
Estimation and Prediction of
Convection–Diffusion–Reaction Systems

from Point Measurements

Dirk Vries



Promotor:

Prof. dr. ir. G. van Straten
Meet-, Regel- en Systeemtechniek
Wageningen Universiteit

Copromotoren:

Dr. ir. K.J. Keesman
Universitair hoofddocent
Leerstoelgroep Meet-, Regel- en Systeemtechniek
Wageningen Universiteit

Dr. H.J. Zwart
Universitair hoofddocent
Leerstoelgroep Stochastische Systeem-, Signaal- en Besturingstheorie
Universiteit Twente

Leden van de promotiecommissie:

Prof. dr. A. Bagchi
Universiteit Twente

Prof. dr. D. Dochain
Université Catholique de Louvain, Belgique

Prof. dr. J. Molenaar
Wageningen Universiteit

Prof. dr. M. Verhaegen
Technische Universiteit Delft

Dit onderzoek is uitgevoerd binnen de onderzoekschool Dutch Institute of Systems
and Control (disc).



Estimation and Prediction of
Convection–Diffusion–Reaction Systems

from Point Measurements

Dirk Vries

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR

OP GEZAG VAN DE RECTOR MAGNIFICUS

VAN WAGENINGEN UNIVERSITEIT,
PROF. DR. M.J. KROPFF,

IN HET OPENBAAR TE VERDEDIGEN

OP VRIJDAG 6 JUNI 2008
DES MORGENS TE ELF UUR IN DE AULA.



iv

Estimation and Prediction of Convection–Diffusion–Reaction Systems from Point
Measurements, 2008

Dirk Vries

Ph.D. thesis Wageningen Universiteit, Wageningen, The Netherlands — with
summary in Dutch.

Keywords: system identification, distributed parameter systems, estimation,
prediction, observation, convection–diffusion–reaction models, UV disinfection,
climate room control

ISBN: 987–90–8504–857–2



Voorwoord

Dit proefschrift is het resultaat geworden van vier jaar promotieonderzoek, begon-
nen in maart 2004. De achtergrond van dit werk valt wellicht beter te begrijpen
met een korte voorgeschiedenis. Dit onderzoekswerk maakte deel uit van het STW-
project ‘Modeling and Control of Flows’∗. In dit project zijn de hoofdrolspelers de
systeem- en regeltechniekgroepen van Wageningen Universiteit (WU) en Universi-
teit Twente (UT). Bij beide universiteiten is een promovendus aangesteld: Simon
van Mourik (UT) en ikzelf (WU). Ook zijn verscheidene industriële partners van
waterverwerking, agrotechnologie, en kastechnologie betrokken geweest. Gedu-
rende deze periode hebben deze ‘gebruikers’ hun praktijkervaringen gedeeld met
de onderzoekers.

‘Modeling and Control of Flows’ is een brede omschrijving van een onderwerp,
en zonder nadere specificatie zou voor de bestudering hiervan decennia moeten
worden uitgetrokken. Gelukkig was die er wel. Enerzijds van het doel: het in
kaart brengen van ruimtelijke veranderingen in een tijdsvariërend model voor stro-
mingsverschijnselen om uiteindelijk (energie)kostenbesparingen te kunnen realise-
ren door ‘slimme’ besturing. Anderzijds een toespitsing op het gebied van de toe-
passingen: (1) waterzuivering en (2) koeling van bioproducten. Bovendien is er
een onderverdeling (maar ook samenwerking) geweest op de werkgebieden: re-
geling en modelreductietechnieken in Twente en systeemidentificatietechnieken in
Wageningen.

De afgelopen vier jaar zijn een aftasting en leerperiode geweest met betrekking
tot de praktische en wetenschappelijke invulling van het project. De onderzoeksvrij-
heid die ik daarbij gekregen heb, waardeerde ik zeer. Uiteindelijk hebben een aantal
vragen en antwoorden geleid tot wetenschappelijke publicaties en dit proefschrift.
Meer specifiek gesproken: verscheidene systeemidentificatietechnieken met betrek-
king tot schatting en predictie zijn voorgesteld en uitgewerkt. Deze technieken
kunnen in de praktijk worden toegepast om efficiënte, modelgebaseerde besturing
mogelijk te maken.

Bij de totstandkoming van dit werk ben ik enkele woorden van dank verschul-
digd. Allereerst wil ik mijn dagelijkse begeleiders Karel en Hans (iets minder dage-
lijks) van harte bedanken. Jullie ideeën, kritische blik, capaciteiten om technische
details begrijpbaar te maken, geduld en bovenal, tijd, hebben geleid tot een uitste-
kende arbeidsomstandigheid! Ik waardeer dat enorm. Simon, jij ook bedankt voor
de samenwerking en de droge humor die daarmee gepaard ging. Over (droge) hu-
mor en precisie gesproken, velen zullen het vermoedelijk met mij eens zijn dat in dat
opzicht Johan Ploegaert uniek is. Met andere woorden, Johan, bedankt voor al je
voorbereidende werk en prettige samenwerking! Verder dank ik Gerrit, niet alleen
∗Vrij vertaald: modelleren en besturen van stromingen
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voor je kritische noten in de laatste fase maar ook voor je bereidheid om van dienst
te zijn wanneer nodig. Ook noem ik graag collega-promovendi. Als eerste Timo, we
hebben leuke discussies gehad over het werk, software en maatschappelijke kwes-
ties. Bas, Tijmen, Zita, Martijn, Stefan, Hadiyanto en Djaeni: hopelijk kunnen we
contact blijven houden. Andere collegae: Marja, je bent een echte sfeermaker met
een sociale antenne die (in ieder geval hoorbaar) boven andere (MRS†)-antenne’s
uitsteekt (dit mag je als compliment beschouwen). Verder ben ik alle leerstoel-
groepmedewerkers dank verschuldigd voor de prettige werksfeer en interessante
discussies tijdens de koffiepauzes.

Last, but not least: alle vrienden, kennissen en familieleden die voor de nodige
afleiding hebben kunnen zorgen. In het bijzonder Liesbeth, Pim en mijn ouders.
Ger en Marina, jullie begrip en steun tijdens mijn studie aan de universiteit en
mijn promotieonderzoek (alhoewel de inhoud van het proefschrift jullie misschien
niet helemaal duidelijk is) zijn van onschatbare waarde geweest. Lieve Judith, je
praktische instelling, zorg en toeverlaat hebben uiteindelijk indirect een bijdrage
gehad in dit resultaat. Ik ben je heel dankbaar en ik hoop nog een lange tijd met je
te kunnen delen.

†Meet-, Regel- en Systeemtechniek



“ The most erroneous stories are those we think we
know best—and therefore never scrutinize or
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Abstract

DIFFERENT PROCEDURES with respect to estimation and prediction of systems char-
acterized by convection, diffusion and reactions on the basis of point mea-

surement data, have been studied. Two applications of these convection-diffusion-
reaction (CDR) systems have been used as a case study of the proposed estimation
and prediction methods. One is a climate room for bulk storage of agricultural pro-
duce (Case A) and the other is a UV disinfection process used in water treatment,
food industry and greenhouse cultivation (Case B).

An essential step in the implementation of estimation and prediction for these
types of systems is model reduction. The proposed procedures not only differ by
the nature of the estimation and prediction method, but also with respect to early
or late model reduction. In the context of this thesis, early model reduction encom-
passes approximation of the infinite-dimensional system to finite-dimensional form
before estimation and prediction is worked out, whereas in late model reduction,
the approximation step is applied after synthesis of an infinite-dimensional estima-
tor (observer) or predictor.

The first contribution of this thesis is an identification approach with output-
error (OE) modelling techniques that links important physical parameters in a re-
duced order model to the OE parameters. This technique is illustrated by Case
A, using real experimental data. Local parametric sensitivity analysis shows how
physical parameters affect the dominant time constant in an identified, first order
output-error model.

The second contribution is a realization approach from a discrete-time linear
finite-dimensional system affine in parameters to linear regressive form. The re-
sulting linear regression form allows the formulation of a convex parameter esti-
mation and prediction problem. Such an approach is attractive for reduced order,
discretized CDR models with specific boundary conditions. For such models, it turns
out that the response and regressor functions can be formulated explicitly as func-
tions of the number of compartments, sensor and actuator location. Once available,
they can further be used for a priori identifiability checks, parameter and input sen-
sitivity analysis. Results are illustrated by two diffusion examples with different
boundary conditions.

