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Spatially varying coefficient models are a classical tool to explore the spatial

nonstationarity of a regression relationship for spatial data. In this paper, we

study the estimation and inference in spatially varying coefficient models for

data distributed over complex domains. We use bivariate splines over triangu-

lations to represent the coefficient functions. The estimators of the coefficient

functions are consistent, and rates of convergence of the proposed estimators

are established. A penalized bivariate spline estimation method is also intro-

duced, in which a roughness penalty is incorporated to balance the goodness of

fit and smoothness. In addition, we propose hypothesis tests to examine if the

coefficient function is really varying over space or admits a certain parametric

form. The proposed method is much more computationally efficient than the

well-known geographically weighted regression technique and thus usable for

analyzing massive data sets. The performances of the estimators and the pro-

posed tests are evaluated by simulation experiments. An environmental data

example is used to illustrate the application of the proposed method.

KEYWORDS
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1 INTRODUCTION

In spatial data analysis, a common problem is to identify the nature of the relationship that exists between variables. In

many situations, a simple “global” model often cannot explain the relationships between some sets of variables, which is

referred to as “spatial nonstationarity”. To handle such nonstationarity, the model needs to reflect the spatially varying

structure within the data. In this paper, we investigate a class of spatially varying coefficient models (SVCMs) to explore

the spatial nonstationarity of a regression relationship. The data in our study need not be evenly distributed; instead,

we assume that the observations are randomly distributed over two-dimensional domain Ω ⊆ R2 of arbitrary shape, for

example, a polygonal domain with interior holes. Suppose there are n random selected locations, and letUi = (Ui1,Ui2)
⊤

be the location of ith point, i = 1, … ,n, which ranges overΩ. Let Yi be the response variable andXi = (Xi0,Xi1, … ,Xip)⊤,

with Xi0 ≡ 1 being the explanatory variables. Suppose that {(Ui,Xi,Yi)}
n
i=1 satisfies the following model (Brunsdon,

Fotheringham, & Charlton, 1996; 1998; Fotheringham, Brunsdon, & Charlton, 2002; Shen, Mei, & Zhang, 2011):

Yi = X⊤
i �(Ui) + �i =

p∑

k=0

Xik�k(Ui) + �i, i = 1, … ,n, (1)
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where �k(·) are unknown varying-coefficient functions, and �i are independent and identically distributed random noises

with E(�i) = 0 and Var(�i) = �2 and are independent of Xi. Our primary interest is to estimate and make inferences for

� = (�0, �1, … , �p)
⊤ based on the given observations {(Ui,Xi,Yi)}

n
i=1
.

When �k(·) are univariate functions, model (1) is the typical varying-coefficient model that has been extensively studied

in the literature (Fan & Zhang, 1999; Ferguson, Bowman, Scott, & Carvalho, 2009; Hastie & Tibshirani, 1993; Lian, 2012;

Tang & Cheng, 2009; Xue & Yang, 2006). In this paper, �k(·) are bivariate functions of locations, and model (1) allows the

regression coefficients to vary over space and therefore can be used to explore the spatial nonstationarity of the regression

relationship via the spatial variation patterns of the estimated coefficients.
In the past decade, SVCMs have been widely applied to a variety of fields including geography (Su, Lei, Li, Pi,

& Cai, 2017), ecology (Finley, 2011), econometrics (Al-Sulami, Jiang, Lu, & Zhu, 2017; Bitter, Mulligan, & Dall'erba,

2007; Helbich & Griffith, 2016), epidemiology (Nakaya, Fotheringham, Brunsdon, & Charlton, 2005), meteorology (Lu,

Steinskog, Tjøstheim, & Yao, 2009), and environmental science (Hu et al., 2013; Huang, Yuan, & Lu, 2017; Tang, 2014;

Waller, Zhu, Gotway, Gorman, & Gruenewald, 2007).
There is a rich literature on how to estimate SVCMs. Two competing methods are the Bayesian approach (see

Assunção, 2003; Gelfand, Kim, Sirmans, & Banerjee, 2003) and the local approach, such as the geographically weighted

regression (GWR) technique (Brunsdon et al., 1996; 1998; Fotheringham et al., 2002). The Bayesian procedure is carried

out by assuming a certain prior distribution of the coefficients and computing their posterior distribution on which the

estimation and inference are performed. However, there is no correct way of choosing a prior. In practice, misleading

results will be generated if one does not choose prior distributions with caution. In addition, for a large data set with

many variables being estimated, the Bayesian methodmay be prohibitively computationally intensive. The GWRmethod

estimates the coefficients in the traditional regression framework of kernel smoothing. It incorporates local spatial rela-

tionships into the regression framework in an intuitive and explicit manner. While this local kernel-based approach is

very nice and useful, it becomes very computationally intensive for large data sets as it requires solving an optimization

problem at every sample location. Typically, the GWR model fitting and spatial prediction require O(n2) operations for a

data set of size n. Recent evolutions in technology provide increasing volumes of spatial data (Banerjee, Gelfand, Finley,

& Sang, 2008; Zhang, Deng, Qian, & Wang, 2013), which are beyond the computing limit of the traditional Bayesian and

GWRmethod. It is urgent to develop a more computationally expedient tool for analyzing spatial data.
Tang and Cheng (2009) and Lu, Tang, and Cheng (2014) proposed a B-spline approximation of the coefficient functions.

The method is fast and efficient because it inherits many advantages of spline-based techniques. However, the data are

required to be regularly spaced over a rectangular domain. In practice, spatial data are often collected over complex

domains with irregular boundaries, peninsulas, and interior holes. Many smoothing methods, such as kernel smoothing,

tensor product smoothing, and wavelet smoothing, suffer from the problem of “leakage” across the complex domains,

which refers to the poor estimation over difficult regions by smoothing inappropriately across boundary features; see the

discussions by Ramsay (2002); Sangalli, Ramsay, and Ramsay (2013); and Wood, Bravington, and Hedley (2008).
In this paper, we develop a powerful and efficient method to estimate SVCMs for data distributed over two-dimensional

complex domains. Our method tackles the estimation problem differently from the local approach, and the coefficient

functions �k(·) are approximated using the bivariate splines over triangulations (BSTs) by Lai and Schumaker (2007) and

Lai and Wang (2013). The proposed estimator solves the problem of “leakage” across the complex domains. Another

advantage of this approach is that it can formulate a global penalized least-squares problem; thus, it is sufficiently fast

and efficient for the user to analyze large data sets within seconds. In addition, under the independence error condition,

which is not uncommon in the GWR literature (Brunsdon et al., 1996; 1998; Huang, Yuan, & Lu, 2017; Shen et al., 2011;

Su et al., 2017), we show that the proposed coefficient estimators converge to the true coefficient functions.
An important statistical question in fitting SVCMs is whether the coefficient function is really varying over space

(Brunsdon, Fotheringham, & Charlton, 1999; Leung, Mei, & Zhang, 2000), which amounts to testing if the coeffi-

cient functions are constant or in a certain parametric form. In the pioneering work of GWR by Brunsdon et al.

