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Abstract: Functional data analysis has important applications in biomedical, health studies and other
areas. In this paper, we develop a general framework for a mean curve estimation for functional data
using a reproducing kernel Hilbert space (RKHS) and derive its asymptotic distribution theory. We
also propose two statistics for testing the equality of mean curves from two populations and a mean
curve belonging to some subspace, respectively. Simulation studies are conducted to evaluate the
performance of the proposed method and are compared with the major existing methods, which
shows that the proposed method has a better performance than the existing ones. The method is then
illustrated with an analysis of the growth data from the National Growth and Health Study (NGHS)
project sponsored by the NIH.

Keywords: functional data; hypothesis testing; kernel function; mean curve estimation; reproducing
kernel Hilbert space
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1. Introduction

Functional data analysis with the objectives of estimating and testing mean curves
over time has been extensively used in biomedical, health science and other areas of study.
Functional data are random elements in the Banach/Hilbert space, and there are no density
functions or parametric models for functional data. Thus, estimates and hypothesis tests
for the mean curves are mostly based on nonparametric methods, without relying on
potentially unrealistic parametric model assumptions. The commonly used methods for a
functional data analysis and reviews of the existing work can be found in [1–5]. A popular
postulate for nonparametric inferences with functional data is that the mean curves belong
to some “structured space” [6], which can be approximated by expansions of a set of
known basis functions, so that the estimation and testing procedures can be constructed
through the unknown coefficients of the basis expansions. The existing results based
on various basis approximation methods can be found in [7–10] proposed the functional
principal components method via basis expansions, and [11] studied a likelihood ratio
test for longitudinal and functional data. Ref. [12] gave a comprehensive review of the
developments in this area. Ref. [13] studied the general properties of the mean curve
estimation, under common and independent observation points, and obtained the optimal
minimax convergence rates for both cases. Ref. [14] considered a multivariate functional
principal method. Ref. [15] constructed a control chart for functional data. Ref. [16]
proposed a cross-component registration method. Ref. [17] considered a random projection
method. Ref. [18] studied a functional linear mixed model.
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In practice, sometimes the observed functional data are rather “irregular” in that
observation time points are unbalanced; they are dense in some time intervals, sparse in
other time intervals. Such data often arise from medical studies, for example, patients can
be observed on regular schedules during their treatments initially, and their subsequent
visits to hospital become less frequent and gradually thin out as the patients’ conditions
improve or become incurable.

To illustrate the general structure of such data in this research, Figure 1 depicts the
growth data from the National Growth and Health Study (NGHS), sponsored by the
National Heart, Lung, and Blood Institute, from 1985 to 2000. In these data, the observed
time points are relatively dense at the beginning of the treatment and then become sparse,
gradually thinning out near the study end.

 Figure 1. Raw data in the NGHS study.

Apparently, the curve estimation obtained by the common smoothing techniques
aforementioned cannot be regarded as “true” observed data curves due to the unbalanced
observations. In fact, our simulation studies in Section 4 show that those methods may
result in a biased estimation or a relatively large variance of the estimator when the
observation time points are unbalanced. Hence, some effective methods for estimating the
mean curves of functional data should be developed.

In this paper, we take interpolated curves at the longitudinal times points for each
individual as the estimated–observed curves; the goal is to estimate the underlying true
mean curve and testing hypotheses about it. The simplest method for a mean curve
estimation is just to take the empirical mean of the observed interpolated curves, or any
other non-smoothing (i.e., without a roughness penalty) functional estimates. However,
as the time points for the observations are generally sparse, the interpolated curves and
their mean are not sufficiently smooth, often with a wiggly shape and large variances, a
poor performance in the interval with sparse observations. To overcome these issues, there
are several commonly used methods, such as kernel smoothing, spline and the method of
the reproducing kernel Hilbert space (RKHS). The method of the RKHS has the following
advantages. Instead of specifying a set of (orthogonal) basis functions and the number of
bases, one only needs to choose the kernel(s) of the RKHS. Moreover, with this method,
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any bounded linear functional can be written as a representer (the Rize representer with
respect to the inner product of the RKHS) in a closed form in terms of the kernel of the
RKHS, as the estimator can often be formulated as a linear functional of the data in a
closed form. Another consideration is the computation. It is known that for non-smoothing
methods, the computation is often of order O(n), where n is the sample size of the data,
while for smoothing methods, the amount of computation may substantially exceed O(n)
and become computationally extensive. Thus, for smoothing methods, it is important
to find a method with O(n) computation load. To achieve this, for spline methods, the
basis should have local-only support, i.e., nonzero only locally. The RKHS method is a
special case of spline with this property and can achieve the O(n) computation for many
functional estimation problems, which is called the optimal basis theorem in ([1], p.363)
and the representer theorem in [19]. More specifically, the RHKS H is a Hilbert space of
functions, equipped with an inner product 〈·, ·〉. On H, there is a kernel K(·, ·), a bivariate
function, such that 〈K(t, ·), h(·)〉 = h(t), for all h ∈ H, and so the name reproducing kernel.
To apply this method to the functional estimation, like the other smoothing methods, a
penalty term will be specified along with the object functional. The H can be divided into
a null space H0, with a kernel K0, corresponding to the penalty term, and its orthogonal
complement H1 with a kernel K1. H0 is a finite-dimensional space spanned by some basis
g1, . . . , dd, and an estimator µ̂(·) of the mean curve of data Y1(·), . . . ,Yn(·) has the form, for
some constants a1, . . . , ad and b1, . . . , bn,

µ̂(·) =
d

∑
j=1

ajgj(·) +
n

∑
i=1

bi〈K1, Yi〉(·).

Given the above reasons, we adopt the method of the RKHS for its ease of use and
computational efficiency, and other well-known properties.

Recently, the RKHS method has been studied by many researchers. Ref. [20] used the
method in the spline model, Ref. [21] studied the quantile regression using this method
and [19] used it for functional linear regressions. However, to the best of our knowledge,
no asymptotic distribution theory for the mean estimation with functional data using the
RKHS exists in the literature, as we do here. The simulation studies indicate an apparent
advantage of the proposed method compared to some commonly used methods for this
type of data. The rest of this paper is organized as follows. In Section 2, we describe the
general RKHS method for the mean curve estimation and derive the theoretical results
and the asymptotic distributions of the mean curve estimations are investigated with a
special construction of the RKHS. And two statistics for testing mean curves are proposed
in Section 3. Section 4 provides the results of the simulation studies and the application of
the proposed methods to real functional data from the National Growth and Health Study
(NGHS) of the NIH. We conclude with a discussion in Section 5, and the proofs of the main
results are given in the Appendix A.

