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SUMMARY

We review recent developments in the estimation of an optimal treatment strategy or regime from
longitudinal data collected in an observational study. We also propose novel methods for using the data
obtained from an observational database in one health-care system to determine the optimal treatment
regime for biologically similar subjects in a second health-care system when, for cultural, logistical, or
financial reasons, the two health-care systems differ (and will continue to differ) in the frequency of, and
reasons for, both laboratory tests and physician visits. Finally, we propose a novel method for estimating
the optimal timing of expensive and/or painful diagnostic or prognostic tests. Diagnostic or prognostic
tests are only useful in so far as they help a physician to determine the optimal dosing strategy, by
providing information on both the current health state and the prognosis of a patient because, in contrast to
drug therapies, these tests have no direct causal effect on disease progression. Our new method explicitly
incorporates this no direct effect restriction. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The goal of this paper is to describe recent developments in the estimation of an optimal treatment
strategy or regime from longitudinal data collected in an observational study. Estimation of the
optimal time for an asymptomatic HIV-infected subject to start highly active retroviral therapy
(HAART) will serve as a paradigmatic example. The following is a loose approximation to the
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current International Aids Society (IAS) ‘when to start’ recommendations:

• If plasma HIV RNA exceeds 150 000 copies/mL and CD4 decline has exceeded 100 cells/�l
per year, start HAART when the CD4 first falls below 500.

• If HIV RNA is persistently low (<10000copies/mL) and CD4 decline is less than 50 cells/�l
per year, start when the CD4 first falls below 200.

• Otherwise, start when the CD4 count first drops below 350.

The recommended strategy is an example of a deterministic dynamic treatment regime, that is, a
sequential decision strategy in which the treatment to be given at time t is a deterministic function
of the subject’s measured time-dependent covariate (and possibly treatment history) up to t .

Some of the biological considerations and empirical data on which the IAS recommendations
were based are as follows. The current understanding of the biology of the effect of HAART
on HIV infection is not sufficient to determine the optimal time to start therapy because early
initiation of HAART has both risks and benefits; early initiation can prevent viral-induced decline
of, and permanent damage to, the immune system, but also allows more time for drug resistance
and side effects to develop. Thus, the ‘when to start’ question must be addressed with empirical
data. Randomized trial data have shown that for asymptomatic subjects with CD4 count <200, it
is better to initiate HAART than to delay further. However, current recommendations for subjects
with CD4 counts exceeding 200, such as the above IAS recommendations, are based solely on
the analyses of observational data. Unfortunately, we show in Section 2 that the appropriate use
of observational data to determine ‘when to start’ poses a nontrivial methodologic challenge.
Specifically, we provide a somewhat simplified description of one of the observational analyses
[1] that formed the basis of the 2004 IAS recommendations and show that the published analysis
has potential for severe bias.

In Section 3, we discuss assumptions under which it is possible to use observational data to
estimate the optimal treatment regime in a class of prespecified, logistically feasible dynamic
regimes and describe an analytic approach based on dynamic marginal structural models (MSMs),
which recovers the optimal regime in the class. Dynamic MSMs were introduced by Orellana
et al. [2] and independently by Van der Laan [3]. In Section 4 we give a more precise mathematical
formulation of the problem, the identifying assumptions, and our analytic methodology.

In Section 5, we describe an alternative approach based on doubly robust g-estimation of optimal
regime structural nested mean models (SNMMs) that can optimize over a much bigger class of
candidate regimes than the class that can be optimized over when using dynamic MSMs. This
method was introduced by Robins [4] as a generalization of a closely related approach by Murphy
[5]. See Moodie et al. [6] for additional discussion. G-estimation of optimal regime SNMMs is a
robust twist on the classic method of dynamic programming (backward induction) for sequential
decision making under uncertainty. Because optimal regime SNMM methods generally optimize
over a larger class of regimes than do dynamic MSM methods, the optimal treatment strategy
estimated using an optimal regime SNMM should generally have a higher expected utility than
the optimal strategy estimated with a dynamic MSM. However, the estimated optimal decision
strategy based on optimal regime SNMMs may be such a complicated function of past covariate
history that in many health-care settings, particularly those found in developing countries, it may be
logistically difficult or impossible to implement. In that case, dynamic MSM would be preferable.
An example of the complex estimated optimal regimes that could be produced by fitting an optimal
regime SNMM would be the following: Begin HAART the first time that the following quantity

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:4678–4721
DOI: 10.1002/sim



4680 J. ROBINS, L. ORELLANA AND A. ROTNITZKY

exceeds zero:
17.2−4.1×current CD4 count −3.2×the rate of decline of CD4 +5.6×the square of the rate of

decline of CD4+2.1×the current CD4 count×the rate of decline CD4 −4.6×the rate of decline
of CD4×the square of the current HIV RNA.

This regime would be logistically impossible to implement in settings where, because of poor
record keeping or fragmented patient care, complete data on past CD4-count measurements do not
exist.

In Section 6, we develop novel methods to use data obtained from an observational database in
one health-care system to determine the optimal treatment regime for biologically similar subjects
in a second health-care system when, for cultural, logistical, and financial reasons, the two health-
care systems differ (and will continue to differ) in the frequency of, and reasons for, laboratory tests
of diagnostic or prognostic value. In Section 7, we derive conditions under which the determination
of the optimal treatment regime remains possible even though the observation processes (i.e. visit
processes) in both health-care systems are nonignorable, provide a method of estimation under
these conditions, and discuss the substantive plausibility of the derived conditions.

In Section 6, we also develop a novel method to estimate the optimal timing of expensive and/or
painful diagnostic tests. Diagnostic tests, in contrast to drug therapies, have no direct causal effect
on disease progression. That is, tests are only useful in so far as they help a physician to determine
the optimal dosing strategy, by providing information on both the current health state and the
prognosis of a patient. Our new method explicitly incorporates this no direct effect restriction.

2. POTENTIAL BIASES IN OBSERVATIONAL ANALYSES

A greatly simplified version of the design and analysis reported in Palella et al. [1] can be described
as follows. Asymptomatic treatment-naive HIV-infected subjects were enrolled on January 1, 1996
and their CD4 count was measured. Subjects with CD4 counts from 325 to 350 at enrollment were
followed until the minimum of time to death and clinical AIDS, with time measured as time since
enrollment. Subjects with CD4 count above 300 at the time of HAART initiation were designated
as group 1, and those with CD4 count below 200 at the time of HAART initiation were designated
as group 2. Subjects who either never started HAART or started it when their CD4 count was
between 200 and 300 were excluded from the analysis. Subjects in groups 1 and 2 were compared
using a time-independent Cox proportional hazards model with an indicator variable for the group
as the covariate and with time measured as time since enrollment.

Before we critique this approach, we begin by observing that it is better than a common
alternative approach in which time in the Cox model is not time since enrollment on January 1,
1996 but time since initiation of HAART. Under this alternative approach, the survival time of
those starting with CD4>300 (group 1) will be better than the survival time of those starting
when CD4<200 (group 2) even under the null hypothesis that HAART has no causal effect on
any subject’s time to clinical AIDS or death. In fact, this is an instance of classic lead-time bias.
Clinical AIDS or death rarely occurs before the CD4 count drops below 200. The time it takes a
group 1 subject’s CD4 count to fall from 300 to 200 is the lead time. We, therefore, see that a
recommendation based on this alternative analysis would incorrectly recommend to ‘start HAART
when CD4 is above 300’ when, indeed, HAART has no causal effect.

The approach based on time since enrollment also has the potential for severe bias when
prescribing trends’ change with calendar time. To make clear why this is so, we consider an example
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with extreme trends. Suppose that during 1996, no subject with a CD4 above 300 was treated with
HAART because physicians were worried about using a newly introduced treatment regimen on
patients who were doing reasonably well. However, all subjects with CD4 counts falling below
200 were treated. Suppose that during 1997 every subject with a CD4 below 350 was treated
with HAART because doctors had come to believe that HAART was beneficial for most patients.
Subjects who started HAART when their CD4 fell below 200 constitute a selected subgroup of
very sick subjects with rapid CD4-count decline. Many of these subjects would probably have
died before the end of 1996. In contrast, all subjects who started HAART when their CD4 count
was above 300 must have started during 1997 and, consequently, must have had (i) at least one
year of survival and (ii) a slow rate of CD4 decline, an indication of good health.

It follows that under the null hypothesis that HAART has no causal effect on any subject’s time to
clinical AIDS or death, the survival time in group 1 will be better than the survival time in group 2
even under the null hypothesis that HAART has no causal effect on any subject’s time to clinical
AIDS or death, so a recommendation based on this analysis will also incorrectly recommend to
‘start HAART when CD4 is above 300’. The reason for this bias (which is sometimes referred to
as ‘immortal person time’ bias) is that starting treatment with a CD4 above 300 is a surrogate for
slowly declining counts and, in fact, for survival itself. In fact, the extreme prescribing trends of the
example are but an exaggeration of the actual prescribing trends in 1996–1997, so the possibility
of bias is real.

In fact, the approach based on time since enrollment can result in bias even in the absence
of prescribing trends, because a subject’s group status is determined by events that occur after
start of follow-up and are prognostic for survival. Below we show how to eliminate this type of bias.

3. APPROPRIATE OBSERVATIONAL ANALYSES

3.1. A randomized clinical trial comparing two treatment strategies

Suppose we wanted to compare two simple strategies or regimes: strategy 1: ‘start HAART when
the CD4 count first falls below 500’ versus strategy 2: ‘start HAART when CD4 count first falls
below 200’ among the subset of people who at the time of diagnosis have CD4 count above 500.
If we had the resources to conduct a randomized trial, we might proceed as follows. We enroll,
at the time of HIV diagnosis, asymptomatic HIV-infected subjects with CD4 counts greater than
500 at diagnosis with HIV. We do not give HAART while a subject’s CD4 count is above 500. We
designate as start of follow-up (i.e time 0) the time when a subject’s CD4 count first falls below
500 and at that time we randomize each subject to either ‘start HAART when the CD4 count
first falls below 500’ (group 1) or to ‘start HAART when the CD4 count first falls below 200’
(group 2). We compare the survival of the two groups using a Cox proportional hazards model
for the minimum of time to clinical AIDS or death with an indicator variable for group as the
covariate and with time measured as time since start of follow-up (i.e. randomization). As such a
trial has not been conducted, we must rely on observational data.

3.2. Observational analogue of a randomized trial

Our goal is to implement a design and analysis plan for observational data, which is the observa-
tional analogue of the above randomized trial. We follow an approach similar to the one described

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:4678–4721
DOI: 10.1002/sim



4682 J. ROBINS, L. ORELLANA AND A. ROTNITZKY

in Hernán et al. [7]. As in the randomized trial, we find asymptomatic HIV-infected subjects with
CD4 counts greater than 500 at the time of diagnosis. Suppose, for now, that, in our data, no
subject with a CD4 count exceeding 500 initiates HAART. Then we designate as the subject’s
start of follow-up time (i.e. time 0) the time at which the subject’s CD4 count first falls below
500. Every subject who initiates HAART at time 0 is assigned to group 1. All subjects who do
not start HAART at time 0 are assigned to group 2. The two groups are then compared using
a time-independent Cox proportional hazards model with an indicator variable for group as a
covariate and with time measured as time since start of follow-up. Because treatment was not
randomized, we must also adjust for potential baseline confounding factors (measured at or before
time 0) such as HIV RNA, calendar date of entry, pre-baseline rate of CD4-cell-count decline, and
various higher-order interactions. We can adjust either by matching or stratifying on these baseline
factors or by including them as covariates in the Cox model.

By definition, all group 1 subjects successfully follow the protocol ‘start HAART when the
CD4 count first falls below 500’. However, any group 2 patient who either (i) begins HAART at a
time t at which his CD4 count still exceeds 200 or (ii) fails to start HAART at the first time that
his CD4 count falls below 200 must be regarded as censored at time t because he has failed to
follow the group 2 protocol we wish to test— ‘start HAART when the CD4 count first falls below
200’. In our experience, essentially all untreated subjects whose CD4 count falls below 200 are
started on HAART, so only censoring for reason (i) remains an issue.

Now, in a time independent Cox model, censoring is ordinarily handled simply by excluding
a subject censored at t from all risk sets subsequent to t . However, this standard approach is
statistically valid only if, conditional on the baseline covariates in the model, censoring and failure
(the minimum of time to clinical AIDS or death) are independent. However, as we now argue,
censoring for reason (i) is dependent.

To understand why, consider all group 2 subjects with CD4 cell count still greater than
200 cells/mL at time t after entry. Conditional on the baseline covariates, the subgroup who initi-
ates HAART (and thus becomes censored) at t will have, on average, a faster CD4-cell-count
decline from 0 to t and higher HIV RNA at t than those who do not initiate HAART (and thus
remain uncensored) at time t . This reflects the fact that physicians preferentially prescribe HAART
to patients doing poorly. Thus, within any stratum of baseline covariates, individuals censored at
t will have worse prognosis than those who remain uncensored.

We conclude that a standard Cox analysis (which assumes independent censoring) will show
the failure rate of the group 2 subjects artificially lowered compared with what would have been
seen in the above ideal randomized trial in which all group 2 subjects wait until a CD4 of 200 to
start. Thus, if in truth, it is better to start at 500 than at 200, a standard Cox analysis may fail to
detect this fact due to selection bias.

We can try to correct for bias due to dependent censoring by inverse probability of censoring
weighting (IPCW) of each subject in each risk set. That is, each group 2 subject in a risk set
at time u who remains uncensored at u is given a weight equal to the inverse of the conditional
probability of his having remained uncensored up to time u, given both his baseline covariates and
his history up to u of post-baseline time-dependent prognostic covariates (such as HIV RNA and
CD4 cell count). Specifically, suppose a group 2 subject at risk and uncensored at u with a CD4
count falling linearly from 500 to 250 from 0 to u has a probability of 1

4 that he would not have
started treatment by u. Then he counts for four people: himself and the three other similar people,
i.e. with the same rate of CD4-count decline, who did start therapy. That is, his weight is 4 in the
risk set at u. On the other hand, suppose that an uncensored subject with a CD4 falling from 500
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to 300 from 0 to u has probability of 1
2 of having remained uncensored. Then, he counts for only

two persons with a similar CD4-count decline rate.
Formally, let C be the discrete random variable encoding time to censoring measured in weeks.

Let pr[C �= j |C> j−1,Past( j)] be the discrete hazard of remaining uncensored at week j given
all the past measured (time-dependent and baseline) covariate history Past( j), where we include
the indicator I (T> j) of nonfailure in Past( j) (that is, I (T> j)=1 if T , the minimum of time
to AIDS or death exceeds j and is zero otherwise). Then, to estimate the parameters of the Cox
model for failure, we compute the usual partial likelihood estimator except that for each subject
in a risk set at time u, we multiply his contribution to the risk set by an estimate Ŵ (u) of

W (u)=1

/
u∏
j=1

pr[C �= j |C> j−1,Past( j)] (1)

the inverse of the probability of having remained uncensored to time u. We refer to such a procedure
as an IPCW-adjusted Cox analysis.

In our discussion, it will prove useful to have an alternative expression for the weight
W (u). Let A(t)=1 if a subject has started HAART by week t and A(t)=0 otherwise.
Let A(k−1)={A(0), A(1), . . . , A(k−1)} be treatment history through k−1. Then define
f [a(k)|a(k−1),past(k)]=pr(A(k)=a(k)|A(k−1)=a(k−1),Past(k)=past(k)). Define

W (u)=1

/
u∏

k=1
f [A(k)| Ā(k−1),Past(k)] (2)

where, for any subject, f [A(k)| Ā(k−1),Past(k)] is the density f [a(k)|a(k−1),past(k)] evaluated
at the subject’s observed data. The denominator of W (u) is informally the probability that a subject
had his observed HAART history through u. Note, by definition, if A(k−1)=1, then A(k)=1 so
f [A(k)| Ā(k−1),Past(k−1)]=1 unless past HAART history is identically 0, i.e. Ā(k−1)=0. For
uncensored subjects in a risk set at u, this alternative definition of W (u) agrees with the previous
definition. To see why, note that all group 1 subjects started HAART at time 0 so A(0)=1 and
thus W (u)=1. Further, by definition, any group 2 subject who is uncensored at u must have an
observed HAART history that agrees with that specified by the regime ‘start HAART when CD4
count first falls below 200.’ Thus, the probability that the subjects remained uncensored is precisely
the probability that the subjects had their observed HAART history.

Suppose we specify the discrete time logistic model

logit{pr(A(k)=1|A(k−1)=0,Past(k), I (T>k)=1)}=�TQ(k)

where Q(k)T=(Q1(k),Q2(k),Q3(k)),Q1(k) is HIV RNA at week k, Q2(k) is the lowest recorded
CD4 count up to k, and Q3(k) is the rate of CD4-count decline from 0 to k. Let

Ŵ (u)=1

/
u∏

k=1
f [A(k)| Ā(k−1),Past(k); �̂]

where �̂ is the partial maximum likelihood estimator (MLE) of �. For uncensored subjects
at risk at u, Ŵ (u)=1 for all group 1 subjects since A(0)=1, while for uncensored group 2
subjects, f [A(k)| Ā(k−1),Past(k); �̂]=1 if A(k−1)=1, f [A(k)| Ā(k−1),Past(k); �̂]= ê�

TQ(k)/{1+
ê�TQ(k)} if Q2(k)<200 and A(k−1)=0 (since then A(k)=1), and f [A(k)| Ā(k−1),Past(k); �̂]=
1/{1+ ê�

TQ(k)} if Q2(k)�200 and A(k−1)=0 (since then A(k)=0).
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This IPCW-adjusted Cox analysis produces valid inferences analogous to those that would be
found with our idealized randomized trial if (a) the Cox model for failure and the logistic model for
HAART initiation are correctly specified, (b) there is no residual confounding by any unmeasured
baseline covariates, and (c) Past( j) contains sufficient time-dependent and baseline covariates so
that censoring and failure are conditionally independent at each j within group 2. In contrast to
assumption (a), assumptions (b) and (c) are not empirically testable. Assumptions (b) and (c) can be
incorporated in the single assumption of no unmeasured confounders or sequential randomization
that specifies

Tx �A(t)| Ā(t−1)=0,Past(t), t=0,1, . . . (3)

for x=200 and 500, where Tx is a subject’s potential or counterfactual failure time had the subject
followed the dynamic regime in which HAART is initiated the first time the subject’s measured
CD4 count falls below x . Here Past(0) are the baseline covariates.