(1996), two kinds of permutation test are proposed for global stationarity and individual stationarity, respectively.

For the individual test, the variability of the estimated coefficient function is used to describe the plausibility of

a constant coefficient. Brunsdon et al. (1999) developed a test via comparing the residual sum of squares (RSS)

from the GWR estimation with that from the ordinary least-squares estimation for the null hypothesis of global

spatial stationarity. Moreover, Leung et al. (2000) introduced another RSS-based statistics to test for the global sta-

tionarity of the regression relationship. Motivated by many sophisticated statistical inferential problems in a variety

of areas and fueled by the power of modern computing techniques, bootstrap methods got increasingly popular in

the past two decades. For example, Mei, Wang, and Zhang (2006) used the bootstrap test to investigate the zero
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coefficients in a mixed GWR model, and Cai, Fan, and Yao (2000) proposed a new wild bootstrap test for the goodness

of fit of the varying-coefficient models for nonlinear time series. In this work, we adopt the idea from Cai et al. (2000)

and employ a bootstrap test for testing a globally stationary regression relationship in an SVCM. For individual stationar-

ity test, we suggest the permutation test, which is an easily understandable and generally applicable approach to testing

problems. Our simulation shows that the resulting testing procedure is indeed powerful and the bootstrap method does

give the right null distribution.

The rest of the paper is organized as follows. In Section 2, we give a short review of the triangulations and propose our

estimation method based on bivariate splines. Section 3 is devoted to the asymptotic analysis of the proposed estimators.

Section 4 extends the bivariate splines to the penalized bivariate splines, in which smoothing parameters are used to

balance the goodness of fit and smoothness. Section 5 describes the bootstrap goodness-of-fit test to examine the global

stationarity, and the permutation test for each coefficient functions to check individual stationarity. Section 6 presents

simulation results comparing our method with its competitors. An illustration of the proposed approach is provided in

Section 7 by an analysis of the particle pollution data. Section 8 concludes the paper. Technical details, someMatlab codes,

and more numerical studies are provided in Supporting Information.

2 TRIANGULATIONS AND BIVARIATE SPLINE ESTIMATORS

Our estimation is based on BST. We briefly introduce below the techniques of triangulations and the bivariate spline

smoothing for SVCMs.

2.1 Triangulations

Triangulation is an effective tool to handle data distributed on irregular regions with complex boundaries and/or interior

holes. In the following,we use � to denote a triangle that is a convex hull of three points not located in one line. A collection

△ = {�1, … , �K} of K triangles is called a triangulation of Ω = ∪K
j=1

�j, provided that if a pair of triangles in△ intersect,

then their intersection is either a common vertex or a common edge. Without loss of generality, we assume that allUi are

inside triangles of△, that is, they are not on edges or vertices of triangles in△. Otherwise, we can simply count them

twice or multiple times if any observation is located on an edge or at a vertex of△.

There are quite a few packages available that can be used to construct a triangulation. For example, one can use

the “Delaunay” algorithm to find a triangulation; see MATLAB program delaunay.m or MATHEMATICA function

DelaunayTriangulation. “DistMesh” is another method to generate unstructured triangular and tetrahedral meshes; see

the DistMesh generator at http://persson.berkeley.edu/distmesh/. A detailed description of the program is provided by

Persson and Strang (2004). In all the simulation studies and real data analysis below, we used the “DistMesh” to generate

the triangulations.

2.2 Bivariate spline estimators

For a nonnegative integer r, let Cr(Ω) be the collection of all rth continuously differentiable functions over Ω. Given a

triangulation △, let  r
d
(△) = {s ∈ Cr(Ω) ∶ s|� ∈ Pd(�), � ∈ △} be a spline space of degree d and smoothness r over

triangulation△, where s|� is the polynomial piece of spline s restricted on triangle �, andPd is the space of all polynomials
of degree less than or equal to d. Given {(Ui,Xi,Yi)}

n
i=1
, we consider the following minimization problem:

min
sk∈ r

d
(△),k=0,… ,p

n∑

i=1

{
Yi −

p∑

k=0

Xiksk(ui)

}2

.

We use Bernstein basis polynomials to represent the bivariate splines. For any k = 0, … , p, let {Bj}j∈k be the set of
degree-d bivariate Bernstein basis polynomials for  r

d
(△) constructed by Lai and Schumaker (2007), where k denotes

the index set of the basis functions. Then, we can write the function sk(u) =
∑

j∈kBkj(u)γkj = Bk(u)⊤�k, where �k =

(γkj, j ∈ k)⊤ is the spline coefficient vector. Using the above approximation, we have the following minimization:
n∑

i=1

{
Yi −

p∑

k=0

XikBk(Ui)
⊤
�k

}2

. (2)

http://persson.berkeley.edu/distmesh/
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To meet the smoothness requirement of the bivariate splines, we need to impose some linear constraints on the spline

coefficients to enforce smoothness across shared edges of triangles. Denote by Hk the constraint matrix on the coeffi-

cients �k. HereHk depends on the smoothness r and the structure of the triangulation. Putting all smoothness conditions

together yields Hk�k = 0. We first remove the constraint via the following QR decomposition: H⊤
k
= (Q1,k Q2,k)