Finally, the last contributions are a static and a dynamic boundary observer for
CDR systems. Detectability and observability results aid in the design of a static gain
boundary observer of an infinite-dimensional system where only boundary measure-
ments are available. The dynamic observer is synthesized by formulating an H∞–
filtering problem in a linear fractional transformation framework in order to cope
with disturbances on the input and output of the system. Both observer synthesis
approaches are illustrated by a CDR model of Case B.
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CONVECTION AND DIFFUSION are two different mechanisms in energy and mass
transfer phenomena which have their application in many physical, chemical,

biological, environmental and even sociological processes. At the one hand there is
diffusion which may be best described by the movement of a random particle, also
known as Brownian motion. At the other hand there is convection which describes
the forced or free movement of particles or air/fluid flows. Interactions between
particles, species or even humans may be described by reaction terms.

Since convection-diffusion-reaction (CDR) processes play an important role in
many applications, there is a need for understanding, prediction [79] and control.
For these applications, it is natural to study CDR processes from a system theoretical
and control engineering viewpoint.

1.1 Motivation

In this work, we focus on estimation and prediction methods which preserve, as much

as possible, the physical interpretation of a model. Estimation and prediction is con-
sidered to belong to the research area of system identification. Roughly speaking,
system identification is the study of model determination from measurement data
of a target system with a specific modeling objective, starting from a model set.

Two engineering applications are used as show cases in this thesis:

A. Climate control of post-harvest food storage facilities. The controlled vari-
ables are generally the air temperature and the moisture content of the air.
The goal is to effectively cool or heat the climate room such that a balance
between spatial uniformity of product temperature and minimal energy costs
is obtained. Within this context, climate control on the basis of a CDR model
seems to be a natural choice, where the dynamic model describes the spatial
distribution of agricultural produce temperature. Control designs on the basis
of (identified) physical models have been reported in [27, 70, 71, 98].

B. Deactivation of micro-organisms by ultra-violet (UV) light. In current process
control strategies the UV lamp strength is manipulated on the basis of on-line
turbidity measurements of the fluid and minimal required UV dosage for worst
case scenarios, see e.g. chapter 14 in [64]. For tighter process control, the
following candidate variable may be controlled: the concentration of living
micro-organisms at the outlet. In both cases, flow velocity in the disinfection
reactor and dispersion of the micro-organisms determine the residence time
distribution of biomass. UV disinfection technology is nowadays used in water
treatment, food industry and agricultural applications, see e.g. [32, 42, 56,
61, 66].

Although these systems may differ at first sight, the underlying processes may be de-
scribed by CDR equations which belong to the larger class of Distributed Parameter
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Systems∗ (DPS). Furthermore, other similarities are:

• The geometry of the application has fixed boundaries;

• The input/output of the system under study is characterized by boundary ac-
tuation (ventilator, inlet concentration) and the output by point or boundary
observations.

• The ultimate modeling objective is process control.

The applications will be described and studied in Chapter 2 in more detail.

1.2 Modeling approaches

The use of physical modeling is not necessarily needed for control of CDR processes.
So-called black box models may be used for this purpose as well. Some advantages
for this model type are: (i) flexibility in model characterization, including input-
output models; (ii) broad availability of powerful methods for system identification
and (iii) no physical knowledge is required. However, there are some disadvantages.
These disadvantages show up as advantages in the ‘white box’ approach and are
mentioned below.

In contrast to a black box approach, an attractive property of a white box model-
ing approach is that (i) it provides a physical or deterministic interpretation to the
process and (ii) it is an elegant way to use past or a priori knowledge. The advan-
tage of a physical interpretation is obvious: once we have a physical property of
the system like the product temperature or dimensions of the environment, only an
experimental validation of the changed (state) variable is needed (under the pre-
sumption that no other mass or heat transport laws come into play). This makes the
extra effort in system identification, experiment design (including sensor/actuator
placement) and (optimal) control solutions less laborious compared to black-box
approaches.

1.3 Model reduction

Depending on the exact formulation of a particular CDR model, say Σ, explicit solu-
tions to the partial differential equations (pde’s) are only known for a very limited
class of DPS under specific input signals (see e.g. [18]). So, in the majority of
monitoring, prediction and control problems, numerical simulation is needed. This
requires that the infinite-dimensional system (or DPS) (Σ) is reduced to a finite
dimensional form (ΣN ).

This is illustrated schematically in Figure 1.1.
∗Notably, the word ‘system’ is used, where strictly speaking a model of the system is meant. Outside

the context of system identification, both terms will be used for a ‘model of a system’ in order to keep in
line with commonly used terminology.
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model reduction
Σ

Σ

ΣN Σ−ΣN

Figure 1.1: Schematic representation of model reduction

A dynamic, distributed parameter system (DPS) derived from physical knowl-
edge can be written in state space form. In general, physical parameters appear in
this set of (partial) differential equations. In most physical processes, the param-
eters can only be obtained by calibrating and validating these model parameters
to available input-output data (observations), representing the external behavior
(outputs) of the dynamic system. Roughly speaking, this calibration and validation
process of the model candidate is called parameter estimation. Apart from some
exclusive cases, model reduction is also needed for parameter estimation.

Because of the importance of model reduction, we categorize some reduction
tools for distributed parameter systems in ‘early stage’ and ‘late stage’ techniques. In
chemical engineering, this is also referred to as ‘early lumping’ and ‘late lumping’†.

‘Early stage’ reduction. By ‘early stage’ model reduction, it is meant that the DPS
is approximated by a finite dimensional system.

‘Late stage’ reduction. By ‘late stage’ model reduction, it is meant that an observer
or predictor of a DPS is formulated as an infinite dimensional system and
approximated to finite dimensions before implementation in practice.

The following short overview covers a limited selection of reduction methods
for DPS. Since the aim is to provide an estimation/prediction procedure which pre-
serves the physical model structure or parameters in a transparent way, finite ele-
ment or finite volume methods are not discussed. These methods are largely used
in fluid dynamics applications, see for implementations in convection–diffusion sys-
tems e.g. [14].

Discretization by Finite Differences. In chemical engineering, discretization of a
DPS by finite differences is probably still the most popular method [29]. The
main reasons for this are: (i) its implementation is one of the simplest ways
to approximate a differential operator and (ii) the resulting model is easy to
interpret from a ‘physical’ modeling viewpoint. For instance, the approxima-
tion of a plug flow reactor can be characterized by a cascade of stirred tank
reactors. With experimental tracer methods, it is shown in [38] that the hy-
drodynamics of a fixed bed reactor can be approximated reasonably well. For

†a lumped (parameter) model is a finite-dimensional model
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the convection–diffusion equation, numerous accurate schemes on the basis
of finite differences are proposed, see e.g. [1, 35, 116] or the textbook [96].

Weighted residual methods. This family of model reduction methods [37, 79] can
be described as follows. Suppose we have an abstract linear evolution equa-
tion‡:

ż − (P)(z) = 0

with P a differential operator, z ∈ Z the state variables in state space (e.g. a
Hilbert space) on a spatial domain η ∈ Ω and ż a first order derivative of z

with respect to time t. For notational convenience, the arguments t and η of
z are dropped. The solutions z are to be approximated by z̃ which is written
as a linear combination of basis functions:

z ≅ z̃ =

N∑

i=1

aiϕi .

In general, substitution of z̃ into the evolution equation results in the follow-
ing residuals:

ǫ = (P)(z)− (P)(z̃) 6= 0

The idea in the weighted residual methods is to force the residual to zero in
some average sense over the domain Ω by variation of β , i.e.,

J =

∫

Ω

βiǫdη = 0, i = 1,2, . . . N

where βi define the weights on each residual and is further specified below.
Without diving deeper into the subject, we mention some frequently used
sub-methods:

• Collocation method, where residuals ǫ are forced to be zero at discrete
points (collocation points) ηi ∈ Ω, by choosing βi as a displaced delta
function: βi := δ(η−ηi). The sub-domain method can be considered as
a modification of the collocation method.

• Least squares method, where βi := ∂

∂ai

ǫ which boils down to the mini-

mization of
∫
Ω ǫ

2(η)dη.

• Galerkin method, where βi := ∂

∂ai

z̃ = ϕi . In the case that the evolution
equation is perturbed by a non-linear term, so-called non-linear Galerkin
methods [49] improve the approximation accuracy.

‡A more complete description is given in Appendix B, Section B.1.3
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• Orthogonality methods, where the weight vector is chosen such that it is
orthogonal to the residual vector.

• Method of moments, where for one-dimensional space domains: βi :=
ηi−1, i = 1,2, . . . , N .

