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Abstract

This paper develops a new approach to change-point modeling that
allows the number of change-points in the observed sample to be un-
known. The model we develop assumes regime durations have a Pois-
son distribution. It approximately nests the two most common ap-
proaches: the time varying parameter model with a change-point every
period and the change-point model with a small number of regimes.
We focus considerable attention on the construction of reasonable hier-
archical priors both for regime durations and for the parameters which
characterize each regime. A Markov Chain Monte Carlo posterior sam-
pler is constructed to estimate a version of our model which allows for
change in conditional means and variances. We show how real time
forecasting can be done in an e¢ cient manner using sequential impor-
tance sampling. Our techniques are found to work well in an empirical
exercise involving US GDP growth and in�ation. Empirical results
suggest that the number of change-points is larger than previously
estimated in these series and the implied model is similar to a time
varying parameter (with stochastic volatility) model.
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1 Introduction

Many recent papers have highlighted the fact that structural instability
seems to be present in a wide variety of macroeconomic and �nancial time
series [e.g. Ang and Bekaert (2002) and Stock and Watson (1996)]. The
negative consequences of ignoring this instability for inference and forecast-
ing has been stressed by, among many others, Clements and Hendry (1998,
1999), Koop and Potter (2001) and Pesaran, Pettenuzzo and Timmerman
(2006). This has inspired a wide range of change-point models. There are
two main approaches: one can estimate a model with a small number of
change-points (usually one or two). Alternatively, one can estimate a time
varying parameter (TVP) model where the parameters are allowed to change
with each new observation, usually according to a random walk. A TVP
model can be interpreted as having T�1 breaks in a sample of size T . Recent
in�uential empirical work includes McConnell and Perez (2000) who use a
single change-point model to present evidence that the volatility of US eco-
nomic activity abruptly fell in early 1984. In a TVP framework, Cogley and
Sargent (2001) model in�ation dynamics in the US as continuously evolving
over time.

Models with a small number of structural breaks typically do not re-
strict the magnitude of change in the coe¢ cients that can happen after a
break, but implicitly assume that after the last break is estimated in the
sample there will be no more breaks. In contrast, in the TVP model there
is probability 1 of a break in the next new observation. However, for the
TVP model the size of the break is severely limited by the assumption that
coe¢ cients evolve according to a random walk.

The previous paragraphs highlight the two main issues which must be
addressed when building a change-point model: how to model the duration
of each regime and how to model the change in coe¢ cients after a break
occurs. In this paper, we develop a new model which, we argue addresses
both of these issues in a empirically-sensible manner. For reasons outlined
below, we use Bayesian methods. The model we develop draws on our beliefs
that desirable features for a change-point model are:

1. The number of regimes and their maximum duration should not be
restricted ex-ante.

2. The regime duration distribution should not be restricted to be con-
stant or monotonically decreasing/increasing.

3. The parameters describing the distribution of the parameters in each
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regime should, if possible, have conditionally conjugate prior distribu-
tions to minimize the computational complexity of change-point mod-
els.

4. Durations of previous regimes can potentially provide some informa-
tion about durations of future regimes.

5. The parameters characterizing a new regime can potentially depend
on the parameters of the old regime.

6. The change-point model should be easy to update in real time as new
data arrives on the time series of interest.

It can immediately be seen that standard implementations of the TVP
model and models with small numbers of breaks do not have these features.
Furthermore, as we shall see, common Bayesian approaches to these models
(which augment standard implementations with hierarchical priors) also do
not have these features.

Bayesian methods are attractive for change-point models since they can
allow for �exible relationships between parameters in various regimes and
are computationally simple. That is, in a model with M > 1 regimes, hi-
erarchical priors can be used to allow information about coe¢ cients in the
jth regime (or the duration of the jth regime) to depend on information in
the other regimes. Such an approach can improve estimation of coe¢ cients.
It is particularly useful for forecasting in the presence of structural breaks
since it allows for the possibility of out-of-sample breaks. That is, in the
model we develop, a new break can be forecast after the end of the sample
and size of the break is partly dependent on the properties of the previous
regime, partly dependent on the history of all previous breaks and partly
has a random element. With regards to computation, use of a hierarchical
prior allows the researcher to structure the model so that, conditional on un-
known parameters (e.g. the change-points) or a vector of latent data (e.g. a
state vector denoting the regimes), it is very simple (e.g. a series of Normal
linear regression models). E¢ cient Markov Chain Monte Carlo (MCMC)
algorithms which exploit this structure can be developed. This allows for
the estimation of models, using modern Bayesian methods, with multiple
change-points that are di¢ cult under the standard classical approach to
change-point problems. However, with some partial exceptions [e.g. Chib
(1998), Pesaran, Pettenuzzo and Timmerman (2006) and Stambaugh and
Pastor (2001)], we would argue that the existing Bayesian literature in eco-
nomics has not fully exploited the bene�ts of using hierarchical priors. In
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addition, this literature has, following the existing frequentist literature, fo-
cussed on either models with a small number of breaks or TVP models.
Furthermore, as argued in Koop and Potter (2004), some commonly-used
Bayesian priors have undesirable properties.

The plan of this paper is as follows. In Section 2 we review the link
between change-points and hidden Markov chains. In Section 3 we develop
our new model of regime duration. In Section 4 we construct a method for
modeling the change in regime coe¢ cients based on a similar hierarchical
structure to the TVP model. Section 5 gives an overview of the posterior
simulator used in our Bayesian analysis.1 This section also shows how se-
quential importance sampling (i.e. particle �ltering2) methods can be used
with our model to carry out real time forecasting in a computationally ef-
�cient manner. Section 6 contains applications to US GDP growth and
in�ation as measured by the PCE de�ator. We compare the results of our
approach with that of a single structural break and a TVP model and �nd
them to be closer to the latter. In general, we �nd our methods to reli-
ably recover key data features without making the potentially restrictive
assumptions underlying other popular models.

2 Change-Point Models and HiddenMarkov Chains

In order to discuss the advantages of our model, it is worthwhile to begin
by describing in detail some recent work and, in particular, the innova-
tive model of Chib (1998) which has been used in many applications [e.g.
Pastor and Stambaugh (2001), Kim, Nelson and Piger (2002) and Pesaran,
Pettenuzzo and Timmerman (2006)].3 In terms of computation, our focus
is on extending Chib�s insight of converting the classical change-point prob-
lem into a Markov mixture model and using the algorithm of Chib (1996)
to estimate the change-points and the parameters within each regime.

We have data on a scalar time series variable, yt for t = 1; : : : ; T and
let Yi = (y1; : : : ; yi)

0 denote the history through time i and denote the
future by Y i+1 = (yi+1; : : : ; yT )

0. Regime changes depend upon a dis-

1Complete details are provided in the working paper version with title "Forecasting and
Estimating Multiple Change-point Models with an Unknown Number of Change-points"
available at http://personal.strath.ac.uk/gary.koop/.

2Particle �ltering is sequential importance sampling with resampling. For our purposes,
resampling is not required (although we describe how it can be done).