2. Mean Curve Estimation via RKHS

We consider the stochastic processes Y(t) indexed by the time point t ∈ (0, T] for some
0 < T < ∞. At any given t ∈ (0, T], Y(t) ∈ R is the real-valued outcome variable. Assume
that there are n independent subjects and each subject is observed at randomly selected
distinct time points. Let Yij = Yi(tij) be the observation of subject i at time tij for i = 1, . . . , n
and j = 1, . . . , mi. Denote the mean function of Y(t) by µ0(t), the model is assumed as

Yi(tij) = µ0(tij) + εi(tij). for j = 1, . . . , mi, and i = 1, . . . , n, (1)

where the εi(·) is i.i.d. measurement error with mean zero and variance function σ2(t).
Furthermore, we assume that µ0(·) is a continuous function on (0, T]. Note that the Yi(·) is
observed only at times tij. In much of the functional data analysis literature, the observed
data are interpolated and then treated as observed curves, which is not realistic. Here, we
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deal with the data in a realistic way. A second-order differential interpolated curve Ŷi(·) is
used for each subject i, such as the cubic spline interpolation [22], then Ŷi(tij) = Yi(tij) at all
times tij. The second-order differential interpolation is chosen as needed in the asymptotic
study. We assume the following model for the Ŷi(·) is

Ŷi(t) = µ0(t) + ε̂i(t), E[ε̂i(t)] = 0, E[ε̂2
i (t)] = σ2(t), (i = 1, . . . , n). (2)

To estimate the true mean function µ0(·), the RKHS approach is employed. Let H be a
Hilbert space consisting of square integrable functions `2(T) on [0, T], with a given inner
product < ·, · >H. For any mapping G : [0, T]2 7→ `2(T), K(s, t) :=< G(s, ·), G(t, ·) >H
is a reproducing kernel for H and any reproducing kernel of H can be expressed in this
form ([23], Theorem 4, p. 22). Thus, for a given Hilbert space, its reproducing kernel
K is non-unique. The choice of an adequate kernel for a specific statistical inference is
important (for details, see Section 3 below). However, a reproducing kernel under one inner
product may not be a reproducing kernel under another inner product on the same space
H. Assume µ0 ∈ H and there is some RKHS with a known kernel K(·, ·). For any h ∈ H,
define Kh = (Kh)(·) =< K(·, ), h >H. Let < ·, · > be another norm on H, ||h||2 =< h, h >
for all h ∈ H (typically ||h||2 =

∫
T h2(t)dt). We estimate µ0(·) by

µ̂n,λ(·) = arg inf
µ∈H

{ 1
n

n

∑
i=1
||Ŷi − µ||2 + λJ(µ)

}
, (3)

where λ is a smoothing parameter, and J(µ) = ||Kµ||2H is a penalty functional for some
kernel K to be addressed. In the spline method, the penalty is of the form ||µ(r)||2 for some
order r derivative of µ, which is a special case of the RKHS methods (see below).

Let H0 = {h ∈ H : J(h) = 0} ⊂ H be the null space for the penalty functional, and
let H1 be its orthogonal complement (with respect to the inner product < ·, · >H). Then,
H = H0 ⊕ H1, i.e., ∀h ∈ H, it has the decomposition h = h0 + h1, with h0 ∈ H0 and
h1 ∈ H1, and there are two kernel functions K0 and K1 such that K = K0 + K1, ∀h ∈ H,
(K0h)(·) :=< K0(·, ), h >H ∈ H0 and (K1h)(·) :=< K1(·, ), h >H ∈ H1. Here, H1 is also
an RKHS with the reproducing kernel K1(·, ·) on H1 and (K1h) = h, ∀h ∈ H1. Because
K0µ ∈ H0 and K1µ ∈ H1, we have ||K0µ||2H = 0, < K0µ, K1µ >H= 0, and

J(µ) = ||Kµ||2H = ||K0µ + K1µ||2H = ||K0µ||2H + 2 < K0µ, K1µ >H +||K1µ||2H
= ||K1µ||2H =< K1µ, K1µ >H .

(4)

Note that the inner product < ·, · >H of the RKHS often is not the inner product < ·, · >
used in the optimization objective, and the latter is often chosen as the L2 norm. Thus,
the expression of J(µ) in (4) does not hold under the inner product < ·, · >. Often the
norm < ·, · > in (3) is more suitable for statistical interpretation while the norm < ·, · >H is
chosen for convenience of the computation of the penalty term J(µ).

The RKHS estimator often has a closed form solution called representer theorem. Such
a result was known for decades. Ref. [13] presented such results in their case. Here, we
present it in our case. Let d = dim(H0) and g1, . . . , gd be an orthonormal basis of H0.

Theorem 1. Assume µ0(·), Ŷi(·) ∈ H for i = 1, . . . , n. Then, for the given penalty functional
J(µ) = ||K1µ||2H and fixed λ, there are constants a = (a1, . . . , ad)

′ and b = (b1, . . . , bn)′ such
that µ̂n,λ given in (3) has the following representation

µ̂n,λ(t) =
d

∑
j=1

ajgj(t) +
n

∑
i=1

bi(K1Ŷi)(t), t ∈ (0, T].
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Thus, instead of searching a function in a Hilbert space, for minimizing (3), only the
two parametric vectors a and b are to be estimated based on this represent theorem, which
is called the optimal basis theorem in ([1], p. 363).

The λ in (3) is a smoothing parameter and 0 < λ < ∞. Unlike functional regression
estimation, when λ → 0, the estimation of function µ will not break down, and µ̂n,0 is
obtained as the sample mean of the Ŷi which does not have desirable smoothness. When
λ→ ∞, the above procedure is equivalent to minimize J(µ), and in the case of dim(H0) = 2,
the estimator of µ̂n,∞ is linear in t. The most commonly used method for the choice of the
smoothing parameter is the cross-validation (CV) such that the λ minimizes

n−1
n

∑
i=1

∫
T

(
Ŷi(t)− µ̂n,λ,i(t)

)2dt,

where µ̂n,λ,i(·) is the estimator in (3) without using the i-th observation Ŷi. However,
this method is computationally intensive. An improved version of this method is the
generalized cross-validation (GCV) proposed by [24,25]. For a given linear operator A on
H, let {ηi : i = 1, 2, . . .} be the eigenvalues of A such that |η1| ≥ |η2| ≥ . . .. For integer m,
define

||A||m =
m

∑
j=1

ηj, MSE(λ) =
1
n

n

∑
i=1

∫
T

(
Ŷi(t)− µ̂n,λ(t)

)2dt.

