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1 Introduction

Value at Risk (VaR) and Expected Shortfall (ES) have emerged as industry
standards for measuring downside risk. VaR was first published as a standard
measure in 1994 by J.P.Morgan’s RiskMetrics Group. VaR is the maximum
potential loss incurred by an investment at a given time horizon such that
higher losses will only occur with at most a preset probability level, denoted
α, which in general is between 1 and 5 per cent. Expected shortfall is the
expected value of losses that exceed the α quantile (Acerbi and Tache, 2002).
From these definitions follows that the computation of VaR and ES requires
the estimation of the probabilities of future losses.

Despite the variety of complex estimation methods based on Monte Carlo
simulation, extreme value theory and quantile regression proposed in the liter-
ature (see Kuester et al., 2007, for a recent review), many practitioners either
use the empirical or the Gaussian distribution function to predict portfolio
downside risk. The potential advantage of using the empirical distribution
function over the hypothetical Gaussian distribution function is that only the
information in the return series is used to estimate downside risk, without any
distributional assumptions. The disadvantage is that the resulting estimates of
VaR and ES, called historical VaR and ES, are less accurate. Because of this, it
is common to use an estimate based on a parametric class of distribution func-
tion. J.P.Morgan/Reuters’ RiskMetrics (1996) parametric VaR methodology
assumes the Gaussian distribution function. Gaussian VaR and ES neglect the
well established fact that many financial time series are skewed and fat tailed.
It is intuitively clear that incorporating the asymmetry and the thickness of
tails of the density function into the downside risk estimates will lead to more
accurate risk forecasts. This statement has been empirically verified by Giot
and Laurent (2003).

Ideally, estimators of portfolio downside risk provide not only accurate esti-
mates of the downside risk of the whole portfolio, but also allow decomposition
into the component risk contribution of individual portfolio assets. Estimates
of how much risk each asset in the portfolio contributes to the total portfolio
risk are extremely important for portfolio risk allocation and for portfolio risk
monitoring. They constitute a central tool to help financial institutions enforce
a risk budget stating the bounds within which the risky asset positions have
to remain (Sharpe, 2002).

Garman (1997) and Gouriéroux et al. (2000) show that the derivative of
VaR with respect to the portfolio weight of an asset multiplied by the portfolio
weight of that asset qualifies as a good estimate for the risk contribution of
that asset, which is called “Component VaR” by Garman (1997). Under this
approach, risk contributions can be easily computed for Gaussian VaR, but not
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for historical VaR, since this risk measure cannot be expressed as an analytical
function of the portfolio weights.

Modified VaR as proposed by Zangari (1996) is an estimator for VaR that
corrects Gaussian VaR for skewness and excess kurtosis in the return series
while preserving the faculty to decompose portfolio risk into the components
due to the different assets in the portfolio. It relies on adjusting the Gaussian
quantile function for skewness and kurtosis, using the Cornish-Fisher expan-
sion (Cornish and Fisher, 1937). Modified VaR has been used by Favre and
Galeano (2002a,b) and by Amenc et al. (2003) to construct mean-VaR efficient
portfolios and by Qian (2006) to do risk attribution for a balanced portfolio.

In this paper, we derive a definition for modified ES that, like modified
VaR, uses asymptotic expansions to adjust the Gaussian distribution function
for the non-normality in the observed return series. We are the first to give
all the formulas needed for decomposing modified VaR and ES into the risk
contributions of the assets in the portfolio and to illustrate their practical use
for a portfolio of alternative investments. The practical application of risk
decomposition to a portfolio containing multiple assets with non-normal dis-
tributions should allow for portfolio construction that more closely resembles
investor preferences, and allow risk managers to better monitor and control
risk in the portfolio.

The remainder of this paper is organized as follows. In Section 2, we
review important results from the literature on computation and attribution
of portfolio risk. Section 3 first introduces the Edgeworth and Cornish-Fisher
expansion and then uses them to define modified ES. Section 4 investigates how
well modified VaR and ES approximate VaR and ES for the skewed Student
t distribution. For computing modified VaR and ES we need estimates of
the multivariate moments of the return series. Since higher order moments
such as skewness and kurtosis are extremely sensitive to outliers, we propose a
robust estimation scheme in Section 5. The usefulness of this new methodology
is illustrated in Section 6 where we analyze downside risk of the maximum
Sharpe ratio portfolio of different hedge fund investment style indices. Section
7 summarizes our conclusions and outlines the implications for further research.
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2 Computation and decomposition of portfo-

lio risk

This section reviews useful results from the literature on computation and
decomposition of portfolio risk. We focus on the parametric approach assuming
the returns to be Gaussian distributed and the Cornish-Fisher approach under
which the returns can be non-normal. We stress Sharpe (2002)’s intuition that
a mere mathematical decomposition of total portfolio risk does not necessarily
qualify as risk contribution and investigate the financial interpretation of the
proposed definition of risk contribution. We recall Garman (1997)’s result that
portfolio risk and the contribution to the total portfolio risk by each component
in a portfolio are readily computed under the assumption of normality. We
conclude this review with Zangari (1996)’s proposal to use the Cornish-Fisher
expansion to obtain reliable estimates of VaR of portfolios with non-normal
returns and provide explicit formulae for the calculation of risk contributions
under this approach.

We consider an investor who allocates his portfolio between n assets, with
weights w = (w1, ..., wn)

′. We stack the n asset returns into the random vector
r = (r1, ..., rn)

′, which we assume to be strictly stationary with mean µ and
covariance matrix Σ. It follows that the portfolio return rp has mean w′µ and
variance w′Σw. Under the additional assumption that the portfolio return
distribution F (·) is continuous1, the VaR and ES of rp as a function of α, are
defined as follows

VaR(α) = −F−1(α)
ES(α) = −EF [rp|rp ≤ F−1(α)] ,

(1)

with F−1(·) the quantile function associated to F (·) and EF [·|·] the operator
that takes the conditional expectation under F (·).

Portfolio risk decomposition. For the purpose of portfolio risk decompo-
sition, we follow Martin et al. (2001) in requiring the risk measures to be
1-homogeneous, meaning that if the weight vector is multiplied by some scalar
b, then also these risk measures are multiplied by b. From a mathematical per-
spective, risk decomposition is straightforward for such risk measures, thanks
to Euler’s homogeneous function theorem stating that for 1-homogenous f(w),
we have

f(w) =
n
∑

i=1

wi∂if(w),

1Definitions of VaR and ES that apply also to discontinuous distribution functions can
be found in Acerbi and Tasche (2002).
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where ∂if(w) = ∂f(w)/∂wi. Under this decomposition, the Contribution of
asset i to the risk measure f(w), Cif(w), and its percentage Contribution,
%Cif(w), which are also called the (percentage) Component of asset i in the
portfolio risk measure f(w), equal

(2) Cif(w) = wi∂if(w) and %Cif(w) = Cif(w)/f(w).