3 In contrast, a recent in�uential Bayesian paper, Maheu and Gordon (2005), does not
apply such a hiearchical prior structure and, thus, is not directly comparable to the papers
discussed in this section.
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crete random variable, st, which takes on values f1; 2; : : : ;Mg. We let
Si = (s1; : : : ; si)

0 and Si+1 = (si+1; : : : ; sT )
0. The likelihood function is

de�ned by assuming p (ytjYt�1; st = m) = p (ytjYt�1; �m) for a parameter
vector �m for m = 1; : : : ;M � T . Thus, change-points occur at times �m
de�ned as

�m = ft : st+1 = m+ 1; st = mg for m = 1; : : : ;M � 1: (2.1)

The durations of regimes are de�ned as:4

dm = �m � �m�1:
Chib (1998) puts a particular structure on this framework by assuming

that st is Markovian. Speci�cally he assumes,

Pr (st = jjst�1 = i) =

8>><>>:
pi if j = i 6=M

1� pi if j = i+ 1
1 if i =M
0 otherwise

(2.2)

In words, the time series variable goes from regime to regime. Once it has
gone through the mth regime, there is no returning to this regime. It goes
through regimes sequentially, so it is not possible to skip from regime i to
regime i+2. Once it reaches theM th regime it stays there (i.e. it is assumed
that the number of change-points in the sample is known). In Bayesian
language, (2.2) describes a hierarchical prior for the vector of states.5

To avoid confusion, we stress that change-point models can be parame-
terized in di¤erent ways. Many models indicate when each regime occurs by
parameterizing directly in terms of the change-points (i.e. �1; : : : ; �M�1).
Others are written in terms of states which denote each regime (i.e. ST ).
It is also possible to write models in terms of durations of regimes (i.e.
d1; ::; dm). In the following material, we use all of these parameterizations,
depending on which best illustrates the points we are making. However, we
do stress that they are equivalent.

There are many advantages to adopting the framework of Chib (1998).
For instance, previous models often involved searching over all possible sets

4 In this de�nition we set �0 = 0 and, thus, the �rst observation signi�es the beginning
of the �rst regime. An alternative treatment, pursued in the working paper version of this
paper, is to let �0 be an unknown parameter.

5A non-Bayesian may prefer to interpret such an assumption as part of the likelihood,
but this is merely a semantic distinction with no e¤ect on statistical inference [see, e.g.,
Bayarri, DeGroot and Kadane (1988)]. In the working paper version, we discuss how Bai
and Perron�s (1998, 2003) methods can be re-interpreted in this way.
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of break points. If the number of break points is even moderately large, then
computational costs can become overwhelming [see, for instance, the discus-
sion in Elliott and Muller (2006)]. By using the Markov mixture model,
the posterior simulator is recovering information on the most likely change-
points given the sample and the computational burden is greatly lowered,
making it easy to estimate models with many change-points. Appendix A
describes this algorithm (which we use, with modi�cations, as a component
of the posterior simulator for our model).

Chib chose to model the states� transition probabilities as being con-
stants. One consequence of this is that regime duration satis�es a Geomet-
ric distribution, a possibly restrictive choice. For instance, the Geometric
distribution is decreasing, implying that p (dm) > p (dm + 1) which (in some
applications) may be unreasonable. In the model we introduce below, we
generalize this restriction by allowing regime duration to follow a more �ex-
ible Poisson distribution.

Furthermore, the model of Chib (1998) assumes that exactly M regimes
exist in the data. In Koop and Potter (2004), we show how this implicitly
imposes on the prior a very restrictive form which will tend to put excessive
weight near the end of the sample. That is, the standard hidden Markov
model (i.e. without restrictions such as those given in equation 2.2) will use
probabilities

Pr[sT =M jsT�1 =M ] = pM ;Pr[sT =M jsT�1 =M�1] = 1�pM�1: (2.3)

To impose that exactlyM regimes occur, this has to be changed to the equal
probabilities:

Pr[sT =M jsT�1 =M ] = Pr[sT =M jsT�1 =M � 1] = 1: (2.4)

If M > 2, additional restrictions are required. To express these restrictions
in words, consider the case M = 3. If, in period T � 1, we are not already
in the third regime, then it must the case that a regime switch occurs in
period T and this must be imposed on the model. Similarly, if, in period
T � 2, we are still in the �rst regime, then we must impose that regime
switches occur in both periods T � 1 and T , in order to ensure that M = 3.
In our previous work, we explored the consequences of such restrictions and
argued that they can have a substantial impact on posterior inference in
practice. We further argued that other sensible priors which impose exactly
M regimes will also run into similar problems. Partly for this reason, we
argued that it is important to develop a hierarchical prior which treats the
number of regimes as unknown. For the issue of forecasting, these issues are
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even more important, since these prior restrictions occur at the end of the
sample, precisely where forecasting begins.

Chib (1998) did not consider the question of out-of-sample forecasting.
If one were to assume no additional breaks occur out-of-sample, forecasting
could be done in a straightforward fashion, based on the likelihood and prior
which hold at the end of the sample (i.e. p (yT jYT�1; �M ) and p (�M )). Such
an approach, of course, does not address the issue of forecasting when breaks
can occur out of sample. Pesaran, Pettenuzzo and Timmerman (2006) took
up the challenge of extending the Chib approach to address this latter issue.
They assume a constant transition probability matrix out-of-sample which
allows for a probability of a break occurring in each out-of-sample period.
Their approach is attractive and, in many ways, a sensible one. However, in
adapting the approach of Chib (1998) in this manner, some problems arise.
Remember that, to impose exactlyM regimes in-sample, restrictions such as
(2.4) must be imposed. But, out-of-sample, to allow for breaks to occur, it
is desirable to revert to an unrestricted transition probability such as (2.3).
Pesaran, Pettenuzzo and Timmerman (2006) explicitly assume that

P [st =M jst�1 =M ] =
�

1 if t � T
pM if t > T

; (2.5)

with the restriction that P [sT =M ] = 1: This assumption, since it is at the
end of sample, could conceivably have an important in�uence on forecasting.
To try and understand this assumption better, consider what would happen
if we increase the observed sample by one observation. Most Bayesians would
argue that any statistical procedure for updating in response to the addition
of an extra observation should satisfy Bayes�rule. However, the updating
of Pesaran, Pettenuzzo and Timmerman (2006) with an extra observation
could be taken to imply:

P [st =M jst�1 =M ] =
�

1 if t � T + 1
pM if t > T + 1

; P [sT+1 =M ] = 1;

which is inconsistent with (2.5) and violates Bayes�Rule.
These problems arise due to the imposition of exactly M breaks in-

sample. Pesaran, Pettenuzzo and Timmerman (2006) partly address this
problem through considering models with di¤erent values for M and then
doing Bayesian model averaging. This is a sensible thing to do, but does
not fully address the problems noted above (i.e. a pile-up of probability
near the end of the sample and the di¢ culty in adapting the approach to
out-of-sample forecasting in a way which does not violate Bayes�rule). In
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the next section, we will propose our model which does not impose a �xed
number of breaks in-sample and, hence, does not run into these problems.

Another relevant paper is McCulloch and Tsay (1993). The model used
in this paper is di¤erent in many ways from Chib (1998) and Pesaran, Pet-
tenuzzo and Timmerman (2006). However, it does have regimes changing
with a certain probability. McCulloch and Tsay do not assume a �xed num-
ber of breaks and do not face the problems noted above since they assume
that the probability of a break occurring is constant for all observations (in
an extension, they allow this probability to depend on additional covariates).
In essence, whereas Chib (1998) allows the probability of a break in regime j
to be pj , in McCulloch and Tsay (1993) this is simpli�ed to a single p. This
p can be estimated in-sample and then used in out-of-sample forecasting,
thus precluding the need for an assumption such as (2.5). However, the as-
sumption of a time- and regime-invariant transition probability is restrictive
in many macroeconomic contexts. Furthermore, it will share many of the
restrictive features of Chib (1998). For instance, the hierarchical prior for
regime duration will be a Geometric distribution.

In summary, the pioneering work of Chib (1998) followed by the work
of Pesaran, Pettenuzzo and Timmerman (2006) has changed the way many
look at change-point models. Both papers have had great in�uence and have
many attractive features. In terms of posterior computation, Chib (1998)
continues to be very attractive and, indeed, we use a modi�cation of this
algorithm as part of our posterior simulator. However, the hierarchical prior
has some potentially undesirable properties which leads us to want to build
on these previous approaches.

