j Mi^, Mij. = {{0,X) :

6 e Qi,X ^ B6,gr{e + X/^) = 0}, Vi := V^' n^^, Ml,, Ml, := {(0,A) : 9 e Qi,X e

Bs,Ve9riO)X = 0}. We have dniVlVl) < dH{V^',V^') + Er^idniMi^Ml,) = o(l),23 where

the first term is o(l) by the argument for the convex case and the second term is bounded by

X^r^i supggQ;^ <^//(-^nr(^)'-^oor(^))i which is o(l) by an argument similar to that in Lemma 2 in

Andrews (1997). D

6.8. Proof of Theorem 4.2. Proof of Part (1). The proof is organized as follows: Step 1

verifies Conditions C.l, C.2, and C.3. Step 2 gives an auxiliary basic approximation for in. Lemnla

6.1 gives another approximation. Using Step 2 and Lemma 6.1, Step 3 verifies Condition C.4, Step

4 verifies Condition C.5, and Step 6 verifies Conditions S.1-S.3.

Step 1 (Verification of C.l, C.2, and C.3). C.l is immediate from M.2(a,c,d,e). In particular,

uniform convergence and the rates of convergence a„ = n and 6„ = ^/n in C.l follow from {mi{9),6 E

0} being P-Donsker and Ep[mi{6)] < on-B/. To verify C.2 observe that wp -^ 1, uniformly in

9eQ

nQn{9) = \\{Gn[m,{9)] + V^Ep{mi{9)]yW^^\e)\\l by definition

>C-\\Gn[mi{e)] + y^Ep[m,{e)]\\l

by inf mineig Wni9) > C > wp -^ 1, by M.2(e)
^^'^'

- C • \\V^Ep[m,{9)]\\l (||G„K:(0)] + V^Ep[mi{9)]\\l/\\V^Ep[m,i9)]\\l).

By M.2(d), \\VnEp[mi{9)]\\l >C n- {d{9, 0/) A 5)^ on for some C> and 5 > 0. Therefore, for

any e > we can choose {Ki;,n^) so that for all n > n^ with probability at least 1 — e

nQn{9) >\-C,-C -n- {d{9, 0;) A (5)^ uniformly in {6i G : d{9, 0/) > ^Jn^/^}.

This follows by (6.3), by ||y-l-a;|| + /||x||+ —» 1 as ||x||+ -^ oo for any y £ IR'^, and by supg^Q ||Gn[mj(0)]||

Op(l), where the latter holds by the P-Donsker property. This verifies condition C.2.

^^This follows by the elementary inequality dniAn B,C Ci D) < dniAO B,C n B) + dniC n D,C f] B) <

dH{A,C) + dH{B,D).
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To verify C.3 observe that wp —> 1, uniformly in 9 G Qj

nQn{e) = \\{Gn[mi{e)] + ^Ep[mi{e)])'Wl''^[e)\\l by definition

< C' ||(G„K(0)] + y/^Ep{mi{e)]\\l by supmaxeig Wn{d) < C' < oo wp ^ 1, by M.2(e)

< C'
•

2_^ |'G„[mij(0)] + •s/nEp[mij{6)\\'^_^_, where subscript j denotes j-th element of vector m,:(0)

i<J

< C' • 2Z l'^p(^) - \/n • C • {d[e, e \ Gy) A <5)|; for some C > and 5 > by M.2(f).

o<J

Therefore, for any e > we can choose k^ large enough so that for all n > n^ with probability at

least 1 — £

Qn[e) - uniformly on Q'''^'^ ^^g^Q^, ^{0, 9 \ 9/) > K,/n^/^}.

This verifies Condition C.3.

Step 2. (A Basic Approximation). Write 4(61, A) = \\y/nEn[mi{e+X/y/n)]'Wn^'{e+X/^)\\l =

II
i<Gn[mi{e + A/Vn)] + ^Ep[m,{9 + A/Vn)])' Wn^^{e+X/^/fi)\\l. We have for any 5 > 0, uniformly

in (^, A) G (9 X Bs): (1) G„[mj(0 + X/^/n)] — Gn['mi{6)] + Op(l), by the stochastic equicontinuity

implied by the P-Donsker property, (2) W„(i9 + X/y/n) = W{9) + Op(l), by M.2(e), (3) Gn[mi{e)] =d
A{6) + Op(l) in L°°(9), by P-Donskerness property, where A{6) is the Gaussian process defined in

the statement of the theorem, (4) ^Ep[mi{0 + X/^/ii.)] - ^Ep[mi{e)] ^ G{9)X + o{l), by A4.2(d).