Sharpe (2002) warns that a mere mathematical decomposition of portfolio
risk does not necessarily qualify as risk contribution. Gouriéroux et al. (2000)
and Qian (2006), however, show that for VaR, this mathematical decompo-
sition of portfolio risk has a financial meaning. It equals the negative value
of the asset’s expected contribution to the portfolio return when the portfolio
return equals the negative portfolio VaR:

(3) CiVaR(α) = wi∂iVaR(α) = −E [wiri|rp = −VaR(α)] .

In Appendix A we establish that contribution to ES(α) can be interpreted as
the expected contribution to portfolio return when the portfolio return is at
least the negative value of VaR(α):

CiES(α) = wi∂iES(α) = −E [wiri|rp ≤ −VaR(α)] .(4)

Derivative of portfolio moments. The definition of risk contributions in
(2) will only be useful in practice for risk measures for which the derivative
with respect to the portfolio weights can be easily computed. This paper
considers downside risk measures that depend on the portfolio moments. It is
computationally convenient to express the portfolio moments as a function of
the multivariate moments of the returns on the underlying assets, using the
N × N2 co-skewness matrix

M3 = E [(r − µ)(r − µ)′ ⊗ (r − µ)′]

and N × N3 co-kurtosis matrix

M4 = E [(r − µ)(r − µ)′ ⊗ (r − µ)′ ⊗ (r − µ)′] ,

where ⊗ stands for the Kronecker product (see e.g. Jondeau and Rockinger,
2006). Under this representation, the derivatives of the portfolio moments
are easy to compute. Denote the q-th centered portfolio moment mq =
E [(rp − w′µ)q] and let ∂imq be its partial derivative with respect to wi. We
have that

m2 = w′Σw ∂im2 = 2(Σw)i

m3 = w′M3(w ⊗ w) ∂im3 = 3(M3(w ⊗ w))i

m4 = w′M4(w ⊗ w ⊗ w) ∂im4 = 4(M4(w ⊗ w ⊗ w))i.
(5)
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The portfolio skewness sp and excess kurtosis kp and their partial derivative
are then given by

sp = m3/m
3/2
2 ∂isp =

(

2m
3/2
2 ∂im3 − 3m3m

1/2
2 ∂im2

)

/2m3
2

kp = m4/m
2
2 − 3 ∂ikp = (m2∂im4 − 2m4∂im2) /m3

2.
(6)

Gaussian VaR. The portfolio standard deviation, VaR and ES are all 1-
homogenous functions. For portfolio standard error, for example, the risk con-
tribution of asset i is given by 0.5wi∂im2/

√
m2. For many estimation methods,

the computation of the derivative of the estimated VaR and ES is challenging
because the estimator cannot be expressed as an explicit function of the port-
folio weights. A notable exception is when VaR and ES are computed under
the assumption of normality (Garman, 1997). Replacing F (·) by the Gaussian
distribution function in (1), we obtain the following expressions for Gaussian
VaR (GVaR) and ES (GES)

GVaR(α) = −w′µ −√
m2Φ

−1(α)
GES(α) = −w′µ +

√
m2

1
α
φ[Φ−1(α)],

(7)

where φ(·), Φ(·) and Φ−1(·) are the standard Gaussian density, distribution
and quantile functions, respectively. Note that Gaussian VaR and ES depend
only on the portfolio mean and variance. Hence, risk contributions (2) can be
easily computed, using the partial derivatives

∂iGVaR(α) = −µi − ∂im2

2
√

m2
Φ−1(α)

∂iGES(α) = −µi + ∂im2

2
√

m2

1
α
φ[Φ−1(α)].

(8)

The partial derivative of the portfolio variance, ∂im2, is given in (5).

Modified VaR. Gaussian VaR estimates VaR utilizing only the first two
portfolio moments. This approach is no longer optimal for portfolios with
non-normal returns. For this reason, Zangari (1996) proposed to generalize
Gaussian VaR by correcting the Gaussian quantile for the portfolio skewness
and excess kurtosis. As can be seen in (6), the portfolio skewness sp is a
measure for the amount of asymmetry in the portfolio return distribution.
The larger the absolute size of the skewness statistic, the more asymmetric is
the distribution. A large positive (negative) value indicates a long right (left)
tail. The portfolio excess kurtosis kp measures the thickness of the tails of the
portfolio return distribution relatively to those of the normal distribution. A
positive (negative) excess kurtosis means that the distribution has more (less)

6



probability mass in the tails than the normal distribution. Zangari (1996)’s
new estimator for VaR, called modified VaR (mVaR), is defined by

mVaR(α) = GVaR(α)

+
√

m2

[

−1

6
(z2

α − 1)sp −
1

24
(z3

α − 3zα)kp +
1

36
(2z3

α − 5zα)s2
p

]

.(9)

Note that when skewness and excess kurtosis are zero, which is the case under
normality, modified VaR equals Gaussian VaR. As we will see in the next sec-
tion, modified VaR is an estimator for VaR that estimates the true, unknown
quantile function F−1(·) in (1) by its second order Cornish-Fisher expansion
around the Gaussian quantile function. The component of asset i in the port-
folio’s mVaR is fairly easy to compute, using the following partial derivative:

∂imVaR(α) = ∂iGVaR(α)

+
∂im2√

m2

[

− 1

12
(z2

α − 1)sp −
1

48
(z3

α − 3zα)kp +
1

72
(2z3

α − 5zα)s2
p

]

+
√

m2

[

−1

6
(z2

α − 1)∂isp −
1

24
(z3

α − 3zα)∂ikp +
1

18
(2z3

α − 5zα)sp∂isp

]

.(10)

It is thus possible both to compute mVaR numerically, and to decompose
this in the risk contributions of the different assets in the portfolio using the
equations presented above. This result should be very useful to a portfolio
or risk manager wishing to understand the contribution to total risk from
each element of the portfolio. This result may also be applied to a variety of
portfolio construction and optimization approaches.
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3 Modified expected shortfall

Downside risk measures describe the left tail of the return distribution. For a
loss probability α, it is interesting not only to estimate the location of this tail
quantile, which is VaR, but also to have a central estimate of this tail, which is
the Expected Shortfall (ES) as defined in Section 1. Given that ES is a useful
downside risk measure, it is natural to consider an estimator of portfolio ES
which, like modified VaR, uses asymptotic expansions to take into account the
skewness and excess kurtosis in the asset returns. At first sight, one could use
the result that for continuous distribution functions

(11) ES(α) =
1

α

∫ α

β=0

VaR(β)dβ

to extend modified VaR to modified ES in a straightforward manner as the
right hand side of the equation (11) in which VaR(β) is replaced with mVaR(β).
In practice, this is not a good idea because as we will see in the next Section,
mVaR(β) is less reliable when β is close to zero. However, combining the
properties of the Cornish-Fisher and Edgeworth expansions, we will show that
it is possible to derive a definition of modified ES that, for a loss probability
α, only depends on mVaR(α) and not on mVaR(β) with β < α. Before giving
a formal definition of modified ES, we first recall the main ideas behind these
asymptotic expansions.