3 A Poisson Hierarchical Prior for Durations

The previous discussion illustrates some restrictive properties of traditional
hierarchical priors used in the change-point literature and leads to our con-
tention that it is desirable to have a model for durations which satis�es the
six criteria listed in the introduction. In this section we develop our alter-
native approach based on a Poisson model for durations.6 This approach
does not restrict the number or maximum durations of regimes ex-ante, it
has a convenient conjugate prior distribution in the Gamma family and the

6Of course, there are many other popular options for modeling durations other than
the Poisson. Bracqemond and Gaudoin (2003) o¤ers a good categorization of di¤erent
possibilities and explains their properties. Our methods could be extended to deal with
any of these in a straightforward manner.
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regime duration distribution is not restricted to be constant or monotoni-
cally decreasing/increasing. It also allows information about the duration
of past regimes to a¤ect the duration of the current regime and potentially
the magnitude of the parameter change from old to new regime.

We use a hierarchical prior for the regime durations which is a Poisson
distribution. That is, p (dmj�m) is given by:

dm � 1 = �m � (�m�1 + 1) � Po(�m) (3.1)

where Po(�m) denotes the Poisson distribution with mean �m. With this
hierarchical prior it makes sense to use a (conditionally conjugate) Gamma
prior on �m. If we do this, it can be veri�ed that p (dm), the marginal prior
for the duration between change points, is given by a Negative Binomial
distribution.

To provide some intuition, remember that the assumption comparable
to (3.1) in the model of Chib (1998) was that the duration had a hierarchical
prior which was Geometric (apart from the end-points). Chib (1998) used a
Beta prior on the parameters. This hierarchical prior [and, as shown in Koop
and Potter (2004), the marginal prior p (dm)] implies a declining probability
on regime duration so that higher weight is placed on shorter durations. In
contrast, the Poisson form we use for p (dmj�m) and the implied Negative
Binomial form for p (dm) which we work with have no such restriction.

However, the prior given in (3.1) also has the unconventional property
that it allocates prior weight to change-points outside the observed sample.
That is, there is nothing in (3.1) which even restricts d1 < T much less
dm < T for m > 1. We will argue that this is a highly desirable property
since, not only does this prior not place excessive weight on change-points
near the end of the sample, but also there is a sense in which it allows us to
handle the case where there is an unknown number of change-points. That
is, suppose we allow for m = 1; :::;M regimes. Then, since some or all of the
regimes can terminate out-of-sample, our model implicitly contains models
with no breaks, one break, up to M � 1 breaks (in-sample).7 The desirable
properties of this feature are explored in more detail in Koop and Potter
(2004).8

7The speci�cation of a maximum number of regimes, M , is made only for illustrative
purposes. In practice, our model does not require speci�cation of such a maximum. In
our empirical work we set M = T which allows for anything up to a TVP model and an
out-of-sample break.

8 In a di¤erent but related context (i.e. a Markov switching model), Chopin and Pelgrin
(2004), adopt a di¤erent approach to the joint estimation of number of regimes and the
parameters.
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Although our model is much more �exible than that used in Chib (1998),
computation is complicated by the fact that the matrix of transition prob-
abilities now depends on the time spent in each regime. To see why this
complicates computation, note that a key step in the Chib (1996) algorithm
requires calculating p (st+1jst; P ) where P is the matrix of transition proba-
bilities given in (2.2). In the model of Chib (1998) this density is simple due
to the constant transition probability assumption. However, in our model
the transition probability is not constant. As shown in the working paper
version of this paper, Chib�s algorithm can still be applied in the case of a
non-time homogenous transition matrix.

To better understand this point, note that under the Poisson hierarchical
prior in (3.1) we can construct a �nite element Markov transition matrix for
any observed sample, under the assumption that regime 1 started with the
initial observation.9 If edm denotes the current duration of regime m, we can
derive the transition probability

Pr[st+1 = m+1jst = m; edm] = exp(��m)�
edm�1
m

(dm � 1)!
�
1�

Pedm�2
j=0

exp(��m)�jm
j!

� ; edm = 1; : : : ; T�m;
(3.2)

where
P�1
s=0

exp(��m)�jm
j! is de�ned to be 0. This must be evaluated for all

T �m possible values of edm. Thus, unlike with Chib�s model, the transition
probability matrix depends on the durations of the regimes.

Another important issue arises which does not arise in models with a
known number of change-points. To motivate this issue, suppose that a true
data generating process with one change-point exists and data is observed
for t = 1; :::; T . Assuming that T is large enough for precise estimation of
the true DGP, the posterior simulator will yield most draws which imply
two regimes within the observed sample (i.e. most draws will have st = 1
or 2 for t = 1; :::; T ) and st = m for m > 2 will mostly occur for t > T .
In this case, most of the regimes occur out-of-sample and there will be no
data information available to estimate their durations. So, if two regimes
exist, there will be a great deal of information to estimate �1 and �2 but
apparently none to estimate �m for m > 2. In a Bayesian analysis we do
not necessarily have to worry about this. It is well known that if no data
information relating to a parameter exists, then its posterior is equal to its

9This can be generalized to allow for the �rst regime to begin � < 1 periods before
the initial observation. In an earlier version of the paper, we adopted such a speci�cation
and showed how � could be treated as an unknown parameter.
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prior (if the prior exhibits independence). Thus, if an independent prior is
used such that p (�1; : : : ; �T ) = p (�1) � � � p (�T ) with

�m � G
�
��; ��

�
; (3.3)

then the posterior for �m in many of the regimes will simply be G
�
��; ��

�
.10

In theory, there is nothing wrong with using an independent prior such
as (3.3), and simpli�ed versions of the methods described below can be
used for this case. Out-of-sample regimes will have durations which simply
re�ect the prior, but this is not important insofar as one is interested in
in-sample results (e.g. estimating the number and timing of change-points
in-sample). However, if one is interested in forecasting, then out-of-sample
properties matter. In many applications, it is reasonable to suppose that
the duration of past regimes can shed some light on the duration of future
regimes. In order to accommodate such a structure, we modify (3.3) and
use a hierarchical prior of the form:

�m j�� � G (��; ��) ; (3.4)

where �� is an unknown parameter (not a hyperparameter selected by the
researcher).11

This new parameter, which re�ects the degree of similarity of the du-
rations of di¤erent regimes, requires its own prior and it is convenient to
have:

��1� � G(�
1
; 1=�

2
): (3.5)

To aid in prior elicitation, note that this con�guration implies the prior
mean of dm (after integrating out �m) is

1 + ��

 
�
2

�
1
� 1

!
;

if �
1
> 1:

10To simplify notation, we are assuming the �ms to have the same prior. It is trivial to
relax this assumption.
11We could also treat �� as an unknown parameter. However, we do not do so since our

model already has a larger number of parameters and the additional �exibility allowed
would not be great. Choosing �� = 1 implies �m is drawn from the exponential distrib-
ution (with mean estimated from the data). Other integral choices for �� imply various
members of the class of Erlang distributions.
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It is important to understand the implications of any prior (the appen-
dix discusses such properties by simulating from the particular prior used
in our empirical work). As discussed following (3.1), we propose a hierar-
chical prior where p (dmj�m) is Poisson, but if we integrate out �m, we get
p (dmj��) being a Negative Binomial distribution. The unconditional prior
distribution, p (dm) is found by integrating out ��1� . This does not have a
closed form.12 In general p (dm) inherits the �exible form of p (dmj�m) or
p (dmj��). However, it is worth mentioning that if �� = 1 then we have
the restrictive property that P (dm = y) > P (dm = y + 1). This suggests
that, for most applications, it is desirable to avoid such small values for ��.
It can also be shown that, by suitable choice of �

1
and �

2
; with �� = n

we have a high prior probability of a regime change every n periods. Such
considerations can be useful in prior elicitation.