By Theorem 1, the estimator of µ0(·) can be written in the form µ̂n,λ(t) == (KλŶn)(t),
and Kλ is a linear combination of K0 and K1. Let I be the identity operator on H, and the
smoothing parameter λ is chosen by minimizing the following GCV(·),

GCV(λ) =
[

lim
m→∞

m−1||I− Kλ||m
]−2MSE(λ).

Obviously, the smoothing parameter λ above is dependent on the sample size n, and
λ(n)→ 0 as n→ ∞. For simplicity, we will use λ instead of λ(n) through this paper.

To obtain the asymptotic distribution of the proposed estimator in (3), a specific kernel
function K(·, ·) has to be chosen.

Recall d = dim(H0). A common choice is d = 2, H0 = {h : h(2) ≡ 0} is spanned by
g1(t) ≡ 1 and g2(t) = t, and K1 for H1 is chosen by

K1(s, t) =
1

(2!)2 B2(s)B2(t)−
1
4!

B4(bs− tc),

where Br(·) is the r-th Bernoulli polynomial, btc = t− [t] is the fractional part of t and [t]
is the integer part of t [19,20]. However, with this kernel function, the penalty term in (3)
is J(µ) = b′Ωb where Ω = (ωij) is a n× n matrix with ωij =

∫
T

∫
T Ŷi(s)K1(s, t)Ŷj(t)dsdt

(see proof of Theorem 1 in Appendix A). Then, the computation for µ̂n,λ(·) in (3) suffers
from the inverse of a n× n matrix, which is a hurdle for a large n, and is difficult to obtain
the asymptotic distribution of the estimator.

To construct an adequate RKHS H on L2[0, T], we consider H0 = {h : h(2)(·) ≡ 0}
with inner product < f , g >H,0, and its orthogonal complement H1 = {h : h(j)(0) = 0, j =
0, 1;

∫ T
0 h(2)(t)dt < ∞} with inner product < f , g >H,1, where

< f , g >H,0=
1

∑
j=0

f (j)(0)g(j)(0), < f , g >H,1=
∫ T

0
f (2)(t)g(2)(t)dt. (5)

The inner product on H is defined as < ·, · >H=< ·, · >H,0 + < ·, · >H,1. Kernels for the
RKHS with more general K0 for H0 and K1 for H1 with these inner products can be found
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in ([26], pp. 33–34). More general methods for construction of kernels K0 and K1 can be
found in ([1] Section 20.3). In particular, we propose

K0(s, t) = 1 + st, K1(s, t) =
∫ T

0
(s− u)+(t− u)+du = (s ∧ t)2(3(s ∨ t)− (s ∧ t)

)
/6. (6)

With the inner product given in (5), let K = K0 + K1, then ∀h ∈ H, h(t) =<
K(t, ·), h(·) >H, and H0 and H1 are orthogonal to each other with respect to < ·, · >H.

Let g(t) = (1, t)′; (K0h)(t) =< K0(t, ·), h(·) >H,0, (K1h)(t) =< K1(t, ·), h(·) >H,1,
Xn(t) = (K1Ŷ)(t) =

(
(K1Ŷ1)(t), . . . , (K1Ŷn)(t)

)′, Ȳn(t) = 1
n ∑n

i=1 Ŷi(t), R =< g(·), g′(·) >
H,0, Un =< Ȳn(·), g(·) >H,0, Vn =< g(·), X′n(·) >H, Sn =< Ȳn(·), Xn(·) >H, Wn =< Xn(·),
X′n(·) >H=< Xn(·), X′n(·) >H,1 and

Ω = (ωij)n×n, with ωij =< Ŷi(·), (K1Ŷj)(·) >H=< Ŷi(·), (K1Ŷj)(·) >H,1 .

Denote K(2)
1 (t, s) = ∂2K1(t, s)/∂s2, then K(2)

1 (t, s) = t− s if s ≤ t and 0 if s > t, and

(K1Ȳn)(t) =< K1(t, ·), Ȳn(·) >H,1=
∫ t

0
(t− s)Ȳ(2)

n (s)ds = Ȳn(t)− Ȳn(0)− tȲ(1)
n (0).

By Theorem 1, µ̂n,λ has the expression,

µ̂n,λ(t) = a′g(t) + b′Xn(t), (7)

and the coefficients a and b satisfy{
0 = −Un + Ra + Vnb
0 = −Sn + V′na + (λΩ + Wn)b,

(8)

because µ̂n,λ in (7) minimizes (4). The solution of (8) is given by(
ân
b̂n

)
=

(
R Vn
V′n λΩ + Wn

)−1( Un
Sn

)
and the estimate µ̂n,λ in (7) for fixed λ becomes

µ̂n,λ(t) = ∑2
j=1 âjgj(t) + ∑n

i=1 b̂i(K1Ŷi)(t)

= (g′(t), X′n(t))
(

R Vn
V′n λΩ + Wn

)−1( Un
Sn

)
.

Because each component of Xn(t) is an element of H1, each component of g(t) is
in H0, and H0 and H1 are orthogonal with respect to the inner product < ·, · >H; then,
Vn =< g, X′n >H= 0, Wn = Ω, and

Sn = 1
n < Xn(·), Ŷ′(t)1n >H=

1
n < Xn(·), Ŷ′(·) >H 1n = 1

n Ω1n,
where 1n is the n-dimensional vector of 1. Thus, we have

µ̂n,λ(t) = g′(t)Un + (1 + λ)−1 1
n

X′n(t)1n.