3.1 Cornish-Fisher and Edgeworth expansions

It is convenient to first express the portfolio return under its location-scale
representation

rp = w′µ +
√

m2u,(12)

where u is a zero mean, unit variance random variable with distribution func-
tion G(·). In an empirical setting, G(·) is generally assumed to be approxi-
mately normal. The approximation can be improved by adjusting it for higher
moments in the data. This can be done, using the rth order Edgeworth expan-
sion of G(·) around the standard Gaussian distribution function Φ(·):

(13) Gr(z) = Φ(z) − φ(z)

r
∑

i=1

Pi(z),

where Pi(z) is a polynomial in z. The corresponding rth order Cornish-Fisher
expansion of the quantile function G−1(·) around the Gaussian quantile func-
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tion Φ(·), equals

(14) G−1
r (α) = zα +

r
∑

i=1

P ∗
i (zα),

with zα = Φ−1(α). Exact formulas for the first eight terms in the Edgeworth
and Cornish-Fisher expansions can be found in Draper and Tierney (1973).
Since modified VaR and ES are defined using the second order Cornish-Fisher
and Edgeworth expansion, we only need the following terms:

P1(z) = P ∗
1 (z) =

1

6
(z2 − 1)sp

P2(z) =
1

24
(z3 − 3z)kp +

1

72
(z5 − 10z3 + 15z)s2

p

P ∗
2 (z) =

1

24

(

z3 − 3z
)

kp −
1

36

(

2z3 − 5z
)

s2
p,

where sp and kp are the skewness and excess kurtosis of the portfolio return.

3.2 Definition

Under the location-scale representation (12), the VaR and ES of the portfolio
return are given by

VaR(α) = −w′µ −√
m2 G−1(α)

ES(α) = −w′µ −√
m2EG [z|z ≤ G−1(α)] ,

(15)

with G−1(·) the quantile function associated to G(·). Comparing (15) with
(14), it is not difficult to verify that modified VaR is an estimator for VaR
that approximates the true quantile G−1(α) with its second2 order Cornish-
Fisher expansion.

For a loss probability α, we define modified ES (mES) as the expected value
of all returns below the α Cornish-Fisher quantile and where the expectation is
computed under the second order Edgeworth expansion of the true distribution
function G(·):

mES(α) = −w′µ −√
m2 EG2

[z|z ≤ gα] ,(16)

2Other authors have considered higher order Cornish-Fisher expansions but find that
increasing the order r in (14) does not necessarily improve the approximation (see e.g.
Baillie and Bollerslev (1992), p.105, and Jaschke (2001), p.6).
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with gα = G−1
2 (α). After tedious computations (see Appendix B for details),

we obtain:

EG2
[z|z ≤ gα] = − 1

α

{

φ(gα) +
1

24

[

I4 − 6I2 + 3φ(gα)
]

kp +
1

6

[

I3 − 3I1
]

sp

+
1

72

[

I6 − 15I4 + 45I2 − 15φ(gα)
]

s2
p

}

where

Iq =















∑q/2
i=1

(

∏q/2

j=1
2j

∏i
j=1

2j

)

g2i
α φ(gα) +

(

∏q/2
j=1 2j

)

φ(gα) for q even

∑q∗

i=0

(

∏q∗

j=0
(2j+1)

∏i
j=0

(2j+1)

)

g2i+1
α φ(gα) −

(

∏q∗

j=0(2j + 1)
)

Φ(gα) for q odd

and q∗ = (q − 1)/2. In Appendix C, we provide a long but explicit formula
for computing the derivative of mES. Although the resulting formulae are
rather complex, they lend themselves to efficient translation into a simple
algorithm that computes in less than a second mES and component mES,
even for portfolios with a very large number of assets.3

3The data together with the programs used in the paper can be downloaded from
http://econ.kuleuven.be/kris.boudt/public.
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4 Approximation quality

In this Section we assess, in the absence of estimation error in the portfolio
moments, how well modified VaR and ES approximate VaR and ES, when the
portfolio return is distributed as a random variable, with zero mean and unit
variance and various degrees of skewness and excess kurtosis. More specifically,
we consider the skewed Student t density function proposed by Fernández and
Steel (1998) and standardized by Lambert and Laurent (2001). It has been
used by Giot and Laurent (2004), among others, for forecasting one-day-ahead
VaR for long and short trading positions on daily stocks and stock indices.

The standardized Student t density function has two parameters: ξ and
ν. The skewness parameter ξ > 0 is defined such that the ratio of probability
masses above and below the mean is

Pr (rp ≥ 0|ξ)
Pr (rp < 0|ξ) = ξ2.

Note that the density function is skewed to the left for ξ < 1, symmetric for
ξ = 1 and skewed to the right for ξ > 1. The parameter ν > 0 models the tail
thickness. Holding ξ fixed, we have that the smaller ν is, the thicker the tails
are. When ξ = 1, the standardized skewed Student t distribution coincides
with the standardized Student t distribution, and for ν → ∞, the standard
Gaussian distribution is the limiting case.

In Appendix D we recall Lambert and Laurent (2001)’s expression for the
skewness, kurtosis and quantile function of this skewed Student t distribution.
Using these expressions, VaR and ES, and their estimators, modified VaR and
ES can be computed at the theoretical values of the moments of the distribu-
tion. Let us now study how sensitive these statistics are to the parameters ξ
and ν of the skewed Student t distribution function and the loss probability α
for which they are computed.

In Table 1, we report the true, Gaussian and modified VaR and ES com-
puted for α = 0.05, for various values of ξ and ν. The benchmark values are
ξ = 1 and ν = ∞, for which the return distribution is the standard Gaussian
one and for which, by definition, the Gaussian and modified estimators for
VaR and ES coincide with the true VaR and ES. The more ξ deviates from 1
and the smaller ν is, the higher skewness and excess kurtosis are in absolute
values and the more distant the skewed Student t will be from the Gaussian
distribution. We find that for moderate values of skewness and kurtosis, mod-
ified VaR and ES are good approximations of the true VAR and ES, and they
certainly do better than Gaussian VaR and ES which are independent of ξ
and ν. The more extreme the skewness and excess kurtosis, the less reliable
Gaussian and modified VaR and ES are. Modified ES is more sensitive to ex-
treme deviations from normality than modified VaR. Note also that when the
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data is negatively skewed, modified VaR and ES tend to be too pessimistic and
Gaussian VaR and ES too optimistic. The opposite result is observed when
the data is positively skewed.