In summary, in this section we have developed a hierarchical prior for
the regime durations which has two levels to the hierarchy. At the �rst level,
we assume the durations to have Poisson distributions. At the second level,
we assume the Poisson intensities (i.e. �ms) are drawn from a common dis-
tribution. Thus, out-of-sample �ms (and, thus, regime durations) are drawn
from this common distribution (which is estimated using in-sample data).
This is important for forecasting as it allows for the predictive distribution
to re�ect the possibility that a change-point occurs during the period being
forecast.

4 Development of the Prior for the Parameters in
Each Regime

In the same way that the change-point framework of Chib (1998) can be used
with a wide variety of likelihoods (i.e. p (ytjYt�1; st = m) can have many
forms), our Poisson model for durations can be used with any speci�cation
for p (ytjYt�1; st = m) = p (ytjYt�1; �m). Here we choose a particular struc-
ture based on a regression or autoregressive model with stochastic volatility
which is of empirical relevance.

Many change-point models assume that the anything can happen to the
parameters after a regime change occurs. The issues which arise with such
an approach are elegantly expressed by Pastor and Stambaugh (2001) in an
application which used stock return data to investigate the equity premium.

12The working paper version of this paper contains an expression for it that could be
evaluated numerically.
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"In standard approaches to models that admit structural breaks,
estimates of current parameters rely on data only since the most
recent estimated break. Discarding the earlier data reduces the
risk of contaminating an estimate of the equity premium with
data generated under a di¤erent [process]. That practice seems
prudent, but it contends with the reality that shorter histories
typically yield less precise estimates. Suppose... a shift in the
equity premium occurred a month ago. Discarding virtually all
of the historical data on equity returns would certainly remove
the risk of contamination by pre-break data, but it hardly seems
sensible in estimating the current equity premium. Completely
discarding the pre-break data is appropriate only when the pre-
mium might have shifted to such a degree that the pre-break
data are no more useful ..., than, say, pre-break rainfall data,
but such a view almost surely ignores economics." Pastor and
Stambaugh (2001, pages 1207-1208).

The case for adopting a hierarchical prior which allows for some sort of
link between pre- and post-break parameters is, we believe, compelling in
many empirical contexts. The question arises as to what sort of hierarchical
prior is appropriate. We adopt a state space framework where the observable
time series satis�es the measurement equation

yt = Xt�st + exp(�st=2)"t; (4.1)

where "t � N(0; 1) and the (K+1) state vector �st = f�st ; �stg satis�es the
state transition equations

�m = �m�1 + Um; (4.2)

�m = �m�1 + um;

where Um � N(0; V ), um � N(0; �) and Xt is a K-dimensional row vector
containing lagged dependent or other explanatory variables. The initial
conditions, �0 and �0 can be treated in the same way as in any state space
algorithm.13

Note that this framework di¤ers from a standard state space model used
in TVP formulations in that the subscripts on the parameters of the mea-
surement equation do not have t subscripts, but rather st subscripts so that

13 In particular, in our state space algorithm the forward �lter step is initialized with a
di¤use prior.
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parameters change only when states change. This di¤erence leads to the
state equations having m subscripts to denote the m = 1; :::;M regimes.

To draw out the contrasts with models with a small number of breaks,
note that the hierarchical prior in (4.2) assumes that �m depends on �m�1.
A similar approach is adopted in McCulloch and Tsay (1993) for the in-
tercept and error variance in an autoregressive model. In most traditional
models with a small number of breaks, one assumes �m and �m�1 are in-
dependent of one another [e.g. Chib (1998) or Maheu and Gordon (2005)].
Furthermore, it is usually assumed that the priors come from a conjugate
family. For instance, a traditional model might begin with (4.1) and then
let �m have the same Normal-Gamma natural conjugate prior for all m.
This approach, involving unconditionally independent priors, is not reason-
able in our model for reasons we have partially discussed above. That is,
our approach involves an unknown number of change-points in the observed
sample. So it is possible that many of the regimes occur out-of-sample. In
traditional formulations, there is no data information to estimate �m if the
mth regime occurs out-of-sample. The hierarchical prior of (4.2) alleviates
this problem. An alternative approach to this issue is given in Pastor and
Stambaugh (2001) and Pesaran, Pettenuzzo and Timmerman (2006). They
place a hierarchy on the parameters of the conjugate family for each regime.
For instance, Pesaran, Pettenuzzo and Timmerman (2006) assume that all
the �ms are drawn from a common distribution. This is a standard approach
in the Bayesian literature for cross-section data drawn from di¤erent groups.
In a time series applications it has less merit since one wants the most recent
regimes to have the strongest in�uence on the new regime. This is a feature
that our hierarchical prior incorporates.

The state equations in (4.2) de�ne a hierarchical prior which links �m
and �m�1 in a sensible way. This martingale structure is standard in the
TVP literature and, as we discuss later, it is computationally simple since it
allows the use of standard Kalman �lter and smoother techniques to draw
the parameters in each regime. We use a standard (conditionally conjugate)
prior for the innovation variances:

V �1 � W
�
V �1V ; �V

�
(4.3)

��1 � G(��; ��)

whereW (A; a) denotes the Wishart distribution14 and we assume that �V >
K + 1.
14We parameterize the Wishart distribution so that if Z � W (A; a) and ij subscripts
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Many extensions of this basic model for the link between regimes can be
handled in a straightforward fashion by adding extra layers to the hierarchi-
cal structure. The innovation variance in the state equations can be allowed
to be di¤erent (i.e. � and V can be replaced by �m and Vm and a hierarchical
prior used for these new parameters). Furthermore, in some applications, it
might be desirable for the duration in a regime to e¤ect �m (e.g. if regime
m � 1 is of very short duration, it is plausible that �m�1 and �m are more
similar to one another than if it was of long duration). Such considerations
can be incorporated in a hierarchical prior for �m. For instance, in an earlier
version of this paper, we had a prior which incorporates both such features
as:

V �1m � W

 
[�m�1VV ]�1

�V �K � 1 ; �V

!

��1m � G(��;
[�m�1V�]�1

�� � 1
)

where VV and V� are parameters to be estimated. In our applications to
macroeconomic time series extension this did not outperform the simpler
version. Nevertheless, in some applications such an extension might be war-
ranted and it is worthwhile mentioning that the requisite methods can be es-
timated using straightforward extensions of the MCMC algorithm described
in the next section.

Note also that (4.1) and (4.2) assume that regime changes occur at the
same time for the coe¢ cients and the volatility. Having separate regime
structures for these is conceptually straightforward but practically compli-
cated. In some cases, the researcher may want to simplify our model by
having change-points only in some of the parameters. For instance, in an
autoregressive model for GDP growth it might be plausible that the AR
coe¢ cients are constant and only the volatility is changing over time. We
adopt such a speci�cation for GDP growth in our empirical section.

To summarize, the prior we have developed has the form:

p (�1; ::; �M ; �1; ::; �M ; V; �; ��)

=
nQM

m=1 p (�mj�m�1; V; �) p (�mj��)
o
p(�0)p (��) p (V; �)

(4.4)

denote elements of matrices, then E (Zij) = aAij . The scalar a is a degrees of freedom
parameter.
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where p (�mj�m�1; V; �) is given by (4.2), p(�0) is di¤use, (V; �) is given by
(4.3), p (�mj��) is given by (3.4) and p (��) is given by (3.5).

5 Posterior and Predictive Simulation

In this section we outline the general form of the MCMC algorithm used to
estimate the model. Precise details are provided in the working paper version
of this paper.15 To simplify notation we de�ne � =

�
�01; :::; �

0
M

�0 and � =�
�01; :::; �

0
M

�0. Note that our MCMC algorithm draws a sequence of states
(ST ) that implies the values for the regime durations, dm. Furthermore, we
will set M = T so that we can nest a standard TVP model. However, it
is possible to set M < T if one wishes to restrict the number of feasible
regimes.