Therefore

en{0, A) -rf \\iA{9) + Gi9)X + V^Ep[m,{0)]yw'/'{9) + Op(l)||^, in L°°(9/ x Bs).

Steps 3,4, and .5 also make use of the following result.

Lemma 6.1. The following approximation is true:

sup£„(0. A) =d sup ||(A(0) + G{9)X + V^Ep[m,{0)]yw'/\9) + Op{l)\\l

'=^ sup ||(A(0) + G{9)X + mywy'.{9) + Op(l)||t
(6 4)

^max sup J]|(A,(0) + G,(^)'A)l^_,f(0) + Op(l)|-;,

where Qj :— {9 G Qj : Ep[mij{9)] ~ 0\/j G J,Ep[mij{9)] <0\/j G J'^}, J denotes any non-empty

subset of {1, ...,J}, arid

ij{9) :- if Ep[m.ij{9)] = and ^^{9) := -co if Ep[m^J{0)] < 0. (6.5)

The proof of this lemma is given below, immediately after the proof of this theorem.

Step 3. (C.4: Convergence of C„) Application of Lemma 6.1 for V^ = V^ = Q x {0} yields

C„ ^ sup nQn{9) =d sup i|(A(0) + m)'W^'-{0) + Op(l)f+

= max sup X; \A,{eywjp{9) + Op(l)|^.
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Hence P[C„ < c] —* P[C < c] for each c > 0, for C defined in the statement of the theorem.

By Theorem 11.1 of Davydov, Lifshits, and Smorodina (1998), non-degeneracy of the covariance

function of A(^) imphes that C has continuous distribution function on [0, oo) with a possible point

mass at c = 0. To show P[Cn = 0] -^ P[C = 0], note that non-degeneracy imphes that Y =
1/2

ixiax.j laaxj^j supg^Qj.[Aj{6)Wjj (6)] has a continuous distribution function on IR. Then by (6.6)

Ppn < 0] is bounded above (below) by P[Y < e„] with some e„ j (£„ T 0), and P[Y < e„] -^

P[Y < 0] = P[C < 0]. This verifies Condition C.4.

Step 4. (C.5: Approximability of C„) By Step 2

sup nQn{e)=d sup \\{A{e) + ^Ep[mi{9)]yw'/^{9) + Opil)\\l

and by stochastic equicontinuity of ^ h^ {A{9),W^^'^{9)) and by supug, _0»^j^,/:j^\\^/n{Ep[mi{9)] —

Ep[mi{9')])\\ = o(l) it follows that for any (5„ j or (5„ T

sup \\iAi9)+V^Ep[m,{9)]yw'/\9)+Oj,{l)\\l = sup \\{A{9)+V^Ep[mi{e)]yw'/^i9)+Op{l)\\l.

Then it follows as in Step 3 that P[Cn{Sn) < c] —> P[C < c] for each c > 0. This verifies condition

C.5.

Step 5. (Verification of S.1-S.3) S.l(A) follows from M.2(a). S.l(B) and S.2 follow from Lemma
6.1. Further, in equation (6.4), for each J, supys^^g^Q^ J^jej \i^A^) + Gj{eyX)WJj\e) + Op{l)\l

admits finite-dimensional approximation by stochastic equicontinuity of (9, A) i-+ {A{9),G{9)X, W{9))

in L°°(0 X Bs), which implies S.3(B). By Step 2, the finite-dimensional limit of £„(0,A) equals

ioc{0,\) - \\{A{9) + G{9)X + ^{9)yW^/^{9)\\l, which verifies S.3(A). D
Proof of Part (2). The proof is similar to the proof of Part (1), and it is therefore omitted. D

6.9. Proof ofLemma 6.1. The first equality in (6.4) is immediate by Step 2 of the proof of Theorem

4.2. Equality (*) in (6.4), the main claim of the lemma, is proven as follows. Define

fn{9,X,x):=\\{A{9) + G{9)X + V^Ep[mii9)]yw'/'i9) + x\\l,

gn{9,X,x):^\\{A{9) + G{9)X + myw'/\9) + x\\l.

Step 1. Wp -^ 1, for some e„
J. 0, gn{9,X,-en) <(i) /n(6', A, -e„) <(ii) £n{9,X) <{zzi) fn{9,X,en).