By definitions of Xn(t) and Un, we have 1
n X′n(t)1n = (K1Ȳn)(t), g′(t)Un = g′(t) <

Ȳn, g >H,0= (1, t)(Ȳn(0), Ȳ(1)
n (0))′ = Ȳn(0) + Ȳ(1)

n (0)t =< K0, Ȳn >H,0 (t), and (7) becomes

µ̂n,λ(t) = (K0Ȳn)(t) + (1 + λ)−1(K1Ȳn)(t)
= (K0Ȳn)(t) + (K1Ȳn)(t)− λ

1+λ (K1Ȳn)(t)
= Ȳn(t)− λ

1+λ (K1Ȳn)(t),
(9)

because K = K0 + K1 is a reproducing kernel of H, [(K0 + K1)Ȳn](·) = Ȳn(·).
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As a curve-smoothing curve estimation, µ̂n,λ(·) is a biased estimator of µ0(·) and its
bias is λ(K1µ0)(·) (unless λ = 0 and so no smoothing regularization). Below, we consider

the asymptotic normality of µ̂n,λ. Denote D→ is the convergence in distribution. Let l∞([0, T])

be the space of bounded functions on [0, T] equipped with the supreme norm, and D⇒ for
weak convergence in the space l∞([0, T]).

(C1). E
∫

T
(
Ŷ(t)− E[Ŷ(t)]

)2dt < ∞.
(C2).

∫
T µ2

0(t)dt < ∞.
(C3). δn := maxj=1,...,mi−1;i=1,...,n(ti,j+1 − tij)→ 0 (a.s.) as n→ ∞.

Theorem 2. (i) Assume (C1)–(C3), and Ω defined above is invertible for all large n, then as n→ ∞
(also, λ→ 0),

||µ̂n,λ − µ0|| → 0 (a.s.)

(ii) In addition, µ0(·) is twice differentiable with its second-order derivative µ̈0(·), then

n1/2[µ̂n,λ(t)− µ0(t)− bn(t)
] D→ N(0, σ2(t)),

where σ2(t) = Var[Y(t)] and with tj ∈ S ,

bn(t) = µ̈0(tj)(tj+1 − t)(t− tj)−
λ

1 + λ
(K1Ȳn)(t) + o(tj+1 − tj)

2, for t ∈ [tj, tj+1).

(iii) If we assume further that Ŷi(·), µ0(·) ∈ H(α) for all i for some α > 0, then

Gn(·) := n1/2[µ̂n,λ(·)− µ0(·)− bn(·)
] D⇒ G(·),

where G is the zero mean Gaussian process on [0, T] with covariance function
R(s, t) = Cov[Y(s), Y(t)].

3. Hypothesis Tests for Mean Curves

In this section, two types of tests for mean curves of functional data are considered:
one is to test the hypothesis of equal mean curves from two populations and another one is
the hypothesis that the mean function µ(·) belongs to some subspaceH0 ofH.

3.1. Test the Equality of Two Mean Curves

Suppose two observed samples are {Ŷ1,i : i = 1, . . . n1} i.i.d. from Y1 and {Ŷ2,i : i =
1, . . . , n2} i.i.d. from Y2, with their mean curves µ1(·) and µ2(·), respectively. The two
samples are assumed to be independent. For the RKHS H on L2[0, T] with inner product (5)
and kernel (6), their mean curve estimates are given by (9) as

µ̂j,λj = Ȳnj ,j(t)−
λj

1 + λj
(K1Ȳnj ,j)(t), (j = 1, 2).

Let |T| be the Lebesgue measure of the set [0, T]. We are to test the null hypothesis

H0 : µ1(·) = µ2(·) (a.e.) vs H1 : µ1(·) 6= µ2(·).

In the above, (a.e.) means almost everywhere, and µ1(·) 6= µ2(·) means not equal on some
set with nonzero Lebesque measure. For this, we propose the test statistic

Tn =
1
|T|

∣∣∣∣∣∣∣∣ √n1n2√
n1 + n2

(
µ̂1,λ1 − µ̂2,λ2

)∣∣∣∣∣∣∣∣2 =
1
|T|

n1n2

n1 + n2

∫ T

0

[
µ̂1,λ1(t)− µ̂2,λ2(t)

]2dt,

where λ1 and λ2 are determined by (6).
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Theorem 3. Assume the conditions of Theorem 2 (iii) for the two samples, 0 < n1/(n1 + n2) < 1,
and (λ1 + λ2)n1n2/(n1 + n2)→ 0. Then, under H0,

Tn
D→ 1
|T|

∞

∑
j=1

γjZ2
j := W,

where the Zj are i.i.d. N(0, 1) random variables, and the γj are the eigenvalues of

R(s, t) =
2

∑
j=1

α2
j Cov[Ŷj(s), Ŷj(t)], s, t ∈ [0, T],

and αj = lim√nj/
√

n1 + n2, (j = 1, 2).

Theorem 3 can be viewed as a generalization of Mahalanobis statistic for finite-
dimensional statistics; it is analogous to the result in ([27], p. 66). In fact, if we observe the
Y1i = (Y1i,1, . . . , Y1i,k)

′ (i = 1, . . . , n1) and Y2i = (Y2i,1, . . . , Y2i,k)
′ (i = 1, . . . , n2) at fixed k

time points, with corresponding mean values (µ1,1, . . . , µ1,k)
′ and (µ2,1, . . . , µ2,k)

′. We take
|| · ||H as the L2-norm and with no penalty, i.e., λ1 = λ2 = 0, then µ̂1,j and µ̂2,j are just the
corresponding sample mean (j = 1, 2), and Theorem 4 reduces to

Tn =
1
k

k

∑
j=1

n1n2

n1 + n2

[
µ̂1,j − µ̂2,j

]2 D→
k

∑
j=1

γjZ2
j ,

with γj being the eigenvalues of R = (rij)1≤i,j≤k, rij = ∑2
a,b=1 αaαbE[Ya,iYb,j].

In practice, the eigenvalues of R(s, t) above cannot be perfectly computed. As approx-
imation, we compute the eigenvalues γ̂j (j = 1, . . . , m) of the matrix Rn = (rij)1≤i,j≤m for
some specified large integer m, where rij = ∑2

a,b=1 αaαbȲa(ti)Ȳb(tj)], Ȳ1(ti) = n−1
1 ∑n1

j=1 Y1j(ti)

and Ȳ1(ti) = n−1
2 ∑n2

j=1 Y2j(ti).
If k is relatively large, only the first p largest eigenvalues are needed for good approx-

imation, with some chosen p (< k). Let λ1, . . . , λp be the p largest eigenvalues, and λ̂j

be their estimates. Then, by Theorem 2.7 in ([27], p. 31), E(λ̂j − λj)
2 = O(n−1), for all

1 ≤ j ≤ p, i.e., the estimates are good up to order O(n−1).