Our MCMC proceeds by sequentially drawing from the full posterior
conditionals for the parameters ST ; �; �; V; �; ��. The posterior conditional
p (ST jYT ;�; �; V; �; ��) = p (ST jYT ;�; �) can be drawn using the modi-
�ed algorithm of Chib (1996) with transition probabilities given by (3.2).
p (�jYT ; ST ; �; V; �; ��) can be simulated using extensions of methods of pos-
terior simulation for state space models with stochastic volatility drawing
on Kim, Shephard and Chib (1998) and Carter and Kohn (1994). That is,
the TVP model is a standard state space model and thus, standard state
space simulation methods can be used directly. However, when regimes last
more than one period, the simulator has to be altered in a straightforward
manner to account for this.

The (conditional) conjugacy of our prior implies that, with one exception,
p (�mjYT ; ST ;�; V; �; ��) for m = 1; :::;M have Gamma distributions. The
exception occurs for the last in-sample regime and minor complications are
caused by the fact that this last regime may not be completed at time T .
For this Poisson intensity we use an accept/reject algorithm.

Standard Bayesian results for state space models can be used to show
p
�
V �1jYT ; ST ;�; �; �; ��

�
is Wishart and p

�
��1jYT ; ST ;�; �; V; ��

�
is Gamma.

p
�
��1� jYT ; ST ;�; �; V; �

�
can also be shown to be a Gamma distribution.

5.1 Predictive Distributions

Suppose interest centers on the predictive density for yT+h, given data
through time T . The basic idea of our simulation algorithm is that, if we
knew the parameters chracterizing the duration distribution (i.e. �; ��), the

15This is available at http://personal.strath.ac.uk/gary.koop/
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relevant regime (i.e. sT+h) and the coe¢ cients which applied in this regime
(i.e. �h), then the distribution of yT+h would simply be Normal. That is,16

p (yT+hjYT ; sT+h = fm; dmg; �m; �; V; �; ��) (5.1)

=
1p

2� exp(�m)
exp

�
�(yT+h �Xt+h�m)

2

2 exp(�m)

�
:

Thus, if we can obtain posterior draws of sT+h; �m; �; V; �; ��, we can obtain
an estimate of the predictive density as:

dp (yT+hjYT ) =

PR
r=1 p

�
yT+hjYT ; sT+h = fm(r); d

(r)
m g; �(r)m ; �(r); V (r); �(r); �(r)�

�
R

:

where (r) superscripts, for r = 1; ::; R, denote these draws (after dropping
an appropriate number of burn-in replications). Our MCMC algorithm pro-
vides draws of �; V; �; ��. In this subsection, we describe how draws of
sT+h and �m are taken (i.e. how out-of-sample draws of regimes and ac-
companying coe¢ cients are done). We focus on a particular approach that
complements the sequential importance sampler introduced in the next sec-
tion.

We start by noting that we have access to the predictive distribution
for the states, fp(sT+hjYT ;�; �; ��) : h = 1; : : : ;Hg at each iteration of the
MCMC algorithm described in the preceding section by combining p(sT jYT ;�; �; ��)
with the transition function of the chain. Thus, draws of (sT+1; : : : ; sT+H)
can be easily obtained.17 We emphasize that these draws are conditional on
� (which includes draws up to M). Note also that we require only a single
draw of (sT+1; : : : ; sT+H) at each iteration of the MCMC algorithm. Given
these draws of the regimes, we can then take draws f�sT+h : h = 1; : : : ;Hg.
If the regime at time T +H is less or equal to M then the elements of � are
used and no additional random draws are required. If the regime number
goes above M then we can use (4.2) to generate new values of �sT+h .

We stress that this approach will provide us with a predictive density
that satis�es Bayes�rule. That is, it correctly combines information in the
data with the probabilistic structure implied by the model using the rules
of conditional probability.
16Note that, in the case of the autoregressive model, Xt+1 is known and this density

can be immediately calculated. For out-of-sample forecasting for h > 1; Xt+h is produced
by iterating on the known values at T using the sequence of autoregressive coe¢ cients.
17For some values of h regime numbers greater thanM might have non-zero probability.

At this occurrence the Negative Binomial distribution implied by �� can be used to obtain
an appropriate regime duration draw.

17



5.2 Sequential Importance Sampling

Models such as ours are often used for real time forecasting. As new data
comes in, we want to update our forecasts. Of course, we could simply
re-run our MCMC algorithm with a data set augmented by this new data
and then calculate predictive densities as described in the previous section.
However, in some cases, it is desirable to update forecasts without re-running
the MCMC algorithm. In this section, we brie�y describe how sequential
importance sampling methods [these are a popular type of particle �lter
methods, see, e.g., Doucet, Godsill and Andrieu (2000) or Liu and Chen
(1998)] can be used with our model to achieve this goal.

Let zt = (�0t; St) denote the unobserved states and, for simplicity, sup-
press conditioning arguments (all the p.d.f.s below are conditional on the
model parameters (�; V; �; ��)). The sequential importance sampler (SIS),
is designed for models (such as ours) which can be written in terms of p (ytjzt)
and p (ztjzt�1). Based on a sample of size T , posterior and predictive features
depend upon p (ZT jYT ) which can be obtained using our MCMC algorithm
where Zi = (z1; : : : ; zi)

0. Now suppose a (T + 1)st observation becomes avail-
able and, thus, posterior and predictive features depend on p (ZT+1jYT+1)
which, by Bayes�rule, can be written as:

p (ZT+1jYT+1) = p (ZT jYT )
p (yT+1jzT+1) p (zT+1jzT )

p (yT+1jYT )
:

Since p (ZT jYT ) and p (yT+1jYT ) are impossible to directly evaluate simula-
tion methods are required. The likelihood, p (yT+1jzT+1), is evaluated using
(5.1).

We can, of course, use the MCMC algorithm described above to evaluate
properties of p (ZT+1jYT+1). However, an alternative is to use importance
sampling. If we take an importance function of the form:

� (zT+1jZT ; YT+1) ;

then the importance sampling weights become:

wT+1 =
p (ZT jYT ) p (yT+1jzT+1) p (zT+1jzT )

� (zT+1jZT ; YT+1)
:

If a (T + 2)nd observation becomes available and, hence, posterior and pre-
dictive features depend on p (ZT+2jYT+2) which can also be handled using
importance sampling. But note that the importance sampling weights now
become:
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wT+2 = wT+1
p (yT+2jzT+2) p (zT+2jzT+1)

� (zT+2jZT+1; YT+2)
:

In other words, we can recursively update the importance sampling weights
rather than evaluating them anew, reducing computational e¤ort. In gen-
eral, importance sampling weights for T + h, are given by:

wT+h = wT+h�1
p (yT+hjzT+h) p (zT+hjzT+h�1)

� (zT+hjZT+h�1; YT+h)
:

Computationally, such an approach can be very e¢ cient. That is, instead
of running a (computationally) demanding posterior simulation algorithm
h+1 times (i.e. using data through period T + i for i = 0; 1; ::; h), the main
posterior simulation algorithm is run only once, and then SIS allows for the
fast and e¢ cient updating as new information arises.