Here (i) follows by y/nEp[mi{9)] > ^{9) for each 9 G Qi and by monotonicity: xi > X2 imphes

\\{A{e) + G{0)X+.xiyW^/^{9)\\l > \\{A{9) + G{9)X + X2yW^/\9)\\l, vecallmg tha.t W{9) is dia,gonal

with positive diagonal entries, and (ii) and (iii) follow from Step 2 of the proof of Theorem 4.2.

Therefore, wp -^ 1, for some e„ j

supp„(6i,A,-e„) < sup4(6i,A) < sup/„(6', A,e„).

Step 2. Furthermore, for any e„ f or e„
J,

. sup5„(6',A,£„) = sup5„(6',A,Op(l)) = sup5„(6l,A,Op(l)), ,„^.
v^ VI VT ^^^)
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where V^ is the closure of V^. To show this, write

sup5„(0,A,£„) = max sup V |(Aj(0) + G,(e)'A)VK/f (0) + e„|2..

Then by M.2(b) for every J, dniV^lO e ej,V^\9 G Qj) = o(l), which impHes by stochastic

equicontinuity of (0, A) ^ {A{e),G{e)X,W{e)) in L°°(0 x Bs) that

sup Y. I(^(^) + G,(e)'A)T4^f (0) + e„|2.

= sup J]|(A,(e) + G,(0)'A)l^f(0) + Op(l)|i

= sup y:i(A,(g)+G,(gyA)I^f(g) + Op(l)P^,

so relation (6.8) follows.

Step 3. This step shows that for some e^ i 0,

sup/„(6>,A,e„) < supg„(^,A,e^) wp -^ 1.

ys ys (6.9)

Observe that for any 0„ G 0/ converging to 6 ^ Qj,

limsup ^/nEp[m,J{0n)] < (jiO) if O(^) = 0. ^iTasup^.Ep[mij{en)] = ^j{0) H ^jiO) = -oo. (gjo)
n n

Let Q,n,£
— {lo ^rt : supgg©^^;^^^^ l|A(0)|| < K^]. For any £ > 0, there exists K^ such that P(n„_£) >

1 — e for all n> Ue- Suppose that relation (6.9) does not hold, then there must exist constants e >
and e > and a subsequence (w„(fc), On(k),K{k)) with u^^k) £ ^n{k),e^ {Sn{k),K{k)) e V^^^^y such that

lim[/n(fc)(^n(fc))'*^n(fc).en(fc)) " SUp5„(fc) (6*, A, e)](w„(fc)) > 0.
(6.11)

Select a further subsequence such that ^n(fc(0) ^ ^* ^^'^ ^n{k{i)) ~* '^*! where (^*, A*) is in the closure

of V^ by dniV^, V^) ^ and by V^CQj x Bg. As in Step 2 conclude that

sup5„(6l,A,e) =sup5„(6',A,e) > g„((9*, A*,e/2) wp -^ 1
,

which together with (6.11) gives that lim;
[/„(;,(,)) (6i„(fc(i)), A„(fc(;)),0) - g„(fc(,))

(6**, A*, e/2)](tj„(fc(,))) >
0. Given the definition of /„ and Qn stated in (6.7), this inequality can occur only if

limsupVnM))£^pKj(^^(/c(/)))] > Ci(^*)

for some j. This gives a contradiction to (6.10). Therefore, the claim of Step 3 is correct.

Combining Steps 1,2, and 3 implies the result of the lemma. D

6.10. Proof of Lemma 4.2. Define V^j := V^\9 G Oj. Apply the proof of Lemma 4.1 for V^ to
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7. Extension: Pointwise Approach

Suppose that one is interested in a particular parameter 9* inside Qj. The inference about some

9* in 0/ is well motivated, when there is a sense in which 9* is the true parameter. The latter

is typically the case when it is maintained that the economic models are correct representations of

data-generating processes of real data for some parameter value 9*.^'^ In this scenario, 9/ is not of

interest per se, but rather 9* is.

In order to facilitate inference about 9* we make the following assumption.

Condition C.6. Suppose there exists a„ -^ oo such that, for Cn{9) := anQni^), •P(Cn(^) < c) —

>

P{C{9) < c) for each c > and each 9 G Qj, where C{9) is a real random variable that has a

continuous distribution function on [0,oo) and a-quantile denoted as c{a,9). Moreover, for at least

one 9 & Qj, C{9) > with positive probability.

Using the fact that Qi9) = a.t 6 = 9*, we construct a confidence region for 9* as follows. We
test whether whether Q{9) = for each 9 G Q. Then we collect all ^ £ 6 that pass the test to form

a confidence region for 9*. More precisely, we collect all G such that a„Qn{9) < c{a,9).