ξ 0.5 1 1.5
ν 5 8 ∞ 5 8 ∞ 5 8 ∞

Skewness -2.06 -1.32 -0.79 0 0 0 1.52 0.96 0.56
Excess kurtosis 14.54 3.53 0.51 6 1.5 0 10.42 2.53 0.24

VaR 1.82 1.87 1.88 1.56 1.61 1.64 1.27 1.34 1.43
GVaR-VaR -0.18 -0.23 -0.24 0.08 0.03 0 0.37 0.30 0.21
mVaR-VaR 0.04 0.05 -0.03 -0.04 0 0 -0.31 -0.04 0.05

ES 2.82 2.69 2.46 2.24 2.18 2.06 1.65 1.68 1.70
GES-ES -0.76 -0.63 -0.39 -0.18 -0.11 0 0.42 0.38 0.36
mES-ES 2.49 0.41 -0.08 0.10 0.07 0 -1.38 -0.14 0.05

Table 1: Sensitivity of skewness, excess kurtosis, VaR, ES and the estimation
errors of Gaussian and modified VaR and ES (for α = 0.05) to the parameters
ξ and ν of the skewed Student t distribution function.

Figure 1 shows the sensitivity of the true and the approximated values
of VaR and ES to the loss probability α for the skewed Student t distribu-
tion with ξ = 0.5 and ν = 8. Consistent with Jaschke (2001, p.6), we find
that all approximations have the “wrong tail behavior” in the sense that the
approximation becomes less and less reliable for α → 0. For α → 0, mES
drops to zero. This result occurs because the Edgeworth approximation to
the density function tends to zero when evaluated at very large losses. As a
method of avoiding the unwanted result that mES is smaller than mVaR, we
will henceforth use the following operational definition of modified ES:

mES∗(α) = −w′µ −√
m2 min{ EG2

[z|z ≤ gα] , gα }(17)

where G2 and gα are as defined in (16). In Figure 1 we see that by construction
mES∗ coincides with mES as long as mES is greater than mVaR. For all values
of α, mES∗ is a better estimator of ES than GES.

If your data is fat-tailed and/or skewed enough to cause the breakdown in
mVaR and mES, or if you want to estimate the very extreme downside risk
(α = 0.01 or smaller), a copula-based approach as proposed by Embrechts
et al. (2002) may be a more appropriate estimator of VaR and ES. Under
this approach there is, however, no simple procedure available for estimating
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Component VaR and Component ES. In cases where mVaR and mES are still
providing a reliable estimation of downside risk, calculation of (Component)
VaR and ES under the Cornish-Fisher and Edgeworth approach is certainly
more computationally tractable and does not suffer the fitting subtleties of a
copula approach.
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Figure 1: Sensitivity of true, Gaussian and modified VaR and ES to the loss
probability α for the skewed Student t distribution with ν = 8 and ξ = −0.5.
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5 Robust estimation

Gaussian (modified) VaR and ES estimate VaR and ES using the first two
(four) moments of the portfolio return distribution. Formulas (5)-(6) express
the portfolio moments as a computationally convenient function of the multi-
variate moments of the return series of the assets in the portfolio. From the
theoretical study in the previous section, it follows that modified VaR and
ES are good approximations of VaR and ES, provided the true distribution
function does not deviate too much from normality. For this reason, it seems
appropriate to consider estimates of the multivariate moments that are robust
to return observations that deviate extremely from the Gaussian distribution.
There are two main approaches in defining robust alternatives to estimate the
multivariate moments by their sample means (see e.g. Maronna et al., 2007).
One approach is to consider a more robust estimator than the sample means.
Another one is to first clean (in a robust way) the data and then take the
sample means of the cleaned data.

Our cleaning method follows the second approach. It is designed in such a
way that, if we want to estimate downside risk with loss probability α, it will
never clean observations that belong to the 1 − α least extreme observations.
Suppose we have an n-dimensional vector time series of length T : r1, ..., rT .
We clean this time series in three steps.

1. Ranking the observations in function of their extremeness. Denote µ
and Σ the mean and covariance matrix of the bulk of the data and let
b·c be the operator that takes the integer part of its argument. As a mea-
sure of the extremeness of the return observation rt, we use its squared
Mahalanobis distance d2

t = (rt − µ)′Σ−1(rt − µ).We follow Rousseeuw
(1985) by estimating µ and Σ as the mean vector and covariance ma-
trix of the subset of size b(1 − α)T c for which the sum of d2

t computed
over the elements in that subset is the smallest. These estimates will
be robust against the α most extreme returns. Let d2

(1), ..., d
2
(T ) be the

ordered sequence of the estimated squared Mahalanobis distances such
that d2

(i) ≤ d2
(i+1).

2. Outlier identification. Return observations are qualified as outliers if
their estimated squared Mahalanobis distance d2

t is greater than the em-
pirical 1 − α quantile d2

(b(1−α)T c) and exceeds a very extreme quantile of
the Chi squared distribution function with n degrees of freedom, which is
the distribution function of d2

t when the returns are normally distributed.
In the application we take the 99.9% quantile, denoted χ2

n,0.999.

3. Data cleaning. We follow Khan et al. (2007) in cleaning the outlying
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returns rt by replacing them with rt

√

χ2
n,0.999/d

2
t . The cleaned return

vector has the same orientation as the original return vector, but its
magnitude is smaller.4

Note that the primary value of data cleaning lies in creating a more robust
and stable estimation of the distribution generating the large majority of the
return data. The increased robustness and stability of the estimated moments
utilizing cleaned data should be used for portfolio construction. If a portfolio
manager wishes to have a more conservative risk estimate, cleaning may not
be indicated for risk monitoring. It is also important to note that the robust
method proposed here does not remove data from the series, but only decreases
the magnitude of the extreme events. It may also be appropriate in practice
to use a cleaning threshold somewhat outside the VaR threshold that the
manager wishes to consider. In actual practice, it is probably best to back-test
the results of both cleaned and uncleaned series to see what works best with
the particular combination of assets under consideration.

4Khan et al. (2007) call this procedure of limiting the value of d2
t

to a quantile of the χ2
n

distribution, “multivariate Winsorization”.

15



6 Application: component risk analysis of hedge

fund portfolios

The correct measurement of financial risk of alternative investments is a con-
cern for many portfolio managers. Because of the non-normality of these re-
turns, they constitute an excellent case for illustrating the use of modified VaR
and ES in a context of portfolio construction. Our data consists of monthly
returns on 6 Credit Suisse/Tremont hedge fund investment style indices for
the period January 1995 - August 2007. The advantages of the Credit Su-
isse/Tremont indices over their competitors and a description of the invest-
ment strategies can be found in Amenc and Martellini (2002). Before studying
the estimates of modified VaR and ES for portfolios of these indices and the
component risk allocation in the sample portfolios, we investigate the appro-
priateness of cleaning the data prior to estimating downside risk.