To be precise, if we begin using our MCMC algorithm for data through
period T , we obtain r = 1; ::; R draws. These can be interpreted as impor-
tance sampling draws, each with an equal weight of 1

R . In period T + h,

using SIS we have R draws, each with weights w(r)T+h. As with any impor-
tance sampler, posterior properties of any feature of interest can be found by
taking a weighted average of drawn features of interest using the normalized
weights:

ew(r)T+h = w
(r)
T+hPR

r=1w
(r)
T+h

:

Furthermore, the predictive likelihood18 for H observations can estimated
from the SIS output as:

dp(yT+1; ::; yT+H jYT ) =
PR
r=1w

(r)
T+H

R
:

The predictive likelihood for a single observation can be estimated using:

dp(yT+hjYT ) =
RX
r=1

p(yT+hjYT ; z(r)T+h�1; �
(r); V (r); �(r); �

(r)
� ) ew(r)T+h�1:

18As Poirier (1995), Chapter 8 discusses there is a lot of controversy in the frequen-
tist literature about the meaning of predictive likelihood. In our Bayesian context the
interpretation is clear: it is the predictive distribution evaluated at the observed value for
yT+h. Equivalently, it can be interpreted as a marginal likelihood, treating the posterior
at time T as a prior.
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In theory, SIS could be used to draw the states for all time periods (i.e.
we could set T = 0 in the preceding equations and simply have h index
time). However, all sequential importance sampling algorithms have the
property that the variance of the importance sampling weights increase over
time (i.e. the algorithm becomes less e¢ cient as h increases). If the variance
of the importance sampling weights becomes too large, then the importance
sampling estimates become dominated by only a few of the draws. One
simple measure of the e¤ective number of draws is

bReffT+h = R
1
R

PR
r=1(w

(r)
T+h)

2

There are numerous methods [ see, e.g., Doucet, Godsill and Andrieu (2000)
or Liu and Chen (1998)] which attempt to minimize this problem by using
a resampling technique when this e¤ective number of draws moves below a
threshold. In our case, we have the advantage that if the e¤ective number
of draws falls below the threshold value we can always switch back to our
original MCMC algorithm.

An obvious choice for the importance function in our case is our hierar-
chical prior evaluated at the parameters values after observing the �rst T
observations:

� (zT+hjZT+h�1; YT+h�1) = p (zT+hjzT+h�1; �; V; �; ��) :

To simulate from this importance function we use the same approach as
described for producing the predictive distributions.

5.3 Computation Issues in Context

Computation issues are important in the change-point literature. Unless
the number of change-points is very small, the computational burden can
be quite demanding. Bayesian approaches, such as ours and Chib (1998),
which adopt a hierarchical prior for the change-points, will have a much
lower computational burden than those which involve evaluating something
(e.g. a likelihood or a posterior) at every possible set of change-points.
Our MCMC approach largely draws on standard algorithms and, hence,
programming costs are not large. Our approach will involve a computational
burden greater than Chib (1998) since our transition probabilities depend
on the duration spent in each regime (see equation 3.3 and surrounding
discussion). However, in both Chib (1998) and our model, the durations do
not enter the likelihood (i.e. p (ytjYt�1; st = m) = p (ytjYt�1; �m) does not
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depend on the duration of the regime), so the added computational burden
only enters through draws of the states. With a modern personal computer,
the computational burden of our approach is still trivial for data sets of the
length typically used by macroeconomists.19 Furthermore, methods such
as sequential importance sampling can be used to lessen the computational
burden in real time forecasting exercises. In our model the ability to use
the sequential importance sampling produces a tremendous reduction in net
computation because most of the draws required are produced during the
MCMC algorithm and just need to be stored.

The approach of Pesaran, Pettenuzzo and Timmerman (2006) shares
many of the computational advantages of Chib (1998). However, some of
the bene�ts of assuming a constant transition probability within a regime
(except at the end of the sample), are lost in their forecasting exercise since
their assumed (out-of-sample) hierarchy is not conditionally conjugate and
the sequential importance sampling approach is not available due to their
imposition of a �xed number of change-points in sample. This contrasts to
our hierarchy, which is conditionally conjugate.

In contrast to our approach, the in�uential non-Bayesian approach of
Bai and Perron (1998) is less computationally burdensome. Bai and Perron
start from the observation that there are T (T+1)=2 ways of partitioning the
sample. This is true in our approach as well, since we allow for any number
of breaks in sample. Bai and Perron then show how an e¢ cient dynamic
programming method can be used to �nd the global least squares minimizer
in the special case of all parameters in a linear conditional mean changing
at each change-point with no restrictions on the coe¢ cients changes. In
this special case they require only O(T 2) computations to �nd the least
squares minimizer. Of course, without restrictions on the time between
change-points the minimum is achieved with a perfect �t. To get around
this issue, the minimizer is found by imposing additional restrictions on the
minimum time between change-points. Inference is then performed by using
insights from the asymptotic distribution. Note that this implies that a
di¤erent partition of the data with the same number of change-points but a
slightly higher value for the least squares minimand receives no weight in the
inference. A strength of the Bayesian approach is that it puts weight on this

19A recent paper by Giordani and Kohn (2006) develops computationally e¢ cient meth-
ods for the model of Chib (1998) and a simple version of our model. The authors show
how, in either of these models, break dates can be drawn in O(T ) operations by integrat-
ing out the states analytically. It is probable that these methods can be extended for the
general version of our model and, thus, computation will be very e¢ cient indeed. The
working paper version of our paper has further discussion on these points.
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di¤erent partition. This would be particularly important for forecasting. In
an earlier working paper version, we discussed how a frequentist could use
a hierarchical approach to obtain information on the probability of change-
points at the global minimizer for the regime coe¢ cients found using Bai
and Perron�s algorithm

Relative to the approach of Bai and Perron (1998, 2003), we would have
the same O(T 2) computational burden if we had assumed the standard con-
stant transition probability matrix (and, we note this holds for a much wider
class of models than Bai and Perron). As we have seen, many Bayesian ap-
proaches adopt this constant transition probability matrix, assuming a �xed
number of regimes occur in-sample. Our model is somewhat more compu-
tationally demanding than this. However, a simpli�ed version of our model
with a constant transition matrix would not be more computationally de-
manding. Note that such a version of our model would allow for an unknown
number of regimes in sample. In the case where the transition probability
was the same across regimes, the sequential importance sampler would be
available and the net computational di¤erence for real time updating would
favor our method in most cases.

6 Application to US In�ation and Output

In economics, many applications of change-point modeling have been to the
decline in volatility of US real activity and changes in the persistence of
the in�ation process. With regards to GDP growth, Kim, Nelson and Piger
(2003), using the methods of Chib (1998) (assuming a single change-point),
investigate breaks in various measures of aggregate activity. For most of
the measures they consider, the likelihood of a break is overwhelming and
Bayesian and frequentist analyses produce very similar results.20 On the
other hand, Stock and Watson (2002) present evidence from a stochastic
volatility model that the decline in variance might have been more gradual,
a thesis �rst forward by Blanchard and Simon (2001).

Clark (2003) discusses the evidence on time variation in persistence in
in�ation. Cogley and Sargent (2001, 2005) present evidence of time variation

20Since such papers consider only a single break, it is relatively easy to evaluate all the
possible break points. Kim, Nelson and Piger (2003) assume that the conditional mean
parameters remain constant across the break and the only change is in the innovation
variance. If one allowed both the conditional mean and variance to break and assumed an
exchangeable Normal- Gamma prior then the model can be evaluated analytically. This
was the approach followed in Koop and Potter (2001) and it has the advantage that one
can also integrate out over lag length in a trivial fashion.
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in the in�ation process both in the conditional mean and conditional variance
of a smooth type. Stock (2001) �nds little evidence for variation in the
conditional mean of in�ation using classical methods and Primiceri (2005)
�nds some evidence for variation in the conditional variance but little in the
conditional mean.

Accordingly, in our empirical work we investigate the performance of our
model using quarterly US GDP growth and the in�ation rate as measured by
the PCE de�ator (both expressed as an annual rates) from 1947Q2 through
2005Q4. With both variables we include an intercept and two lags of the
dependent variable as explanatory variables. We treat these �rst two lags as
initial conditions and, hence, our data e¤ectively runs from 1947Q4 through
2005Q4.