3.2. Test Mean Curve in Some Subspace

This type of test has been systematically studied since the late 1980s. Ref. [28]
developed such a test for regression function, and many related references can be found
therein. Without loss of generality, we only consider that the subspaceH0 is of polynomials
of degree no more than three, and the hypothesis

H0 : µ(·) ∈ H0 versus H1 : µ(·) /∈ H0.

To test H0, we need the penalized estimate µ̃n,λ of µ inH0

µ̃n,λ = arg min
µ∈H0

[
1
n

n

∑
i=1
||Ŷi − µ||2 + λJ(µ)

]
.

Let H12 be the subspace spanned by {t4}, H11 = H1 \H12, and H1 = H11 ⊕H12. Let K11
and K12 be the reproducing kernels for H11 and H12. Let Ω̃ = (ω̃ij) be the n× n matrix with
ω̃ij =< Ŷi, (K11Ŷj) >H. Denote X̃n(t) =

(
(K11Ŷ1)(t), . . . , (K11Ŷn)(t)

)′, Ṽn =< g, X̃′n >H,
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S̃n =< Ȳn, X̃n >H, W̃n =< X̃n, X̃′n >H, and Un, Ȳn(t) and R as before. For h ∈ H, let
(K11h)(t) =< K11(·, t), h(·) >H1 and (K12h)(t) =< K12(·, t), h(·) >H1 . Then,

µ̃n,λ(t) =
d

∑
j=1

ajgj(t) +
n

∑
i=1

bi(K11Ŷi)(t), t ∈ [0, T].

and the coefficients (a, b) minimizing (18) are(
ãn
b̃n

)
=

(
R Ṽn
Ṽ′n λΩ̃ + W̃n

)−1( Un
S̃n

)
and the estimate µ̃n,λ, for fixed λ, is

µ̃n,λ(t) = ∑2
j=1 ãjgj(t) + ∑n

i=1 b̃i(K11Ŷi)(t)

= (g′(t), X′n(t))
(

R Ṽn
Ṽ′n λΩ̃ + W̃n

)−1( Un
S̃n

)
, t ∈ [0, T].

When H0 is true, µ̂n,λ(·) and µ̃n,λ(·) are expected to be close, and so large observed
absolute value of any monotone functional of their difference will be evidence against H0.
The following result characterizes such a difference and can be used to test H0.

Theorem 4. Under H0, we have (i) Assume conditions of Theorem 2 (i), then

n1/2[µ̂n,λ(t)− µ̃n,λ(t)
] D→ N(0, τ2(t)),

where τ2(t) = E[D2(t)], D(t) = (K12[Y− µ0])(t).
(ii) Assume conditions of Theorem 2 (iii), then

Dn(·) := n1/2(µ̂n,λ(·)− µ̃n,λ(·)
) D⇒ D(·),

where D(·) is the mean zero Gaussian process on T with covariance function
Q(s, t) = Cov[D(s), D(t)].

In application, τ2(·) is estimated by τ̂2(t) = (n− 1)−1 ∑n
i=1{(K12[Yi − µ̃n,λ])(t)}2, and

Q(s, t) is estimated by Q̂(s, t) = n−1 ∑n
i=1 K12[Yi − µ̃n,λ])(s)K12[Yi − µ̃n,λ])(t).

4. Numerical Analysis

To investigate the finite sample properties of the proposed procedures, we perform
two simulation studies. The first study is to compare the proposed RKHS estimator of
mean curves with the conventional local linear smooth and spline methods. The second
study is to examine the performance of statistic Tn for testing the equality of two mean
curves. Then, a real data analysis illustrates the performance of our proposed procedures
in this paper well.

Simulation 1. To compare with the commonly used local linear fit (R-package lowess) and spline
smoother (R-package smooth.spline), we consider the estimator µ̂n,λ(·) with the spacial choices of
the kernel and inner products given in (22). We assume that the underlying individual curve i at
time points t ∈ T = [0, 10] is generated from yi(t) ∼ N(µ(t), σ2(t)), where µ(t) = t sin(5 + 3t),
σ2(t) = t2. For each subject i, the number of observation time points mi is assumed to generate
from the uniform distribution on {5, 6, . . . , 20} and the observation time points ti = (ti1, . . . , ti,mi )
are generated from Exp(λ) with λ = 0.6. Then, interpolate the y(tij) on T to obtain ŷi(·).

The fitted results are presented in Figure 2 with sample sizes of 50, 100 and 200,
respectively.
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Figure 2. Solid line: true curve; dotted middle blue line: estimated curve; dotted lower and upper
blue lines: 95% confidence bands. The first, second and third rows are for sample size of 50, 100 and
200, respectively. In each row, the left panel is the proposed method, the middle panel is the local
linear smoother and the right panel is the spline estimate.

The simulation shows that the proposed method (fitted curves (a1)–(a3) has a better
performance than the other two methods. The RKHS estimator has a relatively stable
performance; it has narrower confidence bands at the relatively dense region, and it
becomes wider at the sparse region. For the local linear smoother (b1)–(b3), the width
of its confidence bands has no apparent difference when the observation points change
from relatively dense to sparse. The estimated curves with the local linear smoothing
method have biases due to the sparse observation time points. The spline has a very good
fit and confidence band when the data observation points are relatively dense, but the
estimated curves have a large bias when the data become sparse, as seen in (c1)–(c3), near
the right end of the x-axis, and the spline estimates are not stable, with some moderate to
large fluctuations.