Singular perturbation approximation. Perturbation theory can be used to reduce
the order of dynamical systems [54]. A singular perturbation problem is an
asymptotic expansion problem containing a small parameter δ that cannot
be uniformly approximated by setting δ to zero. If the approximation is ex-
act, the above problem is called a regular perturbation problem. In a large
class of singular perturbation problems (e.g. reaction-diffusion systems[65]
or predator-prey models), the (spatial or time) domain may be divided into
two sub-domains. For each domain an asymptotic series may be obtained.
By suitably choosing a matching condition at some point in the domain, it is
possible (sometimes by trial and error) to obtain an accurate approximation
in a large part of the whole domain. Singular perturbation approximation is
also reported for CDR processes, see e.g. [77].

Proper Orthogonal Decomposition. POD is also referred to as Principal Compo-
nent Analysis or Karhunen-Loève expansion [34, 74, 75]. The idea is to let the
solution of a pde z(η, t) be represented by an (empirical) infinite linear com-
bination of orthogonal functions, analogous to a Fourier series representation:
z(η, t) ≈∑N

i=1 ai(t)ϕi with the expectation that the approximation becomes
exact as N →∞. The POD of z can be obtained by seeking a sequence of func-
tions ϕi , with i up to some value of N such that an optimal approximation in
some norm ‖·‖, e.g. the least-squares norm, is obtained. The discrete version
of POD is in fact the well-known singular value decomposition of matrices.

Moment matching. A complex-valued function g : Ω 7→ C defined on an open
subset Ω of the complex plane is called analytical if it can be represented by
g(s) =

∑∞
i=0 ci(s − s0)

i exponentially converging in a neighborhood of every
point s0 ∈ Ω. The number ci is called the i-th moment of g(s0). The moment
matching problem ([2]) is formulated as follows:

Given a positive integer n > 0, a sequence {sk}k=1,...,N , a sequence of positive
integers {mk}k=1,...,N and a function g which is analytical in a neighborhood
of points {sk}k=1,..., N , then find a strictly proper real rational function g̃(s) =

p(s)/q(s) of degree n such that,

g̃(i)(sk) = g(i)(sk) for 1≤ k ≤ N , 0≤ i ≤ mk

where g(i) denotes the i-th derivative of g. When g is a transfer function of
a DPS, g̃, with sk = ±ıωk and ωk ∈ R, is frequently used as a reduced order
model of g. The method is closely related to Padé approximation.
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Padé approximation. The Padé approximant is an approximation of a complex- or
real-valued function g by a rational function g̃ of given order [N , m]:

g̃(s) =
b0 + b1s+ b2s+ · · · amsm

1+ a1s+ a2s+ · · · aN sN
, N , m≥ 0, where





g(0) = g̃(0)

g ′(0) = g̃ ′(0)
...

g(N+m)(0) = g̃(N+m)(0)

Control engineers have widely recognized this method as a powerful tool for
the approximation of a transfer function in frequency domain, see for instance
the textbook [94]. The Laplace transform of an infinite dimensional system
yields a trancendental transfer function in the Laplace variable s, i.e. a non-
algebraic function of s. Padé approximation is therefore well suited for ‘late’
reduction of transfer functions from linear infinite dimensional systems to
rational transfer functions and subsequent inverse Laplace transformation.

Balanced truncation. Strictly speaking, balanced truncation is not a DPS reduc-
tion method. However, it can be used to efficiently reduce the model order
of a (Fourier) series approximation of an infinite-dimensional system, see for
example [41]. First, a realization is found such that the controllability and
observability Gramians of the realization are equal and diagonal matrices, see
[43] for an overview. The corresponding system is called a balanced realiza-
tion. The Gramians contain ordered positive diagonal entries σi , called the
Hankel singular numbers. Then, a reduced model is obtained by removing
the states of a balanced realization which correspond to the least observable
and controllable modes, i.e. σi ≤ ǫ, with ǫ a certain treshold.

1.4 System identification

System identification comprises the problem of determining a system description
(model), say Σ, from available input-output (i/o) data {u, y}τ, typically obtained
from experiments with the system S within a finite time (or frequency) interval
τ = [0, N]. The associated identification procedure is characterized by a model
characterization phase, a (parameter/state) estimation and/or prediction phase and
a validation phase. Most often, (optimal) input and experimental design issues
related to the identification experiments are also considered to take part in the
identification procedure. The identification procedure of a parametric model Σ(θ ),
with θ the parameter vector, may be schematically represented by Figure 1.2.
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identification

on the basis of

ǫ(θ )

ǫ(θ )

Real world, experiment

Modeling, identification and experimental/input design

u y

ŷ(θ )

S

v

Σ(θ )

Figure 1.2: A paradigm for system identification. Adopted from Fig. 1.6 [46].

1.4.1 Model characterization

In general, it is not immediately clear how the structure of a given rational transfer
function model from u to y can be linked to a physical model Σ, i.e. how to find
a state space realization with physical interpretation (‘bottom up’ or synthesis ap-
proach). Alternatively, a ‘top down’ identification approach is defined as selecting a
‘grey’ or ‘white’ box model structure a priori on the basis of physical reasoning and
subsequent identification.

1.4.2 Parameter estimation

Parameter estimation is considered as an important and indispensable aspect of
system identification. Parameter estimation may be formulated within a prediction
error framework as a minimization problem [59], i.e.:

θ̂ =min
θ∈Θ

VNk
(t;θ ,ǫ(θ ))

where θ ∈Θ are the unknown parameters in the parameter set Θ, VNk
the objective

function over Nk data points (e.g. a least squares norm over the prediction errors
with respect to time) and ǫ the prediction errors y− ŷ , with ŷ model predictions of
the observations y .

As a consequence of physical modeling, the parameters in Σ often appear non-
linearly in an input-output model structure. Consequently, in general, non-linear
optimization solvers with (costly) iterative procedures are used, where it frequently
occurs that the parameter search gets stuck in local minima, see e.g. [30]. The prob-
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lem gets particularly more complex when dealing with infinite dimensional systems.
In that case, it is a common approach to determine a minimal basis in order to solve
the estimation problem in a finite-dimensional space. See e.g.: Galerkin approxima-
tion schemes [4, 6], rational approximations [82], collocation methods in diffusion
systems [92], chemical reactors [57], minimal finite element approximations [17]
and subsequent finite element reduction and subspace identification, see e.g. vibra-
tion structure examples in civil engineering [81]. Interestingly, subspace identifica-
tion (see [69, 78, 99, 100, for identification routines of finite dimensional systems])
has the advantage over classical prediction error techniques of the absence of non-
linear parameter optimizations.

1.4.3 Linear regressive prediction techniques

As mentioned previously, sooner or later there is a need for a model reduction step.
In addition, there is the desire to avoid non-linear parametric optimizations. Linear
regression§ methods are an attractive alternative to subspace-based techniques if
the underlying physically interpretable model structure is to be preserved. Inspired
by reparametrizations of dynamic systems in the work of [60, 62], Doeswijk and
Keesman exploited these reparametrizations to obtain a linear regressive equivalent
form of the nominal model for the purpose of estimation and prediction. Implemen-
tation of this linear regressive method can be found for a non-linear storage model
and for rational biokinetic functions like the Michaelis-Menten model in [30, 31].

1.4.4 State reconstruction and observer synthesis

Observation theory for finite dimensional systems is a more or less established
research field. There are also many contributions in the area of linear infinite–
dimensional system theory which are relevant to practical situations of state recon-
struction or state observation, see e.g. [9, 20, 113]. For example, an interesting
approach until now only applied to linear infinite–dimensional systems, is to use
backstepping techniques to construct an observer [91].

In the last decade, asymptotically strong observers for bilinear infinite-dimen-
sional systems have been reported, [see e.g. 10, 114]. These systems are of par-
ticular interest in (bio)chemical processes involving reactions. For example, in the
CDR equations of the UV disinfection application, a bilinear term appears when the
deactivation reaction term by the UV-lamp is considered for control.

In addition, as is also the case with the climate storage room and the UV disin-
fection process, measurement and control actions take place at pre-specified points.
However, with point sensing and actuation, the corresponding operators map out
of state space and introduce extra technicalities. For bilinear systems, [11] handled
the ‘unboundedness’ of the observation and/or control operators by investigating

§Some background about linear regression and least squares is given in Appendix B.2.
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admissibility and appropriate regularity assumptions. Such an investigation has
also been done for linear regular systems, see e.g. [13, 111].

1.5 Research scope

Motivated by the above, the framework in which this research is performed will be
further specified.