In addition to our Poisson hierarchical model for durations we also
present results for standard TVP with stochastic volatility [see Stock and
Watson 2002] and one-break models estimated using Bayesian methods.
Both of these can be interpreted as restricted versions of our model. The
TVP model imposes the restrictions that the duration of each regime is one
(i.e. st = t for all t). The one break model imposes the restriction that
there are exactly two regimes with st = 1 for t � � and st = 2 for t > �
(and the coe¢ cients are completely unrestricted across regimes with a �at
prior on the coe¢ cients and error variances).21

The appendix describes our selection of the prior hyperparameters ��,�1,�2,��,��,V V
and �V and comparable prior hyperparameters for the TVP model. Here
we note only that we make weakly informative choices for these. In the ap-
pendix we carry out a prior sensitivity analysis. The researcher interested in
more objective prior elicitation could work with a prior based on a training
sample.

6.1 Estimation Results

Figure 1 presents information relating to the TVP for GDP growth. The
posterior means of the coe¢ cients (i.e. �t for t = 1; ::; T ) are given in Figure
1a and the volatilities (i.e. exp(�t=2) for t = 1; : : : ; T ) in Figure 1b. Figure
2 presents similar information from the one-break model.

Consider �rst results from the standard TVP and one break models for
real GDP growth. The most interesting �ndings for this variable relate to
the volatility. Both models indicate that volatility is decreasing substan-

21 In this one break model, we restrict the prior for the change-points such that the
change-point cannot occur in the �rst or last 5% of the sample.
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tially over time, with a particularly dramatic drop occurring around 1984.22

However, with the TVP model this decline is much more smooth and non-
monotonic than with the one break model. The question arises as to whether
the true behavior of volatility is as suggested by the TVP model or the one
break model. Of course, one can use statistical testing methods which com-
pare these alternatives. However, an advantage of our model is that it nests
these alternatives. We can estimate what the appropriate pattern of change
is and see whether it is the TVP or the one break model �or something in
between.

Our �ndings relating to volatility of GDP growth are not surprising given
previous results starting with McConnell and Perez (2000). There is some
evidence from the TVP model that volatility started to decline in the 1950s
but this decline was reversed starting in the late 1960s. The single break
model (by construction) does not show any evidence of this. The posterior of
the breakpoint (not presented here), is quite tight and indicates the single
break to be at or very near to 1984. With regards to the autoregressive
coe¢ cients, with both models the posterior means suggest that little change
has taken place. However, posterior standard deviations (not presented) are
quite large indicating a high degree of uncertainty. In the literature [e.g.
Stock and Watson (2002)] these �ndings have been interpreted as implying
that there has been no change in the conditional mean parameters.

In light of this approximate constancy of the coe¢ cients (and to illustrate
our methods in an interesting special case), we estimate our model with
variation only in the volatilities and not in the coe¢ cients. That is, the
�rst equation in (4.2) is degenerate (or, equivalently, V = 0K�K). Figure
3 plots features of the resulting posterior for the most interesting feature:
volatility.23 This �gure is smoother but otherwise similar to the comparable
TVP result in Figure 1b, but di¤ers quite substantially from the one break
model result. With our model, the number of regimes in-sample can be
estimated. Its posterior mean is 45:35 (with posterior standard deviation
of 12:70). This lies somewhere between the one break and TVP models
(where the latter, by de�nition, will have T = 233 regimes). Thus, we are
�nding evidence that a model between the one break and TVP models is
most sensible (although the TVP model is more sensible than the one break

22Note that, in the one break model, the posterior means of the coe¢ cients and volatil-
ities, conditional on a particular change-point, will behave like step functions. However,
when we present unconditional results, which average over possible change-points, this
step function pattern is lost as can be seen in the �gures.
23The prior sensitivity analysis done in the appendix presents more posterior results for

our model.
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model). We stress that we have found such evidence in the context of a
model which could have allowed for very few breaks.

Let us now turn to in�ation. Given �ndings by other authors and an
interest in the persistence of in�ation, we use the unrestricted version of our
model and allow the AR coe¢ cients to change across regimes. Figures 4, 5
and 6 present results from the TVP, one break and our models, respectively.
Figure 4a, containing the sum of the two autoregressive parameters from the
TVP model, shows an increasing tendency in the persistence of in�ation up
to the late 1970s followed by a decreasing tendency. The fact that the level
of in�ation increased throughout the 1970s and early 1980s before declining
in the 1990s is picked up partly through the pattern in the intercept. The
volatility of in�ation shows a similar pattern, with a noted increase in the
1970s and early 1980s. These sensible results are found by both the TVP
model and our model and are consistent with evidence presented in Cogley
and Sargent (2001), although at odds with some of the evidence presented in
Primiceri (2005). But it is worth noting that our model smooths out some
of the erratic patterns produced by the TVP model. The single break model
indicates quite di¤erent patterns (see Figure 5). It wants to put the single
break near the beginning of the sample, totally missing any changes in the
level, persistence or volatility of in�ation in the 1970s and early 1980s. One
could force the break later by adopting a prior that the change-point is later
in the sample.

When comparing results from the TVP and one break model to ours, as
a general rule we are �nding our model supports many change-points rather
than a small number and thus the movements of the conditional mean and
variance parameters are closer to the TVP model. We take this as evidence
that our methods are successfully capturing the properties of a reasonable
data generating process, but without making the assumption of a break
every period as with the TVP model. That is, we are letting the data tell
us what key properties of the data are, rather than assuming them. Our
empirical results also show the problems of working with models with a small
number of breaks when, in reality, the evolution of parameters is much more
gradual.

6.2 Predictive Exercise

The previous section focusses on estimation for our model, the TVP model
and a one break model. In order to compare these di¤erent models, we
could calculate marginal likelihoods in order to construct Bayes�factors or
posterior odds ratios using standard methods. For instance, the methods
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of Chib (1995), Chib and Jeliazkov (2001) or Gelfand and Dey (1994) can
be used to estimate the marginal likelihood in change-point models. More
simply, information criteria such as the Schwarz criteria can be used to
approximate marginal likelihoods. However, in these models (which are very
parameter rich) marginal likelihoods can be sensitive to priors. Accordingly,
we prefer to compare models using predictive criteria such as the predictive
likelihood discussed in Sections 5.1 and 5.2. As discussed in Section 5.2,
these can easily be calculated using sequential importance sampling.

Table 1 presents predictive likelihoods for a period of two years at the
end of our sample. That is, we use data through period 2003Q4 to calculate
predictive distributions for each quarter through 2005Q4 and then evaluate
the predictive at the observed outcome. It can be seen that, in terms of
overall forecast performance over these 8 observations, our model does sub-
stantially outperform the one break model and (less substantially) the TVP
model.

Table 1: Joint Predictive Likelihoods for 2004/2005
Our Model TVP One Break

GDP Growth 9.77�10�7 6.06�10�7 4.93�10�7
In�ation 3.69�10�6 3.31�10�6 1.75�10�6

Table 1 presents results relating to joint performance over two years. In
a real time forecasting exercise, one might also be interested in forecasting
performance one quarter at a time (where each quarter new data is used
to update the predictive density). To illustrate how this can be done, we
carry out a pseudo real-time forecasting exercise for 2004 and 2005. That
is, beginning in 2003Q4 we construct the predictive distribution for 2004Q1,
then use data through 2004Q1 to predict 2004Q2, etc.. A simple summary
of forecasting performance involves seeing where the actual outcome lies in
these one-period-ahead predictive distributions. In particular, we can calcu-
late where the actual outcome lies in the predictive cumulative distribution
function. Table 2 presents this information for our three models and two
data series. An informal examination of Table 2 suggests all three of our
models are predicting GDP growth fairly well. None of the outcomes are too
far out in the tails of the predictive distributions. This is unsurprising since
2004-2005 were years of stable GDP growth with little evidence of structural
change. More formal metrics of predictive performance can be developed by
noting that, if a model is correct and there is no parameter uncertainty,
then probabilities such as those in Table 2 should be drawn from the Uni-
form [0,1] distribution [see, e.g., Diebold, Gunther and Tay (1998)]. Using
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the numbers in Table 2, the standard Chi-squared statistics for testing for
Uniformity [e.g., Wonnacott and Wonnacott (1990), pages 550-551] are 9.5,
9.5 and 12.0 for our model, the TVP and the one break model, respectively.
This provides some evidence that our model and the TVP are forecasting
comparably to one another and the one break model is doing slightly worse.
Note that the frequentist 0.05 critical value is 16.9 so we cannot reject the
hypothesis of Uniformity for any of our models.