Henceforth, we suppose that there exist subjects in our data set who begin HAART before
their CD4 count drops to 500. The preceding IPCW-adjusted Cox analysis can be easily modified
to account for this additional complication. Specifically, we proceed as above except with the
following modifications: (i) all subjects who initiate HAART with a CD4 count exceeding 500 are
excluded from the Cox model analysis comparing groups 1 and 2 and (ii) each subject included
in the Cox analysis who is in a risk set at u receives a weight {Ŵ (u)Ŵ ∗}, where Ŵ (u) is as
previously defined and Ŵ ∗ is an estimate of W ∗, the inverse of the conditional probability that a
subject did not initiate therapy during the interval from time of diagnosis of infection with HIV
to the time his CD4 count was first observed to fall below 500. That is, if we let T500 denote the
time a subject’s CD4 count first fell below 500 with time measured as time since HIV diagnosis,
W ∗ =1/

∏T500
t=1 f [A(t)| Ā(t−1),Past(t)] if T500 �=0 and W ∗ =1 if T500=0. As an example, consider

a subject who started HAART the first time his CD4 fell below 500 and so is in group 1 with
Ŵ (u)=1. Suppose the subject’s estimated probability of having started HAART before his CD4
fell to 500 was 1

2 . Then Ŵ ∗ =2 and the subject is given a weight of 2 whenever he contributes to
a risk set.

In contrast with our IPCW analyses, if one were to add post-baseline CD4 count and HIV RNA
as a time-dependent covariate in the Cox model for failure (rather than using IPCW weights), bias
due to dependent censoring would not be eliminated; furthermore, new bias could be introduced
from regression adjustment for a post-baseline variable if that variable was affected by treatment
group. In summary, correction for dependent censoring can be accomplished by using post-baseline
time-dependent covariates, not as covariates in a time-dependent Cox model, but rather to estimate
the IPC weights for a time-independent Cox model.

3.2.1. Data analysis. Hernán et al. [7] conducted an analysis of the 2344 HIV-infected subjects
included in the French Hospital Database on HIV (FHDH) [8] who had their first CD4 cell
count measurement below 500 cells/mL between January 1, 1996 and June 30, 2004 while being
treatment-naive. They followed these subjects from their first CD4 cell count measurement below
500 cells/mL (baseline) until a diagnosis of AIDS, death, or June 2004, whichever occurred earlier.
Data on HAART use, as well as on time-dependent covariates (e.g. CD4 cell count), were recorded
throughout the follow-up. Groups 1 and 2 were defined as in the previous subsection except that
they followed subjects from entry into the FHDH cohort because time of diagnosis was often not
recorded in the database. There were 131 subjects in group 1 and 2217 in group 2. Six hundred and
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fifty subjects in group 2 were censored from starting HAART when their CD4 count still exceeded
200 and five were censored for failing to start HAART the first time their CD4 was below 200.

A Cox analysis found a hazard ratio of 0.9 (95 per cent confidence interval: 0.4, 1.8) comparing
groups 1 and 2 with a standard Cox analysis that adjusted for baseline potential confounders but
assumed independent censoring. In contrast an IPCW Cox analysis found a hazard ratio of 0.5
(95 per cent confidence interval: 0.2,1.1), so as expected on theoretical grounds, the standard Cox
analysis underestimated the benefit of starting HAART at a CD4 of 500.

3.2.2. Time since diagnosis as an alternative analytic time scale. In the hypothetical randomized
trial described earlier, it makes no logical difference whether we randomize each subject to one
of the two regimes—‘start HAART when the CD4 count first falls below 500’ (group 1) or to
‘start HAART when the CD4 count first falls below 200’ (group 2) —at time of enrollment (i.e.
time of diagnosis of HIV infection) versus at the time when the CD4 count first falls below 500.
Had we done the former, time since randomization would denote time since the diagnosis of HIV
infection rather than time since a subject’s CD4 count first fell below 500. It follows that had we
compared the survival of the two groups using a Cox model for the minimum of time to clinical
AIDS or death with an indicator variable for group as the covariate, an interaction between time
and group, and with time measured as time since the diagnosis of HIV infection, the rate ratios of
our Cox model would still have a valid causal interpretation. However, the rate ratios would have
a different causal interpretation (and different magnitude) than the rate ratios in our earlier Cox
model that used time since the CD4 count first fell below 500. We next describe the observational
analogue of the Cox model analysis of our randomized trial with time now measured as time since
HIV diagnosis.

Specifically in our observational analogue, we again restrict to subjects whose CD4 count
exceeded 500 at time of diagnosis. However, baseline covariates would now be covariates recorded
at the time of HIV diagnosis and the time in the Cox model would become time from diagnosis.
Each subject would be placed in both groups 1 and 2 at time of diagnosis. We use a robust variance
estimator and the Breslow estimator to handle the correlations and ties thereby induced. In each
treatment group, we censor a subject the first time they fail to follow the group-specific regime.
Among uncensored subjects in a risk set at time u, we weight each subject by Ŵ (u) calculated
as earlier, except that u now indicates time since diagnosis. Subjects in group 1 are now subject
to censoring. In particular, group 1 subjects are censored if they start HAART when their CD4 is
above 500 or fail to start HAART when their CD4 first drops below 500. For concreteness and
without loss of generality, in the remainder of this paper we will assume that time is measured as
time from diagnosis of HIV infection.

3.3. Choosing the optimal regime among more than two regimes

In this subsection we consider two important issues we have yet to address. First, in practice we
want to choose between more than two candidate regimes. For example, if we wish to find the
optimal CD4 count x at which to start HAART, we would want to compare all x’s in the candidate
set {500,499, . . . ,200} rather than just two dynamic regimes.

Second, to determine which x is optimal, we need a well-defined numerical measure to rank
regimes. For example, one might wish to choose x to maximize the expected ‘years (or quality-
adjusted years) of life’. We refer to the random variable Y whose expectation we wish to maximize
as a (subject-specific) utility function. Our goal is then to find the regime x that maximizes expected
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utility. Expected years (or quality-adjusted years) of life measures have a much more natural and
useful public health and policy interpretation than the hazard ratio measure that is typically reported
after fitting a Cox model.

However ‘years (or quality-adjusted years) of life’ cannot be assessed when follow-up of the
cohort is not to extinction but rather only to a fixed administrative end-of-follow-up date K +1
weeks from start of a subject’s follow-up. Our methods can be extended to settings in which
the potential length of follow-up varies with the subject, but, for simplicity, we do not do so in
this paper. Clearly, among survivors at the administrative end of follow-up, the healthier ones
(according to an agreed on measure of current health) have a greater post-study expected survival
(and thus warrant a higher utility Y ) than the less healthy survivors and a much greater expected
survival (and thus warrant a much higher utility) than the nonsurvivors who died just before K +1.
For example, in the context of the FHDH data, a possible choice of utility Y would be

Y = time to death if death occurred before K +1

Y = K +4
CD4

500
if alive at K +1

Henceforth, we assume that some agreement has been reached on the choice of utility Y so data
on Y is available for all subjects, if as we assume throughout, there is no drop-out.

To formalize the problem, we let Yx be a subject’s potential or counterfactual utility had the
subject followed the dynamic regime in which HAART is to be initiated the first time the subject’s
measured CD4 count falls below x . Our goal is to find xopt∈{500,499, . . . ,201} for which the
expected utility E(Yx ) is a maximum. We first show how to design and analyze a randomized trial
to determine xopt. We then consider how to mimic the trial using observational data. Throughout
we will assume that there exists a unique xopt.

3.3.1. A randomized trial. Consider a randomized clinical trial (RCT) with full compliance
with X, taking values in {500,499, . . . ,201}, the random variable recording the assigned dynamic
regime. Because X was randomly assigned, it is independent of the counterfactuals Yx . Because
if X = x then Y =Yx , the observed utility Y is a function of the set of counterfactuals {Yx ; x=
500,499, . . . ,201} and the treatment assignment X . Suppose the data on each subject are (Y, X).
Then the average Ê[Y |X = x] of Y among subjects randomized to regime x is an unbiased esti-
mator of E[Yx ]. [This follows from the fact that (i) Ê[Y |X = x] is unbiased for E[Y |X = x] and (ii)
E[Y |X = x]=E[Yx |X = x]=E[Yx ] by consistency and randomization.] Thus, the natural estimate
of xopt is the value of x for which Ê[Y |X = x] is a maximum. However, even if, say, 900 subjects
are enrolled in the trial, the number of subjects randomized to treatment arm x must be three
or less for the majority of the 300 treatment arms. For these arms, Ê[Y |X = x] will be highly
variable. As a consequence, the natural estimator of xopt will be so variable as to be useless. Thus,
even in a randomized trial, to obtain a reasonably efficient estimator of xopt, it is necessary to use
our prior biological knowledge that E[Yx ] is a smooth function of x . One, among many, possible
approaches to exploiting this smoothness is to assume that E[Yx ] is a flexible polynomial, for
example, a polynomial of degree 5. If we assume

E[Yx ]=�0+
5∑

k=1
�k x

k
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then, by E[Yx ]=E[Y |X = x], we have that the estimator �̂ of �=(�0, . . . ,�5) obtained from fitting
by ordinary least squares (OLS) the regression model Y =�0+∑5

k=1�k X
k+� to the observed

data (Yi , Xi ), i=1, . . . ,n, on the n study subjects is unbiased for �=(�0, . . . ,�5)
T. It follows that

an unbiased estimator of Ê[Yx ] is �̂0+∑5
k=1 �̂k x

k . We then use first year calculus to find the
value x̂opt of x at which the fitted polynomial Ê[Yx ]= �̂0+∑5

k=1 �̂k x
k attains its maximum on the

closed interval [201,500]. Of course, the x̂opt one obtains in this manner will not generally be an
integer, but can always be rounded off to the closest integer in {500,499, . . . ,201}. For simplicity,
we assume that the maximum is attained at a unique x̂opt.

The quintic model for E[Yx ] will, of course, not be exactly correct. If incorrect, the estimator
x̂opt will be biased as an estimator of the true xopt. Using a higher-degree polynomial will decrease
bias but increase variance. Cross-validation might be used to select the degree of the flexible
polynomial.

By including interactions with the measured pretreatment variables V, such as gender, ethnicity,
HIV risk group (e.g. IV drug users versus homosexual contact), and genetic profile (single
nucleotide polymorphisms), we can allow for the fact that the optimal treatment regime in our
candidate set may differ depending on a subject’s measured pretreatment variables V .

For instance, consider the model E[Yx |V ]=�0+∑5
k=1�k x

k+�T0V +∑5
k=1 �Tk V xk . Let (̂�, �̂)

be the OLS estimates from the fit of Y =�0+∑5
k=1�k X

k+�T0V +∑5
k=1 �Tk V Xk+� to the observed

data (Yi , Xi ,Vi ), i=1, . . . ,n. The optimal CD4 count xopt(V ) at which a subject with baseline
covariates V should start is given by the value xopt(V ) that maximizes E[Yx |V ], over all allow-
able x, which is also the x(V ) that maximizes E[Yx |V ]−E[Yx0 |V ] at any fixed value x0. Choosing
x0=0, xopt(V ) maximizes

∑5
k=1�k x

k+∑5
k=1 �Tk V xk =∑5

k=1(�k+�Tk V )xk . Thus, our estimate
x̂opt(V ) of xopt(V ), which for ease of reference below we call the RCT estimator of xopt(V ), is
given by the (assumed unique) value x(V ) that maximizes

∑5
k=1(̂�k+ �̂Tk V )xk for the given V .

3.3.2. An observational study and dynamic MSMs. To understand how to mimic the above random-
ized trial, we require the following observations. Suppose data on when, if ever, a subject began
HAART and data on successive CD4 counts are available. Suppose no subject has two CD4
measurements in the same week. Consider a subject who started HAART at a CD4 cell count
of 250 in week t whose lowest prior CD4 count was 300. Then this subject’s observed data are
consistent with having followed regime x for x=251,252, . . . ,300. In fact, the subject followed
all of these regimes. Next consider a subject who never started therapy and whose lowest CD4
count was 225. Then this subject followed regimes x for x=201,202, . . . ,225. Finally, consider
a subject who started antiretroviral therapy at a CD4 cell count of 250 in week t whose lowest
previous CD4 count was 250 or less. Then this subject failed to follow any regime in the set
{500,499, . . . ,201}.

We are now ready to describe our procedure. Time will be in weeks since enrollment in the cohort.
As we did for the RCT, we assume the model E[Yx |V ]=�0+∑5

k=1�k x
k+�T0V +∑5

k=1 �Tk V xk .
Let �i be the number of regimes in the set {500,499, . . . ,201} followed by subject i . We create
an artificial data set of size �=∑n

i=1�i , with each subject i , for i=1, . . . ,n, contributing �i
observations (Yi ,Vi , Xi1), (Yi ,Vi , Xi2), . . . , (Yi ,Vi , Xi�i ), where the Xik,k=1, . . . ,�i , denote the
regimes followed by subject i .

Our estimator of (�,�) is computed as the weighted least-squares estimator (̂�, �̂) from the fit
of the regression model Y =�0+∑5

k=1�k X
k+�T0V +∑5

k=1 �Tk V Xk+� to the artificial data set of
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size �, pretending all observations in the artificial data set are independent and weighting each
artificial observation (Yi ,Vi , Xik) with the weights Ŵi (K ), i.e. the earlier weight Ŵi (u) with u set
to the last time K that one could start therapy before administrative end of follow-up at K +1.
As in our RCT, x̂opt(V ) is given by the value x(V ) that maximizes

∑5
k=1(̂�k+ �̂Tk V )xk . Our

observational estimator x̂opt(V ) of xopt(V ) will be consistent if (i) our assumption of no unmeasured
confounders holds for all x ∈{500,499, . . . ,201}, i.e. equation (3) with Yx replacing Tx , (ii) the
model E[Yx |V ]−E[Y0|V ]=∑5

k=1(�k+�Tk V )xk is correct for all x ∈{500,499, . . . ,201}, (iii) the
model for treatment initiation used to obtain Ŵ (K ) is correct, and (iv) V is the vector of all
baseline covariates Past(0) needed to ensure no unmeasured confounding.

We stress that condition (ii) implies that our estimate x̂opt(V ) is consistent even if the model
E[Y0|V ]=�0+�T0V for the main effect of V is wrong. The remark in Section 4.3 provides an
explanation.

For logistical reasons, we may only be interested in xopt(V ) when V is a strict subset of the set
Past(0) of baseline potential confounders. Fortunately, if we redefine

W (u) = 1

/
u∏

k=0
f [A(k)| Ā(k−1),Past(k)]

Ŵ (u) = 1

/
u∏

k=0
f [A(k)| Ā(k−1),Past(k); �̂]

to include time 0 in the denominator, the above estimate of x̂opt(V ) remains consistent when (iv)
is replaced by ‘V is a subset of Past(0)’, as the redefined estimated weight Ŵ (u) serves to control
confounding by variables included in Past(0) but not in V .

Finally, as discussed further in Section 4.3, we can use dynamic MSMs to optimize a more
complex class of candidate regimes in both randomized and observational studies. For example,
we might consider the class of regimes:

• if current HIV RNA is greater than z, start HAART if the current CD4 count is less than x,
• if current HIV RNA is not greater than z, start HAART if the current CD4 count is less
than q,

and use methods similar to those just described to jointly estimate the three numbers (zopt,
xopt,qopt).

4. A FORMALIZATION

4.1. The data

We consider a study of the effect of a time-dependent dichotomous exposure A(t) on a utility
function Y . The terms exposure and treatment will be used synonymously and interchangeably. We
assume a fixed study population, i.e. a closed cohort with a well-defined, known start of follow-up
date for each subject. Time t will refer to time in weeks since start of follow-up, which we also
refer to as time since baseline. We only consider the estimation of the effect of exposures occurring
at or after the start of follow-up because the estimation of the effects of pre-baseline exposures
is not possible without making strong untestable assumptions. Subjects change exposure only at
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the beginning of a week so A(t) is recorded at fixed times t=0,1, . . . ,K weeks from baseline.
Covariates L(t) are recorded at times t=0,1, . . . ,K ,K +1. Data on L(t) become available prior
to the determination of A(t) but after A(t−1). Baseline covariates L(0) refer to all covariates,
including pre-baseline exposure, that occur prior to the baseline exposure A(0). We use overbars to
denote history, i.e. the exposure history through time (i.e. week) t is Ā(t)={A(0), A(1), . . . , A(t)}.
We denote a subject’s total exposure and covariate history by Ā= Ā(K ) and L= L(K +1). We let
O=O(K +1)=( Ā, L). Utility Y is formally defined as Y = y( Ā, L) with y(·, ·) being a known
function. We use capital letters to denote random variables, scriptic letters to denote their sample
space (i.e. the set of possible realizations), and lower case letters to denote elements of the sample
space.

4.2. Treatment regimes and counterfactuals

Let ā= ā(K )={a(0),a(1), . . . ,a(K )} be an element of the sample spaceA of A. For simplicity, we
takeA to be a finite set. Let La(m)={L(0), La(0)(1), . . . , La(m−1)(m)} be a subject’s counterfactual
L-history through m under the regime a. Note that La(m) only depends on ā through a(m−1),
as the future treatments cannot determine past responses. Define La = La(K +1) to be a subject’s
complete counterfactual L-history under regime a. Let LA={La;a∈A}. A realization lA=
{la;a∈A} of LA is a set of covariate histories indexed by the elements a of A. This notation
implicitly includes the assumption that a subject’s counterfactual responses do not depend on the
treatments given to other subjects.