Towards the construction of confidence regions, suppose the estimate c{9) is available such that

c{9) —>p c{a,9) for each 9 £ O/. Consistent estimates c{9) can be obtained by subsampling or, for

the moment condition models, through the use of the limit distributions obtained in Theorem 7.3.

Consistency of the subsampling estimate c{9) follows by the standard argument, e.g. the one given

in Step 2 of the Proof of Theorem 3.3. It should be noted that subsampling is generally less accurate

than the use of the limit distributions.

Let 0/ be an estimator of 0/ so that 0/ C 0/ wp —+ 1. We also want 0/ to be a sharp estimate,

for instance, we can set 0/ = C„(logn), which under C.l and C.2 is consistent and converges at rate

(logn/n)^/'''. Let also cbe any consistent estimate of the a-quantile of C defined in C.4. Recall that

we used c for the construction of the region-wise critical value.

The following two regions will be considered. The first region is a simple region defined by a

single critical value:

C„(2* A c) - {0 G : OnQniO) < c* A c}, where c* - sup c{9).
,^ ^.

The second regions is a region that employs critical values that depend on 9:

Cn{c{-) A c) = {0 e : anQn{9) < c{9) A c}. (7.2)

Remark 7.1. The two constructions are equivalent in many cases, since the objective functions

can be transformed to have equal quantiles.^^ The fist construction is more parsimonious, easier to

compute, and report. Clearly, either region is a subset of, and hence is no larger than, the confidence

region Cn{c) for 0/.

^^There is 0* G such that the model law Pg agrees with the actual law of data P.

This can be seen by defining the new criterion function Qnifi) := Qn{6)/ ma,x[c{a,9),e] for all G 0/.

In many examples this is unnecessary, as criterion functions have the equi-quantile property by using optimal

weights.
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Remark 7.2. If c{d) is obtained by subsampling, the truncation of critical values by c improves

Bahadur efficiency: Indeed, ii 9 ^ 0/, we have that c{9) —>p +cx>, typically at the rate a^, but

c{0)Ac—>p c{a) < GO. Therefore, subsampling implementations that, in contrast to our construction,

do not truncate c{6) by c suffer from the loss of power in finite-samples. Chernozhulcov and Fernandez-

Val (2005) show, in a different situation, that the Bahadur inefficiency of canonical (untruncated)

subsampUng leads to a substantial loss of power in finite samples.

Remark 7.3. The construction of either region employs the pointwise inversions of tests of point

hypotheses Q{9) = 0. This follows the Anderson and Rubin (1949) construction of confidence regions

for the case of simultaneous equations. In the case of weakly identified and unidentified linear

instrumental variable models, the construction was used by Dufour (1997) and Staiger and Stock

(1997), among others. In a partially identified dynamic censored regression model, Hu (2002) also

employed region (7.2) for inference. In partially identified instrumental variable quantile regression

model, Chernozhukov and Hansen (2004) also use the region (7.2). A previous version of the paper,

Chernozhukov, Hong, and Tamer (2002), Appendix G, also gave pointwise constructions. Imbens

and Manski (2004) investigate the Wald type inference about 9* for the special case where 9* is a

real parameter known to belong to an interval which endpoints can be consistently estimated. The

analysis here apphes to a considerably more general setting.

Remark 7.4. The more recent developments in the literature include Andrews and Guggenberger

(2006) and Sheikh (2006) who show that the confidence regions of the type proposed here, with

critical values obtained by subsampling, have important robustness (uniform coverage) properties.

Note, however, that in moment condition models, we can construct the critical values using limit

distributions, e.g. see Remark 7.6, which should be preferable to subsampling due to higher accuracy.

Remark 7.5. Due to reasons given in Remark 7.2, our regions (7.2) constructed using subsampling

will be less conservative than the regions studied by Andrews and Guggenberger (2006) and Sheikh

(2006). The latter are constructed using canonical (untruncated) subsampling critical value c{9). In

contrast, regions (7.2) use the truncated critical value c{9) A c.

Theorem 7.1. Suppose that (a) Conditions C.4 and C.6 hold, and (b) for each 9 G Qj we have

c{9) —>p c{a,9) and c ~^p c{a) > supggg^ c{a,9), where c{9) > and c > with probability 1. Then,

(1) for any 9* G 9/, liminf„_oo ^'{6'* e C„(c* Ac)} > a, and (2) lim inf„^oo -Pi^^* G C„(c(-)Ac)} >

a.