(
R1,k

0

)
,

where (Q1,kQ2,k) is an orthogonal matrix, and R1,k is an upper triangle matrix. We then reparametrize using �k = Q2,k�k

for some �k; it is then guaranteed thatHk�k = 0. Thus, theminimization problem in (2) is now converted to a conventional

regression problem without any restriction, as follows:

n∑

i=1

{
Yi −

p∑

k=0

XikB
⊤
k
(Ui)Q2,k�k

}2

. (3)

For simplicity, we assume B(u) = B0(u) = B1(u) = · · · = Bp(u) = {Bj(u)}j∈ , then H0 = H1 = · · · = Hp and

Q2 = Q2,0 = Q2,1 = · · · = Q2,p. In practice, if the coefficients are of very different degrees of smoothness, one can

choose different bivariate spline basis functions with variable triangulations for different coefficient functions to guaran-

tee sufficient smoothness. Denote � = (�⊤
0 ,�

⊤
1 , · · · ,�

⊤
p )

⊤ and let Xi = (1,Xi1, … ,Xip)⊤. Let B∗(Ui) = Q⊤
2
B(Ui). Then the

minimization problem in (3) can be written as follows:

n∑

i=1

{
Yi −

p∑

k=0

XikB
∗(Ui)

⊤�k

}2

. (4)

Let “⊗" denote the Kronecker product. Solving the least-squares problem in (4), we obtain the following:

�̂ =

[
n∑

i=1

{Xi ⊗ B∗(Ui)} {Xi ⊗ B∗(Ui)}
⊤

]−1 n∑

i=1

{Xi ⊗ B∗(Ui)}Yi. (5)

The BST estimator of �k(u) is �̂k(u) = B(u)⊤�̂k, where �̂k = Q2�̂k, for k = 0, … , p.

3 ASYMPTOTIC RESULTS

This section studies the asymptotic properties of the proposed estimators. To discuss these properties, we introduce some

notation of norms. For any function g over the closure of domain Ω, denote by ||g||2
L2(Ω)

= ∫
u∈Ω

g2(u)du1du2 the regular

L2 norm of g, and ||g||∞,Ω = supu∈Ω|g(u)| the supremum norm of g. For directions uj, j = 1, 2, let D
q
uj
g(u) denote the qth

order derivative in the direction uj at the point u. Let |g|
,∞,Ω = maxi+j=
||Di
u1
D

j
u2
g(u)||∞,Ω be the maximum norms of all

the 
th order derivatives of g over Ω.

LetW�,∞(Ω) = {g ∶ |g|k,∞,Ω < ∞, 0 ≤ k ≤ �} be the standard Sobolev space. Given random variables Tn for n ≥ 1, we

write Tn = OP(bn) if limc→∞ lim supnP(|Tn| ≥ cbn) = 0. Similarly, we write Tn = oP(bn) if limnP(|Tn| ≥ cbn) = 0, for any

constant c > 0. Also, we write an ≍ bn if there exist two positive constants c1, c2 such that c1|an| ≤ |bn| ≤ c2|an|, for all
n ≥ 1.

For a triangle � ∈ △ defined in Section 2.1, let |�| be its longest edge length, and �� be the radius of the largest disk,

which can be inscribed in �. Define the shape parameter of � as the ratio �� = |�|∕�� . When �� is small, the triangles are

relatively uniform in the sense that all angles of triangles in the triangulation � are relatively the same. Denote the size of

△ by |△ | ∶= max{|�|, � ∈ △}, that is, the length of the longest edge of△.

In the following, we introduce some technical conditions.

(C1) The joint density function of U = (U1,U2), fU(·) is bounded away from 0 and infinity.

(C2) For any k = 0, … , p, there exists a positive constant Ck such that |Xk| ≤ Ck. The eigenvalues 0(u) ≤ 1(u) ≤ · · · ≤
p(u) of �(u) = E(XX⊤|U = u) are bounded away from 0 and infinity uniformly for all u ∈ Ω, that is, there are

positive constants C1 and C2 such that C1 ≤ 0(u) ≤ 1(u) ≤ · · · ≤ p(u) ≤ C2 for all u ∈ Ω.

(C3) For any k = 0, … , p, the bivariate function �k belongs to the Sobolev spaceW�+1,∞(Ω) for an integer � ≥ 1.

(C4) For every s ∈  r
d
(△) and every � ∈ △, there exists a positive constant F1, independent of s and �, such that

F1||s||∞,� ≤ {
∑

Ui∈�,i=1,· · · ,n
s(Ui)

2}1∕2, for all � ∈ △.
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(C5) Let F2 be the largest among the numbers of observations in triangles � ∈ △, that is, {
∑

Ui∈�,i=1,… ,ns(Ui)
2}1∕2 ≤

F2||s||∞,� , for all � ∈ △, where ||s||∞,� denotes the supremum norm of s over triangle �. The constants F1 and F2
satisfy F2∕F1 = O(1).

(C6) The triangulation △ is �-quasi-uniform, that is, there exists a positive constant � such that the triangulation △

satisfies |△ |∕�� ≤ �, for all � ∈ △.

Conditions (C1) and (C2) are common in the nonparametric regression literature; specifically, they are similar to Con-

ditions (C1) and (C2) in Xue and Yang (2006) and Conditions (C1)–(C3) in Huang, Wu, and Zhou (2004). Condition (C3)

describes the requirement for the coefficient functions usually used in the literature of nonparametric estimation. Con-

dition (C4) ensures the existence of a discrete least-squares spline. In practice, it requires that within each triangle, the

number of data points should not be too small. Condition (C5) suggests that we should not put too many observations in

one triangle. In Section 4, we describe the penalized least-squares spline fitting so that Conditions (C4) and (C5) can be

relaxed in the application, for example, F1 can be zero for some triangles. Condition (C6) suggests the use of more uni-

form triangulations with smaller shape parameters, and this condition can be automatically handled via Delaunay and

DistMesh triangulation program in MATLAB/MATHEMATICA.

The following theoremprovides the convergence rate of �̂k(·). The detailed proofs of this theoremare given in Supporting

Information.

Theorem 1. Suppose Conditions (C1)–(C6) hold, then for any k = 0, … , p, the spline estimator �̂k(·) is consistent and

satisfies that ||�̂k − �k||L2(Ω) = OP(
F2
F1
|△ |�+1 + 1√

n|△|
).