We make the following assumption linking the counterfactual data and the observed data:
Consistency assumption (C): L(m)= LA(m−1)(m).

This assumption implies that O=(A, L) equals (A, L A). That is, if A=a, a subject’s observed
L is obtained by selecting from LA the element La .

So far we have only considered static regimes a. To characterize the optimal treatment strategy,
it is usually necessary to consider dynamic regimes as well.

We use g to denote a general regime. A nonrandom regime g is a treatment strategy or rule in
which the treatment prescribed by g at time t depends in a deterministic manner on the evolution
of a subject’s measured time-dependent covariates L̄(t) and, possibly, treatments A(t−1) up to t .
An example would be the dynamic regime ‘take the treatment methotrexate at week t if and only
if the neutrophil count has been greater than 1000 for three consecutive weeks and the patient
was not on treatment at week t−1’. Mathematically, a nonrandom regime g is a collection of
functions d={dk[ā(k−1), l̄(k)];k=0, . . . ,K } with the range of dk contained in the sample space
A(k) of A(k) and such that dk[ā(k−1), l̄(k)] specifies the treatment to be taken at k for a subject
with past history [ā(k−1), l̄(k)]. In our methotrexate example, dk[ā(k−1), l̄(k)] is 1 if a subject’s
a(k−1)is zero and his l̄(k) implies that his neutrophil count has been greater than 1000 at weeks
k,k−1,k−2 (so k must be at least 2); otherwise dk[ā(k−1), l̄(k)] is 0. We write either gd or
g=d to indicate the dependence on the functions d. Earlier we considered the nonrandom regime
dx : begin antiretroviral therapy the first time t the measured CD4 count falls below x . This regime
has dx,k[ā(k−1), l̄(k)]=1 if minimum CD4 count through k is less than x and is 0 otherwise. If,
for all k’s, dk[ā(k−1), l̄(k)] is a constant a(k) that does not depend on (ā(k−1), l̄(k)), the regime
d is said to be nondynamic or static and is written as g=a.

The regime d is naturally associated with counterfactual random variables (Ad , Ld) that repre-
sent a subject’s treatment and covariate history when following the regime. Specifically we regard
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d as defining a mapping d : LA �→d(LA)≡(Ad , Ld) defined recursively as follows: Ld(0)=
L(0), Ad(0)=d0[Ld(0)]. For m=1, . . . ,K +1, Ld(m)= LAd (m−1)(m), Ad(m)=dm[Ad(m−1),

LAd (m−1)(m)] except Ad(K +1) is left undefined. Furthermore, Yd = y(Ad , Ld).
In addition to the preceding consistency assumption, we make the following SR assumption and

positivity assumption.
Sequential randomization (SR) assumption: For each k, A(k) is independent of LA given (A(k−

1), L(k)). Equivalently,

f (A|LA)=
K∏

k=0
f [A(k)|A(k−1), LA(k)]=

K∏
k=0

f [A(k)|A(k−1), L(k)]

where the last equality follows from assumption C.
Positivity assumption (PO): f {a(k)|A(k−1), L(k)}>0 with probability one for all a(k)∈A(k).

4.3. Dynamic and general MSMs

To help understand the general formulation of dynamic and general MSMs it will be helpful
to introduce them in connection with the example discussed in earlier sections on determining
the optimal CD4 level at which to start treating HIV-positive subjects with HAART. Henceforth,
consider an observational study of subjects with CD4 counts exceeding 500 at time of diagnosis
of HIV infection. Subjects return to the clinic weekly to have various clinical and laboratory
measurements made. Let L(t) be the vector of measurements made at week t including CD4 cell
count. We let A(t) denote the indicator of whether HAART has been initiated at week t or before.
Let Y be a utility known at the end of follow-up at K +1, higher values of which are preferable.
Let dx denote the dynamic regime ‘begin antiretroviral therapy the first time t the measured CD4
count falls below x ,’ where x ∈X={201, . . . ,500}. The model

E[Ydx |V ]=h(x,V,�∗) (4)

where

h(x,V,�)=h1(x,V,�1)+h2(V,�0) with h1(x,V,0)=0 (5)

is an example of a dynamic regime MSM for the conditional counterfactual mean of Y , given
a subset V of the baseline covariates L(0). Note that the value �∗

1=0 is equivalent to the null
hypothesis that all regimes in {dx ; x ∈X} have the same mean, given V .

In Section 3.3, we chose �1={�1, . . . ,�5,�T1 , . . . ,�T5 }T, �0=(�0,�
T
0 )T,h1(x,V,�1)=∑5

k=1(�k+�Tk V )xk, and h2(V,�0)=�0+�T0V . More generally, suppose h(x,V,�)=(r(x,V )T,
r∗(V )T)� for some known functions r(x,V ) and r∗(V ). Let �i be the number of regimes
followed by subject i and create an artificial data set of size �=∑N

i=1�i , with each subject i , for
i=1, . . . ,N , contributing �i artificial observations (Yi ,Vi , Xi1), (Yi ,Vi , Xi2), . . . , (Yi ,Vi , Xi�i ),
where Xik,k=1, . . . ,�i , denote the regimes followed by subject i . Formally, to follow a regime x
means that one’s observed treatment A is equal to the treatment Adx

the subject would have

had under the regime dx . To estimate � we fit by weighted least squares with an independence
working covariance matrix, the regression model

E[Y |X,V ]=h(X,V,�)=(r(X,V )T,r∗(V )T)�
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to the artificial data set weighting each artificial observation (Yi ,Vi , Xik) by ŜW ik = Ŵiq∗(Xik,Vi ),
where Ŵ =∏K

k=01/ f [A(k)| Ā(k−1), L̄(k); �̂] and q∗(·, ·) is a user-supplied function. Different
choices of q∗ impact the efficiency with which � (and hence the optimal x) is esti-
mated; however, all choices yield consistent estimators of �. [In our earlier discussion, we
implicitly chose q∗(·, ·) to be the constant 1 so ŜW ik equalled Ŵi as previously defined.]
The optimal treatment regime in the class {dx ; x ∈X} for a subject with V =v is esti-
mated as the value of x that maximizes h(x,v, �̂) or, equivalently, h1(x,v, �̂1) over x ∈X
for v fixed.

Orellana et al. [2] showed that �̂ based on the artificial data set converges to the parameter
�∗ of our dynamic MSM under the assumptions SR, C, P, and correct specification of the model
f [A(k)| Ā(k−1), L̄(k);�].
The key step in the proof is to note that when Ŵ is converging to W =W (K ), the estimate �̂

is converging to the (assumed unique) � satisfying

0=E

[∑
x∈X

�xWq∗(x,V ){Y −h(x,V,�)}(r(x,V )T,r∗(V )T)T

]
(6)

where �x =∏K
k=0 I (A(k)=dx,k[A(k−1), L(k)]) is the indicator that the subject followed regime

dx . However, under our assumptions this expectation is

E

[∑
x∈X

{Ydx −h(x,V,�)}(r(x,V )T,r∗(V )T)Tq∗(x,V )

]

which is zero under our MSM. Orellana et al. [2] also discuss how to construct locally efficient
estimators and doubly robust estimators.

A general MSM is defined analogously. Specifically, given any set of regimes {dx ; x ∈X}
(whether static, dynamic, or both) indexed by x taking values in a (possibly infinite) set X (not
necessarily a subset of the real numbers), a general MSM is defined as model (4) satisfying (5). To
estimate the parameter �∗, we solve the estimating equations (6) where, of course, �x is now the
indicator of following regime dx . For example, consider another HIV study, where now subjects
may repeatedly start and stop HAART therapy and we consider the regimes ‘take therapy at t if
and only if the current white blood count exceeds w and a certain liver function test has value
less than b’. Here b and w are nonnegative integers in the range of 0–10000. Then x=(w,b). An
example of a choice for h1(x,V,�1) is �1,1(b−100)+�1,2(b−100)2+�1,4(w−1000)+�1,5(w−
1000)2+�1,6(b−100)V +�1,7(w−1000)V +�1,8(w−1000)(b−100). Although in our examples
the number of regimes that can be possibly followed by any subject is finite, dynamic MSMs need
not assume that this is the case. Orellana et al. [2] extend our dynamic MSM methods to the case
where X is uncountable rather than finite.

MSMs and the positivity condition: Specifying a general MSM can also allow us to weaken
positivity requirements. For each regime dx∗ for which the PO assumption might fail or nearly fail
(as evidenced by some subject’s having particularly small estimated probabilities of following the
regime), we simply remove any observation (Y,V, x∗) from the artificial data. We can then either
interpret our MSM model as a model for E[Ydx |V ], x ∈Xpos=X\Xnonpos⊂X, where Xnonpos is
the set of x∗ removed, or as a model for E[Ydx |V ], x ∈X. In the latter case, one is identifying

E[Ydx |V ] for the regimes dx in Xnonpos by model-based extrapolation.
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Semilinear MSMs: MSM (4) satisfying (5) is not guaranteed to be correctly specified under the
null that �∗

1=0. If �∗
1=0,h1(x,V,�∗

1)=0, and thus the MSM reduces to E[Ydx |V ]=h2(V,�∗
0).

But the assumed functional form h2(V,�0) may be incorrect. Furthermore, the IPTW estimates
of �0 and �1 are generally correlated. Thus, misspecification of the functional form h2(V,�0)

can result in invalid inferences, even under the null �∗
1=0. To overcome this difficulty, following

Robins [9] we can consider the semilinear general MSM

E[Ydx |V ]=h1(x,V,�∗
1)+h∗

2(V )

with h∗
2(V ) allowed to be an arbitrary unknown function, so as to prevent bias in the estimation

of h1(x,V,�∗
1) from misspecification of a parametric model for h∗

2(V ). Given a user-supplied
conditional density f ∗[x |V ] with

∑
x∈X f ∗[x |V ]=1 and a vector function b(x,V ), the esti-

mator �̃1 that sets to zero the weighted sample average of f ∗(X |V ){Y −h1(X,V,�∗
1)}{b(X,V )−∫

b(x,V )dF∗[x |V ]} with weight Ŵ over the artificial data set � can be shown to be a consistent
asymptotically normal estimator of �∗

1 when the model h1(x,V,�∗
1) and the model f [A(k)| Ā(k−

1), L̄(k);�] for treatment are correct. Robins [9] proved this result for nondynamic MSMs and
Orellana et al. [2] showed it for general MSMs. Orellana et al. [2] also construct locally efficient,
doubly robust estimators of �∗

1 in semilinear general MSMs. As an example, the density f ∗[x |V ]
could be chosen to be an estimate of the density of X , given V based on the artificial data set.

In fact, when h1(x,V,�1)=�T
1r(x,V ) is linear in �1, it is simple to trick standard weighted

least-squares software into computing a consistent and asymptotically linear estimator of�∗
1. Specif-

ically, we consider the model h(x,V ;�)=�T
1r(x,V )+h2(V ;�0) with h2(V ;�0)=�T

0r
∗(V ),

where r∗(V )=∑x r(x,V ) f ∗(x |V ). Then, the first component �̂1 of the weighted least-squares
estimator �̂=(�̂1, �̂0) with weights ŜW = f ∗[X |V ]Ŵ applied to the artificial data � is a consis-
tent and asymptotically normal estimator of �∗

1 when the model for f [A(k)| Ā(k−1), L̄(k);�] is
correct even when the model h2(V ;�0)=�T

0r
∗(V ) for h∗

2(V ) is incorrect.

Remark 1
In Section 3.3, we implicitly chose f ∗[x |V ] to be the constant 1/300 (i.e. the uniform distribution
on X) for all V ’s. We thus did not need to mention f ∗[x |V ] at all because multiplying all weights
by the same constant has no effect on a weighted least-squares estimate.

4.4. G-estimation of SNMMs

Before discussing optimal regime SNMMs it will help to review standard additive SNMMs. In
general, an additive SNMM assumes that for each treatment time m=0, . . . ,K ,

E[Y{a(m−1),a(m),0(m+1)}|L(m)= l(m), A(m−1)=a(m−1)]
=E[Y{a(m−1),0(m)}|L(m)= l(m), A(m−1)=a(m−1)]+�m[a(m), l(m),�∗] (7)

where (i) {a(m−1),a(m),0(m+1)} and {a(m−1),0(m)} are nondynamic regimes that differ only
in that the former has treatment a(m) at m while the latter has treatment 0 at time m, and both
have treatment a(m−1) through m−1 and treatment 0 from m+1 to the end of follow-up K , (ii)
�∗ is an unknown parameter vector, and (iii) �m[·, ·, ·] is a known function of a(m), l(m), and �
satisfying �m[a(m), l(m),�]=0 if �=0 or a(m)=0.
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The functions �m[a(m), l(m),�∗] model the effect on the mean of Y of a last blip of treatment
of magnitude a(m) at m, as a function of (i.e. as modified by) past treatment and covariate history
[a(m−1), l(m)].

Examples of choices of �m[a(m), l(m),�] include (i) �a(m), (ii) (�0+�1m)a(m), and (iii)
{�0+�1m+�2a(m−1)+�T3 l(m)+�T4 l(m)a(m−1)}a(m). Choice (i) is tantamount to assuming
that the effect of a last blip of treatment a(m) is the same for all m’s. Under choice (ii) the effect
varies linearly with the time m of treatment. Under choice (iii), the effect of a last blip of treatment
at m is modified by past treatment and covariate history.

We next describe the g-estimation algorithm for estimating the unknown parameter �∗ in an
observational study under the assumptions C and SR. To do so, it is convenient to define

Ym(�)=Y −
K∑

j=m
� j [A( j), L( j),�]

Note that, for each �, Ym(�) can be computed from the observed data. To carry out the g-
estimation algorithm we first need to postulate a logistic regression model (pooled over persons
and time)

logit Pr[A(m)=1|L(m), A(m−1)]=�TB(m) (8)

for the probability of treatment at time (i.e. week) m for m=0, . . . ,K . In this model, B(m)=
bm[L(m), A(m−1)] is a vector of covariates calculated from a subject’s covariate and treatment
data [L(m), A(m−1)], �T is a conformable row vector of unknown parameters. An example of
B(m) would be the transpose of the row vector

(m, A(m−1), LT(m), A(m−1)LT(m), A(m−2), LT(m−1), LT(m)A(m−1)A(m−2))

where L(m) is the vector of covariates measured at time m.
Having postulated model (8) we estimate � with its MLE �̂. To compute �̂ we simply fit the

logistic regression model (8) where each person-week is treated as an independent observation, so
that each person contributes K +1 observations.

Consider first the case in which � is a scalar parameter as in model (i) above. Suppose that �low
and �up are numbers much smaller and larger, respectively, than any substantively plausible value
of �∗. Then, to carry out the g-estimation algorithm, separately, for each � on a grid from �low to
�up, say �low,�low+0.1,�low+0.2, . . . ,�up, we perform the score test of the null hypothesis �=0
in the logistic model

logit Pr[A(m)=1|L(m), A(m−1),Ym(�)]=�TB(m)+�Ym(�), m=0, . . . ,K (9)

that adds the covariate Ym(�) at each time m to the above pooled logistic model (8). A 95
per cent confidence interval for �∗ is the set of � for which the two-sided score test of the hypothesis
�=0 at level 0.05 does not reject. The g-estimate of �∗ is the value of � for which the score test
takes the value zero (i.e. the p-value is one).

A heuristic justification of the g-estimation procedure is as follows. Ym(�∗) is an estimate of
Y{a(m−1),0(m)} since the effect

∑K
j=m� j [A( j), L( j),�∗] of all treatments from m onwards have

been subtracted from Y . Thus, one would expect that under the SR assumption, �=0 when Ym(�∗)
is added to (9). In fact, it can be shown that this is true. Now, we do not know �∗. Therefore, any
value � for which the data are consistent with the parameter � of the term �Ym(�) being zero might
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be the true �∗, and thus belongs in our confidence interval. If consistency with the data is defined
at the 0.05 level, then our confidence interval will have coverage of 95 per cent. Furthermore,
the g-estimate �̂ of �∗ is that � for which adding the term �Ym(�) does not help to predict A(m)

whatsoever, which is the � for which the score test of �=0, is precisely zero. The g-estimate �̂ is
also the value of � for which the pooled logistic regression estimator of � is precisely zero.

Suppose now that the parameter � is a vector. To be concrete suppose we consider the model
with �m[a(m), l(m),�]=a(m){�0+�1m+�2a(m−1)+�3l(m)+�4l(m)a(m−1)}. In this model,
� is five dimensional and we suppose, l(m) is one dimensional. To estimate � we use a five-
dimensional grid, one dimension for each component of �. Hence, if we had 20 grid points for each
component we would have 205 different values of � on our five-dimensional grid. Now, to estimate
the five components of � we consider Qm =qm[L̄(m), Ā(m−1)], a five-dimensional vector of
functions of L(m), A(m−1), such as qTm[L̄(m), Ā(m−1)]=[1,m, A(m−1), L(m), L(m)A(m−
1)]. We postulate a model that extends model (8) with the addition of the five linear functions
Qm, j Ym(�) of Ym(�), j=1, . . . ,5, as covariates, i.e.

logit Pr[A(m)=1|L(m), A(m−1),Ym(�)]=�TB(m)+�TQmYm(�)

Our g-estimate �̂ is the value of the vector � for which the 5 degrees of freedom score test
statistic for testing the null hypothesis �=0 is precisely zero. The particular choice of the functions
Qm =qm[L̄(m), Ā(m−1)] does not affect the consistency of the estimator �̂, but it determines the
width of its associated confidence interval. See Robins [10] for the optimal choice of Qm .