Out-of-sample evidence in favor of data cleaning. The original and cleaned
series are plotted in Figure 2. Note that cleaning the data leads to an impor-
tant reduction in the magnitude of the extreme returns corresponding to the
Russian financial crisis in August-October 1998. Because there is no similar
succession of extreme returns in the time series, it is reasonable to impose that
the effect of these returns on the multivariate moment estimates, and thus
on the values of mVaR and mES, should be bounded. This reasoning is also
verified empirically. Table 2 compares the failure rate of the out-of-sample
Gaussian and modified VaR estimators (α = 0.05) using the raw and cleaned
data sets for the period January 1999 - August 2007. The failure rate is defined
as the percentage of negative returns smaller than the negative value of the
out-of-sample one-step ahead VaR forecast. If the VaR calculation method is
accurate, then the failure rate should be close to α. Because extreme returns
blow up the sample standard deviation and kurtosis, we see in Table 2 that
cleaning the data leads to a lower estimate of the Gaussian and modified VaR
and thus a higher failure rate. Modified VaR is more affected than Gaussian
VaR because it depends on the sample estimates of skewness and kurtosis
which raise outliers to the third and fourth power. An important argument in
favor of cleaning the data is that the failure rates obtained using the cleaned
data to estimate the one-step ahead VaR forecast, are closer to α = 0.05. For
this reason we will use the cleaned data set in the remainder of the applica-
tion. From Table 2 we cannot conclude whether the Gaussian or modified VaR
estimator has a better out-of-sample performance.
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Figure 2: Original and cleaned monthly returns on January 1995-August 2007
Credit Suisse/Tremont hedge fund investment style indices.

Hedge Fund Style Index Raw data Cleaned data
GVaR mVaR GVaR mVaR

Equity Market Neutral (EMN) 0 0.029 0.010 0.029
Event Driven (ED) 0.039 0.019 0.049 0.049
Fixed Income Arbitrage (FIA) 0.029 0.019 0.068 0.039
Long Short Equity (LSE) 0.019 0.019 0.029 0.058
Managed Futures (MF) 0.039 0.049 0.049 0.049
Multi-Strategy (MS) 0.058 0.029 0.068 0.068

Table 2: Out-of-sample failure rate for one-step ahead VaR predictions (α =
0.05) made by the Gaussian and modified VaR estimators for the period Jan-
uary 1999 - August 2007 for six Credit Suisse/Tremont hedge fund investment
style indices.
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Index Mean Sd Skew Exc Kur JB GVaR mVaR GES mES

EMN 0.009 0.008 0.534 0.724 0.005 0.004 0.003 0.007 0.005
ED 0.011 0.012 -0.807 1.477 0.000 0.009 0.011 0.014 0.021
FIA 0.006 0.008 -1.294 2.237 0.000 0.008 0.010 0.011 0.017
LSE 0.012 0.026 0.597 2.233 0.000 0.032 0.026 0.043 0.033
MF 0.004 0.034 -0.106 -0.047 0.861 0.052 0.053 0.066 0.068
MS 0.009 0.010 -0.320 0.150 0.255 0.007 0.008 0.012 0.013

Table 3: Sample mean, standard deviation, skewness, excess kurtosis, P-value
of Jarque-Bera test for normality and 5% Gaussian and modified VaR and ES
estimates for the January 1995-August 2007 cleaned monthly return series of
Credit Suisse/Tremont hedge fund investment style indices.

Downside risk analysis of individual hedge fund return series. Table 3
reports a sample of descriptive statistics for the monthly return series of each
of the six style indices. Note that the monthly returns of the equity market
neutral, event driven, fixed income arbitrage and long short equity investment
style indices are non-normal. Their skewness and excess kurtosis are high
enough for the P-value of their Jarque-Bera test statistic for normality to be
less than 1%. Their skewness and excess kurtosis are in the range of values
for which we found in Section 4 that for α = 0.05, modified VaR and ES are
reliable estimators of VaR and ES and more accurate than Gaussian VaR and
ES.

Regarding the sources of downside risk, we find that the mean and stan-
dard deviation of the return series are the main drivers of downside risk and
that skewness and excess kurtosis are important fine-tuning parameters for
adjusting the Gaussian downside risk estimate for the non-normality in the
return series. Indeed, the estimates of downside risk are the highest for the
return series of the managed futures index, which has negligible skewness and
excess kurtosis, but the lowest mean return and highest standard deviation.
For α = 0.05, its mVaR and mES5 equal 5.3% and 6.8%, respectively. If the
estimates are correct, this means that there is a 5% probability of observing
monthly losses that exceed -5.3% and the expected value of these extreme
losses equals -6.8%. When the return series exhibits significant skewness and
excess kurtosis, modified VaR and ES can give very different estimates for VaR
and ES than Gaussian VaR and ES. Since the returns on the equity market
neutral index are positively skewed, modified VaR and ES are more optimistic
about downside risk than Gaussian VaR and ES. The opposite result is found

5In this Section, all values of mES as defined in (16) equal the values of mES∗ as defined
in (17).
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for the return series for the event driven and fixed income arbitrage indices.
Since these returns are very much skewed to the left and heavy tailed, down-
side risk as estimated by modified VaR and ES is much greater than when the
Gaussian estimators are used.

Portfolio downside risk analysis. We will first discuss the portfolio con-
struction for our application examples, and then discuss in more detail the
risk decomposition of each portfolio. We will see that the contribution to risk
of each portfolio component varies widely from the portfolio weights and stan-
dard deviation of the individual components, while following a pattern that
can be intuited from the construction of the component risk model and the
individual properties of the portfolio holdings.

For illustrating the computation and interpretation of portfolio modified
VaR and ES, we consider the balanced Equal-Weighted (EW) portfolio, and
the Maximum Sharpe Ratio (MSR) portfolios. We consider these portfolio con-
structions to be symbolically representative of actual practice at many hedge
fund investors: investors often pursue either style diversification (thus our ex-
ample of the equal-weighted balanced view), or they pursue the perceived best
risk-reward ratio (represented by the MSR view). The Sharpe Ratio is the most
popular risk-adjusted return measure reported by distributors of hedge funds
(Amenc et al., 2003). Construction of portfolios that lie on the Markowitz
efficient frontier is probably the most common portfolio optimization method
employed in finance. For the purposes of this example, we have constrained
the portfolio optimization to a long-only portfolio with minimum weights of
5% in each hedge fund style to avoid the creation of overly concentrated posi-
tions. Figure 3 compares the mean-variance characteristics of the hedge fund
indices and the EW and MSR portfolios with the mean-variance efficient fron-
tier of these portfolios. The long-only and 5% minimum constraint, as could
be expected, creates a smaller efficient frontier portfolio space than would be
created in an unconstrained portfolio. As designed, these constraints elimi-
nate “corner” portfolios where any single instrument can dominate the entire
portfolio. Figure 4 plots the monthly returns of these portfolios.
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Table 4 reports the risk measures for the two portfolios and compares the
portfolio holdings and percentage risk contributions calculated per (2). A
direct comparison of all the portfolio risk measures (standard deviation, Gaus-
sian VaR and ES, and modified VaR and ES) shows improvement for the MSR
portfolio over the balanced portfolio, even though the mean return of the two
portfolios is the same. We also find on examining the component decomposi-
tion of risk that for VaR and ES the capital allocation given by the portfolio
weights can be very different from the risk exposures (Qian, 2006), and also
that the risk allocation depends on the risk measure used.6 This can be ex-
plained in two ways:

1. A mechanical explanation follows from the definition in (2) of asset i’s
percentage risk contribution as the derivative of the risk measure with
respect to the weight of that component multiplied by the component’s
weight in the portfolio and divided by the value of that risk measure. For
Gaussian VaR and ES, the risk contributions are dominated by the port-
folio weights. On the contrary, for Modified VaR and ES, the derivative
of the risk measure with respect to the component’s weight also plays a
very important role.