Proof of Theorem 7.1: Part (1): lim inf„_^oo -P{^* £ Cni'S' Ac)} = \im'min^ooP{o-nQn{9*) <
2* Ac} >(i) liminf„^ooP{anOn(^*) <c(r)A?} >(,i) liminf„^oo P{a„Q„(r) < (c(r) + Op(l)) V 0}

^[iii) P{C{^) ^ c(0*)} —(iv) > a, where (i) follows by construction, (n) follows by the assumptions

on c and c{9), (iii) follows by Condition C.6, and (iv) follows by Condition C.6. Part (2): This part

trivially follows from inequality (i) in the proof of Part (1). D
The following theorem provides consistency and rates of convergence of the sets constructed

above.

Theorem 7.2 (Consistency and rates of convergence) . Suppose C.l, C.2, and conditions of Theorem

7.1 hold. Consider estimators 0/ := {5 G 9 : anQn{9) < c{6) f\c + Kn] and 9/ := {^ G 9 :
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o-nQniS) < c* Ac+ Kn], where Kn :— when C.3 is known to hold, and k„ := logn otherwise. Then,

dniOhQi) = Op([l/a„]V7) ^ 0^(1) if c.3 is^known to hold, and dH{Q],Qi) = Op
(
[log n/a„]V7) =

Op(l), otherwise. The same results apply to Qj.

Proof of Theorem 7.2: Since Cni^n) C 6/ C 6/ C Cn{c + «;„), the rate and consistency results

follows from the rates and consistency results for C„(k„) and C„(c + k„) obtained in Theorem 3.1

and Theorem 3.2. D

Theorem 7.3. (Limits of Cn{0) in Moment Condition Models) (1) Suppose Condition M.l holds

for the moment equality model. In particular, the P-Donsker condition on moment functions implies

n-V2 {Yl'i=i{mi{0) - Ep[mi{e)])) -^^ A(0) = N{Q,Ep[^{e)/\{e)']). Then, Condition C.6 holds with

c{e) .= \\i\{eyw^i\e)f, (7.3)

c{e) :^ \\^{e)'w'!\e)f - inf m[e') + G{e')x)'w'/\d')\\\ . (7.4)

for the case when Qn{S) and Qn{d) = Qn{^) — inf^'ge Qn{9') are used for inference, respectively.

(2) Suppose Condition M.2 holds for the moment inequality model. Then, Condition C.6 holds with

c{0) .= m{9)+myw'/'{e)\\i, (7.5)

ae) .= \\{A{e) + myw'/H9)\\l- ini \\{Aie') + G{9')x + mrw'/'{e')\\l, (7.6)

for the case when Qn{^) o-nd Qni9) = Qn{9) — mfgiQQQn{6') are used for inference, respectively.

Proof of Theorem 7.3. Part (1) follows from the proof of Theorem 4.1. Part (2) follows from

the proof of Theorem 4.2. D

Remark 7.6. (Quantiles oiC{9) by Simulation) The quantiles of C(6'), specified in (7.3), (7.4), (7.5),

and (7.6), can be obtained by simulating variable C!^{9) specified respectively in Remarks 4.1, 4.2,

4.3, and 4.4.
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ADDENDUM for "Estimation and Confidence Regions for Parameter Sets in

Econometric Models"

8. Robustness to Contiguous Perturbations of P

In this paper P, the true probability measure, is the nuisance pajameter. The goal is to examine

which contiguous perturbations of the original fixed P preserve or do not preserve the estimation

and coverage properties of the confidence regions. The idea of focusing on the local perturbations

follows its uses in the confidence interval literature, see notably Dufour (1997), Potscher (1991), and

Andrews and Guggenberger (2006). Intuitively, contiguous perturbations of P can not be statis-

tically detected with certainty, and we therefore want to make sure that contiguous changes in P
do not affect the coverage properties of confidence regions. An alternative motivation is that, in

the asymptotic context, the relevant parameter space for nuisance parameters consists of contiguous

parameter values, which is a standard approach in asymptotic efficiency analysis, see van der Vaart

(1998), Chapter 8.7. In fact, finding minimal coverage under contiguous sequences is equivalent to

establishing local uniform coverage, when the local nuisance parameters are allowed to vary over a

compact set.^^

We focus on examining the robustness of the main estimation and inferential results, the ones

stated in Theorem 3.1 and Theorem 3.3.