When the dimension of � is greater than 2, finding �̂ by search over a grid is generally computa-
tionally prohibitive. However, when, as in all the examples we have discussed, �m[a(m), l(m),�]=
a(m)�TRm is linear in � with Rm =rm(L̄(m), Ā(m−1)) being a vector of known functions, then,
there is an explicit closed-form expression for �̂. Specifically, if �̂ denotes the MLE of � under
model (8), then �̂ takes the explicit form

�̂=
{
i=n,m=K∑
i=1,m=0

Xim( �̂)QimS
T
im

}−1{
i=n,m=K∑
i=1,m=0

Yi Xim (̂�)Qim

}

where Xim( �̂)=[Ai (m)−expit{̂�TBi (m)}], Sim =∑ j=K
j=m Ai ( j)Ri j . [Note that to compute �̂ we

simply fit the logistic regression model (8) where each person-week is treated as an independent
observation, so that each person contributes up to K +1 observations.] In fact, for �m[a(m), l(m),�]
of the form a(m)�TRm , we can also obtain a closed-form estimator �̃ of �∗, which is consistent and
asymptotically normal if either, but not necessarily both, a model �TTm =�Ttm[L̄(m), Ā(m−1)]
for E[Ym(�∗)|L̄(m), Ā(m−1)] (and hence for E[Y{A(m−1),0(m)}|L̄(m), A(m−1)] because by C
and SR the two conditional expectations are the same) is correct or model (8) is correct. The
estimator �̃ of �∗ is commonly referred to as being doubly robust. The estimator �̃, together with
the estimator �̃ of �, is jointly defined as(

�̃

�̃

)
=
{
i=n,m=K∑
i=1,m=0

(
Xim (̂�)Qim

Tim

)
(STim,T T

im)

}−1{
i=n,m=K∑
i=1,m=0

Yi

(
Xim (̂�)Qim

Tim

)}

4.4.1. General SNMMs and optimal regime SNMMs. Suppose we are interested in a particular
d∗ with associated functions d∗

m[a(m−1), l(m)]. Then we define a d∗-SNMM to be a model for
the effect of treatment a(m) versus treatment 0 at each time m (as a function of treatment and
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covariate history up to m) when regime d∗ is followed beginning at time m+1. Formally, let d=
{a(m−1),a(m),d∗(m+1)} be the regime that follows the nondynamic regime (a(m−1),a(m))

through time (e.g. week) m and then the regime d∗(m+1)=(d∗
m+1, . . . ,d

∗
K ) from m+1. Then

a d∗-SNMM is defined exactly like the SNMM (7), except that Y{a(m−1),a(m),d∗(m+1)} replaces
Y{a(m−1),a(m),0(m+1)} and Y{a(m−1),0,d∗(m+1)} replaces Y{a(m−1),0(m+1)}. Also we write the known

function �m[a(m), l(m),�] as �d
∗

m [a(m), l(m),�] to remind us we are now estimating a d∗-SNMM
for a given regime d∗. Note that a d∗-SNMM with d∗ the regime where treatment is always
withheld is precisely the SNMM (7).

In the following �d
∗

m [c,a(m−1), l(m),�∗] is used to denote �d
∗

m [a(m), l(m),�∗] with the value c

substituted for a(m). To estimate the parameter �∗ of �d
∗

m [a(m), l(m),�∗], we use g-estimation as
described previously except we redefine Ym(�) to be

Ym(�)=Y +
K∑

j=m
�d

∗
j [d∗

j {A( j−1), L( j)}, A( j−1), L( j),�]−�d
∗
j [A( j), L( j),�] (10)

Intuitively at each time j�m, if �=�∗,Ym(�) subtracts from the subject’s observed Y an estimate
of the effect �d

∗
j [A( j), L( j),�] of the subject’s observed treatment A( j) and replaces it with an

estimate of the effect �d
∗
j [d∗

j {A( j−1), L( j)}, A( j−1), L( j),�] of the treatment d∗
j {A( j−1), L( j)}

that the subject would have had at j had, possibly contrary to fact, she began to follow regime d∗
at time j .

Robins [4] proved that, in the absence of model misspecification, under assumptions SR and
C, (i) the g-estimate �̂, now based on expression (10), is consistent for the parameter �∗ of
�d

∗
m [a(m), l(m),�∗] and (ii) the sample average n−1∑n

i=1Y0,i (̂�) of Y0(̂�) is consistent for E[Yd∗ ].
When �d

∗
j [A( j), L( j),�]= A( j)�TR j , we have the closed-form expression

�̂=
{
i=n,m=K∑
i=1,m=0

Xim (̂�)QimS
T
im

}−1{
i=n,m=K∑
i=1,m=0

Yi Xim (̂�)Qim

}

with STim redefined as
∑ j=K

j=m {Ai ( j)−d∗
j {A( j−1), L( j)}}RT

i j

Optimal regime SNMMs: A primary use of d∗-SNMMs is in attempting to estimate the optimal
treatment strategy dopt that maximizes E[Yd ] over all treatment regimes d. To do so we specify

an optimal SNMM, dopt-SNMM, based on a function �d
opt

m [a(m), l(m),�]=�d
opt

m [a(m),a(m−
1), l(m),�]. As an example we might specify that

�d
opt

m [a(m), l(m),�] = a(m){�0+�1m+�2a(m−1)+�T3 l(m)

+�T4 l(m)a(m−1)+�T5 l(m−1)+�T6 l(m−1)a(m−1)} (11)

If the dopt-SNMM were correctly specified and we knew the true �∗, then, under assumptions
SR and C, we would know the optimal treatment regime. Specifically, the optimal treatment
doptm [a(m−1), l(m)] at time m given past treatment and covariate history [a(m−1), l(m)] is a(m)∈
A(m) that maximizes �d

opt

m [a(m),a(m−1), l(m),�∗]. In particular, if A(m) is a binary indicator

doptm [a(m−1), l(m)]= I [�doptm [1,a(m−1), l(m),�∗]>0].
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To understand heuristically why this is the case, suppose that A(m) is binary and that at the
very last treatment time K , a subject has past history a(K −1), l(K ). If the subject does not take
treatment at K , her outcome will be Y{a(K−1),0} while if she takes treatment it will be Y{a(K−1),1}.
Now, since high values of Y are desirable the optimal treatment choice is to take treatment if and
only if �d

opt

K [a(K −1), l(K ),�∗] exceeds zero. (If �d
opt

K [a(K −1), l(K ),�∗] is precisely zero, it does
not matter whether treatment is taken; in such cases, we choose not to treat simply to break the
‘tie’.) Now we continue by backward induction. Specifically, suppose we know the optimal regime
from m+1 onwards. Consider a subject at time m with past history a(m−1), l(m). Such a subject
will follow the known optimal regime from m+1 onwards. But she must decide what treatment to
take at m. If she does not take treatment at m, her outcome will be Yg={a(m−1),0,dopt(m+1)} while
if she takes treatment at m, her outcome will be Y{a(m−1),1,dopt(m+1)}. Thus, according to model

(11), she should take treatment if and only if �d
opt

m [a(m−1), l(m),�∗] exceeds zero.
Now if we knew �d

opt

m [a(m), l(m),�∗] and thus we knew the optimal regime, we would simply
have each subject in the population follow the optimal regime beginning at time 0, where at
each time m the covariates L(m) must be measured and recorded, so the evolving covariate data
necessary to follow the optimal regime will be available.

Since the optimal treatment to give at time m is doptm [a(m−1), l(m),�∗], we see that to estimate
the optimal regime we need an estimate �̂ of �∗, which we can obtain by g-estimation based on
the generalization

Ym(�)=Y +
K∑

j=m
�d

opt

j [doptj {A( j−1), L( j),�}, A( j−1), L( j),�]−�d
opt

j [A( j), L( j),�] (12)

of expression (10). Note that (12) differs from (10) in that the regime doptj {A( j−1), L( j),�} itself
is a function of the parameter �. Nonetheless, one can use g-estimation based on Ym(�) of (12) to
estimate �∗and set confidence intervals by searching over a grid of � values. Furthermore, we can
also obtain an estimate N−1∑N

i=1Y0,i (̂�) of the mean E[Ydopt] of Y when the population is treated
optimally. However, there is no longer an explicit closed-form expression for the g-estimate �̂
based on (12), even when �d

opt

m [A(m), L(m),�]= A(m)RT
m� is linear in �, with Rm =rm{A(m−

1), L(m)} a known vector function. For example, when A(m) is binary, doptm [A(m−1), L(m),�]=
I [RT

m�>0] and so Ym(�) is no longer linear in � because � now occurs within an indicator
function. In fact, when the dimension of � is moderate, the g-estimate �̂ is exceedingly difficult
to compute by search. However, the following alternative, computationally tractable approach can
be used when �d

opt

m [A(m−1), L(m),�] is linear in �, i.e. it is of the form �d
opt

m [A(m), L(m),�]=
A(m)RT

m�.
A closed-form estimator of the optimal regime: We only consider the case of binary A(m).

Suppose for the moment that �d
opt

m [A(m), L(m),�] is of the form A(m)RT
m�m, that is, it depends

linearly on a separate parameter vector �m at each time m and we assume that the components of
�T=(�T0 , . . . ,�TK ) are variation independent. We will describe estimators �̃m of �∗

m that are doubly
robust in the sense of being consistent and asymptotically normal for �∗

m if either model (8) is
correct for all m’s or if model

E[Ym(�∗)|L̄(m), Ā(m−1)]=�Tmzm[L̄(m), Ā(m−1)]
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where Zm =[L̄(m), Ā(m−1)] is a known function of (L̄(m), Ā(m−1)) and �m is unknown, is
correct for all m’s. To compute the estimators �̃m we first compute the partial MLE �̂ of � under
model (8). Next, beginning with m=K , we recursively compute (̃�m, �̃m, �̃m), the OLS estimator
of (�m,�m,�m) in the regression model

Ym+1(̃�m+1
)= A(m)RT

m�m+expit{̂�TB(k)}RT
m�m+ZT

m�m+�m+1

where YK+1(̃�K+1
)=Y , Ym+1(̃�m+1

)=Y +∑K
j=m+1[I {RT

j �̃ j>0}−A( j)]RT
j �̃ j for 0�m�K , and

�m+1 is the unobserved error term.

Remark
The estimators �̃m are possibly inefficient members of a general class of estimators �̃m(s,q),
indexed by vectors of functions sm and qm,m=0, . . . ,K , defined recursively as follows:

�̃m(s,q)=
[
i=n∑
i=1

Ai (m)Xim (̂�)Qim RT
im

]−1[i=n∑
i=1

{Ym+1(̃�m+1
(s,q)) j −Sim}Xim (̂�)Qim

]
where Xm (̂�)=[A(m)−expit{̂�TB(k)}]Bm and Sm =sm[L̄(m), Ā(m−1)] and Qm =qm[L̄(m), Ā(m
−1)] are user-specified functions, their choice affecting efficiency but not consistency when the
treatment model (8) is correct.

Now suppose in our dopt-SNMM model, the same parameter vector � applies to each time m.
To be concrete, consider the dopt-SNMM (11). In that case, we first estimate a bigger model that
has a separate variation-independent parameter vector �m at each time m; model (11) is then the

submodel that imposes �m =� for all m’s. Let �̃
−1

be a nonparametric bootstrap estimate of the
covariance matrix of (̃�0, . . . , �̃K ). We then estimate � by an inverse covariance-weighted average

�̂=1TK+1�̃
−1

(̃�0, . . . , �̃K )T/(1TK+1�̃
−1

1K+1) of the �̃m , where 1K+1 is a K +1 vector with all
components equal to 1.

Note that the dopt-SNMM model (11) is a nonsaturated model. For example, it assumes that
the optimal regime does not depend on covariate values two weeks in the past or treatment values
three weeks in the past, which may be incorrect. If the dopt-SNM model is badly misspecified, then
the estimated optimal regime d̂ opt

m [a(m−1), l(m)] may be a poor estimate of the actual optimal
regime. Because in realistic studies highly nonsaturated dopt-SNMM models must be employed,
misspecification can be a serious problem.

We note that in using a dopt-SNMM model to find the optimal regime, it was necessary for
us to estimate the treatment strategy dopt={dopt0 [l(0)],dopt1 [a(0), l(1)], . . . ,doptK [a(K −1), l(K )]}
that maximized Ed [Y ] over all regimes d , including regimes in which treatment depends on
past treatment as well as covariate history. However, one can always construct a regime d†opt=
{d†opt0 [l(0)],d†opt1 [l(1)], . . . ,d†optK [l(K )]} in which treatment depends only on past covariate history
such that following regime d†opt from time 0 onwards is precisely equivalent to following dopt from
time 0. Nonetheless, it can be important to know dopt rather than only d†opt as the following example
shows. Suppose that a (random) member of the source population has observed history (A(m−
1), L(m))=(a(m−1), l(m)) (under standard care) that is not consistent with following the optimal
regime dopt and comes to our attention only at timem. We wish to intervene beginning atm and give
the subject the optimal treatment strategy from time m onwards. Under the C and SR assumptions,
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the optimal treatment strategy for such a subject is {doptm [a(m−1), l(m)], . . . ,doptK [a(K −1), l(K )]}.
This strategy can be implemented only if we know (or have a good estimate of) dopt; knowledge
of d†opt does not suffice.

5. STRENGTHS AND WEAKNESSES OF MSMs AND SNMMs

MSMs have the advantage that they are easy to understand and easy to fit with standard off-the-
shelf software that allows for weights. These two points explain their rapid adoption compared
with SNMMs. The usefulness of MSMs has been extended by the introduction of dynamic MSMs
to estimate the optimal regime in a class.

However, IPTW estimation of MSMs has four drawbacks not shared by g-estimation of SNMMs.
First, if the number of time periods is large the product in the denominator of the weights can
become very small for some subjects who then receive inordinately large weights, leading both to
bias when the weights must be estimated [and to so-called pseudo-bias even when they are known,
see Scharfstein et al. [11]] and to imprecision. Problems with large or even truly infinite weights
(when positivity does not hold) can be somewhat ameliorated but not cured, by using bounded
doubly robust estimators [12], adjusting for baseline covariates and then using the covariates in
the numerator of the weights, downweighting or eliminating from consideration regimes g=dx
associated with very small weights, using locally semiparametric efficient estimators or bounded
influence function estimators for nonsaturated MSMs (as these estimators downweight regimes
g=dx that result in excessively large weights in a near optimal fashion), and using diagnostics
for the undue influence of large weights and for the consequences of truncating large weights
[13]. Second, MSMs cannot be used to estimate causal effects when treatment is confounded but
an instrumental variable is available. Third, sensitivity analysis models to assess the impact of
departures from the assumption of SR are much more restrictive for MSMs and less useful than
those for SNMMs. Fourth, SNMMs, in contrast to MSMs, allow one to directly model interactions
between treatment and evolving time-dependent covariates in order to look for qualitative effect
modification.

In terms of estimation of optimal regimes, both MSMs and SNMMs have their distinct place.
General MSMs are excellent for estimating the optimal regime in a prespecified parametrized class
of regimes (such as the optimal CD4 cell count at which to start therapy) that still may include
all logistically feasible regimes, particularly in settings with resource constraints that preclude
implementing complex regimes.

In contrast, the method of backward induction on which g-estimation of optimal SNMMs is
based requires that the set of potential regimes from which the optimal is to be selected include
all functions of an increasing (in time) amount of information (i.e. of an increasing sigma field).
Thus, optimal regime SNMMs are useful for estimating the optimal regime in the huge class of
dynamic regimes in which treatment at each m can depend on any function of the entire measured
past l(m),a(m−1) (the case considered above) or, as described in Section 7 of Robins [4] in
the smaller, but still large, class in which treatment at each m can depend on any function of
w(m),a(m−1), where W (m) is a subvector of the covariates in L(m). Even if W (m) is just CD4
cell count at m, it is possible that the optimal treatment decision at time m may be a complex
function of CD4 cell counts at all past times. Such a regime, though optimal in its class, may
be logistically impossible to implement, in which case it may be necessary to choose among a
smaller class of logistically feasible regimes by fitting a general MSM.

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:4678–4721
DOI: 10.1002/sim



OPTIMAL TREATMENT AND TESTING STRATEGIES 4699

6. BETWEEN POPULATION EXTRAPOLATION AND OPTIMIZATION OF PROGNOSTIC
TESTING STRATEGIES

Let dx again denote the nonrandom dynamic regime ‘begin HAART the first time t the measured
CD4 count falls below x’, where x is measured in whole numbers. Let X={201, . . . ,500} and let
{dx ; x ∈X} be the set of candidate regimes. Let xopt be the x ∈X for which the expected utility
Edx

[Y ] is a maximum. It is clear that xopt will depend on the frequency with which subjects
have their CD4 count measured. For example, suppose that in a particular patient population, CD4
counts are obtained very frequently, say weekly, and xopt is 340. If in the same population, the CD4
counts were measured much less frequently (say every 6 months), then xopt would presumably
exceed 340, as many subjects who were well above 340 at the time of their last CD4 blood test but
were not started on HAART may be well below 340 at the time of their next test 6 months later.

These considerations raise at least two issues. First, suppose the empirical frequency of blood
tests to assess CD4 counts differs between two biologically similar populations but good longitu-
dinal data are available only on the first population. How can we use data from the first population
to estimate xopt in the second? This extrapolation question presumes that, for logistical or financial
reasons, we do not have the ability to change the frequency of CD4 blood tests in the second
population. Thus, although, for purposes of continuity, we use a CD4 blood test as a prototype,
the methods we develop may be more relevant to tests that are either more expensive or present a
greater logistical challenge than a CD4 count.

Second, suppose that in a particular population on which we have collected longitudinal data
we do have the ability to increase at some financial cost, or decrease with some financial savings,
the frequency of CD4 tests and we desire to use the data to determine jointly the optimal CD4
testing schedule and the optimal time to start HAART. This second issue is the well-known issue
of assessing the ‘value of information’ in sequential decision making; a CD4 test has no direct
biological effect on a patient whatsoever. Its net value, if any, is that the information supplied by
the test can be used to fine tune the time to start HAART, leading to a net increase in expected
utility, even when the costs of the test are included in the utility function. Of course, to include
the costs of a CD4 test in the utility implies that our utility function is in dollars and that we must
place a monetary value, usually adjusted for quality of life, on each additional year of life. It is not
our purpose to discuss this highly contentious issue. Our goal here is limited to the development
of statistical methodology.