Theorem 1 implies that if F2∕F1 = O(1), and the number of triangles Kn and the sample size n satisfy that Kn ≍ n1/(�+2),

then the BST estimator �̂k has the convergence rate ||�̂k − �k||2L2(Ω) = OP(n−(�+1)∕(�+2)), which is the optimal convergence

rate in Stone (1982).

4 BIVARIATE PENALIZED SPLINE ESTIMATORS

When we have regions of sparse data, bivariate penalized splines, as a direct ridge regression shrinkage-type global

smoothing method, provide a more convenient tool for data fitting than the BST approach presented in Section 2.2. In

this section, we introduce a computationally efficient and stable method to estimate the regression coefficients based on

the bivariate penalized splines over triangulations (BPSTs). In this approach, roughness penalty parameters are used to

balance the goodness of fit and smoothness. The number and shape of the triangles in triangulation are no longer cru-

cial, compared with the BST in Section 2.2, as long as the minimum number of triangles is reached. To define the BPST

method, let

(g) = ∫Ω

{
(D2

u1
g)2 + 2(Du1Du2g)

2 + (D2
u2
g)2

}
du1du2, (6)

which is similar to the thin-plate spline penalty (Green & Silverman, 1994), except that the latter is integrated over the

entire plane R2. An advantage of this penalty is that it is invariant with respect to Euclidean transformations of spatial

coordinates; thus, the bivariate smoothing does not depend on the choice of the coordinate system.

Let �k ≥ 0 be the penalty parameter for coefficient function �k, k = 0, 1, … , p. Given {(Ui,Xi,Yi)}
n
i=1
, we consider the

following regularized minimization problem:

min
sk∈ r

d
(△),k=0,… ,p

n∑

i=1

{
Yi −

p∑

k=0

Xiksk(ui)

}2

+

p∑

k=0

�k(sk),

where separate penalty parameters are used to allow different smoothness for different coefficient functions. Using the

bivariate splines approximation, we have the following minimization:

n∑

i=1

{
Yi −

p∑

k=0

XikBk(Ui)
⊤�k

}2

+

p∑

k=0

λk�
⊤
k
Pk�k. (7)

where Pk is the diagonally block penalty matrix satisfying that �⊤kPk�k = (B⊤
k
�k).
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Similar to what has been done in Section 2.2, we remove the constraint via QR decomposition of H⊤
k
; then, the

minimization problem in (7) is converted to the following:

n∑

i=1

{
Yi −

p∑

k=0

XikBk(Ui)
⊤Q2,k�k

}2

+

p∑

k=0

�k�
⊤
kQ

⊤
2,k
PkQ2,k�k. (8)

Assuming B(u) = B0(u) = B1(u) = · · · = Bp(u) = {Bj(u)}j∈ , the minimization problem in (8) can be written as follows:

n∑

i=1

{
Yi −

p∑

k=0

XikB(Ui)
⊤Q2�k

}2

+

p∑

k=0

�k�
⊤
kQ

⊤
2PQ2�k. (9)

Let � = diag(�0, �1, · · · , �p) and DΛ = �⊗ (Q⊤
2
PQ2). Solving the penalized least-squares problem in (9), we obtain the

following:

�̂
∗
=

[
n∑

i=1

{Xi ⊗ B∗(Ui)} {Xi ⊗ B∗(Ui)}
⊤ +DΛ

]−1 n∑

i=1

{Xi ⊗ B∗(Ui)}Yi.

Therefore, the bivariate penalized spline estimators of �k is �̂∗k (u) = B(u)⊤�̂∗k, where �̂
∗
k = Q2�̂

∗

k, k = 0, … , p.

A crucial issue for the implementation of penalized smoothing above is the selection of the penalty parameters λk, which

control the trade-off between the goodness of fit and smoothness. A standard possibility is to select the penalty parameters

using the cross-validation approach, for example, multi-fold cross-validation and generalized cross-validation. Based on

our simulation studies and real data applications, we find thatmulti-fold cross-validation and generalized cross-validation

usually yield similar results. In this work, we choose a common � for all coefficient functions; nevertheless, sepa-

rate smoothing parameters for coefficient functions can be adopted with heavier computing; see the discussion by

Ruppert (2002).

5 TESTS FOR NONSTATIONARITY

5.1 Goodness-of-fit test

Statistical tests for examining if some of the coefficients vary over space are fundamental in achieving a valid interpretation

of spatial nonstationarity of the regression relationship. To test whether model (1) holds with a specified parametric form

such as linear regression models, we propose a bootstrap goodness-of-fit test based on the comparison of the RSS from

both parametric and nonparametric fittings.

Consider the following null hypothesis:

H0 ∶ �k(u) = �k(u;�), 0 ≤ k ≤ p, (10)

where �k(·;�) is a given family of functions indexed by unknown parameter vector �. Let �̂ be an estimator of �. The RSS

under H0 (RSS0) and the RSS corresponding to model (1) (RSS1) are as follows:

RSS0 =

n∑

i=1

{
Yi −

p∑

k=0

Xik�k(Ui; �̂)

}2

, RSS1 =

n∑

i=1

{
Yi −

p∑

k=0

Xik�̂k(Ui)

}2

.

The test statistics is defined as follows:

Tn = (RSS0 − RSS1)∕RSS1 = RSS0∕RSS1 − 1, (11)

and we reject the null hypothesis (10) for large values of Tn. Due to the feature of less assumption on the distribution

of the error term of the model, bootstrap is a good technique for testing the nonstationarity for the SVCMs. We use the

following nonparametric bootstrap approach (Cai et al., 2000) to evaluate the p value of the test.

Step 1. Based on the data {(Ui,Xi,Yi)}
n
i=1
, obtain the following residuals ε̂i = Yi −

∑p

k=0
Xik�̂k(Ui), i = 1, … ,n, and

calculate the centered residuals ε̂i − ̄̂ε, where ̄̂ε = 1

n

∑n
i=1 ε̂i;
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Step 2. Generate the bootstrap residuals {ε∗
i
}n
i=1

from the empirical distribution function of the centered residuals ε̂i − ̄̂ε

in Step 1, and define Y∗
i
=
∑p

k=0
Xik�k(Ui; �̂) + ε∗

i
;

Step 3. Calculate the bootstrap test statistic T∗
n based on the sample {(Ui,Xi,Y

∗
i
)}n
i=1
;

Step 4. Repeat Steps 2 and 3 B times and obtain a bootstrap sample of the test statistics Tn as {T∗
nb
}B
b=1

, and the p value is

estimated by p̂ =
∑B

b=1 I(T
∗
nb

≥ Tobs)∕B, where I(·) is the indicator function, and Tobs is the observed value of the

test statistics Tn by (11), or reject the null hypothesisH0 when Tn is greater than the upper-� quantile of {T∗
nb
}B
b=1

.