8.1. Regular Cases. Consider a triangular sequence of probability measures {Pn_.y,n = 1,2,...},

where 7 is an index of a sequence in P and {P„^.y,7 6 r,n = 1, ...} C P. Let P^ denote the law

of data w\,...,Wn under Pn^-y- Each 7 G P is such that P" is contiguous to P", the law of data

'W\^...,Wn under P, namely P"(yl„) = oil) implies P".^(A„) = o(l) for any sequence of measurable

events j4„.^^ In what follows, notation Qi{P) is used to reflect that identification region 0/ depends

on the law of the data P. Similarly, notation c{a, P) is used to denote that the a-quantile of C

depends on P.

Lemma 8.1. [Conditions for Maintaining Consistency, Rates of Convergence, and Coverage] (1)

Assume that Conditions C.l and C.2 hold with {Pn,-y] replacing {P}, for each 7 G P. Then so do

conclusions of Theorem 3.1. (2) Assume that Conditions C.l, C.2, and C.4 hold under {Pn,-y} in

place of {P}, for any 7 G P, as well as hold under {P}, with the common limit real random variable

C, distribution of which does not depend on 7. Take any estimate c —>p c(a, P) under {P}, for

instance, that provided in Sections 3 or 4- Then for each 7 £ P,

liminf P„-.{e/(P„^) C Cn(c)} > a and ^ a if P{C > 0} > a.

The first result states that consistency and rates of convergence will be preserved under sequences

as long as C.l and C.2 hold under sequences (replacing P with P„_.y and 9/ with Qj{Pn,-y) should

cause no ambiguity in the re-statement of C.l and C.2). The second result of the lemma addresses

^^The weak IV example presented below clarifies this statement; see, specifically, equations (8.8)- (8.9).

^^Throughout this section, measurable events An are events that are measurable with respect to (fi.jT)

completed with respect to both P" and Pn,-y
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coverage properties in the regular case - when the hmit of C„ does not depend on the local sequence."^

Note that the coverage result is independent of the way the critical value is estimated.

Note that if C„ is non-regular - that is, its limit distribution under {Pn,-y} depends on 7 -

the coverage under sequence depends on whether the distribution of Cn under P^^^y is stochastically

dominated in large samples by the distribution under fixed sequence {P}, as stated in Lemma 8.3

below.

Conditions of Lemma 8.1 are verified in our principal apphcations as follows:

Condition M.S. (Moment Equalities) Suppose that M.l holds for each P £ V and that (a) the

partial identification conditions (4-1) holds uniformly in V, (h) G{9) = limnVgE^p „[77i,;(0)] exists

and is continuous over a neighborhood ofQ, for each 7 G F, (c) the Donsker condition (4-2) holds

under {Pn,j} in place of {P} for each 7 G F, with the common limit Gaussian process A(^), (d)

^P.,-,KW] = Ep[mi{e)] + 0(1) for each 7 G F, (e) dH{<di{Pna),Ql{P)) - o(l) for each 7 G F.

Condition M. 4. (Moment Inequalities) Suppose that M.l holds for each P e V and that (a)

the partial identification conditions (4-5) holds uniformly in V, (h) G{9) = lim^ V6i£^p.^^„[mi(0)]

exists and is continuous over a neighborhood ofQ, for each 7 G F, (c) the Donsker condition (4-2)

holds under {^71,7} w place of {P} for each 7 G F, with the common limit Gaussian process A{d),

(d) Sp„,^K(0)] = Ep[mi{e)] + 0(1) for each 7 G F, (e) and dH{edPn,-y),Qi{P)) = o(l) and

dH{Qj{Pn,-y),Qj{P)) = 0(1) for each J and each 7 G F .

Condition (a) is a locally uniform partial identification condition. Sufficient condition for con-

dition (c) are well known and are given in van der Vaart and Wellner (1996), p. 173, including a

quadratic-mean-differentiability condition, p. 406. The principal condition is Condition (e), which

requires that the perturbations of P affect the identification region smoothly.

Lemma 8.2. (Coverage, Consistency, Rates under Regular Sequences in Moment Condition Models)

(1) Condition M.3 implies conditions of Lemma 8.1. (2) Condition M.4 implies conditions of Lemma
8.1.

Example 1 (contd.) It is helpful to illustrate conditions M.4(a)-(e) via a simple example. Recall

the example of interval censored Y without covariates, in which case Qi{P) — [Ep[Yi], Ep[Y2]] and

suppose Yi < Y2 P-a.s. for all P G P and that {Yi,Y2) are uniformly Donsker in P."^ Then condition

M.4(a)-(d) easily follow. To verify M.4(e) note that by contiguity and uniform integrabihty implied

by the uniform in V Donskerness,

iEp^jY,],Ep^JY2]) - {Ep[YriEp[Y2]),

including the case of [E'pfFi], £'p[Y'2]] being a singleton. The last point is noteworthy, since Imbens

and Manski (2004) used precisely the case of identification region shrinking to a singleton at a l/y/n

rate as a counterexample to the coverage of certain t}T)es of confidence regions.