6.1. Formalization

We formalize the problem as follows. The potentially observed data at time m are now L(m)=
(Z(m)T, I (m))T, A(m), and T (m), where T (m) is the indicator of whether a test was performed
at time m, I (m) is the biological function measured by a test (e.g. CD4 count) at m−1, Z(m)

are the other components of the covariate vector L(m), and A(m) is the treatment at m. Let
O(m)=(Z(m), I (m), A(m),T (m)), which we assume is temporally ordered in the sense that a
decision whether to test at m can depend on Z(m), I (m), A(m) and the decision on treatment
can potentially depend on (Z(m), I (m)). However, we observe I (m) only if T (m−1)=1 while
Z(m) and A(m) are always observed. [The fact that the test at m−1 gives us knowledge of I
at m rather than m−1 is inconsequential and can be taken as a convention that simplifies the
notation.] Thus, the actually observed data at time m are O∗(m)=(Z(m), I ∗(m), A(m),T (m)),
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where I ∗(m)=T (m−1)I (m), i.e. I ∗(m) is equal to the biological function at time m−1 if the
test was actually performed, and it is equal to 0 otherwise. The vector L∗(m)≡(Z(m), I ∗(m))

encodes all new information about the patient’s health status that the physician has available at
time m. In contrast, the vector J (m)≡(A(m),T (m)) encodes the pair of intervention variables
whose values depend on the doctor’s decision at time m (i.e. which treatment to assign at time m
and whether or not to take a test at time m). Throughout, we let J denote the sample space of
J (K ), where we continue to use our convention for overbars, i.e. J (m)=(J (0), . . . , J (m)).
For later use, it will be convenient to define the vector O

∗
(k)=(O∗(0), . . . ,O∗(k)) of all the

data observed up to time k, and the vectors O
∗t

(k)=(O
∗
(k−1), Z(k), I ∗(k), A(k)),O

∗,a
(k)=

(O
∗
(k−1), Z(k), I ∗(k)), and O

∗,i
(k)=(O

∗
(k−1), Z(k)), which are equal to O

∗
(k) but with

T (k), (A(k),T (k)), and (I ∗(k), A(k),T (k)) removed.
The counterfactual L-history L j (m)={L(0), La(0),t (0)(1), . . . , La(m−1),t(m−1)(m)} through m

under the joint treatment and testing regime j =(a, t) is assumed to satisfy the following assump-
tion. To state this assumption, let La(m)={L(0), La(0)(1), . . . , La(m−1)(m)}.

No direct effect (NDE) assumption: La,t (m)= La(m) w.p.1. for all m’s.
The NDE assumption encodes the fact that testing per se has no direct effect on L(k) when

treatment is set to a. The assumption implies that La,t = La ≡ Lā(K )(K +1) and consequently the set
LJ≡{L j ; j ∈J}, denoting all vectors of counterfactual health status variables in the hypothetical

scenarios in which the intervention variables are set to each of their possible configurations j =
(a, t), is equal to the set LA≡{La;a∈A} of all counterfactuals obtained when setting only the
treatment variables.

We also define the counterfactual vector L
∗
a,t (m)≡ L

∗
j (m)={L(0), L∗

j (0)(1), . . . , L
∗
j(m−1)

(m)}
with L∗

j(m−1)
(m)=(Z j(m−1)(m), I ∗

j(m−1)
(m)) and I ∗

j(m−1)
(m)= I j(m−1)(m)t (m−1). The vector

L
∗
j(m−1)(m) encodes all health outcomes that would actually be recorded up to time m if treatment

A(m−1)=a(m−1) and test decisions T (m−1)= t(m−1) were implemented. Under the NDE
assumption I ∗

j(m−1)
(m)= Ia(m−1)(m)t (m−1) but I j(m−1)(m)= Ia(m−1)(m); hence, in contrast to

I j (m)=I j(m−1)(m), I
∗
j (m)= I

∗
j(m−1)(m) depends on t even under the NDE assumption.

For notational convenience, we also define I
∗
t(m−1)(m)= I

∗
A(m−1),t(m−1)(m) and L

∗
t(m−1)(m)=

L
∗
A(m−1),t(m−1)(m) so L

∗
t(m−1)(m) is a subject’s counterfactual L∗-history through m with treatment

history equal to the observed history A(m−1) but testing history equal to t(m−1).
As in the preceding sections, we again make a consistency assumption (C), which links a specific

vector of the counterfactual set LJ to the observed data. Specifically, we assume

Consistency assumption (C): I
∗
(m)= I

∗
J (m−1)(m)≡ I

∗
T (m−1)(m) and L(m)= LA(m−1)(m) for

m=0,1, . . . ,K .
A random dynamic j-regime is a conditional law G for J given LA with density denoted as

g( j |lA). We denote the G generating the data in our study as Gᵀ and its density as gᵀ( j |lA). We
let P denote a (generic) marginal distribution of LA and p(lA) its density evaluated at lA. We let
Pᵀ denote the actual P that generates the (counterfactual) data LA in the population under study.
Let F(G,P) and f(G,P)(lA, j) denote the distribution and density of (LA, J ) under the joint law

(G, P). Thus, f(G,P)(lA, j)= p(lA)g( j |lA). Throughout, in a slight abuse of notation, we use the
same symbol, say g, to denote different conditional densities associated with the distribution G,
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the actual random variables connected to the conditional densities being those that take values
that appear in the expression for g. Thus, for example, g[ j (k)|o∗,a(k)] stands for the conditional
density of J (k) (evaluated at j (k)) given O

∗,a
(k)=o∗,a(k) while g( j |lA) stands for the conditional

density of J (evaluated at j) given LA= lA.

We say G is sequentially randomized given data O
∗,a

(O
∗,a

-SR) if for all j, lA

g( j |lA)=
K∏

k=0
g[ j (k)|o∗,a(k)]

The density f(Gᵀ,Pᵀ)(lA, j) is said to satisfy coarsening at random (CAR) with respect to the
underlying full data LA and observed data O

∗ =(L
∗
, J ) if gᵀ( j |lA) depends on o∗only. It follows

that if Gᵀ is O
∗,a

-SR, then f(Gᵀ,Pᵀ)(lA, j) satisfies CAR.
As with dynamic treatment regimes, we can also define nonrandom j-regimes that are defined

by functions b=(b0, . . . ,bK ), so that at each time k, a subject with observed past O
∗,a

(k)=o∗,a(k)
is assigned to treatment and testing status J (k)=(A(k),T (k)) equal to bk[o∗,a(k)]∈J(k). Any
nonrandom j-regime b=(b0, . . . ,bK ) is indeed a special case of a O

∗,a
-SR random regime in

which, for each k,gk[ j (k)|o∗,a(k)] is zero for all j (k)∈J(k), except for j (k)=bk[o∗,a(k)] for
which it is one. In the next theorem, we shall also need the following generalization of the earlier
assumption PO.

Joint positivity assumption (PO∗) for a regime Gᵀ with respect to another regime G: g( j |LJ)

is dominated by (i.e. absolutely continuous w.r.t.) g	( j |LJ) with P	-probability 1, i.e.

g( j |LJ)>0 implies g	( j |LJ)>0 w.p.1. under P	 (13)

For O
∗,a

-SR regimes Gᵀ and G, the PO∗ assumption for Gᵀ w.r.t. G is equivalent to the assumption
that, for all k�K ,Pr(G,Pᵀ)[gᵀ{J (k)|O∗,a

(k)}>0]=1. That is, if under a j-regime G, a treatment
assignment and test decision were feasible at time k, i.e. had positive probability of occurring at k,
for a given observed past O

∗,a
(k), then they would also have positive probability of occurring in

the actual population from where the observed data were sampled.
The following theorem establishes a key result connecting the mean of any function h(O) of

O in the hypothetical world in which the j-regime G is implemented to the mean of h(O) in the
actual study under the joint positivity assumption PO∗. In the following subsection, we exploit
the results of this theorem to develop between-population extrapolation and estimation of joint
optimal treatment assignment and testing decision strategies.

Theorem 6.1
Suppose assumption C holds and the O

∗,a
-SR holds for Gᵀ and G. Then,

E(G,Pᵀ)[h(O)]=E(Gᵀ,Pᵀ)

[ ∏K
k=0 g[J (k)|O∗,a

(k)]∏K
k=0 g

ᵀ[J (k)|O∗,a
(k)]h(O)

]

for all h(O) for which E(G,Pᵀ)[|h(O)|]<∞ if and only if assumption PO∗ for Gᵀ with respect to
G holds.

Theorem 6.1 is just the Radon-Nikodym theorem applied to the laws (G, Pᵀ) and (Gᵀ, Pᵀ). Note
that under assumptions PO∗,C, and O

∗,a
-SR for Gᵀ and G,

∏K
k=0 g[J (k)|O∗,a

(k)]/∏K
k=0 g

ᵀ[J (k)
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|O∗,a
(k)] is indeed the likelihood ratio (Radon-Nikodym derivative) of (G, Pᵀ) with respect to

(Gᵀ, Pᵀ).

6.2. Between-population extrapolation and optimal strategies

In this subsection, we assume that assumption PO∗ for Gᵀ with respect to G holds. Further, as
shorthand we refer to the study population on whom we have obtained data as population Gᵀ.

6.2.1. Between-population extrapolation. In this section, we will apply Theorem 6.1 to derive
estimators of the optimal treatment strategy in a population, throughout referred to as population G,
which follows the testing regime with conditional probabilities g[t (k)|a(k), t(k−1), l

∗
(k)]. The

estimators are based on data from the study population Gᵀ, which follows a possibly different
testing regime with conditional probabilities gᵀ[t (k)|a(k), t(k−1), l

∗
(k)]. In this section, we only

wish to optimize the treatment regime, taking the testing regime g as given. In the following
section, we shall consider jointly optimizing treatment and testing regimes. We will assume that
the O

∗,a
-SR assumption holds in both populations Gᵀ and G. Furthermore, we assume that for

each k, the conditional probability g[t (k)=1|a(k), t(k−1), l
∗
(k)] of performing a test at k (with

result I (k+1)) in population G given the observed data (a(k), t(k−1), l
∗
(k)) is known. In practice,

the testing schedule will not be known for population G and our specification of g will reflect a
best guess, which we nevertheless treat as known in the following analysis. However, in practice,
the selected g could be varied in a sensitivity analysis or be replaced by an empirical estimate if
appropriate data were available on population G. We assume that populations G and Gᵀ have the
same marginal distribution Pᵀ of LA. In certain settings, this latter assumption can be understood
as a formalization of the assumption that the two populations are biologically similar.

Suppose that we are given a set of nonrandom treatment regimes {dx , x ∈X} to be implemented
in a setting in which testing for I (k) is not necessarily done at each time k. In this setting, dx
is equal to a collection of functions {dx,k;k=0, . . . ,K } where each dx,k maps the data (A(k−1),
T (k−1), L

∗
(k)) to a treatment a(k), that is, dx,k[a(k−1), t(k−1), l

∗
(k)]∈A(k).

The collection of conditional densities {g[t (k)|a(k), t(k−1), l
∗
(k)],k=0, . . . ,K }, together with

a given treatment regime dx , determines an O
∗,a

-SR random dynamic j-regimeGx in populationG.

Specifically, define the conditional densities as

gx [a(k)|a(k−1), t(k−1), l
∗
(k)] =

{
1 if a(k)=dx,k[a(k−1), t(k−1), l

∗
(k)]

0 otherwise
(14)

gx [t (k)|a(k), t(k−1), l
∗
(k)] = g[t (k)|a(k), t(k−1), l

∗
(k)] (15)

By definition, gx [ j (k)|o∗,a(k)]=gx [a(k)|a(k−1), t(k−1), l
∗
(k)]gx [t (k)|a(k), t(k−1), l

∗
(k)] and,

by the O
∗,a

-SR assumption, gx ( j |lA)=∏K
k=0 gx [t (k)|a(k),o∗,a(k)]gx [a(k)|o∗,a(k)]. Note, since

dx,k[a(k−1), t(k−1), l
∗
(k)]=dx,k[o∗,a(k)] is a deterministic treatment regime, gx [a(k)|o∗,a(k)]=

gx [a(k)|a(k−1), t(k−1), lA] automatically holds and thus is not an assumption. Thus, for

regime gx , the O
∗,a

-SR assumption reduces to the assumption that gx [t (k)|a(k), t(k−1), lA]=
gx [t (k)|a(k), t(k−1), l

∗
(k)]. To be concrete we will consider the following running example.

Running example: Let dx again denote the nonrandom dynamic regime ‘begin HAART the
first time k the measured CD4 count falls below x ,’ with x ∈X={201, . . . ,500}. In order to
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avoid additional complications, it will be useful to assume that, under both g	 and gx , a subject
who initiates HAART remains on the same HAART regimen thereafter and takes no other HIV
medications, in which case there is no reason to obtain a CD4 test once HAART has been started.
We formalize this assumption by assuming

prG∗ [A(k)=1|a(k−1), t(k−1), l
∗
(k)] = 1 if a(k−1)s(k)=1

prG∗ [T (k)=1|a(k), t(k−1), l
∗
(k)] = 0 if a(k)=1 or s(k)=0

(16)

hold for G∗ equal to G	 or Gx where s(k) is a realization of S(k)∈L∗(k), the indicator variable
of survival at week k. [Without this assumption and with A(t) being the indicator variable that
takes the value 1 if and only if HAART has been initiated by time t , the NDE assumption would
be unlikely to hold, because, the result of a CD4 test might then have a direct effect on survival
not through A(t) if the test result is used to decide when to switch an initial HAART regimen to
a new HAART regimen. In studies in which subjects do switch treatment regimens based on CD4
tests obtained after HAART initiation, the NDE assumption would only hold if we redefined A(t)
to be the vector of all treatments that physicians (or patients) might modify at time t based on the
result of a CD4 test.]

Let Y = y(A, L) be a prespecified utility function. The mean E(Gx ,Pᵀ)(Y ) computed under the
joint law (Gx , Pᵀ) is interpreted as the expected utility in population G if the treatment strategy
dx is followed. Similarly, if Gᵀ

x is defined like Gx but with gᵀ instead of g, the resulting mean
E(Gᵀ

x ,Pᵀ)(Y ) is the expected utility in the study population Gᵀ if the treatment regime dx is
followed. Note that this expected utility was denoted as E(Ydx ) in Section 4.

Our goal is to find xopt(V ) in X that maximizes E(Gx ,Pᵀ)[Y |V ] over x ∈X, where V is a
(possibly improper) subset of the baseline covariates. The key observation that will allow us to
estimate xopt(V ) is that under the conditions of Theorem 6.1 (which, in this subsection, we assume
to hold) and the PO∗ assumption we have

E(Gx ,Pᵀ)[Y |V ]=E(Gᵀ,Pᵀ)[UxY |V ] (17)

where

Ux ≡
∏K

k=0 gx [J (k)|O∗,a
(k)]∏K

k=0 g
ᵀ[J (k)|O∗,a

(k)] = �x
∏K

k=0 gx [T (k)|O∗,t
(k)]∏K

k=0 g
ᵀ[J (k)|O∗,a

(k)] (18)

and

�x =
K∏

k=0
I (A(k)=dx,k[A(k−1),T (k−1), L

∗
(k)])

is the indicator that the subject followed treatment regime dx .
Suppose, as in Section 4.3, we specify an MSM model

E(Gx ,Pᵀ)[Y |V ]=h(x,V,�∗) (19)

with h(x,V,�)=(r(x,V )T,r∗(V )T)�. Then, it follows from (17) that, for any user-specified
function q∗(x,V ),

E(Gᵀ,Pᵀ)

[∑
x∈X

Ux {Y −h(x,V,�∗)}(r(x,V )T,r∗(V )T)Tq∗(x,V )

]
=0 (20)
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Consequently, letting Pn(A) stand for n−1∑n
i=1Ai , we have that under standard regularity condi-

tions, a CAN estimator of �∗ is the �̂ solving

Pn

[∑
x∈X

Ûx {Y −h(x,V,�)}(r(x,V )T,r∗(V )T)Tq∗(x,V )

]
=0 (21)

where

Ûx ≡ �x
∏K

k=0 g[T (k)|O∗,t
(k)]∏K

k=0 g
ᵀ[J (k)|O∗,a

(k); �̂] (22)

provided (i) the model gT[J (k)|O∗,a
(k);�] used to estimate gᵀ[J (k)|O∗,a

(k)] is correct and �̂
maximizes the partial log-likelihood Pn[∑K

k=0 logg
ᵀ[J (k)|O∗,a

(k);�]], (ii) ÛxY is a function of
the observed data O

∗
, and (iii) the PO∗ assumption holds for all x ∈X. In practice, as discussed in

Section 4.3, to ensure (iii), we should also eliminate from X any x for which there exists empirical
evidence that the PO∗assumption almost fails. Note a sufficient condition for (ii) to hold is that the
utility function y(A, L) does not depend on a subject’s possibly unmeasured covariate history I
(e.g. CD4 count history in our running example) and thus is only a function of the always observed
data (A, Z).

Once we have obtained a CAN estimator of �∗, we can estimate xopt(V )= xopt(V ;�∗) as in
Section 4.3. The estimator �̂ will be far from the most efficient possible estimator of �∗ under the
above assumptions. However, the theory of efficient estimation in CAR models could be used to
obtain much more efficient estimators. See Robins and Rotnitzky [14].