For in�ation (which was somewhat more erratic in the 2004-2005 period),
the Chi-squared statistics for testing Uniformity of the numbers in Table 2
are 12.0, 9.5 and 17.0 for our model, the TVP and the one break model,
respectively. Hence, for in�ation we are �nding the TVP model forecasts
slightly better than the other models. Furthermore, the frequentist hypoth-
esis that the one break model is correct can be rejected at the 5% level of
signi�cance.

Table 2: Predictive Probability of Being Less than Actual Outcome
GDP growth In�ation
Our Model TVP One Break Our Model TVP One Break

2004Q1 0.581 0.579 0.485 0.966 0.967 0.942
2004Q2 0.525 0.456 0.582 0.935 0.935 0.768
2004Q3 0.601 0.636 0.635 0.125 0.096 0.035
2004Q4 0.514 0.499 0.535 0.732 0.711 0.737
2005Q1 0.628 0.649 0.663 0.852 0.830 0.781
2005Q2 0.533 0.510 0.557 0.503 0.471 0.400
2005Q3 0.726 0.732 0.733 0.840 0.822 0.760
2005Q4 0.186 0.179 0.225 0.805 0.755 0.653

7 Conclusions

In this paper we have developed a change-point model which nests a wide
range of commonly-used models, including TVP models and those with a
small number of structural breaks. Our model satis�es the six criteria set
out in the introduction. In particular, the maximum number of regimes in
our model is not restricted and it has a �exible Poisson hierarchical prior
distribution for the durations. Furthermore, we allow for information (both
about durations and coe¢ cients) from previous regimes to a¤ect the current
regime. The latter feature is of particular importance for forecasting.

Bayesian methods for inference and prediction are developed and applied
to real GDP growth and in�ation series. We compare our methods to two

27



common models: a single-break model and a time varying parameter model.
We �nd our methods to reliably recover key data features without making
the restrictive assumptions underlying the other models.
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Appendix: Properties of the Prior and Prior Sensi-
tivity Analysis

In the body of the text, we developed some theoretical properties of the
prior. However, given its complexity, it is also instructive to examine its
implications using prior simulation. Accordingly, in this appendix, we illus-
trate some key properties of our prior for the hyperparameter values used in
the empirical work as well as carry out a prior sensitivity analysis. We use
informative priors. For highly parameterized models such as this, prior in-
formation can be important. Indeed, results from the Bayesian state space
literature show how improper posteriors can result with improper priors
[see, e.g. Koop and Poirier (2004) or Fernandez, Ley and Steel (1997)]. One
strategy commonly-pursued in the related literature [see, e.g., Cogley and
Sargent (2001, 2005)] is to restrict coe¢ cients to lie in bounded intervals such
(e.g. the stationary interval). This is possible with our approach. However,
this causes substantial computational complexities (which are of particular
relevance in our model where many regimes can occur out-of-sample and re-
�ect relatively little data information). Training sample priors can be used
by the researcher wishing to avoid subjective prior elicitation.

In this paper, we choose prior hyperparameter values which attach ap-
preciable prior probability to a wide range of reasonable parameter values.
To aid in interpretation, note that our data is measured as a percentage and,
hence, changes in �m in the interval [�0:5; 0:5] are the limit of plausibility.
For AR coe¢ cients, the range of plausible intervals is likely somewhat nar-
rower than this. With regards to the durations, we want to allow for very
short regimes (to approach the TVP model) as well as much longer regimes
(to approach a model with few breaks). We choose values of the prior hy-
perparameters, ��; �1; �2; ��; ��; V V and �V which exhibit such properties.

Figures A1 through A3 plot the prior for key features assuming �� =
12; �

1
= ��; �2 = ��; �� = 1:0; �� = 0:02; V V = 0:1IK and �V = 3K. Note

that, by construction, the priors for all our conditional mean coe¢ cients
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are the same so we only plot the prior for the AR(1) coe¢ cient. Figure
A1 plots the prior over durations and it can be seen that the prior weight
is spread over a wide range, from durations of 1 through more than 50
receiving appreciable prior weight. Figures A2 and A3 plot prior standard
deviations for the state equation innovations (see 4.2). It can be seen that
these are di¤use enough to accommodate anything from the very small shifts
consistent with a TVP model through much bigger shifts of a small break
model.

For the TVP model, we make the same prior hyperparameter choices
(where applicable). The prior for the one break model has already been
described in the text.

In a sense, by presenting results for the TVP and one break models, we
have already carried out a prior sensitivity analysis. That is, the TVP model
can be considered as an extreme case where we use a dogmatic prior which
imposes a break every time period and the one break model a dogmatic
prior which imposes a precise number of breaks. However, in this appendix
we provide some additional evidence on prior sensitivity with regards to the
most important feature of our model: the prior on regime duration. In this
regard, the prior for � is of most importance and it is characterized by two
parameters, �

1
and �

2
. In the empirical results section, we have set �

1
=

�
2
= 12, values which yield the prior over durations in Figure A.1. Equation

3.5 and the discussion following it describes the prior. For present purposes,
perhaps the most important things are to note that the prior mean of dm is

1 + ��

 
�
2

�
1
� 1

!
;

if �
1
> 1 and the properties of the Gamma distribution can be used to

understand the other aspect of the prior. We consider an extremely wide
range of prior hyperparameter values by allowing for �

1
= 1; 12; 100 and

�
2
= 1; 12; 100. Table A.1 relates to GDP growth and presents the posterior

properties of a key feature in our model: the number of in-sample regimes.
Note that our base prior, used in the empirical work, provides an estimate of
45:35 regimes in-sample (with posterior standard deviation of 12:70). This is
between the T = 233 regimes implied by the TVP model and the 2 regimes
implied by the one break model. As we tighten the prior towards having
short durations (i.e. towards the TVP model), by increasing �

1
or decreasing

�
2
, the number of regimes in sample does indeed increase (although this

has relatively little e¤ect on �gures such as Figure 3 or on the predictive
features). Tightening the prior in the direction of the one-break model (by
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decreasing �
1
or increasing �

2
) the number of regimes in sample does indeed

decrease, but never to fewer than 12. That is, even if we set prior where the
mean duration of a regime is very close to one, there is enough information
in the data to pull the posterior in the direction of many regime changes.

Table A.1: Prior Sensitivity Analysis
For GDP Growth
Posterior Mean of # Regimes

�
2
= 1 �

2
= 12 �

2
= 100

�
1
= 1 73:32 12:48 12:15

�
1
= 12 74:16 45:35 12:17

�
1
= 100 78:29 76:23 17:38

Table A.2 repeats the analysis for in�ation. Similar patterns appears.
Note that, as expected, the in�ation data is closer to coming from a TVP
model than the GDP growth data. With our base prior, the number of in-
sample regimes is estimated to be 124:00 (with posterior standard deviation
of 32:64). Very large changes in the prior o¤er little change in this story.
Even when the prior pulls strongly towards model with few breaks, the
posterior still indicates very many breaks in-sample (i.e. the posterior mean
number of regimes is at least 86:96). When the prior is shifted towards the
TVP model, the number of in-sample breaks increases slightly, but the basic
�ndings of our model are una¤ected.

Table A.2: Prior Sensitivity Analysis
For In�ation
Posterior Mean of # Regimes
(Post. St. Dev. in parentheses)

�
2
= 1 �

2
= 12 �

2
= 100

�
1
= 1 189:25 90:32 86:96

�
1
= 12 189:80 124:00 87:96

�
1
= 100 190:62 186:85 88:92
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