^^The definition of regularity follows that given by van der Vaart and Wellner (1996), p. 413

^^Conditions for the Donskerness uniformly in V is well known, see van der Vaart and Welhier (1996),

p.168-170.
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Conditions M.3 and M.4 are reasonable in many examples we have considered, provided the

boundary of 0/ (in M'') is strongly-identified. Conditions M.3 and M.4 are not expected to hold

otherwise. Therefore, the models with weak identification, cf. Dufour (1997), that are local to non-

identification, are not covered by the framework of regular sequences. Weak identification is not

our focus in any case. However, Section 8.2 provides a general condition under which the proposed

inference methods will work. The condition is illustrated with a weak IV framework of Dufour (1997)

and Staiger and Stock (1997).

8.2. Non-regular cases. The following lemma addresses non-regular cases mentioned earher, and

shows that coverage results will be preserved in much greater generality.

Lemma 8.3 (Maintaining Partial Consistency and Minimal Coverage under Non-Regular Sequences).

(1) Suppose that supe^^p^^j Q„ == Op„ .^(l/a„) under {P„,^}. Then e/(P„,^) C Cn{c) wp -^ 1, pro-

vided c ^>p DO, under {Pn,j}- (2) Let there be any estimate c ^>p c{a, P) under {P}- Suppose that

Condition C.4 holds under fixed P with the limit real variable C that has a-quantile c{a,P). Suppose

that for each 7 G F and any sequence e„
J, 0, we have

liminf F„,^,[C„ < {cia,P) - e„) V 0] > a. (8.1)

Consider any estimate c-^p c{a,P) under {P], for instance, that provided in Section 3 or 4- Then

for each 7 G F

liminfP„^,{e/(P„^) CC„(c)} >a. (8.2)

Note again that the result is independent of the way the critical value is estimated.

Example (Weak IV) . The point of this lemma can be illustrated using a very simple IV example

with one regressor:

Y^OqX + c, 6I0 € G (compact) C IR, X = Q-Z + v, and (e,i;)|Z ~ Af(0, fi), Z ~ iV(/i,o-|). (8.3)

The identification region is Qi{P) = ©, that is, we have complete non-identification. Assume i.i.d.

samphng and other conditions as in Section 4 hold under P.

Now consider a sequence of models where

Y^eoX + e, X = (p/^)Z + v, and (e,i;)|Z~ A^(0,n),Z~ Af(0,CT|). (8.4)

Let 7 index the parameter sequence {p}. Let P" denote the law of vector {Yi,Xi,Zi,i < n) in

(8.4); it is contiguous to law P". Let P„^-y denote the law of the infinite sequence {Yi,Xi, Zi,i < 00)

generated according to (8.4).

Note

©/(Pn,7) = ©/(P) = if p - and ©/(P„,-,) = 9o G ©/(P) if P 7^ 0. (8.5)

This implies that the weak limit of C„ under P„^^ with p ^ 0, is stochastically smaller than the weak

limit of Cn under P„_^ with p = 0, since

sup \\A{eyw^/\e)f < sup \\A{eyw^/~i9)f. (8.6)
So G
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Therefore a-quantile of the right side is bigger than Q-quantile of the left side, and we have that

(8.1) is satisfied. Note, compactness of is important in insuring that the right-hand side is finite

a.s. Therefore, for each p e R'' and 7 = {p]

liminf P„,^{07(P„,.^) C C„(c)} > Q.
n—>oo

Next we consider more general local parameter sequences 7 = {p„} with pn G K for each n,

where K is & compact subset of ]R; let T denote the set of all these sequences. The Umit under each

convergent subsequence p„ —> p is either the left or right side of (8.6). Hence, for each sequence {7„}

in r and each sequence Cn \ 0,

liminfP„,.,„[ sup \\Aieyw'/^{9)f < (c(a,P) - e„) V 0]

> liminfP[sup||A(0)'wV2(^)||2 < (c(q,P) - e„) v 0] > a.
n—^00

(8.7)

This implies by Lemma 8.3 that

Uminf P„,^„{e/(P„,.,J C Cnic)} > a. (8.8)
n—»oo

Equivalently, for K denoting any non-empty compact subset of IR

inf liminf inf P^.{e/(P„,^) C C„(8)} > a, (8.9)K n—»(X) p^K "^

where P^p denotes the law of vector {Yi,Xi, Zi,i < n) in (8.4), and Pn,p denotes the law of infinite

sequence {Yi,Xi,Zi,i < 00) generated according to (8.4). This coverage property is in the spirit of

local asymptotic minimax analysis of estimation, see van der Vaart (1998), Chapter 8.7.