2. A perhaps more intuitive understanding for the difference in the percent-
age risk contributions can be obtained using the financial interpretation
given to VaR and ES in Section 2. Asset i’s contribution to VaR (ES)
equals the negative value of the expected contribution to portfolio return
when the portfolio return equals (is less than or equals) the negative value
of VaR. For an equal-weighted portfolio, the expected contribution to the
portfolio downside risk will be higher for assets with negatively skewed
and thick-tailed returns than for assets with normal return or positively
skewed returns.

One of the first major observations on the sample portfolios is the impact
the standard deviation has on both the risk decomposition and on the MSR
portfolio construction. The managed futures style, with standard deviation
(0.034) the largest of the styles, but minimal skewness (-0.106) and excess
kurtosis (-0.047), accounts for the largest portion of both the Gaussian and
the modified risk measures in the balanced portfolio. In the MSR portfolio,
despite being penalized to the minimum 5% weight for its riskiness, the man-
aged futures component of the portfolio still has the highest component risk
contribution of any asset in the portfolio. The long short equity style, with the

6In Appendix E we show that for the unconstrained MSR portfolio the percentage con-
tribution to portfolio standard deviation, Gaussian VaR and Gaussian ES coincide. This
result may no longer hold under a long-only constraint.
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Equal-Weighted Portfolio

Mean Sd GVaR GES mVaR mES
Total 0.0083 0.0105 0.0091 0.0135 0.0089 0.0121

wi % contribution:
EMN 0.17 0.06 -0.04 -0.01 -0.05 -0.02
ED 0.17 0.13 0.05 0.08 0.06 0.08
FIA 0.17 0.06 0.00 0.02 0.01 0.02
LSE 0.17 0.31 0.38 0.36 0.30 0.28
MF 0.17 0.36 0.61 0.53 0.69 0.62
MS 0.17 0.08 -0.01 0.02 0.00 0.03

MSR Portfolio with 5% minimum weights

Mean Sd GVaR GES mVaR mES
Total 0.0083 0.0070 0.0031 0.0060 0.0029 0.0053

wi % contribution:
EMN 0.49 0.44 0.25 0.34 0.04 0.22
ED 0.06 0.07 0.04 0.05 0.06 0.07
FIA 0.11 0.06 0.02 0.04 0.06 0.06
LSE 0.05 0.12 0.24 0.18 0.21 0.12
MF 0.05 0.11 0.32 0.21 0.37 0.29
MS 0.24 0.21 0.12 0.16 0.26 0.24

Table 4: Portfolio totals, weights and percentage risk contributions for the
equal-weighted and long-only 5% minimum weight constrained Maximum
Sharpe Ratio portfolio of Credit Suisse/Tremont hedge fund investment style
indices. Gaussian and modified VaR and ES are computed for α = 5%.

highest mean (0.012) and second highest standard deviation (0.026), and fat-
tailed excess kurtosis (2.233), shows similar effects, being the second largest
contributor on all component risk measures in both portfolios, and being sim-
ilarly penalized in the MSR portfolio by a minimum weight.

The risk added by an asset to the portfolio depends on the asset’s risk
properties, relatively to the risk properties of the other assets in the portfolio.
This is very well illustrated by the fixed income arbitrage index. It has at the
same time a lower portfolio weight and a higher risk contribution in the MSR
portfolio than in the balanced portfolio. This is because assets such as the long
short equity and managed futures indices with a relatively higher downside risk
than the fixed income arbitrage index, also have a lower weight in the MSR
portfolio. A similar effect may be noted with the multi-strategy style index,
which has a negligible impact on all component VaR and ES risk measures
in the balanced portfolio (-1% to 3%), but a much larger impact on all these
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measures in the MSR portfolio. The equity market neutral index shows the
risk benefits of positive skew (0.534) and moderate excess kurtosis (0.724).
In the balanced portfolio, it has a negative risk contribution to Gaussian and
modified VaR. This means that it serves as a hedge to the VaR of the rest
of the portfolio (Garman, 1997). The equity market neutral component risk
measures increase in the MSR portfolio, but are still below the component
weight of 49%.

Figure 4 compares the monthly returns on the equal-weighted and MSR
portfolios with the negative value of their out-of-sample one step ahead mVaR
forecast (α = 0.05) for the period January 1999-August 2007.7 In Table 5 we
report all the months in this period for which the return on the equal-weighted
and MSR portfolios was below the negative value of the out-of-sample one
step ahead mVaR forecast. Any such examination of realized contribution to
extreme portfolio losses is by nature imprecise, but this comparison should still
be informative. ES attempts to predict the average contribution to loss, not
the specific contribution to loss on each period in which the loss exceeds the
VaR estimate.

The complicated interaction between the stochastic properties of the return
series of the portfolio assets makes the point prediction of future realizations
of percentage risk contributions a very difficult task. For the six hedge fund
style indices, we compare the realized percentage contribution to the portfolio
return (wiri/rp) with its predicted value by the mES estimate (%CimES).
We find that the realized loss contributions deviate a lot from the capital
allocation and from the percentage contributions to the standard deviation of
each style. We find that in almost all cases, the mES correctly predicts the
largest contributors to potential losses.

We also compare the average of the realized losses to the average one-step-
ahead prediction of mES. Even with a relatively limited historical series, we
obtain that on average the realized contributions to extreme losses are well
predicted by the percentage contribution to modified ES. We find that the
average of the realized extreme losses and the average of the predicted value
of mES compare closely to each other. This result is to be expected if the
mES predicting process truly takes into account the shape of past losses. Ex-
amination of the past performance versus the future prediction offers another
confirmation that the mES method is likely to be a reasonable predictor of
future loss distributions. Overall, Table 5 indicates that combining the capital
allocation and the estimated risk contributions will help the risk manager in
forming a better opinion of the sources and magnitude of future portfolio risk.