Note that the nonparametric estimate is always consistent, no matter the null or whether the alternative hypothesis

is correct. Therefore, here, we bootstrap the centralized residuals from the nonparametric fit instead of the parametric

fit, and this should provide a consistent estimator of the null hypothesis even when the null hypothesis does not hold.

As proved by Kreiss, Neumann, and Yao (2008), which considered the nonparametric bootstrap tests in a general non-

parametric regression setting, asymptotically, the conditional distribution of the bootstrap test statistics is indeed the

distribution of the test statistics under the null hypothesis, as long as �̂ converges to � at the root-n rate.

5.2 Testing individual function stationarity

One important question arose in varying-coefficient literature: “Does a particular set of local parameter estimates exhibit

significant spatial variation?”. To answer this question, we focus on testing the following null hypothesis:

H0k ∶ �k(u) = �k, versus H1k ∶ �k(u) ≠ �k, for a fixed k = 0,… ,p. (12)

To conduct a hypothesis test, we can use the variability of the local estimates to examine the plausibility of the stationarity

assumption held in traditional regression (Brunsdon et al., 1996; 1999). Specifically, for a given covariate function �k at

location i, suppose �̂k(ui) is the BST or BPST estimate of �k(ui). If we take n values of this parameter estimate (one for each

location point within the region), an estimate of variability of the parameter is given by the variance of the n parameter

estimates.

The test statistics is defined as follows:

Vnk =
1

n − 1

n∑

i=1

(
�̂k(Ui) −

̄̂
�k

)2
, (13)

and we reject the null hypothesis (12) for large values of Vnk.

The next stage is to determine the sampling distribution of Vnk under the null hypothesis. UnderH0k, any permutation

ofUi among the data points is equally likely. Thus, the observed value of Vnk could be compared with the values obtained

from randomly rearranging the data in space and repeating the BPST procedure. The comparison between the observed

Vnk value and those obtained from a large number of randomized distributions can then form the basis of the signifi-

cance test.

Step 1. Randomly shuffle the n locations and obtain {U∗
i
}n
i=1
;

Step 2. Calculate the test statistics V∗
nk
based on the sample {(U∗

i
,Xi,Yi)}

n
i=1
;

Step 3. Repeat Steps 1 and 2B times and obtain a sample of the test statisticsV∗
nk
as {V∗

nk,b
}B
b=1

, and the p value is estimated

by p̂ =
∑B

b=1 I(V
∗
nk,b

≥ Vk,obs)∕B, where Vk,obs is the observed value of the test statistics Vnk by (13), or reject the

null hypothesis when Vnk is greater than the upper-� quantile of {V∗
nk,b

}B
b=1

.

6 SIMULATION

In this section, we analyze synthetic data generated from the model to assess the validity of the proposed estimation and

inference procedure based on BST and BPST smoothing methods. We also implement the GWR method to each of these

artificial data and compare the estimator with our proposed ones.

To obtain the BST and BPST estimators, we set degree d = 2 and smoothness r = 1 when generating the bivariate

spline basis functions. Supporting Information provides more simulation results with different values of d and different

triangulations. For BPST, a common penalty � for all coefficient functions is selected using 5-fold cross-validation from a
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FIGURE 1 Simulation study 1: plots of (a) true �0, (b) true �1, (c) triangulation

9-point grid, where the values of log10(λ) are equally spaced between−2 and 2. For the GWRmethod, we use the “spgwr"

R package to obtain the GWR estimator. In all simulation studies, the total number of replications is 500.

6.1 Simulation study 1

Following Shen et al. (2011), the spatial layout in this example is designated as a [0, 6]2 domain, and the population is

collected atN = 100×100 lattice points with equal distance between any two neighboring points along the horizontal and

vertical directions. At each location, the response variable is generated byYi = �0(Ui)+Xi�1(Ui)+εi, i = 1, … ,N, whereXi
is generated randomly from a Uniform(0,2) distribution. The random error, εi, i = 1, … ,N, are generated independently

from N(0, 1), and the coefficient functions are as follows:

�0(u1,u2) = 2 sin
(
�u1
6

)
, �1(u1,u2) =

2

81
{9 − (3 − u1)

2}{9 − (3 − u2)
2}. (14)

See Figure 1 (a) and (b) for the contour plots of the two true coefficient functions. We randomly sample n = 500, 1000,

and 2000 points from the 100 × 100 points in each Monte Carlo experiment.

Figure 1 (c) shows the triangulation used to obtain the BST and BPST estimators, and there are 13 triangles and 12

vertices in this triangulation. Themean squared estimation error (MSE) andmean squared prediction error (MSPE) for the
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TABLE 1 Estimation and prediction results for Simulation study 1

n Method �0 �1 �2 Y Time

MSE MSPE MSE MSPE BIAS MSPE

BST 0.1046 0.1128 0.0840 0.0904 0.0642 1.0345 0.087

500 BPST 0.0628 0.0637 0.0548 0.0559 0.0527 1.0165 1.102

GWR 0.1708 0.1763 0.1379 0.1434 0.1439 1.1063 28.152

BST 0.0479 0.0496 0.0410 0.0421 0.0427 1.0030 0.121

1000 BPST 0.0340 0.0345 0.0326 0.0331 0.0381 0.9984 2.138

GWR 0.1127 0.1144 0.0889 0.0907 0.1097 1.0505 102.666

BST 0.0241 0.0244 0.0219 0.0222 0.0300 0.9897 0.186

2000 BPST 0.0204 0.0205 0.0205 0.0207 0.0266 0.9888 4.902

GWR 0.0726 0.0733 0.0564 0.0571 0.0798 1.0122 441.230

estimators of the coefficient functions, as well as the MSPE of the response variable Y, are computed using the following:

MSE(�̂k) =
1

n

n∑

i=1

{
�̂k(Ui) − �k(Ui)

}2

, MSPE(�̂k) =
1

N

N∑

i=1

{
�̂k(Ui) − �k(Ui)

}2

, k = 0, 1,

MSPE(Ŷ ) =
1

N

N∑

i=1

(Ŷi − Yi)
2.