6.2.2. Estimation of joint optimal testing and treatment regimes. Suppose we are given a set of
nonrandom testing and treatment regimes {Gx ≡dx ≡(dxa ,dxt ); x ∈X} where x=(xa, xt )∈X=
Xa×Xt . Here {dxa ; xa ∈Xa} is a set of treatment regimes with dxa ={dxa ,k;k=0, . . . ,K }, each
dxa ,k[a(k−1), t(k−1), l

∗
(k)] being a function taking values in A(k). Similarly, {dxt ; xt ∈Xt } is

a set of testing regimes with dxt ={dxt ,k;k=0, . . . ,K }, each dxt ,k[a(k), t(k−1), l
∗
(k)] being a

function taking values in {0,1}. Note that Gxas defined here is the Gx defined in the preceding
section except now with

g[t (k)|a(k), t(k−1), l
∗
(k)]= I (t (k)=dxt ,k[a(k), t(k−1), l

∗
(k)])

Also, note that in this section dx (in bold) denotes a joint nonrandom treatment and testing regime,
and dxa denotes the treatment part of the joint regime. In contrast, in earlier sections, a nonrandom
treatment regime was denoted simply by dx because we did not need to distinguish between
treatment and testing regimes.

Suppose there is a cost c to performing a test. Then if Y = y(A, L) is our previously
defined public health utility converted somehow into monetary units, our new utility is Y ∗ =
Y −c

∑K−1
m=0 T (m), where

∑K−1
m=0 T (m) denotes the number of tests received. Our goal is to

find xopt(V )=(xa,opt(V ), xt,opt(V )) that maximizes the expected utility E(Gx ,Pᵀ)[Y ∗|V ] over
all joint regimes x=(xa, xt ). More generally, we can let the cost at m depend on the entire
observed past. That is, C(m)≡cm(O

∗,t
(m))≡cm(A(m),T (m−1), L

∗
(m)) for some known

function cm(O
∗,t

(m))≡cm(A(m),T (m−1), L
∗
(m)). The utility in such a case becomes Y ∗ =

Y −∑K−1
m=0 T (m)C(m).
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Under the conditions of Theorem 6.1 and assumption PO∗ (which we assume to hold in this
subsection), (17), and consequently (20), still holds if Y is replaced by Y ∗ and Ux is defined as in
(18) except that �x is replaced by �xa and g[T (k)|O∗,t

(k)] is replaced by I (T (k)=dxt ,k[O∗,t
(k)]).

Suppose we specify an MSM

E(Gx ,Pᵀ)[Y ∗|V ]=h(x,V,�∗) (23)

with h(x,V,�)=(r(x,V )T,r∗(V )T)�. Then, reasoning as in the preceding section, with Y ∗
replacing Y, a CAN estimator of �∗ is the �̂ solving equation (21) provided conditions (i)–(iii)
of the preceding subsection hold and Ûx is defined as in (22) but with �x replaced by �xa and

g[T (k)|O∗,t
(k)] replaced by I (T (k)=dxt ,k[O∗,t

(k)]). As in the previous subsection, once we have
obtained a CAN estimator of �∗, we can estimate the optimal joint strategy in our candidate class
by the x̂opt(V ) that maximizes h(x,V, �̂).

Running example (continuation 1): Let dxa ={dxa ,k;k=0, . . . ,K } denote the nonrandom
dynamic treatment regime ‘begin HAART the first time t the measured CD4 count falls below
xa’ and dxt the testing regime ‘if a subject is still at risk to initiate HAART, perform a CD4
test every xt weeks’. Our goal is to find the xopt(V )=(xa,opt(V ), xt,opt(V )) that minimizes
E(Gx ,Pᵀ)[Y ∗|V ]=E(Gx ,Pᵀ)[Y −∑K−1

m=0 T (m)C(m)|V ] as a function of V . A possible choice for
h(x,V,�) in model (23) that allows the effect of the treatment regime dxa to depend (as it should)
on the testing regime dxt is

h(x,V,�) =
5∑

k=1
�1,1,k x

k
a +

5∑
k=1

�T
1,2,kV xka +

5∑
k=1

�2,1,k x
k
t +

5∑
k=1

�T
2,2,kV xkt

+ ∑
{(k,l);k+l�4,k,l�0}

�3,1,k,l x
k
a x

l
t +

∑
{(k,l);k+l�4,k,l�0}

�T
3,2,k,l V xka x

l
t +�T

4V

Elsewhere, we show that additional substantive knowledge concerning the dependence of
E(Gx ,Pᵀ)[Y |V ] on x=(xa, xt ) can be incorporated into the functional form of our models if we
specify separate models for E(Gx ,Pᵀ)[Y |V ] and E(Gx ,Pᵀ)[∑K−1

m=0 T (m)C(m)|V ] and then combine
the fits to estimate xopt(V ).

6.3. Usefulness of the NDE assumption

The results obtained in Section 6.2 were a straightforward generalization of the results of
Section 4.3. In particular, we did not use the fact that the NDE assumption holds. However, the
consistency of our estimators required that (a) the PO∗ assumption hold and (b) that ÛxY is a
function of the observed data O

∗
. In this section, we shall show that when (a) and/or (b) are/is

false, between-population extrapolation and estimation of joint optimal treatment and testing
regimes often remain possible by exploiting the NDE assumption to construct alternative CAN
estimators. Because the methodology developed in this section is new, we treat several special
cases based on our running example, beginning with the simplest. The most general case is
reserved for Appendix A. It is pedagogically useful to begin with the problem of estimation of a
joint optimal testing and treatment regime.

6.3.1. Special case 1. Consider running example (continuation 1) with x=(xa, xt ) fixed and
Y = y(A, L) being a prespecified function, say y1(A, Z), of (A, Z) only. Suppose in population Gᵀ

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:4678–4721
DOI: 10.1002/sim



4706 J. ROBINS, L. ORELLANA AND A. ROTNITZKY

all subjects at risk to initiate HAART receive a CD4 blood test every week and thus prG	[T (k)=
1|a(k), t(k−1), l

∗
(k)]=1 if a(k)=1−s(k)=0. In contrast, suppose under Gx , CD4 tests are

performed only every xt weeks. Thus, prGx
[T (k)=1|a(k), t(k−1), l

∗
(k)] is equal to 1 if a(k)=

1−s(k)=0 and k is divisible by xt , but it is equal to 0 otherwise. Then the assumption PO∗ for
Gᵀ with respect to Gx is false for xt>1, since, given a(k)=1−s(k)=0 for k not divisible by
xt , the test decision T (k)=0 has positive probability under Gx but has probability 0 under Gᵀ.
Thus, the approach of Section 6.2.2 cannot be used to estimate E(Gx ,Pᵀ)[Y ∗] or E(Gx ,Pᵀ)[Y ∗|V ].
However, under the NDE assumption, consistent estimators of these quantities can be obtained
provided the following positivity assumption holds.

Treatment positivity (TPO∗) assumption for a regime Gᵀ with respect to another regime G: The
conditional measure g(a|LA) is dominated by (i.e. absolutely continuous w.r.t.) g	(a|LA) with
P	-probability 1, i.e.

g(a|LA)>0 implies g	(a|LA)>0 w.p.1. under P	 (24)

Note that the PO∗ assumption implies the TPO∗ assumption but the converse is false.
The following algorithm returns a consistent estimator of E(Gx ,Pᵀ)[Y ∗] under the NDE and

TPO∗ assumptions when GT is sequentially randomized.

Algorithm 1

1. Construct a modification of the data set generated under (Gᵀ, Pᵀ) by both recoding T (k)=1
as T (k)=0 and discarding the CD4 count data I (k+1) whenever k is not divisible by xt ,
where xt is the frequency of CD4 testing under regime Gx .

2. Use the modified data to determine the set of subjects who followed the treatment regime
dxa . [Note that this set will differ from the set of subjects who followed the treatment regime
dxa in the original unmodified data. For example, consider a subject whose CD4 count in
the unmodified data first fell below xa in week k and who started HAART in week k. If k
is not divisible by xt , then the subject will have followed the regime xa in the unmodified
data but not in the modified data. That is, although the treatment history in the modified data
agrees with that in the unmodified data, by modifying a subject’s testing history, a subject
can have followed the treatment regime dxa in the original data set but not in the modified
data or vice versa.]

3. Estimate E(Gx ,Pᵀ)[Y ∗] by a weighted average over the members of the set in step 2 of the
utilities Y ∗

mod calculated from the modified data set with weights equal to an estimate of

1/
∏K

k=0 g
ᵀ[A(k)|O∗,a

(k)] with O
∗,a

(k) based on the original unmodified data.

Algorithm 1 is formalized as follows:
Define t∗xt ,0(a(0), l(0))≡dxt ,0[a(0), t (−1), l(0)] where, by convention, t (−1)=1 for all subjects

and for k=1, . . . ,K , recursively define t∗xt ,k(a(k), la(k−1)(k))≡dxt ,k[a(k), t∗∗
(k−1), l

∗
a(k−1),t∗∗

(k−1)

(k)] where t∗∗( j)= t∗xt , j (a( j), la( j−1)( j)). Furthermore, define T
∗
xt (0)= t∗xt ,0(A(0), L(0)) and

T ∗
xt (k)≡ t∗xt ,k(A(k), L(k)). Thus,

T
∗
xt ≡ t∗xt (A, L)≡ t∗xt ,K (A, L)
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is the test history a subject with observed data (A, L) would have if he followed the testing regime
dxt and his observed treatment history. Further define

	xa (a, t, La) =
K∏

k=0
I (a(k)=dxa ,k[a(k−1), t(k−1), L

∗
a(k−1),t(k−1)(k)]) (25)

�xa (t) = 	xa (A, t, LA) (26)

so �xa (t) is the indicator that a subject’s observed treatment is equal to the treatment he would
have received had he followed the treatment regime dxa and the nondynamic testing regime t .
Hence, �xa (T

∗
xt ) is the indicator that a subject’s observed treatment is equal to the treatment he

would have received had he followed the treatment and testing regime Gx =dx=(xa ,xt ). The set of
subjects with �xa (T

∗
xt )=1 is precisely the set constructed in step 2 of the above algorithm. The

estimator described in step 3 of the algorithm is then

Pn

[
�xa (T

∗
xt )Y

∗
mod

/{ K∏
k=0

gᵀ{A(k)|O∗,a
(k); �̂}

}]
(27)

divided by the same expression with Y ∗
mod absent, where, by the NDE assumption that T (k) has

no causal effect on L ,

Y ∗
mod=Y −

K−1∑
m=0

T ∗
xt (m)cm(A(m),T

∗
xt (m−1), L

∗
T

∗
xt (m−1)(m)) (28)

for any subject with �xa (T
∗
xt )=1, since the right-hand side (RHS) of the last display is the

counterfactual value of Y ∗ that would have been observed, if possibly, contrary to fact, the subject
had followed the regime Gx by modifying his testing history while leaving his treatment history
unchanged. [Note this last statement would not be true were the NDE assumption false, since then
simply recoding T (k)=1 as T (k)=0 could not undo the actual causal effect of T (k)=1 on Y ].
The consistency of (27) as an estimator of E(Gx ,Pᵀ)[Y ∗] is a consequence of Corollary A.1 in
Appendix A. Here we give a heuristic argument for its consistency.

Suppose for the moment the set constructed in step 2 consisted of all n study subject’s because
treatment regime dx is followed with probability 1 when T =T

∗
xt . In that case, under the NDE

assumption, we could calculate from the modified data set the utility of each of the n subjects
under the regime Gx using equation (28). Their sample average would be an unbiased estimate
of E(Gx ,Pᵀ)[Y ∗]. In practice, some subjects will have �xa (T

∗
xt )=0 and thus will not be included

in the set in step 2. Therefore, to preserve (asymptotic) unbiasedness we must, as in step 3 of the
algorithm, weight those with �xa (T

∗
xt )=1 by the estimated inverse 1/

∏K
k=0 g

ᵀ[A(k)|O∗,a
(k); �̂]

of their conditional probability (based on the unmodified data) of having �xa (T
∗
xt )=1 so as to

represent those with �xa (T
∗
xt )=0 that were removed from the data set in step 2. This inverse

probability weighting is formally justified by the fact that, as shown in the proof of Theorem A.1
in Appendix A, under the TPO∗ assumption,

(i) prG	[A=a|LA] is nonzero whenever a∈Ag, whereAg is the support of A under (G, P	)

and
(ii) the expression in square brackets in (27) (with the true � in place of �̂) equals∑

a∈Ag
I (A=a)m(x,a, La)/prG	[A=a|LA] for a function m(x,a, La) satisfying
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∑
a∈Ag

EPᵀ[m(x,a, La)]=E(Gx ,Pᵀ)[Y ∗]. Specifically, m(x,a, La) is �xa (T
∗
xt )Y

∗
mod except

with (A, LA) replaced by (a, La). That is,m(x,a, La)=	xa (a, t∗xt (a, La), La)×{y1(a, Za)−∑K−1
m=0 t

∗
xt ,m(a, La)cm(a(m), t∗xt ,m−1(a, La), L

∗
a(m−1),t∗xt ,m−1(a,La)

(m))}.

6.3.2. Special case 2. Special case 2 differs from special case 1 only in that we no longer assume
that all subjects in population Gᵀ at risk to initiate HAART receive a CD4 blood test every week.
That is, we no longer place a priori qualitative restrictions on g	[t (k)|a(k), t(k−1), l

∗
(k)]. In this

setting, it will be useful to define

�(t)=
K∏

k=0
I (T (k)�t (k)) (29)

Note �(t) is 1 if and only if at each time k that a subject would have been tested under the given
testing history t , they were, in fact, tested under their observed testing history T . Furthermore, in
special case 1 but not in special case 2, �(T

∗
xt )=1 with probability one since, in case 1, subjects

were in fact tested every week while at risk to initiate HAART. When, as in case 2, �(T
∗
xt ) may be 0,

�xa (T
∗
xt )=

∏K
k=0 I (A(k)=dxa ,k[A(k−1),T

∗
xt (k−1), L

∗
T

∗
xt (k−1)(k)]) may not be a function of the

observed data O
∗
that was generated under (Gᵀ, Pᵀ) because (i) L

∗
T

∗
xt (k−1)(k)may then be unknown

(i.e. missing) for certain values of k and (ii) the function dxa ,k[A(k−1),T
∗
xt (k−1), L

∗
T

∗
xt (k−1)(k)]

associated with the regime ‘start HAART the first time CD4 count drops below xa’ depends
nontrivially on L

∗
T

∗
xt (k−1)(k). Thus, estimator (27) of E(Gx ,Pᵀ)[Y ∗] cannot be used as it may fail to

be a function of the observed data. To overcome this difficulty, we instead estimate E(Gx ,Pᵀ)[Y ∗]
for a given x=(xa, xt ) by

Pn[�(T
∗
xt )�xa (T

∗
xt )Y

∗
modŴxt ] (30)

where

Ŵxt ≡
{

K∏
k=0

gᵀ[A(k)|O∗,a
(k); �̂] ∏

{k;T ∗
xt (k)=1}

gᵀ[T (k)|O∗,t
(k); �̂]

}−1

By replacing �xa (T
∗
xt ) by �(T

∗
xt )�xa (T

∗
xt ) we guarantee that equation (30) is a function

of the observed data. Furthermore, since not all subjects have �xt (T
∗
xt )�xa (T

∗
xt )=1, to

ensure unbiasedness (asymptotically) it is necessary to weight by Ŵxt . Note that the product∏
{k;T ∗

xt (k)=1} gᵀ[T (k)|O∗,t
(k); �̂] is computed only over the times k at which T ∗

xt (k) equals 1.

Furthermore, note that in this product we can replace gᵀ[T (k)|O∗,t
(k); �̂] with prG	[T (k)=

1|O∗,t
(k); �̂] because this product is premultiplied by the indicator �(T

∗
xt ) and in fact,

�(T
∗
xt )=1 implies T (k)=1 whenever T ∗

xt (k)=1. An informal understanding as to why Ŵxt
is the appropriate inverse probability weight can be obtained by considering a hybrid inter-
vention in which every xt weeks we intervene and force subjects to be tested. However,
for any week k with k not divisible by xt , we do not prevent all testing; rather we apply the
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random testing regime gᵀ[t (k)|o∗,t (k)]. However, in deciding treatment, we force each subject
to take the treatment history they would have taken if they followed the regime dx=(xa ,xt ),
thereby effectively ignoring the results of tests taken in weeks k not divisible by xt . Under
assumption I, the law of the hybrid regime is absolutely continuous with respect to G	
and the likelihood ratio (Radon-Nikodym derivative) of the law under the hybrid regime to
that under the regime G	 generating the observed data is precisely �(T

∗
xt )�xa (T

∗
xt )Wxt with

Wxt =1/
∏K

k=0 g
ᵀ[A(k)|O∗,a

(k)]∏{k;T ∗
xt (k)=1} gᵀ[T (k)|O∗,t

(k)]. Furthermore, if in calculating a
subject’s utility, only the costs of the tests obtained for weeks k divisible by xt are included,
the utility Y ∗ calculated under the hybrid regime equals that under the regime dx=(xa ,xt ). Thus
our parameter of interest, the expected utility E(Gx ,Pᵀ)[Y ∗] under Gx =dx=(xa ,xt ), will equal the
expected utility under the hybrid regime. Thus, under assumption I, the expected utility under the
hybrid regime will equal E(Gᵀ,Pᵀ)[�(T

∗
xt )�xa (T

∗
xt )Y

∗
modWxt ] by the Radon-Nikodym theorem.

[Recall that for subjects with �xa (T
∗
xt )=1, Y ∗

mod equals the utility Y ∗ that would be obtained
under Gx =dx=(xa ,xt ).]

In Appendix A, we prove in Corollary A.1 that (30) is a consistent estimator of E(Gx ,Pᵀ)[Y ∗]
when G	 is O

∗,a
-SR, the treatment and testing model parametrized by � is correct, the consistency

assumption C holds and the following assumption also holds.
Assumption identify (I): The set{

t; t�T Gx and
K∏

k=0
g	[AGx (k), t (k)|AGx (k−1), t(k−1), L

∗
AGx (k−1),t(k−1)(k)]>0

}

is nonempty with w.p.1. under Pᵀ where in gT we view the conditioning event as a realization of
the observed past and with the inequality interpreted componentwise.