A practical conclusion from examining the component risk contributions

7The out-of-sample one step ahead estimate for modified VaR and ES of month t is
obtained using the cleaned returns from January 1995 up to month t − 1.
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to the two sample portfolios would be that the long-term performance of the
portfolios could be improved by adjusting the component weights to better
match a deliberate risk profile that was complimentary to the investor’s goals.
In any portfolio holding a sufficient numbers of assets, there will be many pos-
sible portfolios with similar mean return and standard deviation, so additional
information provided by the modified VaR and ES and portfolio risk decompo-
sition techniques presented here adds significant information to the portfolio
selection process. Further work should examine these techniques in relation to
various risk budgeting and portfolio optimization methodologies.
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EW Portfolio EMN ED FIA LSE MF MS
wi 0.17 0.17 0.17 0.17 0.17 0.17

April 2000 wiri/rp -0.20 0.10 -0.13 1.04 0.32 -0.13
(rp = −0.012) %CimES 0.03 0.10 -0.03 0.36 0.64 -0.11
November 2001 wiri/rp -0.14 -0.15 0.05 -0.19 1.50 -0.07
(rp = −0.010) %CimES -0.02 0.11 -0.05 0.52 0.50 -0.07
October 2002 wiri/rp -0.07 0.03 0.38 -0.01 0.84 -0.17
(rp = −0.010) %CimES -0.02 0.09 -0.04 0.44 0.59 -0.05
April 2004 wiri/rp 0.06 -0.08 -0.22 0.23 1.07 -0.05
(rp = −0.010) %CimES -0.04 0.06 0.01 0.36 0.67 -0.06
January 2005 wiri/rp -0.06 -0.04 -0.02 0.15 0.97 0.00
(rp = −0.009) %CimES -0.03 0.06 -0.01 0.34 0.69 -0.05
April 2005 wiri/rp 0.03 0.08 0.08 0.20 0.45 0.14
(rp = −0.013) %CimES -0.03 0.05 -0.01 0.33 0.70 -0.04
October 2005 wiri/rp -0.14 0.30 -0.04 0.38 0.33 0.17
(rp = −0.010) %CimES -0.02 0.05 0.00 0.31 0.68 -0.02
July 2007 wiri/rp -0.06 -0.15 0.31 0.11 0.76 0.04
(rp = −0.010) %CimES -0.03 0.06 -0.01 0.33 0.66 0.00
August 2007 wiri/rp 0.04 0.18 0.08 0.13 0.44 0.13
(rp = −0.018) %CimES -0.03 0.05 0.01 0.32 0.65 0.00

Average wiri/rp -0.06 0.03 0.05 0.23 0.74 0.01
%CimES -0.02 0.07 -0.02 0.37 0.64 -0.04

MSR Portfolio EMN ED FIA LSE MF MS
wi 0.49 0.06 0.11 0.05 0.05 0.24

April 2004 wiri/rp 0.55 -0.09 -0.49 0.23 1.05 -0.24
(rp = −0.003) %CimES 0.40 0.07 0.03 0.18 0.26 0.06
April 2005 wiri/rp 0.15 0.05 0.10 0.11 0.24 0.36
(rp = −0.007) %CimES 0.36 0.06 -0.01 0.18 0.32 0.09
May 2005 wiri/rp 0.58 -0.11 0.48 -0.09 -0.62 0.76
(rp = −0.003) %CimES 0.32 0.06 0.02 0.15 0.30 0.14
July 2007 wiri/rp -0.65 -0.18 0.72 0.11 0.79 0.20
(rp = −0.003) %CimES 0.27 0.06 0.02 0.16 0.29 0.20
August 2007 wiri/rp 0.19 0.10 0.09 0.07 0.22 0.32
(rp = −0.010) %CimES 0.24 0.05 0.05 0.16 0.30 0.20

Average wiri/rp 0.16 -0.05 0.18 0.09 0.34 0.28
%CimES 0.32 0.06 0.02 0.16 0.30 0.14

Table 5: Realized percentage contribution to portfolio return (wiri/rp) and
percentage contributions to out-of-sample mES estimates (%CimES) for the
months in the period January 1999-August 2007, in which the portfolio loss of
the equal weighted portfolio exceeds the one-step ahead modified VaR forecast
(α = 0.05). The portfolio return rp is in parenthesis.
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7 Concluding remarks

This paper contributes to the literature on downside risk measurement in mul-
tiple ways. First of all, we introduce a new estimator for Expected Shortfall
(ES), called modified ES which is based on the Cornish-Fisher and Edgeworth
approximations of the portfolio return quantile and distribution functions. The
definition of this new estimator is consistent with Zangari (1996)’s definition
of modified Value at Risk (VaR). Modified VaR and ES can be considered as
parametric Gaussian VaR and ES corrected for skewness and excess kurtosis
in the data. We investigate how well modified VaR and ES proxy the true VaR
and ES for the skewed Student t distribution function and find that for mod-
erate values of skewness and excess kurtosis, modified VaR and ES are better
estimators of VaR and ES than Gaussian VaR and ES, respectively. Some
caution is necessary when modified VaR and ES are computed for very small
loss probabilities α and for return distributions that deviate a lot from nor-
mality. We provide computationally convenient formulas for calculating these
risk measures for portfolios and for decomposing them into the risk added to
the portfolio by each of the assets in the portfolio.

We illustrate the usefulness of this new methodology for a set of hedge
fund investment style indices. We investigate how the non-normality of the
returns on these indices affects their downside risk as estimated by Gaussian
and modified VaR and ES. For the equal-weighted and maximum Sharpe ratio
portfolios, we find that capital allocation can be very different from risk alloca-
tion and that the estimated risk allocation depends on the risk measure used.
We conclude that estimating the risk contributions of the portfolio holdings
will help the investor in adjusting the portfolio composition to better match
the desired portfolio risk profile.

Throughout the paper, we assume the portfolio return distribution to be
continuous and the conditional portfolio moments to be constant. In future
work we will investigate the relaxation of these two assumptions. Further work
should also test implementation of risk monitoring and portfolio construction
systems that use the formulae given in this paper to assure that the actual risk
positions remain within the bounds stated in the risk budget.
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A Financial interpretation of contribution to

expected shortfall

Here we establish the following financial interpretation of contribution to ex-
pected shortfall

CiES(α) = wi∂iES(α) = −E [wiri|rp ≤ −VaR(α)] .

Without loss of generality, we assume a portfolio of two assets, whose returns
have the joint probability density function f(r1, r2). For a loss probability α,
the expected shortfall of the portfolio return rp = w1r1 + w2r2 is defined as

ES(α) = −E[w1r1 + w2r2|w1r1 + w2r2 ≤ −VaR(α)]

= − 1

α

∫ ∞

−∞

∫ (−VaR(α)−w1r1)/w2

−∞
(w1r1 + w2r2)f(r1, r2)dr2dr1.