8.3. Proof of Lemma 8.1. Proof of Part (1). The proof is 'straightforward by substituting {Pn.-y}

in place of the fixed sequence P in the proof of Theorems 3.1. D
Proof of Part (2). We have that c —>p c{a,P) under {P}. By contiguity, c -+p c{a,P) under

{Pn,j}. Therefore Pl^{GiiPn,j) C C„(c)} > Pn,^[Cn < c] = Pn,y[Cn < c{a,P) + Op„,^(l)] = P[C <

c{a, P)] -|- 0(1), by assumption that Pn,-y[Cn < c] —> P[C < c] for all c > 0, by c > 0, and by continuity

of the distribution function c 1—> P[C < c] on [0, 00). D

8.4. Proof of Lemma 8.2. Proof of Part (1). The proof is straightforward by repeating Steps 1-4

in the Proof of Theorem 4.1, having replaced P with Pn,-y, 0/ with 0/(P„_-y), Op(l) with Op„^(l),

etc., and then noting that supe,(p„,^) \\A{eyW'/\9)f = supe^(p) \\A{9yw'/^{d)\\^ + 0p„Jl), which

followsby equicontinuity of i-> A{e)'W^/'^(e) andby d//(e7(P„,T,),e/(P)) = o(l) imposed in M.3(e).

By M.3(b) A(^) does not depend on 7, and by contiguity W{d) does not either. Hence the limit

variable C := sup0^(p) \\A{9yW'^/~{9)f does not depend on 7. D
Proof of Part (2). The proof is straightforward by repeating Steps 1-4 in the Proof of Theorem

4.1, having replaced P with Pn,^, 0/ with 0/(P„_.y), and Op(l) with Op„^(l). The exception is that

in Step 2, we need to define ^{9) — lim„ ^/nEp[mi{9)] under fixed sequence {P}. Note that the key

inequality (6.10) in Lemma 6.2 on which the proof is based will be preserved under seciuences {P-n,-)}-

In the proof of Lemma 6.2, the convergent subsequence {0„} in Qj{P) is replaced by the convergent

subsequence {&„} in Ql{Pn,j)^ where convergent means 9^ ^> 9 G Qj{P). Since we care only about
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C„ in this Lemma, in repeating the proof of Lemma 6.2, we have a drastic simplification from setting

A = 0. [That is, we only need to consider the set V^ — V^ — Qj{Pn,f) x {0}.] In addition, we note

that for every J, dH{Qj{Pn,j),Qj{P)) = o(l) by M.4(e), so that maxj7sup0^(p^^) J2jeJ li'^ji^) +

Gj{9yX)wf{9) + o,^Jl)\l = max^sup0_^(p) E,e^ l(A,(0) + Gj{eyX)WJf~{9) + o,^Jl)\l. The

last observation utihzed equicontinuity of i-^ A{9yW^^^{9) and the fact that by M.4(b) A(^) does

not depend on 7, and by contiguity W{0) does not depend on 7 either. The result of the modified

Step 2 can be stated then as

sup 4(^,0) =d max sup ^\{A,{e))WJj'ie) + Op^Jl)\l.

Hence C = maxj sup5)ge^(p) Ylj^j l('^i(^))^'^j/ (^)l+i which does not depend on 7. D

8.5. Proof of Lemma 8.3. Part (1). Under {Pnn)' wp -^ 1, by construction of c, supg^^p^
^
Q^ =

Op„,.^(l/a„) < c/an, which imphes 9/(P„,-y) C Cnic). U
Part (2). We have that c—>p c{a, P) under {P}. By contiguity, c —>p c(a, P) under {Pn,-^]- Hence

Pna{®l{Pnn) C Cn{c)] > Pn,^{Cn < c] > Pn^i^n < {c{a,P) - £„) V 0} = Pn^iC < \c{a,P) -

Cn) V 0}, for some e„ | 0. The conclusion follows from the assumption that liminf„_^oo Pnai'^n ^
(c(a,P)-e„)VO}>a. D
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