In addition, we report the bias (BIAS) of �̂2 = 1

n

∑n
i=1 (Yi − Ŷi)2 in estimating the true variance of errors �2. All the results

are summarized in Table 1.

We compare the proposed BST and BPSTwithGWRby evaluating the estimation accuracy and their predictive accuracy

of the spatial pattern. As the sample size increases, all three estimators tend to result in better performance in terms

of MSE, MSPE, and BIAS. Moreover, regardless of the sample size, both the BST and BPST estimators outperform the

GWR estimator. Compared with the BST estimators, the BPST estimators are more stable, especially when the sample

size is small, and the difference between the BST and the BPST estimators is getting smaller as the sample size increases.

Supporting Information provides more simulation results with different triangulations, which suggest that the number

of triangles or the number of basis functions only has a little effect on the BPST estimator, especially when there is a

sufficient number of triangles.

Figure 2 visualizes the estimated surfaces of �0(·) and �1(·) using BST, BPST, and GWR, which are based on one typical

replication with n = 2000. These plots suggest that the BPST method is able to estimate the spatial pattern with the

greatest accuracy, followed by the BST method, and the GWR is not able to capture the spatial pattern very accurately.

In terms of the computing, because the GWR technique is largely based on kernel regression, a locally weighted regres-

sion is required at every single point in the data set, which results in great computational complexity. In contrast, both

BST and BPST can be formulated as one single least-squares problem; thus, the computing is very easy and fast. The

last column (Time) in Table 1 summarizes the average computing time per iteration in seconds for each method. All the

methods are implemented using a personal computer with Intel(R) Core(TM) i5 CPU dual core @ 2.90 GHz and 8.00 GB

RAM. Specifically, one can see that as the sample size increases, the computational time for GWRmethod increases dra-

matically, whereas BST and BPST almost provide a linear complexity of the sample size when the number of triangles is

much less than the sample size.

As one of the most important inferences in the GWR literature, the test for a globally stationary regression relationship

can provide the information that a SVCM is really necessary for the given data. Next, we investigate the performance of

the proposed bootstrap test described in Section 5.1. We consider the following hypothesis:

H0 ∶ �k(u) = �k, k = 0, 1 versus H1 ∶ �k(u) ≠ �k, for at least one �.

Note that H0 corresponds to the ordinary linear regression model. The power function is evaluated under a sequence of

the alternative models indexed by �, as follows:

H1 ∶ �k(u) = �̄0
k
+ �

(
�0
k
(u) − �̄0

k

)
, k = 0, 1, (0 ≤ � ≤ 1), (15)

where �0
k
(u), k = 0, 1, are given in (14), and �̄0

k
is the average height of �0

k
(u), and in our simulation, �̄00 = 1.2604, �̄01 =

0.8710. The parameter � is designated different values to evaluate the power of the test. The null hypothesis corresponds

to � = 0 in the coefficients.
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FIGURE 2 Simulation study 1: estimated surface via (a) BPST, (b) BST, and (c) GWR based on sample size n = 2000. BPST = bivariate

penalized splines over triangulation; BST = bivariate splines over triangulation; GWR = geographically weighted regression
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FIGURE 3 Type I errors and power for boostrap tests in Simulation study 1: (a) H0 ∶ �k(u) = �k, k = 1, 2 versus

H1 ∶ �k(u) = �̄0
k
+ �(�0

k
(u) − �̄0

k
), k = 1, 2; (b) H0 ∶ �0(u) = �0 versus H1 ∶ �0(u) = �̄00 + �(�00 (u) − �̄00 ); (c) H0 ∶ �1(u) = �1 versus

H1 ∶ �1(u) = �̄01 + �(�01 (u) − �̄01 ). BPST = bivariate penalized splines over triangulation; GWR = geographically weighted regression

We apply the bootstrap goodness-of-fit test in a simulation with 500 replications of sample size n = 500 and 1000, and

we record the relative frequencies of rejecting H0 under the significance level � = 0.05. For each realization, we repeat

bootstrap sampling 100 times. Figure 3 illustrates the empirical frequencies of rejectingH0 against � using BPST andGWR

methods. For GWR, we use the “BFC02.gwr.test” function within the “spgwr” package in R, where the test result is

obtained by test statistics based on theRSS described by Fotheringhamet al. (2002).When � = 0, these relative frequencies

represent the size of the test. For BPST, the relative frequency is 0.060, which is fairly close to the given significant level

5%. This demonstrates that the bootstrap estimate of the null distribution is approximately correct. However, the GWR

gives 0.000, which is much smaller than the significant level. For our BPST-based bootstrap test, regardless of the sample

size, the power increases rapidly to one when � = 0.2, suggesting that the proposed test is quite powerful. Overall, the

proposed test is of a higher power in identifying the varying coefficients than the GWR based test.

Next, we conduct an individual stationarity test with H0k ∶ �k(u) = �k versus H1k ∶ �k(u) ≠ �k, for k = 0, 1. Similar to

(15), the power function is evaluated under a sequence of the alternative models indexed by �, specifically, H1k ∶ �k(u) =

�̄0
k
+ �(�0

k
(u) − �̄0

k
), (0 ≤ � ≤ 1).

We apply the individual stationarity test described in Section 5.2 at significant level � = 0.05 with n = 500 and 1000,

respectively. Similar as in the global stationarity, 500 replications with B = 100 bootstrap samples in each replication
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FIGURE 4 Simulation study 1: coefficient functions under H1 when � = 0.4. (a)�0 (b)�1

are conducted to compute the p value. The individual test for the GWR is based on the test statistics proposed by

Leung et al.(2000) and implemented using the R function “LMZ.F3GWR.test”.

When � = 0, the rejection frequencies of BPST are reasonably close to the given significance level for both coefficient

functions. Consider the specific alternative with � = 0.4, where the functions {�k(u)} under H1k are shown in Figure 4.