We concentrate on the estimation and prediction of systems characterized by CDR

models, on the basis of point measurement data while preserving physical knowledge

to a large extend. Hence a ‘top-down’ model selection approach is considered.
Furthermore, the following issues will be addressed:

1. Given a late reduction technique, is it possible to preserve physical knowledge of

the nominal CDR model in terms of the parameter estimate θ , when a discrete

time LTI model is identified with output-error techniques?

The problem is how physical (possibly lumped) parameters of the approxi-
mate model can be recovered from the identified (output-error) model and
discrete measurement data.

2. Given an early reduction technique, is it possible to rewrite the estimation and

prediction problem of a CDR system into a linear regression, and if so, how?

In [30, 31], a reparametrization technique is worked out for (non-)linear
models which can be extended to the DPS case. Some difficulties to be ad-
dressed are: existence of a reparametrization and the formulation of a predic-
tion method which is transparently related to the physical model.

3. Without model order reduction, is it possible to obtain design conditions for a

static observer of a CDR system, under the condition that it is (approximately)

observable?

Systems described by point sensing or actuation typically have ‘unbounded’
control and/or observation operators, see for instance [p. 11, Chapter 1 of
21]. Is it possible to obtain (simple) concepts for observability and detectabil-
ity for these particular CDR systems?

4. Given a late reduction technique, is it possible to obtain a dynamic observer

which is robust to disturbances at both the (boundary) input as well as the point

observation, and if so, how?

Important questions are: well-posedness of the observer-feedback problem,
influence of the model reduction and influence of typical CDR parameters on
the observer synthesis.
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1.6 Thesis outline

The thesis is outlined as follows:

Chapter 2. The climate storage in a closed room and the UV disinfection process
are introduced as case studies.

Chapter 3. Parameter estimation of agricultural produce in a climate storage room
is worked out. The aim is to preserve physical meaning captured by the pa-
rameters θ of a reduced order model. The climate controlled storage room is
used to illustrate the method. (C.f. research issue 1 in Section 1.5).

Chapter 4. A method to obtain output predictions ŷk of CDR systems on the basis of
input-output data and linear regressive techniques is proposed. The technique
is illustrated by a diffusion example with various boundary conditions. (C.f.
research issue 2 in Section 1.5).

Chapter 5. This chapter studies the synthesis of an observer for the state variable
z in CDR systems. It is divided in two parts. In the first part, infinite dimen-
sional theoretical concepts like observability and detectability are formulated
for boundary control systems. These concepts are further worked out for a
static observer of the UV disinfection case study. The second part describes
a robust observer synthesis approach for the same case study, but now under
input and output disturbances. Results of both approaches are illustrated by
numerical simulations of the UV disinfection case. (C.f. research issues 3 and
4 in Section 1.5).

Chapter 6. Some final remarks and conclusions are given.

Hence, the main contributions of this thesis are described in Chapters 3–5. The
‘paths’ which are used to obtain the desired (physical) parameter estimates θ , out-
put predictions ŷk and state observations z are schematically depicted in Figure 1.3.
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Σ(G)

ΣN (G
′)

Σ(A ,B,C)

ΣN (A, B, C) ΣLR
N
(G′)

Σobs(G)

Σobs
N
(G′)

S

Modeling, analysis and system identification

estimation

estimation

prediction

state

infinite dimensional
finite dimensional

Real world

u, y
ẑ

θ̂

ŷk

Ch. 3 and 5

Ch. 4

Ch. 4

Ch. 5

Ch. 5Ch. 5

Figure 1.3: Schematic view of the trajectories from system S to prediction, parame-
ter and state estimation, together with the thesis chapters. Used notation: Σ:=nominal
DPS, ΣN :=finite-dimensional system, obs:=observer, LR:=linear regression, Σd :=finite-
dimensional discrete time system, G, G′:=transfer function and its approximation, respec-
tively,A :=infinitesimal generator of a semigroup, B and C boundary and point observation
operator respectively, A, B, C , system –, input – and observation matrix, respectively.
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Abstract

IN THIS THESIS, two examples of convection–diffusion–
reaction (CDR) processes are studied to illustrate the pa-

rameter and state estimation methods. One example, re-
ferred to as Case A, deals with a food storage process in
a store room for agricultural produce. The other example
deals with a UV disinfection process and is referred to as
Case B. In this chapter, models for Case A and B are pro-
posed and outlined. The modeling aim is estimation and
prediction of these CDR processes for use in control.
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2.1 Conservation principles

Before elucidating on the two applications where flow phenomena occur, we briefly
consider some general conservation principles from physics and deduce the convec-
tion-diffusion-reaction equation (without boundary conditions).

In many physical phenomena, the dependent variables of interest (say, ψ ∈ R3)
obey a generalized conservation principle. This dependent variable may be involved
in heat and mass transfer, turbulent flow and related phenomena. The general
partial differential equation describing this conservation is given as [79]:

∂

∂ t
(ρψ) + div(ρvψ) = div(αgradψ) + S

or, written in Cartesian tensor form:

∂

∂ t
(ρψ) +

∂

∂ξ j

(ρv jψ) =
∂

∂ξ j

(α
∂ψ

∂ξ j

) + S (2.1)

with real-valued constants and variables Further, the flow field should satisfy an

ψ mass fraction of chemical species, enthalpy or temperature, velocity
component, turbulent kinetic energy, . . .

ρ density
v ∈ R3 velocity vector

α (turbulent/heat/mass) diffusion coefficient
S source term (e.g. reactions, heat production)
ξ j j-th spatial coordinate ( j ∈ {1,2,3})

t time.

additional constraint, namely, the mass-conservation or continuity equation (here
in Cartesian tensor form):

∂ ρ

∂ t
+
∂

∂ξ j

(ρv j) = 0 (2.2)

This mass conservation constraint reduces the differential equation in eqn. (2.1) to:

ρ
∂ψ

∂ t
+ρ j v j

∂ψ

∂ξ j

=
∂

∂ξ j

(α
∂ψ

∂ξ j

) + S (2.3)

under compatible initial and boundary conditions.
Notice that, without explicitly writing the initial and boundary conditions, eqn.

(2.3) already describes CDR phenomena. For heat transfer, we denote T := ψ,
whereas for mass transfer c := ψ. In this thesis, we will restrict ourselves to con-
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sider only the simpler, one-dimensional form of the CDR process eqn. (2.3) (i.e.,
ξ = ξ j , j = 1), by making several assumptions in the modeling process. A dis-
cretized version of eqn. (2.1) will be considered for linear regressive estimation and
prediction techniques in Chapter 4.

The modeling phase for the bulk storage application and the UV disinfection will
be described case by case in the subsequent sections.

2.2 Case Study A: Storage room climate control

Modeling of physical processes in climate control applications of agricultural pro-
duce, amounts most times to the incorporation of heat transfer, moisture transport
and fluid mechanics. As a result, models of food storage rooms describe time and

spatially dependent heat and mass transport [40, 51, 63] and also detailed fluid
mechanics in the resulting partial differential equations (see e.g. [28, 97, 98, 115]).
Hence, such a modeling approach for storage rooms leads to high computational
effort when solving these equations.

In [70, 71], a simplified physical model for a bulk storage room is proposed for
designing control laws which are explicitly dependent on (lumped) physical param-
eters. In that work, the ultimate control objective is to achieve a spatial temperature
distribution over the agricultural produce which is as uniform as possible, while
keeping the (ventilation) energy costs as low as possible. In this thesis, it is tried to
identify that part of the model which describes the spatial temperature distribution
of the bulk product temperature.

As a reference, the complete model of the air temperature of the inner cell, of
the shaft behind the cooler, and of the product temperature is presented in the next
section and denoted as Σroom. A schematic drawing of the complete climate room is
shown in Figure 2.1. The submodel that describes the heat transfer over the bulk,
referred to as Σbulk, is outlined in Section 2.2.4 and is used as the to-be-identified
nominal model in Chapter 3.

ξ

1: cooling device
2: shaft behind the cooling device, Ts

3: air temperature sensor, Ta(ξ= 0)
4: air temperature sensor, Ta(ξ= L)1

2

3

4

Figure 2.1: Schematic drawing of climate room.
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In the following section, first the modeling of Σroom is briefly outlined. A full
account of the modeling phase of Σroom is given in [72].

2.2.1 Modeling assumptions

The following assumptions are made with respect to the geometry and physical
properties of the room and products:

A1. The walls are perfectly insulated.

A2. The products are spherical, having radius R.