Remark
We now provide a heuristic explanation of assumption I. The counterfactual random variables AGx

and T Gx in the statement of assumption I are those naturally associated with the deterministic
treatment and testing regime Gx =dx=(xa ,xt ). They are recursively constructed in a manner similar
to that of Section 4.2. They can alternatively be defined as follows. AGx is the unique solution to
	xa (a, t∗xt (a, La), La)=1. Furthermore, TGx = t∗xt (AGx , L AGx

). In addition, in what follows we will

also use the counterfactual LGx which is defined as LGx ≡ L AGx
. Note that with these definitions,

�xa (T
∗
xt )=1 if and only if AGx = A. Also, if AGx = A, then LGx = L and T Gx =T

∗
xt . Informally

assumption I states that for every possible treatment and testing history (AGx ,TGx ) that can occur
under (Gx , Pᵀ), there must exist a testing history t that results in a test each time T Gx does (and
possibly at other times as well) such that (AGx , t) has a nonzero probability of occurring under
(Gᵀ, Pᵀ). Assumption I is identifiable in the sense that if we knew the marginal distribution of O∗
in population Gᵀ,we could determine whether assumption I hold. Thus, we can determine from
the data whether it ‘almost fails’ as discussed in Section 4.3.

Although not explicitly stated as one of the conditions for consistency of (30), the TPO∗
assumption is indeed implicitly assumed since it is implied by the assumption I, as proved in
Theorem A.1 and Corollary A.1. Furthermore, it can be shown that the assumption I implies that
the hybrid regime is absolutely continuous with respect to G	.
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Estimation for arbitrary treatment and testing regimes when the utility function does not depend
on I : In both special cases 1 and 2, we assumed a particular treatment and testing regime dx=(xa ,xt ).
In fact, Corollary A.1 in Appendix A implies that the estimator of equation (30) is consistent
for E(Gx ,Pᵀ)[Y ∗] for any deterministic treatment and testing regime dx=(xa ,xt ) when G	 is O

∗,a
-

SR, assumptions C and I hold, and the model for treatment and testing is correct. Furthermore,
if the same assumptions required for the consistency of (30) hold for all x=(xa, xt ) in a set
X, a CAN estimator of the parameter �∗ of MSM (23) is the �̂ solving equation (21) with
Ûx redefined as �(T

∗
xt )�xa (T

∗
xt )Ŵxt and Y replaced by Y ∗

mod. Thus, we can view the data as
consisting of n×card(Xa)×card(Xt ) subjects indexed by the ordered triple (i, x1, x2), each of
whom is entered into a weighted least-squares regression of Y ∗

mod on (r(x,V )T,r∗(V )T) with

weight q∗(x,V )�(T
∗
xt )�xa (T

∗
xt )Ŵxt if and only if �(T

∗
xt )�xa (T

∗
xt )=1. The resulting weighted

least-squares estimator is precisely the estimator �̂. As above, once we have obtained a CAN
estimator of �∗, we can estimate the optimal joint strategy in our candidate class by the x̂opt(V )

that maximizes h(x,V, �̂).

6.3.3. Special case 3. In special cases 1 and 2 we assumed that Y was a function y1(A, Z) of
the always observed variables (A, Z) and in particular did not depend on any component of CD4
count history I . Case 3 differs from case 2 only in that we now suppose instead that Y = y(A, L)

is a nontrivial function of every component of I . This would be the case, for example, if the
study followed HIV-infected subjects with baseline CD4 count equal to 500 for one year and the
utility Y were the integrated CD4 count

∑K
m=0 I (m).

Consider the estimator (30) of E(Gx ,Pᵀ)[Y ∗] with Gx =dx=(xa ,xt ) and with Y now a nontrivial
function of I , for example, Y =∑K

m=0 I (m). The quantity displayed in (30) is no longer a function
of the observed data O

∗
. However, this quantity again becomes a function of the observed data if

we substitute I (T =1) for �(T
∗
xt ) where 1 is the vector of all 1’s.

However, this substitution requires us to replace the product
∏

{k;T ∗
xt (k)=1} by the product

∏K
k=0

in the definition of Ŵxt in order to obtain inverse probability weights that preserve consistency.
Corollary A.1 of Appendix A implies that with these changes, the modified quantity in (30) is
consistent for E(Gx ,Pᵀ)[Y ∗] provided G	 is O

∗,a
-SR, the testing and treatment model is correct,

and assumption C and the following assumption holds.

Assumption
For t=1,

K∏
k=0

g	[AGx (k), t (k)|AGx (k−1), t(k−1), L
∗
AGx (k−1),t(k−1)(k)]>0 with w.p.1. under Pᵀ

Note that because G	 is O
∗,a

-SR, this latter assumption is equivalent to the assumption that
prGᵀ[A= AGx ,T =1|LA]≡prGᵀ[�xa (T

∗
xt )=1,T =1|LA]>0 w.p.1. under Pᵀ.

6.3.4. Special case 4. We return to the problem of between-population extrapolation. We are
given data O

∗
generated under (G	, Pᵀ) and wish to estimate E(Gx ,Pᵀ)[Y ] for Gx as defined in

equations (14) and (15), with g[t (k)|a(k), t(k−1), l
∗
(k)] the known conditional testing density in

a population G and dx a deterministic treatment regime. However, we no longer assume that the
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PO∗ assumption holds so the approach of Section 6.2.1 is unavailable. For simplicity, we assume
that Y is only a function of (A, Z). Consider the estimator

Pn

[ ∑
t∗∈T

�(t∗)�x (t
∗
)Y Ŵ (t∗)

K∏
k=0

g[t∗(k)|A(k), t∗(k−1), L
∗
t∗(k−1)(k)]

]
(31)

where

Ŵ (t∗)=
{

K∏
k=0

gᵀ[A(k)|O∗,a
(k); �̂] ∏

{k;t∗(k)=1}
gᵀ[T (k)|O∗,t

(k); �̂]
}−1

with �x (t
∗
) as in equation (26) with xa = x and T the set of K +1 vectors of 0 and 1’s. Note that

estimator (31) is a sum of 2K+1 terms indexed by the vectors in T with each term identical to
those in estimator (30) except that Y ∗

mod is redefined to be Y and T
∗
xt is replaced by a given vector

t∗ ∈T. This estimator, while feasible in theory, will be computationally intractable when K is
large because the set T contains 2K+1 elements.

To decrease the computational burden, we construct a simulation-based estimator, moti-
vated by the observation that the subject-specific contribution to estimator (31) is the
expectation of �(t∗)�x (t

∗
)Y Ŵ (t∗) with respect to the conditional density g̃(t∗|A, L,T )≡∏K

k=0 g[t∗(k)|A(k), t∗(k−1), L
∗
t∗(k−1)(k)]. Therefore, we consider the simulation estimator

Pn

[
S−1

S∑
s=1

�(T
∗
s )�x (T

∗
s )Y Ŵ (T

∗
s )

]
where, for each subject, the T

∗
s are sampled independently from g̃(t∗|A, L,T ) by recursively

drawing from the Bernoulli densities g[t∗(k)|A(k), t∗(k−1), L
∗
t∗(k−1)(k)],k=0, . . . ,K . Corollary

A.2 of Appendix A implies that both estimator (31) and the associated simulation estimator are
consistent for E(Gx ,Pᵀ)[Y ∗] provided G	 and Gx are O

∗,a
-SR, the model for treatment and testing

is correct, assumption C and the NDE assumption hold, and the identifying assumption in display
(A1) given in Appendix A holds. Assumption (A1) is the generalization of Assumption I above
to the setting of a random testing regime. Like Assumption I it implies the TPO∗ assumption.

Furthermore, under these same conditions, for a given set of treatment regimes {dx ; x ∈X}
for which assumption (A1) holds, a CAN estimator of the parameter �∗ of the MSM (19) can
be obtained by weighted least squares as follows. View the data set as consisting of n×S×
card(X) subjects indexed by the ordered triple (i,s, x), each of whom is entered into the weighted
least-squares regression of Y on (r(x,V )T,r∗(V )T) with weight q∗(x,V )Ŵ (T

∗
s ) if and only if

�(T
∗
s )�x (T

∗
s )=1. Once we have obtained a CAN estimator of �∗, we can estimate the optimal

strategy in our candidate class by the x̂opt(V ) that maximizes h(x,V, �̂).

7. EXTRAPOLATION UNDER A NONIGNORABLE VISIT PROCESS

Suppose we have data from a comprehensive HMO database that records all patient visits. HIV-
infected patients come to a clinic to be seen by a physician at a time t either because of acute
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symptoms or because of a scheduled follow-up appointment. Data on the reason for a given visit
are often not recorded for data analysis. This random clinic visit process, unlike the regular weekly
visit process we have assumed heretofore, results in an association between visits and risk since
patients who are sick are generally more likely to return to the clinic at frequent intervals both
spontaneously and to keep frequent appointments (although it is possible moderately ill patients
who are not getting better come infrequently and miss many scheduled visits).

In this section, we consider the realistic setting of a random visit process. The visit process will
result in nonignorable missing data unless we collect data at t on the health status of not only those
who return to the clinic at t (which we typically do) but also those who do not come to the clinic
at t (which we almost never do). Although we shall assume that the visit process is nonignorable,
it is often reasonable to assume that among patients coming to the clinic at t , the decision to
treat or not can be viewed as effectively randomized (i.e. ignorable) given the data recorded in the
past including data on the health status measured at a visit at time t . Under this assumption, as
shown below, we can still estimate the optimal CD4 count at which to start HAART in the study
population (provided the utility Y is always observed) but extrapolation to another population of
biologically similar individuals with a different visit process becomes problematic.

We shall assume that a subject’s treatment only changes at the time of a clinic visit. This
assumption may (approximately) hold if we are interested in the causal effect of a treatment being
prescribed by a physician rather than the effect of the actual treatment taken by the patient, as
would be the case if either an intervention that would increase patient compliance is unavailable
or the only treatment data recorded for data analysis are the prescription data.

We shall also assume that the diagnostic and/or prognostic tests discussed earlier are obtained
at and only at each clinic visit. This assumption allows us to consider the clinic visit problem
without having to also worry about the diagnostic testing problem as well. We can then reuse our
previous notation by redefining T (m) to be the indicator of a clinic visit in week m+1, deleting
Z(m), and redefining I (m) to be all covariates that would be recorded at week m if a visit occurred
so that now L(m)= I (m). Therefore, L∗(m)= I ∗(m)=T (m−1)L(m) becomes the covariate data
actually observed at m. In this context, the NDE assumption that La = L j with probability one for

j =(a, t) becomes the assumption that a clinic visit has no effect on the responses L(m) except
through its effect on the treatments prescribed. For the NDE assumption to hold, A(t) would need
to encode the vector of all active treatments that a physician might prescribe to a patient at a clinic
visit in week t . Thus, if A(t) were simply the indicator variable that takes the value 1 if and only
if HAART has been initiated by time t , the NDE assumption would only hold if, as would never
actually be the case, physicians make no treatment interventions whatsoever once HAART has
been initiated.

Asmentioned above, even were our goal only to estimate the optimal treatment regime in the study
population, we require that the utility Y be observed for all study subjects. Therefore, we assume
that there exist ‘end point’ variables, such as the minimum of time of death and end of follow-up
at K +1, that are observed regardless of visit history but only become available after K +1, say by
consultation of the national death index. Such ‘end point’ variables can be easily appended to our
data by adding a formal ‘time’ K +2 to the data, setting by convention T (K +1) to 1 for all subjects,
and letting L(K +2) encode the vector of ‘end point’ variables. We take our prespecified utility
function to be a function Y = y(A, L(K +2)) of treatment history and such ‘end point’ variables.

Again we are given data O
∗
generated under (G	, Pᵀ) and wish to estimate the mean utility

E(Gx ,Pᵀ)[Y ] for x ∈X in a second population G with Gx as defined in equations (14) and (15).
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The following encodes the assumption that the treatment process is ignorable in the study
population Gᵀ.

Assumption treatment (Tr)-O
∗,a

-SR: We say a conditional law G of (A,T ) given LA is

treatment sequentially randomized given data O
∗
if for all k

gᵀ[a(k)|a(k−1), t(k−1), lA]=gᵀ[a(k)|a(k−1), t(k−1), l
∗
a(k−1),t(k−1)(k)] (32)

where we recall that the RHS of (32) can be written as gᵀ[a(k)|o∗,a(k)]. The assumption

gᵀ[a(k)|a(k−1), t(k−1), l
∗
a(k−1),t(k−1)(k)]= I (a(k)=a(k−1)) if t (k−1)=0

encodes the assumption that if, in the observed study population, a clinic visit did not occur at
time k, then a subject’s treatment does not change at k.

Suppose we did not wish to extrapolate to population G but rather wished to estimate the
expected utility E(Gᵀ

x ,Pᵀ)(Y ) in the study population Gᵀ when the treatment regime dx is followed,
where Gᵀ

x is defined like Gx but with gᵀ instead of g. Then, without making any assumptions
whatsoever concerning the visit process prGᵀ[T (k)=1|A(k),T (k−1), LA], E(Gᵀ

x ,Pᵀ)(Y ) is iden-

tified under the assumption that Gᵀ is TR-O
∗,a

-SR and the positivity assumption that pr[A(k)=
dx,k[A(k−1),T (k−1), L

∗
(k)]|A(k−1),T (k−1), L

∗
(k)]>0 for each k w.p.1. under (Gᵀ, Pᵀ).

Specifically, E(Gᵀ
x ,Pᵀ)(Y ) is identified and satisfies

EGᵀ
x ,Pᵀ(Y ) = EG	,Pᵀ[�x (T )YW ], where

W =
{

K∏
k=0

gᵀ[A(k)|A(k−1),T (k−1), L
∗
(k)]

}−1

and

�x (T )=
K∏

k=0
I (A(k)=dx,k[A(k−1),T (k−1), L

∗
(k)])

In contrast, if we want to extrapolate to a population G with a different visit process and estimate
E(Gx ,Pᵀ)[Y ], matters become more difficult. One approach would be to assume a nonignorable
selection bias model visit process for GT such as the following. For k=0, . . . ,K ,

prGᵀ[T (k)=1|A(k)=a(k),T (k−1), L
∗
(k),Ya = y]=1/{1+exp[−{Hᵀ

k (a)+Qᵀ
k (a, y)}]} (33)

where Hᵀ
k (a)=hᵀ

k (a,T (k−1), L∗(k)) is an unspecified function and Qᵀ
k (a, y)=qᵀ

k (a,T (k−1),
L∗(k), y) is a selection bias function that captures the association between the counterfactual
utility Ya and T (k) that remains after conditioning on the observed past (O

∗,a
(k), A(k)) and

that is assumed known for purposes of data analysis. In a sensitivity analysis, we would study
how our inferences concerning E(Gx ,Pᵀ)[Y ] change as we vary the selection bias function. If
model (33), the assumption that Gᵀ is TR-O

∗,a
-SR, and an appropriate positivity assumption

all hold, then it follows from Section 7 of Robins et al. [15] that if we regard g[T (k)|A(k)=
a(k),T (k−1), L

∗
(k),Ya = y] as a known function, g‡[T (k),a, L

∗
(k), y], say, then both Hk(A)

and EGx ,Pᵀ(Y ) are identified with the identifying formula for Hk(A) given in Section 7 of
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Robins et al. and

EGx ,Pᵀ(Y ) = EG	,Pᵀ[�x (T )YWW ‡], where

W ‡ =
{

K∏
k=0

g‡[T (k), A, L
∗
(k),Y ]{1+exp{Hᵀ

k (A)+Qᵀ
k (A,Y )}}

exp{Hᵀ
k (A)+Qᵀ

k (A,Y )}T (k)

}

In fact, in this context, the NDE assumption is often not required.
However, rather than taking this approach, we shall instead choose to make no assumptions

whatsoever concerning the conditional visit probabilities prGᵀ[T (k)=1|A(k),T (k−1), LA]
(which implies we also make no assumptions concerning prGᵀ[T (k)=1|A(k)=a(k),T (k−
1), L

∗
(k),Ya]). We will then investigate what assumptions, in addition to those needed to identify

EGᵀ
x ,Pᵀ(Y ), are required to identify E(Gx ,Pᵀ)[Y ] in this setting. We shall see that identification

requires both the NDE assumption and an assumption that implies the visit rate under Gx is less
than the rate under Gᵀ in a very strong sense.