Even with such a small difference, we can correctly detect the alternative over 80% of the 500 simulations. With the value

of � increasing, the rejection frequencies increase rapidly, and thus, the rejection frequency of BPST is definitely high if

the coefficient functions are indeed spatially varying. However, for GWR, the rejection frequencies are much higher than

the given significance level, which indicates a much larger Type I error. Although the results improve with the sample

size increasing, the rejection rates are still two or three times higher than the significance level.

In summary, the simulation study demonstrates that the proposed bootstrap tests can well approximate the null

distribution of the test statistics even for a moderate sample size.

6.2 Simulation study 2

In this simulation study, we consider a modified horseshoe domain constructed by Wood et al. (2008). In particular, we

divide the entire horseshoe domain evenly into N = 401 × 901 grid points, which are considered as the population. We

adopt the coefficient functions shown in Figure 5 (a) and (b), where �0(·) is the same function used by Wood (2003) and

�1(u1,u2) = 4 sin {0.05�(u21+u
2
2
)}. The response variableYi are generated from the followingmodel:Yi = �0(ui)+Xi�1(ui)+

εi, i = 1, … ,N, where Xi is generated randomly from a Uniform(0,2) distribution. The random errors, εi, i = 1, … ,N,

are generated independently from theN(0, 0.52) distribution. For each of the 500 Monte Carlo experiments, we randomly

sample n = 2000 and 5000 locations uniformly on the domain.

Figure 5 (c) shows the triangulation used to obtain the BST and BPST estimators, and there are 77 triangles and 65

vertices in this triangulation. The results of MSE, MSPE, and BIAS based on 500 replications are summarized in Table 2,

and the predicted surfaces from one iteration when n = 2000 are demonstrated in Figure 6. These results highlight, on

the irregular domain, that both BST and BPSTmethods can providemore accurate and efficient estimation than the GWR

method.

Another computational issue worth mentioning is that when GWR is used for prediction, a locally weighted regression

is also required at every single point in the predicting data set. In this example, the prediction is conducted over the entire

401 × 901 = 361301 grid points. Therefore, the entire process cannot be completed using personal computers; instead,

the GWR algorithm is conducted via cluster using a parallel computing of 24 general-purpose compute nodes with 128

GB RAM associated to each node, in which, on average, each iteration takes more than 5 hr to complete for n = 2000.

Unfortunately, when n = 5000, we are not able to obtain any results using the same cluster with the same setting within 1

week. On the other hand, for BST and BPST, the prediction can be done with one simple matrix multiplication, and thus,
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FIGURE 5 Simulation study 2: plots of (a) true �0, (b) true �1, and (c) triangulation

TABLE 2 Estimation and prediction results for Simulation study 2

n Method �0 �1 �2 Y Time

MSE MSPE MSE MSPE BIAS MSPE

BST 0.0312 0.0348 0.0237 0.0269 0.0129 0.2647 12.376#

2000 BPST 0.0130 0.0132 0.0080 0.0081 0.0060 0.2588 29.589#

GWR 0.0325 0.0337 0.0240 0.0248 0.0306 0.2697 18280.320a

BST 0.0117 0.0120 0.0085 0.0088 0.0051 0.2560 14.033#

5000 BPST 0.0070 0.0070 0.0042 0.0042 0.0028 0.2545 64.016#

GWR –b –b –b –b –b –b –b

Note. The average computational time is measured using a personal computer with Intel(R) Core(TM)

i5 CPU dual core @ 2.90 GHz and 8.00 GB RAM. aThe average computational time is measured by

cluster using a parallel computing of 24 general-purpose compute nodes with 128 GB RAM associated

to each node. bWe do not have the results here because the computing time for 500 iterations in total is

more than 168 hr even using a cluster with 24 cores in parallel. MSE =mean squared estimation error;

MSPE =mean squared prediction error.
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FIGURE 6 Simulation study 2: estimated surface via (a) BPST; (b) BST; (c) GWR based on sample size n = 2000. BPST = bivariate

penalized splines over triangulation; BST = bivariate splines over triangulation; GWR = geographically weighted regression
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TABLE 3 Meteorological parameters

Variable Meteorological Parameter

PPTN Daily total precipitation (mm)

RH Air relative humidity at 2m (%)

Tmin Surface daily minimum air temperature (◦C)

Tmax Surface daily maximum air temperature (◦C)

WS Surface wind speed (m∕s)

TCDC Total column cloud cover (%)

TABLE 4 Estimation and prediction

accuracy for air pollution data

OLS GWR BPST

MSE 18.68 8.44 7.03

MSPE 18.95 13.20 12.30

Note. OLS = ordinary linear least squares;

GWR = geographically weighted regression;

BPST= bivariate penalized splines over triangu-

lation; MSE = mean squared estimation error;

MSPE =mean squared prediction error.

it is very fast even when the data set is huge. For example, one BPST-based iteration of size 5000 only takes about 1 min

on a personal computer with Intel(R) Core(TM) i5 CPU dual core @ 2.90 GHz and 8.00 GB RAM.

7 APPLICATION TO AIR POLLUTION DATA ANALYSIS

Recently, fine particles (PM2.5, which is a particulate matter with a diameter of 2.5 μm or less) has become a major

air quality concern because it poses significant risks to human health, such as asthma, chronic bronchitis, lung cancer,

and atherosclerosis. Many recent research works (Hu et al., 2013; Russell, Wang, & McMahan, 2017; Tai, Mickley, &

Jacob, 2010) suggest that PM2.5 concentrations depend onmeteorological conditions. To improve current pollution control

strategies, there is an urgent need for a more comprehensive understanding of PM2.5 and a more accurate quantification

between the meteorological drivers and the levels of PM2.5.

In this section, we show the applicability of the proposed SVCMon ameteorological data set to study the effects ofmete-

orological characteristics on air quality. In our study, dailymean surface concentrations of total PM2.5 for the year 2011 are

obtained from the United States Environmental Protection Agency; meteorological drivers are provided by the National

Oceanic andAtmospheric Administration (http://www.esrl.noaa.gov/psd/); daily total gridded precipitation (PPTN), sur-

face wind speed (WS), surface daily minimum air temperature (Tmin), and surface daily maximum air temperature (Tmax)

are acquired from Livneh et al. (2013); air relative humidity (RH) and total column cloud cover (TCDC) are obtained from

North American Regional Reanalysis. See Table 3 for details.