By Leibniz’s rule for differentiation, we have that the partial derivative of
ES(α) with respect to w1 equals

∂1ES(α) = − 1

α

∫ ∞

−∞

∫ (−VaR(α)−w1r1)/w2

−∞
r1f(r1, r2)dr2dr1

+
VaR(α)

α

∫ ∞

−∞
f

(

r1,
−VaR(α) − w1r1

w2

)

∂1

(−VaR(α) − w1r1

w2

)

dr1.

The first term equals −E [r1|rp ≤ −VaR(α)]. The second term is zero since
the integral in the second term is the derivative of the loss probability α. To
see this, it suffices to compare this integral with the partial derivative of the
left-hand-side of

Prob(w1r1 + w2r2 ≤ −VaR(α)) =

∫ ∞

−∞

∫ (−VaR(α)−w1r1)/w2

−∞
f(r1, r2)dr2dr1 = α.

The financial interpretation of contribution to expected shortfall (4) follows
directly. This proof is similar to Gouriéroux et al. (2000)’s and Qian (2006)’s
proof for the financial interpretation of contribution to value-at-risk.

B Modified expected shortfall

Here we show how

EG2
[z|z ≤ gα] =

1

α

∫ gα

−∞
zdG2(z) =

1

α

∫ gα

−∞
zd

[

Φ(z) − φ(z)

2
∑

i=1

Pi(z)

]

= − 1

α

∫ gα

−∞
φ′(z)dz + zd

[

φ(z)
2
∑

i=1

Pi(z)

]
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can be expressed as a polynomial in gα with coefficients that depend on the
portfolio skewness sp and excess kurtosis kp and on the standard Gaussian
density function φ(·). Using the property φ′(z) = −zφ(z), we first rewrite the
differentials zdφ(z)Pi(z) (i = 1, 2) as a function of zqφ′(z)dz, with q a positive
integer:

zdφ(z)P1(z) =
sp

6

(

z3 − 3z
)

φ′(z)dz

zdφ(z)P2(z) =
kp

24

(

z4 − 6z2 + 3
)

φ′(z)dz

+
s2

p

72

(

z6 − 15z4 + 45z2 − 15
)

φ′(z)dz.

Through integration by parts, we find that for q = 1,

I1 =

∫ gα

−∞
zφ′(z)dz = gαφ(gα) − Φ(gα)

and for q > 1:

Iq =

∫ gα

−∞
zqφ′(z)dz = gq

αφ(gα) + q

∫ gα

−∞
zq−2φ′(z)dz.

From the development of this recursive formula and using the result that by
l’Hopital’s theorem, zqφ(z) is zero for z = −∞, expression (16) follows straight-
forwardly.
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C Derivative of modified expected shortfall

As with modified VaR, the derivative of modified ES can be computed analyt-
ically. Using the property φ′(z) = −zφ(z), we obtain

∂imES(α) = −µi −
∂im2

2
√

m2
EG2

[z|z ≤ gα] +
√

m2
1

α

{

1

24

[

I4 − 6I2 + 3φ(gα)
]

∂ikp

+
1

6

[

I3 − 3I1
]

∂isp +
1

36

[

I6 − 15I4 + 45I2 − 15φ(gα)
]

sp∂isp

+∂igα

[

− gαφ(gα) +
1

24

[

∂iI
4 − 6∂iI

2 − 3gαφ(gα)
]

kp +
1

6

[

∂iI
3 − 3∂iI

1
]

sp

+
1

72

[

∂iI
6 − 15∂iI

4 + 45∂iI
2 + 15gαφ(gα)

]

s2
p

]}

.

Let zα = Φ−1(α), then

∂igα =
1

6
(z2

α − 1)∂isp +
1

24
(z3

α − 3zα)∂ikp −
1

18
(2z3

α − 5z)sp∂isp.

For q even, we have

∂iI
q =

q/2
∑

i=1

(

∏q/2
j=1 2j

∏i
j=1 2j

)

g2i−1
α (2i − g2

α)φ(gα) −





q/2
∏

j=1

2j



 gαφ(gα)

and for q odd

∂iI
q =

q∗
∑

i=0

(

∏q∗

j=0(2j + 1)
∏i

j=0(2j + 1)

)

g2i
α (2i + 1 − g2

α)φ(gα) −
(

q∗
∏

j=0

(2j + 1)

)

φ(gα),

with q∗ = (q − 1)/2. At first sight, this expression may seem daunting, but it
is fairly easy to implement using the computationally convenient formulas for
portfolio skewness and excess kurtosis and their derivative in (6).

D Skewed Student t

Let tν(·) and T−1
ν (·) be the density and quantile functions of the classical, non

standardized Student t density functions with ν degrees of freedom, mean zero
and standard deviation σ =

√

ν/(ν − 2). The random variable z is said to
be (standardized) skewed Student t distributed with ν degrees of freedom and
skewness parameter ξ, if its density function equals

tξ,ν(z) =







2sσ
ξ+ξ−1 tν [σξ(sz + m)] if z < −m/s

2sσ
ξ+ξ−1 tν [σ(sz + m)/ξ] if z ≥ −m/s,

29



where m and s are the mean and standard deviation of the non-standardized
skewed Student, respectively:

m =
[√

πΓ
(ν

2

)]−1

Γ

(

ν − 1

2

)√
ν − 2

(

ξ − 1

ξ

)

s =
√

ξ2 + ξ−2 − 1 − m2.

The skewness and kurtosis of z equal its third and fourth uncentered moment:

E(zq) =

∫ ∞

−∞
zqtν,ξ(z)dz,

which we compute by numerical integration. Lambert and Laurent (2001)
show that the quantile function of the standardized skewed Student t equals:

T−1
ν,ξ (α) =







[

(σξ)−1T−1
ν

(

α
2
(1 + ξ2)

)

− m
]

/s if α < 1/(1 + ξ2)

[

−(ξ/σ)T−1
ν

(

1−α
2

(1 + ξ−2)
)

− m
]

/s if α ≥ 1/(1 + ξ2).

E Percentage contribution MSR portfolio

The Maximum Sharpe Ratio (MSR) portfolio maximizes the ratio between the
portfolio mean µp and the portfolio standard deviation σp. This implies the
first order condition

∂i(µp/σp) = 0 ⇒ ∂iµp/∂iσp = µp/σp.

It follows that:

∂iGVaR

GVaR
=

−∂iµp − Φ−1(α)∂iσp

−µp − Φ−1(α)σp
=

∂iσp

σp

(−∂iµp/∂iσp − Φ−1(α)

−µp/σp − Φ−1(α)

)

=
∂iσp

σp

=
∂iσp

σp

(−∂iµp/∂iσp + (1/α)φ[Φ−1(α)]

−µp/σp + (1/α)φ[Φ−1(α)]

)

=
∂iGES

GES
.

Hence, the percentage risk contributions of portfolio standard deviation, GVaR
and GES coincide for the MSR portfolio.
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