Our identifying assumptions will require that, unlike earlier, we consider the joint distribu-
tion of the counterfactual variable T (a,Gᵀ) and TGx recording a subject’s visit histories under
regimes (a,Gᵀ) and Gx , where the regime (a,Gᵀ) denotes the regime with deterministic treat-
ment history a and random visit history determined by the visit process prGᵀ[T (k)=1|a(k), t(k−
1), LA] of the observed data. For notational convenience, we shall let T a denote T a,Gᵀ and T

‡

denote TGx . Further, we shall include Ta(k) as a component of La(k) and henceforth denote
the components of La(k) other than Ta(k) by Ha(k)=Ha(k−1)(k). It will also be notationally

useful to define H‡,∗
a(k−1),t‡(k−1)

(k)=Ha(k−1)(k)t‡(k−1) to distinguish it from H∗
a(k−1),ta(k−1)

(k)≡
Ha(k−1)(k)ta(k−1)(k−1).
With these notational changes, each candidate treatment regime dx is equal to a collection of

functions {dx,k;k=0, . . . ,K } where each dx,k maps the data (a(k−1), t‡(k−1),h
‡,∗
a(k−1),t‡(k−1)

(k))

that would be available at k under Gx to a treatment a(k). That is, dx,k[a(k−1), t‡(k−1),

h
‡,∗
a(k−1),t‡(k−1)

(k)]∈A(k). Furthermore, we assume

dx,k[a(k−1), t‡(k−1),h
‡,∗
a(k−1),t‡(k−1)

(k)]=a(k−1) if t‡(k−1)=0

to encode the assumption that treatment only changes at a visit. Further, by definition of Gx in
equations (14) and (15), there exists a known G such that, for all x’s, prGx

[T ‡(k)=1|A(k−1),

T
‡
(k−1), LA]≡prG[T ‡(k)=1|A(k−1),T

‡
(k−1), LA] whenever the density of the event (A(k−

1),T
‡
(k−1), LA) is nonzero under (Gx , Pᵀ), where now LA=(HA,TA). Our key identifying

assumption is the following.
Visit process (VP) assumption:

(i) For all k,

prG[T ‡(k)=1|A(k),T
‡
(k−1), LA]=prG[T ‡(k)=1|A(k),T

‡
(k−1),T (k),H

∗
(k)] (34)

where T (k)=T A(k)(k) and H
∗
(k)=H

∗
A(k−1),T (k−1)(k).
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(ii) No new visit (NNV ) assumption: With probability 1,

prG[T ‡(k)=1|A(k),T
‡
(k−1),T (k),H

∗
(k)]=0 if T (k)=0 (35)

Assumption (34) states that the g-conditional density of T ‡(k) given LA and (A(k),T
‡
(k−1))

depends on LA through and only through the components (T (k),H
∗
(k)) of LA that would be

observed under the regime (a,Gᵀ) with a(k−1)= A(k−1).
Under the VP assumption, the expected utility EGx ,Pᵀ[Y ] of Y = y(A, L(K +2)) is mathe-

matically well defined. Specifically, the expectation is w.r.t. to the density fGx ,Pᵀ(T
‡
, A, LA)=

gx (T
‡
, A|LA)pᵀ[LA] with

gx (T
‡
, A|LA) (36)

=
K∏

k=0
g[T ‡(k)|A(k),T

‡
(k−1),T (k),H

∗
(k)] (37)

×
K∏

k=0
I (A(k)=dx,k[A(k−1),T

‡
(k−1),H

‡∗
(k)]) (38)

where H
‡∗

(k)has components HA(m−1)(m)T ‡(m−1) for m�k.
Equation (35) formalizes the very strong sense in which the NNV assumption requires that

the visit rate under G is less than the visit rate under Gᵀ. Specifically, equation (35) states that
for any week k+1 in which a subject with treatment history A(k) would not have had a visit
under Gᵀ, he also would not have had a visit under G. The NNV assumption will essentially
never be precisely true, except in the special case in which all subjects made weekly visits under
Gᵀ so T (k) is always 1 for all k’s. However, as discussed below, it cannot be weakened without
sacrificing the identifiability of EGx ,Pᵀ[Y ] from the data O

∗
sampled from (Gᵀ, Pᵀ). Identification

will additionally require the following positivity assumption.
Restricted positivity (RP) assumption: With (Gx , Pᵀ) probability 1, for k�K ,gᵀ[a(k)|A(k−

1),T (k−2),H
∗
(k),T (k−1)=1]>0 for all a(k) in the support of A(k) under the conditional law

gx (a(k)|A(k−1), LA,T (k−1)=1), where we recall T (k−1)=TA(k−1)(k−1) and Ta(k−1)(k−
1)∈LA.

Note the RP assumption only refers to the case TA(k−1)(k−1)=1. The case TA(k−1)(k−
1)=0 follows from the NNV assumption. That is, by assumption, gᵀ[a(k)|A(k−1),T (k−2),
H

∗
(k),T (k−1)=0]= I (a(k)= A(k−1)). But, under the NNV assumption, gx (a(k)|A(k−1),

LA,T (k−1)=0)= I (a(k)= A(k−1)) also holds.
Our main result is the following.

Theorem 7.1
Suppose Gᵀ is TR-O

∗,a
-SR, and for known g[T ‡(k)|A(k),T

‡
(k−1), LA] and dx , the NDE, the

VP, the RP, and the C assumptions hold. Then, EGx ,Pᵀ[Y ] with Y = y(A, L(K +2)) is identified
from data O

∗
generated under (G	, Pᵀ) and equals EG	,Pᵀ[U †(g,g	)Y ], where U †(g,g	)
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with

U †(g,g	)=
∑

t‡∈T‡
∏K

k=0 g[t‡(k)|A(k), t‡(k−1),T (k),H
∗
(k)]�x (t

‡
)∏K

k=0 g
ᵀ[A(k)|A(k−1),T (k−1),H

∗
(k)]

with �x (t
‡
)=∏K

k=0 I (A(k)=dx,k[A(k−1), t‡(k−1),H
‡,∗
A(k−1),t‡(k−1)

(k)]).
Proof
Under (Gx , Pᵀ) and (Gᵀ, Pᵀ), respectively, the likelihood of an observation (A, LA) is∑

t‡∈T‡ g(A, t‡|LA)pᵀ(LA) and gᵀ(A|LA)pᵀ(LA). Under our assumptions,
∑

t‡∈R‡ g(A,

t‡|LA)pᵀ(LA) is absolutely continuous w.r.t. gᵀ(A|LA)pᵀ(LA) and the Radon-Nikodym
derivative is U †(g,g	). Thus, EG,Pᵀ[Y ]=E(Gᵀ,Pᵀ)[U †(g,g	)Y ]. Finally, U †(g,g	) and Y are
functions of the observed data O

∗
. �

The above proof of identifiability would have failed if the NNV assumption did not hold. First,
absolute continuity would have failed because, the joint event A(k) �= A(k−1) and TA(k−1)(k)=0,
which has probability zero under (Gᵀ, Pᵀ), could then have nonzero probability under (Gx , Pᵀ).
In addition, if the NNV assumption did not hold, �x (t

‡
) need not be a function of O

∗
.

Recall that our final goal is to optimize E(Gx ,Pᵀ)[Y |V ] over x ∈X. Suppose we specify an MSM
E(Gx ,Pᵀ)[Y |V ]=h(x,V,�∗) with h(x,V,�)=(r(x,V )T,r∗(V )T)�. Then, for a given q∗(x,V ),
if the assumptions of Theorem 7.1 hold for all x ∈X, Theorem 7.1 implies the estimator �̂ solving
(21) remains CAN when we replace the numerator of Ûx in (21) by the numerator of U †(g,g	)

and the denominator by
∏K

k=0 g
ᵀ[A(k)|A(k−1),T (k−1),H

∗
(k); �̂].

However, the estimator �̂ will often be computationally infeasible when K is large because the

set R
‡
contains 2K+1 elements. Therefore, we replace the previous expression with its unbiased

simulation-based estimator S−1∑S
s=1�x (t

‡
s ), where, for s=1, . . . , S and k=0, . . . ,K +1, t‡s (−1)

is defined to be zero and t‡s (k) is obtained recursively as a random draw from the (assumed

known) Bernoulli density g[t‡(k)|A(k), t‡(k−1),H
‡,∗
A(k−1),t‡(k−1)

(k)] and t‡s = t‡s (K ). With this

replacement, the solution �̃ to the resulting estimating equation remains a CAN estimator of �∗,
when the model gᵀ[A(k)|A(k−1),T (k−1),H

∗
(k);�] is correct. Once we have obtained a CAN

estimator of �∗, we can estimate xopt(V )= xopt(V,�∗) by xopt(V, �̂) as above.
In summary, the above development documents the very strong assumptions required to identify

E(Gx ,Pᵀ)[Y |V ] from data generated under (Gᵀ, Pᵀ) in the presence of an arbitrary unmodelled
nonignorable visit process Gᵀ that differs from the visit process of Gx . Two particular problems
that we have yet to address are: How does one use one’s limited knowledge of the population G

to which we wish to extrapolate to choose the function g[T ‡(k)|A(k),T
‡
(k−1),T (k),H

∗
(k)]

needed to implement our estimator and how does one quantify the bias that results from imposing
the NNV assumption when that assumption is incorrect. These are very difficult questions with
no single ‘correct’ answer and any answer is lengthy. For this latter reason, we defer our answers
to a future paper in which we will also consider in greater detail the alternative approach to the
nonignorable visit process problem based on a nonignorable model such as equation (33).
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APPENDIX A

In this appendix, we prove a general theorem that subsumes the special cases treated in Section
6.3. Let c̃(a, t, l) be a general function of (a, t, l). We think of c̃(a, t, l) as the most general
possible utility function. That is, the utility Y ∗ is given by Y ∗ = c̃(A,T , L). Define uc̃(k,a, t, l)=1
if c̃(a, t, l), as a function of l=(z, i), depends nontrivially on the k+1th component i(k+1)of i
and define uc̃(k,a, t, l)=0, otherwise. Given a function c̃(a, t, l) and a conditional law g	(t |L, A),
define the sets

B
∗
c̃(l,a, t∗) = {t; t (k)�max{t∗(k),uc̃(k,a, t∗, l)} for k=0, . . . ,K +1}

Bc̃,g	(l,a, t∗) = {t ∈B
∗
c̃(l,a, t∗);g	(t |l,a)>0}

and

K(a, t, l)={k; t (k)+uc̃(k,a, t, l)>0,0�k�K }
Theorem A.1
Suppose G and Gᵀ are O

∗a
-SR with the same marginal distribution Pᵀ for LA and that the NDE

assumption holds. Further, suppose that

Bc̃,g	(La,a, t∗) is nonempty for all (a, t∗)∈Jg(LA) w.p.1. under P	 (A1)

where Jg(LA) is the support of J =(A,T ) under g(a, t∗|LA). Then,

(a) EG,Pᵀ [̃c(A,T , L)] is identified from data O
∗
generated under (G	, Pᵀ) and it equals

EG	,Pᵀ[U (g,g	)] where U (g,g	)≡u(O
∗;g,gᵀ) is defined as∑

t∗∈Tg(A,L)
I (T ∈Bc̃(L, A, t∗))̃c(A, t∗, L)

∏K
k=0 g[A(k), t∗(k)|A(k−1), t∗(k−1), L

∗
t∗(k−1)(k)]∏K

k=0 g
ᵀ[A(k)|A(k−1),T (k−1), L

∗
(k)]∏k∈K(A,t∗,L) g

ᵀ[T (k)|A(k),T (k−1), L
∗
(k)]

(A2)

with Tg(A, L) the support of T under g(t |A, L), and
(b) the TPO∗ assumption of equation (24) holds.

Remark A.0
Note that by G being O

∗a
-SR, it holds that g(t |A, L)=g(t |A, LA) and consequently, Tg(A, L)

is also the support of T under g(t |A, LA), which we denote by Tg(A, LA).

Remark A.1
Note c̃(A, t∗, L) and L

∗
t∗(k−1)(k) are both functions of O

∗ =(A,T , L
∗
T ) whenever T ∈Bc̃(A, t∗, L).

It then follows as stated in the theorem that U (g,g	) is a function of O
∗
.

Corollary A.1
If the suppositions of Theorem A.1 hold, G=Gx =dx=(xa ,xt ),uc̃(k,a, t, l) is the zero function,
then EG,Pᵀ [̃c(A,T , L)] is equal to

EG	,Pᵀ

⎡⎣⎧⎨⎩ �(T
∗
xt )�xa (T

∗
xt )̃c(A,T

∗
xt , L)∏K

k=0 g
ᵀ[A(k)|A(k−1),T (k−1), L

∗
(k)]∏k∈K(A,T

∗
xt ,L)

gᵀ[T (k)|A(k),T (k−1), L
∗
(k)]

⎫⎬⎭
⎤⎦
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Furthermore, equation (A1) is equivalent to the assumption that the set{
t; t (k)�TGx (k) and

K∏
k=0

g	[AGx (k), t (k)|AGx (k−1), t(k−1), L
∗
AGx (k−1),t(k−1)(k)]>0

}
is nonempty w.p.1. under Pᵀ.

Corollary A.2
If the suppositions of Theorem A.1 hold and G=Gxa , with Gx as defined in equations (14) and
(15), then EG,Pᵀ [̃c(A,T , L)] is equal to

EG,G	,Pᵀ

⎡⎣ 1

S

S∑
s=1

⎡⎣ I (T ∈Bc̃,g	 (L, A,T
∗
s , ))̃c(A,T

∗
s , L)	xa (A,T

∗
s , L)∏K

k=0 g
ᵀ[A(k)|A(k−1),T (k−1), L

∗
(k)]∏k∈K(A,T

∗
s ,L)

gᵀ[T (k)|A(k),T (k−1), L
∗
(k)]

⎤⎦⎤⎦
with EG,G	,Pᵀ the expectation taken under fG,G	,Pᵀ(t∗1, . . . t

∗
S, t,a, l)≡{∏S

s=1g̃(t
∗
s |a, l, t)} fG	,Pᵀ

(a, t, l), where g̃(t∗s |a, l, t)≡∏K
k=0 g[t∗s (k)|a(k), t∗s (k−1), l

∗
t∗s (k−1)(k)].

Proof of Theorem A.1
Let Ag(LA) denote the support of A under g(a|LA). Then

EG,Pᵀ [̃c(A,T , L)]

=EPᵀ

⎡⎣ ∑
(a,t∗)∈Jg(LA)

c̃(a, t∗, La)g(a, t∗|LA)

⎤⎦

=EPᵀ

⎡⎣ ∑
(a,t∗)∈Jg(LA)

c̃(a, t∗, La)
K∏

k=0
g[a(k), t∗(k)|a(k−1), t∗(k−1), L

∗
a(k−1),t∗(k−1)(k)]

⎤⎦

=EPᵀ

⎡⎣ ∑
(a,t∗)∈Jg(LA)

c̃(a, t∗, La)
K∏

k=0
g[a(k), t∗(k)|a(k−1), t∗(k−1), L

∗
a(k−1),t∗(k−1)(k)]

×
⎧⎨⎩ ∑

t∈Bc̃,g	 (La ,a,t∗,)

∏
{k;t∗(k)=u(k,a,t∗,La)=0}

gᵀ[t (k)|a(k), t(k−1), L
∗
a(k−1),t∗(k−1)(k)]

⎫⎬⎭
⎤⎦

=EG	,Pᵀ

⎧⎨⎩ ∑
(a,t∗)∈Jg(LA)

∑
t∈Bc̃,g	 (a,t∗,La)

I (A=a)I (T = t)

gᵀ[a, t |LA]

× ∏
{k;t∗(k)=u(k,a,t∗,La)=0}

gᵀ[t (k)|a(k), t(k−1), L
∗
a(k−1),t∗(k−1)(k)]

× c̃(a, t∗, La)
K∏

k=0
g[a(k), t∗(k)|a(k−1), t∗(k−1), L

∗
a(k−1),t∗(k−1)(k)]

⎫⎬⎭
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=EG	,Pᵀ

⎧⎨⎩ ∑
t∗∈Tg(A,L)

I [A∈Ag(LA)] I (T ∈Bc̃(L, A, t∗))
gᵀ[A,T |LA]

× ∏
{k;t∗(k)=u(k,A,t∗,L)=0}

gᵀ[T (k)|A(k),T (k−1), L
∗
(k)]

× c̃(A, t∗, L)
K∏

k=0
g[A(k), t∗(k)|A(k−1), t∗(k−1), L

∗
A(k−1),t∗(k−1)(k)]

⎫⎬⎭
=EG	,Pᵀ[u(O

∗;g,gᵀ)]
where the second equality follows because G is O

∗a
-SR, the third follows because, by

the definition of Bc̃,g	(La,a, t∗), and assumption (A1) the expression in set braces equals∏
{k;t∗(k)=u(k,a,t∗,La)=0}[

∑1
t (k)=0 g

ᵀ[t (k)|a(k), t(k−1), L
∗
a(k−1),t∗(k−1)(k)]], the fourth follows

because

EG	

[
I (A=a)I (T = t)

gᵀ[a, t |LA]

∣∣∣∣∣ LA

]
=EG	

[
I (A=a)

gᵀ[a|LA]
I (T = t)

gᵀ[t |La,a]

∣∣∣∣∣ LA

]
=1

for t ∈Bc̃,g	(La,a, t∗) by gᵀ[a, t |LA] being O
∗a
-SR, part (b) of this theorem (to be shown

next) and equation (A1), the fifth follows because I (T ∈Bc̃,g	(L, A, t∗))=1 is equivalent to

I (T ∈Bc̃(L, A, t∗))=1 under Gᵀ, and the last equality follows because∏
{k;t∗(k)=u(k,A,t∗,L)=0}

gᵀ[T (k)|A(k),T (k−1), L
∗
(k)]/gᵀ[A,T |LA]

=
K∏

k=0
gᵀ[A(k)|A(k−1),T (k−1), L

∗
(k)] ∏

{k;t∗(k)+u(k,A,t∗,L)>0}
gᵀ[T (k)|A(k),T (k−1), L

∗
(k)]

by gᵀ[A,T |LA] being O
∗a
-SR.

Finally, the TPO∗ assumption of equation (24) holds because (i) by (A1) for all a such
that g(a|LA)>0, there exists a t such that g	(t |La,a)>0 and (ii) by Gᵀ being O

∗a
-SR,

g	(t |La,a)>0⇒g	
A,T |La

(a, t |La)=g	(a, t |LA)>0⇒g	(a|LA)>0. �

Proof of Corollary A.1
The numerator of equation (A2) equals �(T

∗
x2)�x1(T

∗
x2 )̃c(A,T

∗
x2, L) when G=dx=(x1,x2).

Moreover, under regime Gx =dx=(xa ,xt ) the support of (A,T ) under g(a, t∗|LA) is the singleton
(AGx ,T Gx ). However, arguing as in the proof of part (b) of the theorem

g	(t |La,a)|a=AGx
> 0 ⇔ g	

A,T |La
(a, t |La)|a=AGx

=g	(a, t |LA)|a=AGx

=
K∏

k=0
g	[a(k), t (k)|a(k−1), t(k−1), L

∗
a(k−1),t(k−1)(k)]|a=AGx

>0 �
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Proof of Corollary A.2
Corollary A.2 follows at once from the observation that the numerator of equation (A2) equals

∑
t∗∈Tg(A,L)

{
I (T ∈Bc̃,g	Bc̃,g	(L, A,T

∗
))�xa (A, t∗, L)

×c̃(A, t∗, L)
K∏

k=0
g[t∗(k)|A(k), t∗(k−1), L

∗
t∗(k−1)(k)]

}
which can be written as Eg̃[	xa (A,T

∗
, L)I (t ∈Bc̃,g	(L, A,T

∗
))̃c(A,T

∗
, L)|A, L,T ]. �
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