Assumptions with respect to heat and moisture transport:

A3. The air- and product temperature are assumed uniform with respect to the
width of the climate room, i.e., they only vary in the ξ-direction (see Fig-
ure 2.1).

A4. The temperature dynamics of the air between the top of the bulk and the fan
are not incorporated.

A5. Moisture transport is not modeled. Nevertheless, the heat capacity of air is
adjusted for a high humidity.

A6. Diffusion in the air is neglected. In addition, there is no heat exchange be-
tween the products (no ‘bulk conduction’).

A7. The product skin has the same heat conduction as the product interior.

A8. The whole product surface is exposed to air. Contact with other surface is
accounted for by reducing the total product surfaces.

A9. Heat transport inside a product at height ξ is modeled by diffusion.

A10. Heat production of the product is assumed linear with its temperature. The
heat production is considered as the source term S of the CDR process as in
eqn. (2.3).

A11. The effectiveness of the cooler βc (dimensionless), is assumed constant.

In [72, chapter 2], the modeling approach and the assumptions are discussed in
detail. At first sight, it seems that the neglection of moisture transport and the
absence of bulk conduction seem the most restrictive. The main motivation in [72]
for these assumptions is to come up with a model that is simple enough to get
explicit expressions for a controller.
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2.2.2 Complete climate room model

The complete climate room model is given as follows:

Σroom :=





M0
∂

∂ t
Ts = vs

((
1− βc

)
Ta(L, t) + βc Tc(t)− Ts(t)

)

∂

∂ t
Ta(ξ, t) = −vp

∂

∂ξ
Ta(ξ, t) +M4

(
Tp(ξ, t)− Ta(ξ, t)

)

∂

∂ t
Tp(r,ξ, t) =

M1

r2
∂

∂ r

(
r2 ∂
∂r

Tp(r,ξ, t)
)
+M2Tp(r,ξ, t)

Ta(0, t) = Ts(t)
∂

∂r
Tp(0,ξ, t) = 0

∂

∂r
Tp(R,ξ, t) =

h(vp)

λp

(
Ta(ξ, t)− Tp(R,ξ, t)

)

(2.4)

with (detailed listings are given in Section C.3):

vs = F/Va air velocity inside the shaft
vp = F/Va superficial flow velocity in the bulk, volumetric flow

rate devided by air volume
βc effectiveness constant of cooler

M0 = ρacaVa lumped parameter
M1 = λp/(ρpcp) diffusive heat transfer coefficient of product

M2 = ap/cp lumped parameter in heat production term
M4 = h(vp)Ap/(γρaca) lumped parameter in heat exchange term

Ts, Ta, Tp temperature in shaft behind the cooler, of air in the
inner cell and of the agricultural produce respectively.

2.2.3 Approximation of bulk storage part

In [72], one of the goals is to obtain an explicit result for a switching control law.
To this aim, two approximations are made:

1. Timescale separation of eqn. (2.4), by neglecting the fast dynamics within the
product. As a consequence, the spatial distribution of the product temperature
Tp is not taken into account;

2. Laplace transformation and subsequent Padé–[0,1] approximation of the heat
transfer between the air and product surface.

These approximations lead to:

T̂p(R,ξ, s) =
B

−A+ s︸ ︷︷ ︸
Gp(s)

T̂a(ξ, s)
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which after inverse Laplace transform reads

∂

∂ t
Tp(ξ, t) = ATp(ξ, t) + BTa(ξ, t) (2.5)

The approximation for product temperature as in eqn. (2.5) leads to the following
approximate storage room model Σroom:

Σ
room
=





M0

vs

∂

∂ t
Ts =

(
1− βc

)
Ta(L, t) + βc Tc(t)− Ts(t)

1
vp

∂

∂ t
Ta(ξ, t) =− ∂

∂ξ
Ta(ξ, t) +

M4

vp

(
Tp(ξ, t)− Ta(ξ, t)

)

Ta(0, t) = Ts(t)
∂

∂ t
Tp = ATp(ξ, t) + BTa(ξ, t).

(2.6)

On the basis of time-scale separation, another approximation is made by neglecting
the fast dynamics of Ta and Ts. This results in the right-hand side of the first two
equalities of Σroom being equal to zero. Given the approximation of Σroom after
time-scale decomposition, the part that only describes the transfer over the bulk is
denoted as Σbulk in the following subsection.

2.2.4 Nominal model

A critical part of the identification of Σroom, is the parameter estimation of the heat
transfer over the bulk. To this aim, an isolated, small-scale climate room has been
used for temperature measurements below (i.e. a system input u := Ta(0)) and
on top (i.e. a system output y := Ta(L)) of a stack of crates filled with agricultural
produce. Consequently, for identification of that part of the model, we are interested
in estimation and validation of:

Σbulk :=





∂

∂ξ
Ta(ξ, t) =

M4

vp

(
(Tp(ξ, t)− Ta(ξ, t)

)
, Ta(ξ, 0) = T 0

a
(ξ)

∂

∂ t
Tp = ATp(ξ, t) + BTa(ξ, t)

u(t) := Ta(0, t) = Ts(t)

y(t) := Ta(L, t).

(2.7)

The non–rational transfer function G(s) from u to y obtained from Laplace trans-
formation of Σbulk, reads

G(s) = e
−M5

„

−1+
B

−A+s

«

, (2.8)

where M5 := M4 L/vp is a dimensionless number denoting the ratio between chem-
ical reaction rate and convection, i.e. a heat transfer variant to the Damköhler
number [72].
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The transfer function G as in Eqn. (2.8) is our starting point for validation of the
heat transfer over the bulk of agricultural produce in Chapter 3.

2.3 Case Study B: UV disinfection

The UV disinfection case is a practical example of a CDR system where, typically,
sensors and actuators are placed at prespecified points or at the boundary. UV light
is, amongst others, applied in fluid (water/juice) treatment processes to deactivate
(pathogenic) micro-organisms. In the food process industry, in (waste)water treat-
ment and in greenhouse technology industries (see some examples in [32, 42, 56,
66]). UV disinfection techniques have gained more attention since they do not leave
traces of chemical reagents, in constrast to e.g. water disinfection by chlorination.

Typically, the UV lamp intensity is merely controlled by the transmittance of
the fluid to be treated, see e.g. chapter 14 in [64]. This is a rather conservative
and indirect approach since the actual active pathogenic biomass may differ from
the a priori assumed amount. In order to efficiently cut lamp energy costs, we
would like to implement an observer (or ‘software sensor’) that uses one or more
direct biomass measurements. If properly designed, such an observer allows us to
monitor the (most resistant) pathogen concentration at any point in the reactor.
In this thesis, the UV disinfection process in an annular reactor—generally used in
greenhouse drain water infestation and in disinfection of fluid food products—is
chosen an interesting case with respect to this aim.

2.3.1 Modeling assumptions

First, the inputs (control variables) and outputs (measurements) of our annular UV
system model are specified. An important candidate for the UV disinfection process
control variable is to manipulate the intensity of the UV lamp, referred to as f0(t).
A second candidate is the inlet concentration cin(t). We furthermore assume that
measurements of the active biomass concentration are available† at the inlet of the
reactor, i.e. cin(t), and at some point along the main flow direction in the reactor
c(ξ∗, t), with ξ∗ ∈ [0, L] and L the length of the reactor. A schematic drawing of an
annular UV disinfection reactor is shown in Figure 2.2.

In addition, the following assumptions are made with respect to flow and disper-

sion:

A1: In the axial direction, flow and dispersion is modeled by forced plug flow
advection plus diffusion, where the diffusion coefficient α is constant. Ideal
mixing is assumed in the radial direction r ∈ [r0,R] of the reactor.

†Such a ‘smart’ sensor for on-line measuring of the metabolic status of cells is still in development, see
for instance [87].
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c(ξ∗)

cin

ξ= 0

ξ= L

UV lamp tube

reactor tube

Figure 2.2: Schematic overview of an annular UV disinfection reactor

A2: Solids‡ are homogenuosly suspended in the medium, thus the absorbance of
the medium is constant with respect to the spatial coordinates.

A3: Only one species of micro-organisms is considered, thus c :=ψ is a scalar.

A4: The biomass concentration at the inlet point of the reactor obeys a Robin-type
boundary condition. In other words, immediately at ξ = 0, dispersion of the
inlet fluid with the fluid contained in the reactor takes place. At the reactor
outlet, the concentration fulfills a Neumann-type condition. The combination
of these boundary conditions is well-known under chemical engineers and is
called Danckwerts-type, see the original work of [23] or [80, 90] for tech-
nical notes. The Danckwerts condition implies that no UV irradiation, nor
dispersion takes place at the reactor outlet.