Simulation 2. In this simulation study, we examine the performance of the statistic Tn for testing
the hypothesis H0, the equality of the mean curves of two stochastic processes with the alternative
hypothesis that two mean curves are not equal. We assume that the samples are generated as
xi(t) ∼ N(µ(t), σ2(t)), where µ(t) = t sin(5 + (3t)), σ2(t) = t2, (i = 1, . . . , 50), and yi(t) ∼
N(η(t), σ2(t)), where η(t) = µ(t) + C cos(2 + (2t), (i = 1, . . . , 30), respectively, and C is a
turning parameter to measure the amount of difference between the two samples. We take the
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parameter C to be 0, 0.5, 0.7, 0.8, 0.9 and 1.0 with corresponding meaningful differences ∆1 =

|T|−1
∫

T
(
µ(t)− η(t)

)2dt which are to be 0, 0.179, 0.352, 0.460, 0.582 and 0.718. For each subject
i, the number of observation time points mi and the observation time points ti = (ti1, . . . , ti,mi )
are generated as in Simulation 1 above. The simulation results are presented in Table 1 based on
10,000 replications. Table 1 shows that the computed type I error is slightly less than the nominal
type I error of 0.05 (first row with C = 0) and powers for C ≥ 0.5.

Table 1. Power/type I error of Tn-based simulated 10,000 replications.

Turning Parameter (C) ∆ Tn Power

0 0 0.070 0.044
0.5 0.179 7.111 0.120
0.7 0.352 14.690 0.293
0.8 0.460 18.446 0.504
0.9 0.582 23.548 0.872
1.0 0.718 30.616 0.999

Real Data Analysis

With the proposed method, we analyze the growth data from the National Growth
and Health Study (NGHS) project (https://biolincc.nhlbi.nih.gov/studies/nghs/, accessed
on 1 March 2016), sponsored by the National Heart, Lung, and Blood Institute, from 1985
to 2000. The main purpose of the study is to investigate the differences between Caucasian
and African-American girls in the development of obesity in pubescent females due to
psychosocial, socioeconomic and other environmental factors.

The NGHS is an epidemiological study of the cardiovascular risk factors in 1166
Caucasian and 1213 African-American girls during adolescence. In this longitudinal study,
starting from age 9, each subject had a baseline examination and annual examinations.
The study was renewed twice to continue the longitudinal investigation until the subjects
reached the age of 19 to 20. We deleted those individuals (about 30 for each race) with
only 1 or 2 observations, as our method is for longitudinal data, and the total number of
subjects is n = n1 + n2 = 1136 + 1183 = 2319. The number of follow-up visits for each
subject varies from 3 to 10. The ages vary between 9 and 19 years, and we use the age range
T = [9, 19). The body mass index (BMI) is used as the response y(t) as a function of age t.
The mean curves are estimated using (22) for the two groups separately. The results are
presented in Figure 3 which suggest that the girls’ BMI increases with age and shows that
African-American girls tend to have higher BMIs than Caucasian girls.
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Figure 3. The estimated mean curves of girls’ BMI.

Then, we test the null hypothesis of the equality of two mean curves for the two
samples (Caucasian and African-American girls). The value of the statistic Tn is 2576.302,
the 95% upper quartile of W in Theorem 6 is 938.439 and the corresponding p-value is
0.0015. Thus, the difference between Caucasian and African-American girls is statistically
significant based on the observed data. The conclusion is consistent with other studies on

https://biolincc.nhlbi.nih.gov/studies/nghs/
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these data. For example, Ref. [29] analyzed the same data. They used a varying coefficient
model to analyze the regression relationship between systolic blood pressure (SBP) and age
and race. Their conclusion is that African-American girls tend to have higher probabilities
of “SBP > 100 mmHg” than Caucasian girls so that race is a factor affecting the SBP. It is
known that SBP is strongly related to BMI.

5. Concluding Remarks

We have proposed and studied the reproducing kernel Hilbert space method for the
analysis of functional data, motivated by a practical problem, in which the observation
points are relatively dense in some time intervals and sparse in other time intervals. The
unbalanced observed time points result in a biased estimation or a large variance of the
estimation based on the current methods. The simulation studies indicate an apparent
advantage of the proposed method compared to some commonly used methods for this
type of data. We derived extensive theoretical results for the RKHS estimation, including
convergence rates of estimates with two commonly used norms.

To use the RKHS methods for a functional data analysis, the key is to choose an
adaptive kernel. Different kernels may result in a very different computational efficiency.
In this paper, we proposed a special kernel and the corresponding estimator of the mean
curve for functional data has a very simple expression. The asymptotic distribution of the
estimator is also given. Furthermore, we proposed two statistics for testing the hypothesis
of equal mean curves from two populations and the hypothesis that the mean function
belongs to some subspace. The finite sample performance of the proposed methods is
evaluated by the simulation studies and the methods provided new insight in the analysis
of functional growth data in the NIH NGHS study.

As future works, we can extend the RKHS method to the case of case-control studies
with observational functional data. With observational data, treatment assignment is often
not randomized as in the ideal case; it is known that the naive estimate of a treatment–effect
curve is biased and a causal inference method is needed. A popular such method is the
doubly robust estimator commonly used in ordinary data. To construct such an estimator,
a propensity score model and an outcome model will be specified, and as long as one of
the models is correctly specified, the resulting estimator will be unbiased. To extend this
estimator to functional data is non-trivial and will be our future work. Another possible
extension is to consider the missing responses in the longitudinal data, with the case of
missing not at random (MNAR), which is a topic of general interest.
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Appendix A

Proof of Theorem 1. Let H be the (closed) subspace linear spanned by {gj(·), (K1Ŷi)(·) :
j = 1, . . . , d; i = 1, . . . , n.} with respect to the norm < ·, · >. Denote a = (a1, . . . , ad)

′,
g(t) = (g1(t), . . . , gd(t))′, b = (b1, . . . , bn)′ and (K1Ŷ)(t) = ((K1Ŷ1)(t), . . . , (K1Ŷn)(t))′.
Let r(·) ∈ H \ H be orthogonal to g(·) and (K1Ŷ)(·) with respect to the norm < ·, · >. We
rewrite µ̂n,λ(·) as

µ̂n,λ(t) = a′g(t) + b′(K1Ŷ)(t) + r(t). (A1)

We need only to show r ≡ 0 if µ̂n,λ(·) in (A1) minimizes the right hand of (4).
Because K is the kernel function on H, we have that K = K0 + K1, and ∀h ∈ H,

h = (Kh) = (K0h) + (K1h) = h0 + h1, hj = Kjh ∈ Hj (j = 0, 1). As Ŷi ∈ H, K0Ŷi ∈ H0, and
by definition of H0, ||K0Ŷi||2H = 0, so K0Ŷi = 0. Thus, Ŷi = KŶi = K0Ŷi + K1Ŷi = K1Ŷi ∈ H
(i = 1, . . . , n). Then, r(·) is also orthogonal to Ŷi(·) (i = 1, . . . , n) (with respect to the norm
< ·, · >, because r ∈ H \ H ), and

1
n ∑n

i=1 ||Ŷi − µ̂n,λ||2 = 1
n ∑n

i=1 ||Ŷi −∑d
j=1 ajgj −∑n

j=1 bj(K1Ŷj)− r||2

= 1
n ∑n

i=1

(
||Ŷi −∑d

j=1 ajgj −∑n
j=1 bi(K1Ŷj)||2 − 2 < Ŷi, r >

−2 ∑d
j=1 aj < gj, r > −2 ∑n

j=1 bj < K1Ŷj, r > +||r||2
)

= 1
n ∑n

i=1 ||Ŷi −∑d
j=1 ajgj −∑n

j=1 bj(K1Ŷj)||2 + ||r||2.