Noting that there are some missing values in RH, TCDC, and total PM2.5, we aggregate the data by season and focus

on the most severely polluted season in a year—winter (December, January, February). We predict the PM2.5 for winter

season using the proposed SVCM, as follows:

PM2.5 = �0(u) + �1(u)PPTN + �2(u)RH + �3(u)Tmin + �4(u)Tmax + �5(u)WS + �6(u)TCDC + ε. (16)

We also consider the multiple linear regression without using the spatial information, as follows:

PM2.5 = �0 + �1PPTN + �2RH + �3Tmin + �4Tmax + �5WS + �6TCDC + ε. (17)

To evaluate different methods, we examine both the estimation accuracy and the prediction accuracy of the multiple

linear regression in (17) and the GWR and the BPST in (16). The out-of-sample prediction errors of each method are

calculated by 10-fold cross-validation. The MSE and MSPE of the three methods are summarized in Table 4. It is obvious

that the BPST estimator provides a much more accurate estimation and prediction. Figure 7 (b)–(h) summarizes the

coefficient estimation results via BPST.

http://www.esrl.noaa.gov/psd/
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A natural question is if the coefficients are really varying over space in model (16). We now use our proposed test

procedure in Section 5 to answer this question. The p values of these tests are listed in Table 5. For the global stationary test,

the p value is smaller than 0.001, so under the significance level � = 0.05, we conclude that at least one of the coefficients

is nonstationary over the entire United States. For the individual stationarity test, the resulting p values for the intercept,

FIGURE 7 Estimates of the coefficient functions of the spatially varying coefficient model for PM2.5 data. PPTN = daily total precipitation;

RH = relative humidity; Tmin = surface daily minimum air temperature; Tmax = surface daily maximum air temperature; WS = wind speed;

TCDC = total column cloud cover. (a) Triangulation with Data Points (b)�0 (Intercept) (c)�1 (PPTN) (d)�2 (RH) (e)�3(Tmin) (f)�4(Tmax) (g)�5
(WS) (h)�6 (TCDC)
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TABLE 5 Hypothesis tests with their p values of the tests for PM2.5 data

Null hypothesis Corresponding variables p value

�0(u) = �0 Intercept < 0.001

�1(u) = �1 PPTN 0.406

�2(u) = �2 RH 0.688

�3(u) = �3 Tmin 0.430

�4(u) = �4 Tmax 0.020

�5(u) = �5 WS < 0.001

�6(u) = �6 TCDC < 0.001

�k(u) = �k, k = 0, 1, … , 6 < 0.001

Note. PPTN = daily total precipitation; RH = relative humidity; Tmin = surface

daily minimum air temperature; Tmax = surface daily maximum air temperature;

WS = wind speed; TCDC = total column cloud cover.

Tmax, WS, and TCDC are all smaller than the significant level � = 0.05, indicating that the coefficients �0(u), �4(u), �5(u),

and �6(u) are really varying over space. However, for PPTN, RH, and Tmin, the p value ≫ �, so we do not have enough

evidence to reject the null hypothesis. The estimated coefficient function plots in Figure 7 confirm the conclusion of the

proposed tests.

8 CONCLUDING REMARKS

In summary, the proposed method has the following advantages in analyzing the spatial nonstationarity of a regression

relationship for spatial data. First, compared with GWR, the proposed method is much more computationally efficient to

deal with large data sets. Specifically, the computational complexity of BST and BPST is O(nK2
n), which indicates that it is

almost linear in terms of the sample size. In addition, as a global estimation with an explicit model expression, the pro-

posed spline approach enables easy-to-implement prediction compared with the local approaches. Second, the proposed

method can overcome the problem of “leakage” across the complex domains that many conventional tools suffer. Third,

by introducing the roughness penalty into the BST, the BPST can alleviate the adverse effect of the collinearity problem in

GWR (Wheeler & Tiefelsdorf, 2005) and provide more accurate estimators of the coefficient functions. By assigning dif-

ferent penalty parameters, the BPST also easily allows different smoothness for different functional coefficients. Finally,

with increasing volumes of data being collected on the environment through remote sensing platforms, complex sensor

networks, and Global Positioning System (GPS) movement, this work provides one feasible approach to study large-scale

environmental spatial data.

The proposedmethod in this article can be easily extended to semiparametric varying-coefficient partially linearmodels

(Brunsdon et al., 1999; Fan &Huang, 2005; Fotheringham et al., 2002), where some coefficients in themodel are assumed

to be constant and the remaining coefficients are allowed to spatially vary across the studied region.

In spatial data analysis, there are mainly two issues: spatial dependence and spatial heterogeneity, and our paper

focuses on the latter. To understand the theoretical behavior of the estimators, we assume that the errors are indepen-

dent. Although this assumption is not uncommon in the GWR literature, it is more realistic to relax the independence

assumption. The spatial dependence can be alleviated by choosing the optimal triangulation; it may not fully vanish, and

certainly, there is more future work ahead to investigate this issue. Lu and Tjøstheim (2014) proposed nonparametric ker-

nel estimators for probability density functions for irregularly observed spatial data and established a new framework of

expanding-domain infill asymptotics, whichmight be useful in defining the “mixing” condition for the errors in ourmodel

and in studying the asymptotics of our estimators. Sun, Yan, Zhang, and Lu (2014) proposed the following semiparametric

spatial autoregressive varying-coefficient model:

Yi = �
∑

j≠i
wijYj + X⊤

i �(Ui) + �i, i = 1, … ,n, (18)

where wij is the impact of Yj on Yi, for example, a specified physical or economic distance. This model considers the

neighboring effect and is thus able to take care of the spatial dependence issue.We are interested in extending our work to

this class of models for irregularly spaced data over complex domains. However, it is challenging to define wij (distance)

for our method due to the “leakage” problem across complex boundary features. Another interesting future work is the
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spatiotemporal extension to analyze data collected across time and space. We might be able to establish some promising

theoretical results under some dependent error assumptions if we let the number of time points go to infinity. We believe

that more careful and intensive future work is necessary in these directions.
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