The source term S in eqn. (2.3) can be directly related to the inactivation of micro-
organisms. The assumptions with respect to S are as follows:

A5: Deactivation of pathogenic organisms is assumed to obey first order reaction
kinetics, with constant reaction constant κ per light intensity unit f . See [44,
88].

A6: UV light is emitted radially from the entire surface of the lamp.

A7: The effects of refraction and reflection in the suspended fluid is negligible.

A8: UV irradiation does not penetrate through the reactor walls and the reactor
walls do not reflect.

‡That is, all the particles in the medium except for micro-organisms.
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A9: The reaction term is of mild form, implying that a smooth solution of the
model exists.

The assumptions A5–A9 on modeling the inactivation of micro-organisms by
UV-light leads to the use of Lambert’s law in the source term S of eqn. (2.3)[53],
i.e.:

S = κ f c subject to

{
1
r

d
dr
(r f ) = −E f

f0(r) := f (r0)
(2.9)

where the arguments are dropped for notational convenience and where

f UV irradiation
E monochromatic absorbance of fluid
r radius of reactor tube

r0 outer radius of UV lamp tube.

Due to ideal mixing assumption in the radial direction (A1), the source term S

as in eqn. (2.3) can be reduced to an average deactivation term f across a cross
section of the tube:

S(ξ, t) = κ f (t)c(ξ, t) with f (t) = f0(t)κ

∫ R

r0

r0

r
exp

(−E(r − r0)
)

dr

R− r0
(2.10)

where κ is the susceptibility constant of the micro-organism species to UV irradi-
ance.

2.3.2 Nominal model

The general differential equation for CDR processes under the assumptions A1–A10,
lead to the following model for UV disinfection:

ΣUV :=





∂

∂ t
c(ξ, t) = α ∂ 2

∂ξ2 c(ξ, t)− v f
∂

∂ξ
c(ξ, t)− κ f (t)c(ξ, t)

c(ξ, 0) =: c0(ξ)

−α ∂ c

∂ξ
(0, t) + vc(0, t) =: vcin(t)

∂

∂ξ
c(L, t) = 0,

(2.11)

where ξ ∈ [0, L] and the input and output observations are,

u(t) = cin(t), y(t) = c(ξ∗, t). (2.12)

The non-dimensional form of model ΣUV as outlined in Appendix D.1 will be used
as an illustrative example of a CDR equation for the methods outlined in Chapter 5.



2.4. Summarizing remarks • 23

2.4 Summarizing remarks

Two engineering applications where flow, dispersion and reactions take place are
modeled by CDR equations. The modeling phase for these applications is described
case by case as summarized below.

Case A: storage room climate control. The control purpose of the storage room
is to control the spatial distribution and level of the product temperature Tp

by manipulating the air velocity in the shaft and temperature of the cooling
device. Physical model based control depends thus heavily on the model de-
scribing the temperature distribution over the bulk of agricultural produce.
The nominal model Σbulk as in eqn. (2.7), and its equivalent transfer func-
tion description G from Ta(0) (below the bulk) to Ta(L) (top of the bulk) in
eqn. (2.8), describes this temperature distribution.

Case B: UV disinfection. The control purpose here is to exercise control over the
outlet concentration c(L) by manipulating the UV lamp irradiation f and/or
the input concentration cin. Convection and diffusion equations in the main
flow direction are proposed to account for flow and dispersion effects. Fur-
thermore, it is assumed that first order deactivation kinetics take the disinfec-
tion of biomass by UV light into account. The complete nominal model for UV
disinfection control is given as ΣUV in eqs. (2.11) and (2.12).





3
Parameter
Estimation

This chapter is based on:

D. Vries et al. Physical parameter estimation in a distributed parameter

system: a food storage case. Submitted to Journal of Process Control.
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Abstract

DISCRETE TIME MODELS of air temperature dynamics inside
a bulk of agricultural produce for different flow condi-

tions are identified, using an OE method. It is shown that
the performance gain of higher order models compared to a
first-order model is negligible. The parameters of this first
order model are linked to the physical parameters in an an-
alytically derived approximation of a diffusion-convection-
reaction type of model. Local sensitivity analysis shows to
what extend the physical parameters affect the empirical pa-
rameters in the identified model. Subsequently, the values
of the most sensitive physical parameters in the approximate
physical model are recovered from the identified model.
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3.1 Introduction

In industry, there is a strong demand to incorporate physical knowledge into models
for analysis, prediction and control. This preference for physical model-based pre-
diction and control, while incorporating experimental data, needs an appropriate
system identification approach [e.g. 59, 76].

In [110], it has been noted that there has been little attention to, and experi-
ence of, system identification for model-based control in food industry applications.
In these specific applications often heat transfer plays a fundamental role. Starting
from physical principles and after Laplace transformation, in the frequency domain
usually non-rational transfer models result, which need special attention. However,
some researchers, as e.g. in [28, 110], have chosen to neglect this phenomenon
and simply restrict their identification to rational transfer functions in which the
parameters are determined by the data. Hence, no physical information in terms of
the original heat transfer processes is incorporated in their models. Consequently,
it is hard to make predictions for systems other than the particular experimental
setup. As an alternative approach to this direct rational transfer function model-
ing approach, in [58, 84] it has been suggested to retain the fractional powers of
the Laplace variable in the transfer function descriptions. However, only modest
progress in this approach has been made to preserve physical laws, see [83] for
an application to diffusion systems. Other significant attempts in system identifi-
cation to preserve prior knowledge have been made by using so-called grey-box or
semi-physical modeling approaches, see e.g. [8, 89].

In the semi-physical modeling approaches to the food storage case, first principle
knowledge that is available about heat transfer, moisture transport, fluid mechan-
ics, etc., is incorporated in the modeling phase. As a result, models of food storage
rooms describe time and spatially dependent heat and mass transport [40, 51, 63].
Moreover, these flow driven transport phenomena lead to nonlinearities in the re-
sulting partial differential equations (PDE). Consequently, and even more so when
including detailed fluid mechanics (see [15, 16, 28, 97, 98, 115]), the resulting sim-
ulation model requires a high computational effort, making parameter estimation
of the full model almost inappropriate. Hence, approximate lower order models are
needed. One way is to consider a (rough) spatial discretisation of the PDE(s) into
compartments. As an example of this, for estimation and prediction in compartmen-
tal diffusive systems we refer to e.g. [7, 105]. However, in general, the information
on the physical parameters of the original physical model gets lost after an approx-
imation step. All these complications may contribute to the lack of penetration of
system identification methods for control in the food industries.

In this chapter, an attempt is made to identify discrete-time transfer function
models from noisy data while preserving physical insight of a specific distributed pa-
rameter system to a large extend. To circumvent the numerical obstacles mentioned
before, we show how to recover physical parameters from low order transfer func-
tion models using Padé approximation, output-error (OE) identification and local
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sensitivity analysis of the physical parameters with respect to the identified transfer
function parameters. The goal of this chapter is to demonstrate this procedure to a
specific food storage facility using experimental data.

Identify Σ1,d(θ ) (Section 3.4)
by experiment (Section 3.2) and
compare with ΣN ,d(θ ) (Section 3.4)

Recover physical
parameters (Section 3.5)

U , Y [data]

S [system]

Σ1,d(θ ) [approx. model] (Section 3.3)

Σ(p) [nominal model] (Section 3.3)
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Figure 3.1: Chapter outline, where Σ1,d(θ ) is the (to be) identified first order model with
parameters θ , ΣN ,d(θ̂ ) are identified OE-models with order N and Σ(p) is the nominal, phys-
ical model with physical parameters p. Boxes which are thickly outlined indicate the starting
point, boxes with rectangle corners: procedures/algorithms, rounded corners: models/sys-
tem.

The chapter is organized as schematically depicted in Figure 3.1, where the
numbers between parentheses indicate the section numbers, rectangle boxes de-
note procedures, rounded boxes mathematical entities and the arrows denote the
interaction by procedure(s). Section 3.2 describes the experimental setup of the
case study. In Section 3.3, modeling of the system S with Σ(θ ) and its model
order reduction to Σ1,d(θ ) is presented. Section 3.4 outlines the identification pro-
cedure. Section 3.5 illustrates how a subset of (uncertain) physical parameters can
be recovered from the identified model. In the last section, concluding remarks are
given.