(A2)

Since (K1gj) ≡ 0, we have (K1µ̂n,λ) = b′(K1Ŷ) + (K1r) and

J(µ̂n,λ) = < K1µ̂n,λ, K1µ̂n,λ >H
= b′ < K1Ŷ, K1Ŷ >H b + 2b′ < K1Ŷ, K1r >H + < K1r, K1r >H .

(A3)

Furthermore, K1 is a linear operator {H,< ·, · >} 7→ {K1H,< ·, · >H}. Let K∗1 : {K1H,<
·, · >H} 7→ {H,< ·, · >} be its adjoint operator. Because K1 and K∗1 are continuous
bounded linear operators,H is closed with respect to both the norms || · || and || · ||H. Thus,
K∗1(K1Ŷ) ⊂ K∗1H ⊂ H (with respect to the norm < ·, · >), and obtain < K1Ŷ, K1r >H=<
K∗1(K1Ŷ), r >= 0 due to the orthogonality of r(·) to H, i.e., < h, r >= 0, ∀ h ∈ H. (A3)
becomes

J(µ̂n,λ) = b′ < K1Ŷ, K1Ŷ >H b+ < K1r, K1r >H= b′Ωb + J(r), (A4)

where Ω = (ωij)n×n with ωij =< K1Ŷi, K1Ŷj >H. From (A2) and (A4), we obtain

1
n ∑n

i=1 ||Ŷi − µ̂n,λ||2 + λJ(µ̂n,λ) = 1
n ∑n

i=1 ||Ŷi −∑d
j=1 ajgj −∑n

j=1 bi(K1Ŷj)||2
+||r||2 + λ

[
b′Ωb + J(r)

]
.

(A5)

For any (a, b), (A5) is minimized when ||r||2 + λJ(r) = 0. J(r) ≥ 0 and λ > 0 imply
r = 0 and Theorem 1 is proven.

Proof of Theorem 2. (i) Because H0 and H1 are orthogonal with respect to the inner prod-
uct < ·, · >H, each component of Xn(t) is an element of H1, and each component of g(t) is
in H0, then Vn =< g, X′n >H= 0. Denote Wn = (wij)n×n, wij =< K1Ŷi, K1Ŷj >H. Because
(K1Ŷi)(t) = Ŷi(t)− (K0Ŷi)(t), (K1Ŷi)(t) ∈ H1 and (K0Ŷi)(t) ∈ H0,

wij = < Ŷi − K0Ŷi, K1Ŷj >H=< Ŷi, K1Ŷj) >H − < K0Ŷi, K1Ŷj) >H
= < Ŷi, K1Ŷj >H=< Ŷi, K1Ŷj) >H,1= ωij,
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i.e., Wn = Ω. Now, we have

µ̂n,λ(t) = (g′(t), X′n(t))
(

R 0
0 (1 + λ)Ω

)−1( Un
Sn

)
= g′(t)R−1Un + (1 + λ)−1X′n(t)Ω−1Sn.

(A6)

Let Ŷ(t) = (Ŷ1(t), . . . , Ŷn(t))′, I2 be the 2× 2 identity matrix, and 1n be the n-dimensional
vector of 1. Note R = I2, Ȳn(t) = n−1Ŷ′(t)1n, and

Sn =
1
n
< Xn(·), Ŷ′(t)1n >H=

1
n
< Xn(·), Ŷ′(·) >H 1n =

1
n

Ω1n.

Then, (A6) becomes

µ̂n,λ(t) = g′(t)Un + (1 + λ)−1 1
n

X′n(t)1n.

By definition of Xn(t), we have 1
n X′n(t)1n = (K1Ȳn)(t). Recall the definition of Un,

g′(t)Un = g′(t) < Ȳn, g >H,0= (1, t)(Ȳn(0), Ȳ(1)
n (0))′ = Ȳn(0) + Ȳ(1)

n (0)t =< K0, Ȳn >H,0
(t). We have that

µ̂n,λ(t) = (K0Ȳn)(t) + (1 + λ)−1(K1Ȳn)(t)
= (K0Ȳn)(t) + (K1Ȳn)(t)− λ

1+λ (K1Ȳn)(t) = Ȳn(t)− λ
1+λ (K1Ȳn)(t).

Thus, µ̂n,λ(·) is the smoothing of Ȳn(·) by the two operators K0 and K1. Part i) of the
theorem is proved by the fact that λ = λ(n) → 0, and E(Ȳn(·)) → E(Y(·)) = µ0 under
conditions (C1)–(C3).
(ii) Under (C1)–(C3), the Ŷi’s are i.i.d. but are dependent of n as the tij is. Let Sn = {Ti, i =
1, 2, . . . , n} and µn(·) = E(Ȳ(·)|Sn), the conditional expectation under the given observed
time points of n subjects. We have

n1/2(µ̂n,λ(t)− µ0(t)
)

= n1/2
((

Ȳn(t)− µn(t)
)
+
(
µn(t)− µ0(t)− λ

1+λ (K1Ȳn)(t))
)

= n1/2(Ȳn(t)− µn(t) + bn(t)
)
,

where bn(t) =
(
µn(t)− µ0(t)

)
− λ

1+λ (K1Ȳn)(t). Note

n1/2(Ȳn(t)− µn(t)
)
= n−1/2

n

∑
i=1

(
Ŷi(t)− E[Ŷi(t)]

)
.

The sequence Ŷi(t)− E[Ŷi(t)] is i.i.d. with mean 0 and variance σ2
n(t) = var(Ŷi(t))→

var(Y(t)) = σ2(t) as n→ ∞. Then, using the central limit theory,

n−1/2
n

∑
i=1

(
Ŷi(t)− E[Ŷi(t)]

) D→ N(0, σ2).

Similarly as in Theorem 1 in [30], by the assumption µ0 ∈ Hα, we obtain µn(t) −
µ0(t) = O(δα

n), and for t ∈ [tj, tj+1) with tj ∈ S ,

µn(t)− µ0(t) = µ̈0(tj)(tj+1 − t)(t− tj) + o(tj+1 − tj)
2.

Thus,

bn = (µ̈0(tj)(tj+1 − t)(t− tj)−
λ

1 + λ
(K1Ȳn)(t) + o(tj+1 − tj)

2.
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(iii) Let ρ(s, t) = |Y(s)−Y(t)| and ρn(s, t) =
(
n−1 ∑n

i=1(Ŷi(s)− Ŷi(t))2)1/2. The condition
Ŷi(·), µ0(·) ∈ H(α) for all i for some α > 0, and Corollary 2.7.2 in [31], we have

log N[ ](ε,H(α), L2) ≤ Cε−1/(2α) < ∞, (A7)

for any ε > 0 and some constant C. Then, N[ ](ε,H(α), L1) < ∞ for every ε > 0. By
Theorem 2.4.1 in [26], H(α) is a Gelivenko–Cantelli class, which implies sups,t∈T |ρn(s, t)−
ρ(s, t)| → 0(a.s.). Because H(α) is bounded, there is an envelop M < ∞ such that

supt∈T maxi
(
Ŷi(t)− E[Ŷi(t)]

)2 ≤ M. Moreover, N(ε,H(α), L2) ≤ N[ ](ε/2,H(α), L2) and
(A7) imply the uniform entropy condition∫ ∞

0
sup

Q

√
log N(εM,Hα, L2(Q))dε < ∞,

where the supQ is for all probability measures Q. Assume suitable measurable conditions,

then by Theorem 2.8.9 in [31], H(α) is a Donsker class, i.e., Gn
D⇒ G in l∞(T), and G is a

Gaussian process with mean 0 and covariance function R(s, t) = Cov[Y(s), Y(t)].

Proof of Theorem 3. Let Gj,nj(·) = n1/2
j (·)

(
Ȳj,nj(·)− µj(·)

)
. In the proof of Theorem 2, we

see that µ̂j,λj(t) = Ȳj,nj(t)− [λj/(1 + λj)](K1Ȳj,nj)(t), where Ȳj,nj(·) is the corresponding
sample mean. Under H0, µ1(·) = µ2(·),

Tn =
1
|T|

∣∣∣∣∣∣∣∣ n2

[n1 + n2]1/2G1,n1(·) +
n1

[n1 + n2]1/2G2,n2(·)

−
2

∑
j=1

λj

1 + λj

n1/2
1 n1/2

2
[n1 + n2]1/2 (K1Ȳj,nj)(·)

∣∣∣∣∣∣∣∣2

=
1
|T|

∣∣∣∣∣∣∣∣α1G1,n1(·) + α2G2,n2(·)
∣∣∣∣∣∣∣∣2 + op(1).

By Theorem 2 (iii),

α1G1,n1(·) + α2G2,n2(·)
D⇒ G(·),

where G(·) = α1G1(·) + α2G2(·), G1(·) and G2(·) are independent, Gj(·) is a mean zero
Gaussian process on T, with covariance function Rj(s, t) = Cov[Yj(s), Yj(t)] (s, t ∈ T)
(j = 1, 2). Thus, G(·) is a mean zero Gaussian process on T, with covariance function

R(s, t) =
2

∑
j=1

α2
j Rj(s, t), s, t ∈ T.

Hence, we have

Tn
D→ 1
|T| ||G(·)||2.

Because R(·, ·) is a.e. continuous and T is bounded, then R2(·, ·) is integrable, i.e.,∫
T

∫
T R2(s, t)dsdt < ∞. By Mercer’s Theorem (see Theorem 5.2.1 in [23], p. 208), we have

R(s, t) =
∞

∑
j=1

γjhj(s)hj(t),

where γj ≥ 0 (j = 1, 2, . . .) are the eigenvalues of R(·, ·), and hj(·) (j = 1, 2, . . .) are the
corresponding orthonormal eigenfunctions (

∫
T hi(t)hj(t)dt = 0 for i 6= j, and

∫
T h2

i (t)dt = 1
for all i). Let Z1, . . . , Zm, . . . be i.i.d. random variables and Zm ∼ N(0, 1), then Z(t) =
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∑∞
j=1
√

γjZjhj(t) is a Gaussian process on T with mean zero and covariance function R(s, t).
Thus, two stochastic processes G(·) and Z(·) have the same distribution on T, i.e.,

G(·) d
= Z(·) =

∞

∑
j=1

√
γjZjhj(·)

and for || · || being the L2-norm,

1
|T| ||G(·)||2 =

1
|T|

∫
T
G2(t)dt d

=
1
|T|

∫
T

( ∞

∑
j=1

√
γjZjhj(t)

)2

dt =
1
|T|

∞

∑
j=1

γjZ2
j .

Proof of Theorem 4. (i) As in the proof of Theorem 3 (i), µ̃n,λ(t) = (K0Ȳn)(t) + (1 + λ)−1

(K11Ȳn)(t), and we have[
µ̂n,λ(t)− µ̃n,λ(t)

]
= (1 + λ)−1([K1 − K11]Ȳn)(t)
= (1 + λ)([K1 − K11]Ȳn)(t) + O(λ2) = (1 + λ)(K12Ȳn)(t).

Note that under H0, E{(K12Ȳn)(·)} = ([K1 − K11]µ0)(·) = 0. So, under H0,

n1/2[µ̂n,λ(t)− µ̃n,λ(t)
]

= n1/2
(
(1 + λ)(K12[Ȳn − µ0])(t) + O(λ2)

)
= (1 + λ)n1/2(K12[Ȳn − µ0])(t) + o(1) D→ N(0, τ2(t)),

where τ2(t) = E
[
K12[Y− µ0])(t)

]2.
(ii) The proof is similar to that of Theorem 2 (ii).
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