3.2 Case study: experimental conditions

In this section, the experimental setup is outlined. Figure 3.2 shows a schematic
side view of the experimental storage room (GTI Zephyr 39892). The dimensions
of the room are 3.6× 2.9× 2.1 m. A stack of crates filled with potatoes is placed
on the floor. The air temperatures are measured at the bottom and at the top of
the stack. The air temperatures were measured at the top and at the bottom of the
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ξ

1: cooling device
2: shaft behind the cooling device, Ts

3: air temperature sensor, Ta(ξ= 0)
4: air temperature sensor, Ta(ξ= L)1

2

3

4

Figure 3.2: Schematic drawing of climate room.

stack, with two temperature Pt-100 4–wired sensors. A fan enforces air circulation
through the stack, which is sealed with thick plastic foil and paper, for minimal
air and temperature loss through the stack walls. For three settings of the fan the
corresponding flux (m3/h) through the bulk is measured by a calibrated flux meter
above the stack of crates. This resulted in three average fluxes: Φ1 = 211 m3/h,
Φ2 = 710 m3/h and Φ3 = 1200 m3/h. Details about the dimensions, potato weight,
etc., can be found in chapter 2 of [72].

In three experiments, step responses were measured. In Figure 3.3 the mea-
sured input signal and output responses are depicted. It can be seen that, in this
experiment, dead time is indeed∗ small and therefore it is neglected.

It should be noted that the second half (with respect to time) of the data set is
chosen as calibration set, while the other half is used for validation.

The air temperature was set to 293 K , and was subsequently brought down to
278 K in three days. The relative air humidities were measured in the center of the
bottom and top of the stack with a sensor of type Rotronic Hydroclip Campbell CR10
data. The system was monitored with a sample time of one minute. The relative
humidities varied less than 10% in all the experiments. We assumed therefore,
that the moisture transport between air and products is small and will thus have
a small influence on the heat transport. This observation supports the use of the
approximate model in the next section, that only describes temperature dynamics.

3.3 Physical model

In [70, 71], a physical model that describes the temperature dynamics and spatial
distribution in a food storage room is presented (see also Chapter 2, Section 2.2 and
Appendix C.3 for used notation). In that work, explicit expressions as a function of
physical parameters have been derived. To ensure good controller performance, the
identification of the unknown parameters is needed.

∗from a priori physical knowledge, the ratio L/v in M5 is small, see Section C.3 in the Appendices.
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(a) Ventilator setting 59%
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(b) Ventilator setting 85%
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(c) Ventilator setting 100%

Figure 3.3: Measured air temperature below (Ta(0, tk), [ ]) and above (Ta(L, tk), [ ]) the
stack of crates, sampled points denoted by [·]. Ta(ξ, 0)≡ 281 [K].

To this aim, parameter estimation of an important part of that model is carried
out, i.e. the submodel Σbulk which describes the spatial air temperature distribution
from below Ta(0) to the top Ta(L) of the stack of crates, see eqn. (2.7). We assume
that this model of the air temperature dynamics over a bulk of agricultural produce
has the same transport dynamics as the stack of crates in our case study. Since the
crates are fully filled, i.e., there are no large air spaces inside or between the crates,
this assumption is defendable.
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The model Σ(p)† (see also Chapter 2, Section 2.2.4) with physical parameters p

is given as:

Σ(p) :=





∂

∂ξ
Ta(ξ, t) =

M4(p)

p1

(
(Tp(ξ, t)− Ta(ξ, t)

)
, Ta(ξ, 0) = T 0

a
(ξ)

∂

∂ t
Tp = A(p)Tp(ξ, t) + B(p)Ta(ξ, t)

u(t) := Ta(0, t)

y(t) := Ta(L, t)

(3.1)

where vp denotes the air velocity in the bulk and is related to the ventilator set-
ting, see Appendix C, Section C.3 for details. Furthermore, the lumped physical
parameters M4, A and B are dependent on the physical parameters p and vp, see
also Appendix C.3. In the same work of Mourik, a first order approximate model
that facilitates calibration and fast simulation is derived by Padé approximation of
the Laplace transform of the transfer function of Σ (see eqn. (2.8)) to yield:

ŷ(s) =
b̃

−ã+ s︸ ︷︷ ︸
G[0,1](s)

û(s) (3.2)

where, For notational convenience the argument p of ã, b̃, A, B and M5 have been

ŷ Laplace transform of y

û Laplace transform of u

ã = − A2

M5B
inverse of the dominant time constant

b̃ =
−A2

M5B
eM5(−1−B/A) the influence of the input

M4 :=
hvAp

γpρaca

lumped constant for heat transfer resistance between
bulk and air (physical parameters are listed in Appendix
C.3)

M5 :=
M4 L

vp

Damköhler number, i.e. a dimensionless ratio between
convection and reaction rate, see [72].

dropped. Notice, that in eqn. (3.2), it is assumed that (a) pure time delay due to
transport phenomena and (b) the influences of heat exchange through the walls of
the bulk and moisture transport are negligible.

Inverse Laplace transformation of eqn. (3.2) gives a first order approximate
model (the model order is denoted in the subscript of Σ) in the continuous time

†Since in this chaper, only the model for the bulk storage case is considered, the superscript notation
‘bulk’ has been dropped for eligibility reasons, i.e. here Σ := Σbulk with Σbulk as in eqn. (2.7).
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domain:

Σ1(p) :





d
dt

Ta(L, t) = ã(p)Ta(L, t) + b̃(p)Ta(0, t), Ta(ξ, 0) = T 0
a
(ξ)

u(t) := Ta(0, t)

y(t) := Ta(L, t)

(3.3)

A priori estimates for p have been found in [72, 109]. The parameters which were
most difficult to estimate are: Nβ (number of produce exposed to the air), γp (bulk
porosity), Ap (surface per volume of product ratio) and β (efficiency of cooler).
The efficiency of the cooler has been determined in a seperate experiment, see [72,
chapter 3].

3.4 Identification procedure

Since we deal with sampled input and output data in the time domain, we choose
to transform the continuous time model eqn. (3.3) to a discrete time one for further
identification and validation instead of transforming the data to the continuous time
domain. The transformation from continuous to discrete time, can be found in
standard control textbooks, see e.g. [3].

The transformation of Σ1(p) with zero-order hold for u and y and equidistant
time sampling ∆t ≡ tk+1 − tk leads to the discrete time form Σ1,d :

Σ1,d(θ ) : y(tk) = eã∆t y(tk−1) +
b̃

ã

(
1− eã∆t

)
u(tk), (3.4)

Closer inspection of ã and b̃ in eqn. (3.3) shows that for very small M3 =

R
√

ap/
√
λp/ρp (see also Appendix C.3), that is, for small products with very small

product heat production and normal mass densities: b̃ ≈ −ã. This implies that, for
realistic a priori given physical parameter values, we get approximately unit gain:
− b̃/ã ≈ 1. Consequently, b̃ and ã are not independently identifiable. We will come
back to this result later.

As a first step and in line with the approximate model, we select a first order
output-error (OE) model structure and evaluate the structure by OE-identification
techniques with the given input/output data. The choice for an OE method will be
further elucidated in the next section.

3.4.1 Output error modelling

It is common practice to minimize the output prediction errors ǫ(tk) = ŷ(tk|θ )−
y(tk) at time instants tk under some norm. Here θ is the parameter vector, y(tk)

contains the observations and ŷ(tk|θ ) is the model output prediction at time instant
tk.
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The set of OE models is a suitable model class to characterize the specific phys-
ical discrete time model Σ1,d . Discrete time OE models are characterized by the
following definition:

DEFINITION 3.4.1. An OE model set is determined by two polynomials:

B(θ ,q) = b0 + b1q−1 + b2q−2 + . . .+ bnb
q−nb

F(θ ,q) = 1+ f1q−1 + f2q−2 + . . .+ fN q−N

with

θ :=
(

f1 · · · fN︸ ︷︷ ︸
θ F

b0 · · · bnb︸ ︷︷ ︸
θ B

)

such that

ΣN ,d : y(tk) = GN (q,θ )u(tk) + e(tk) (3.5)

with ΣN ,d belonging to the collection of predictor modelsM = { GN (q,θ ) | G(q,θ ) =
B(θ ,q)/F(θ ,q), θ ∈ Rnb+N }. Furthermore, q is the so-called forward shift operator,

i.e. qw(tk) = w(tk+1) and e(tk) represents a Gaussian white noise term.

Given Σ1,d as in eqn. (3.4), we assume that the following OE–model describes
the real system behavior under a white noise perturbed output accurately enough:

Σ1,d : y(tk) = G1(θ ,q)u(tk) + e(tk) (3.6)

with

θ =
(−eã∆t︸ ︷︷ ︸

θ F

b̃

ã

(
1− eã∆t

)

︸ ︷︷ ︸
θ B

) ∈ Rnb+N = R2, u ∈ U = R and y ∈ Y = R.

(3.7)

Clearly, our model eqs. (3.6) and (3.7) is put in a natural way into an ‘output error’
form [59], since it has its origin in the physically interpretable state space repre-
sentation eqn. (3.3). As a result, the parameter vector θ is linked to the physical
parameters p via ã and b̃. The disadvantage of using an OE–model structure as op-
posed to e.g. equation error structures, is that the parameters appear non-linearly
in the output. Fortunately, appropriate OE–methods have been developed to deal
with this (see e.g. [59, 76]). Moreover, the disadvantage is outweighted by the ad-
vantage that, in general, OE models fit nicely in the low frequency region. A good
low-frequency fit is in particular beneficial for simulation and long–term prediction.
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3.4.2 Model structure selection

We will now define two conditions for which we call our model sufficiently accurate
and consider the model structure as validated,

(i) the cross correlation of the residuals sequence, ǫ(tk) = ŷ(tk|θ̂ )− y(tk) with
the inputs u(tk), should be zero with confidence 99%;

(ii) the final prediction error (FPE) should be small compared to the measurement
variance, i.e. Fp.e. ≤ 0.5.

The final prediction error in the above is defined as Akaike’s prediction error func-
tion. This function is related to the loss function VNk

(see also Chapter 1, Sec-
tion 1.4.2) and the number of parameters as follows [59]:

Fp.e.(M ) := Vn(θ̂ , Z)
1+ (nb + N)/Nk

1− (nb + N)/Nk

with Vn(θ̂ , Z) =
1

N

Nk∑

k=1

1
2
ǫ(tk, θ̂ ) (3.8)

where Nk is the number of data points in the calibration or validation data set with
the data set belonging to the real-valued space Z = U ⊕ Y .

For an appropriate sampling rate fs, with fs ∈ [0.1, 0.5]τp, we need a good
estimation of the time constant τp = |1/ã|. But, in order to estimate the time
constant a correct sampling rate is required. In the next section, we illustrate how
we try to tackle this circular reasoning.

Furthermore, although θ F and θ B can be freely estimated, it is likely that b̃ ≈ −ã

(see previous section) and thus θ B ≈ 1+ θ F . Hence, we choose to only estimate
one physical parameter from either θ F or θ B. Different parameters can be estimated
(individually) when more than one experimental data set becomes available. This is
done by using the estimate obtained in the previous set for the newly available set.
Notice furthermore that for a single experiment, more physical parameters could be
retrieved from θ by higher order (Padé) approximate models. The latter is under
the assumption that enough information is contained in the data. Experimental data
is presented in the next section.

3.5 Physical parameter estimation

As substantiated in Section 3.4.2, we first estimate the time constant for the bulk
storage room τp := 1/ã from θ̂F using OE–methods with different sample rates
fs =∆

−1
t

. Then, we are able to calculate (unknown/uncertain) physical parameters
like γp, Nβ and others from τp.
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3.5.1 Estimation time-constant

We reconstruct the dominant characteristic time τp = |1/ã| via a data set processed
with different (re)sample rates fs = 1/∆t . Basically, ã is obtained via calculation of
the slope of ln|θ̂F | versus∆t , see for details [109] and Appendix C. After calculation
of the time constant, it is checked whether the model characterization conditions (i)
and (ii) are fulfilled.

Table 3.1 presents these estimations (τ̂p) for all ventilator settings, together
with τp using physical parameter values (see Appendix C.3) from literature. These
results will be further worked out in Section 3.5.4. It suffices to note that the results

Table 3.1: Estimated (τ̂p) and time constant calculated from literature (τp) [min.] for
different flow rates.

Ventilator rate 59% 85% 99%

τ̂p [min.] 178 133 117
τp [min.] 112 78 66

of τ̂p are roughly a factor 1.5 higher than the a priori calculated τp.

3.5.2 Model structure selection checks

In this section, we primarily inspect the final prediction errors (Fp.e. for three differ-
ent cases.

• Σ1,d(θ̂ ): validated first order (N = 1) discrete-time OE-model as in eqn. (3.4)
with calibrated parameters;

• Σopt
N ,d(θ̂ ): validated discrete-time OE-model as in eqn. (3.5), with selected

structure order N under Akaike’s identification criterion as in eqn. (3.8);

• Σ1,d(θlit): first order model as in eqn. (3.6), with parameters θlit(p) calculated
from literature values of p.

Final prediction errors Fp.e. are presented in Table 3.2 for each case with the differ-
ent ventilator rates.

Next, we check the cross correlation of the innovations ǫ(tk) = ŷ(tk) − y(tk)

and inputs u(tk) at different time lags to find whether still some structural informa-
tion is left in the data. Results for the cases 1 and 3 are presented in Figure 3.4,
because case 2 showed similar results as case 1. For each case the sample time was
chosen as ∆t = (τ̂p/8) min. to achieve an acceptable trade-off between captur-
ing fast model dynamics and noise. Furthermore, we only present the case where
the ventilator rate was set at 99%, ∆t = 15 min. For other ventilator rates, simi-
lar results have been obtained. The Fp.e. associated with Σ1,d(θ̂ ) is small and the
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Table 3.2: Fp.e. in [K2] for three model structure cases. Percentages between brackets denote
the ventilator settings, numbers between square brackets the optimal model order N .

Σ1,d(θ̂ ) Σ
opt
N ,d(θ̂ ) Σ1,d(θlit)

Fp.e. (59%) 0.25 0.00075 [6] 37.9
Fp.e. (85%) 0.34 0.021 [2] 46.4
Fp.e. (99%) 0.48 0.00040 [3] 25.2
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(a) Correlation coefficients for Σ1,d (θ̂ )
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(b) Correlation coefficients for Σ1,d (θlit)

Figure 3.4: Normalized cross correlation functions (cǫu), where 99%–Confidence regions are
shaded in gray.

correlation between the innovations does not improve much with increasing model
order. Therefore, the first order identified model Σ1,d(θ̂ ) is found suitably accurate
for simulation or model predictive control purposes. We may call the first order
OE–model a validated black box model if we stop at this point.

In the next section, we will analyze the ‘strength’ of the link between the OE-
parameters θ and the physical parameters p using local parametric sensitivity anal-
ysis of the reduced-order model Σ1,d .

3.5.3 Local sensitivity analysis

In order to check how the physical parameters, pi , i = {1,2, . . . np} in model eqn.
(3.3) contribute to θ F , local sensitivities of θ F with respect to p are calculated. The
sensitivities are normalized to compensate for their nominal parameter values, i.e.
the initial guesses p◦

i
as found in literature.
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The local, parametric sensitivities are defined as:

θ F
pi

:=




np∑

i=1

∣∣p◦
i
· ∂ |θ

F |
∂ pi

(p◦
i
)
∣∣


−1

p◦
i

∂ θ F

∂ pi

(3.9)

Note, that the sum of all the normalized local sensitivities θ F
pi

as defined in eqn. (3.9)

evaluated at p = p◦ equals 1. We can easily see by the absolute magnitude of θ F
pi

,

whether a physical parameter pi affects the parameter θ F significantly (0≪ θ F
pi
<

1) or not (0 < θ F
pi
≪ 1). All the significant normalized parametric sensitivities

calculated at p◦ are shown in Table 3.3.

Table 3.3: Local sensitivities (×102) of θ F w.r.t. some physical parameters pi .

θ F
pi

value

θ F
R

23.3

θ F
L

, θ F
Nβ

, θ F
ρp

, θ F
cp

7.72

θ F
cair

, θ F
ρair

, θ F
γp

, θ F
vp

, θ F
Vcr

7.69

Most of the parameters pi introduce comparable parametric sensitivities of θ F .
Other parameters have sensitivities in the order of 10−6 and are not shown in Ta-
ble 3.3. The most important parameters (θ F

pi
¦ .05) are: R (radius bulk produce),

L (height of the bulk), Nβ (number of products exposed to the air), ρp (density of
product), cp and cair (heat capacities of product and air, respectively), ρair (density
of air), γp (porosity bulk), vp (flow velocity) and Vcrate (volume of crate). Of course,
the sampling interval ∆t also contributes significantly to the value of θ F , but we do
not regard it as a physical parameter and exclude it from further analysis.

Furthermore, due to the equal magnitude of the normalized sensitivities with
respect to a particular parameter, each contribution of a parameter could easily
cause a different heat resistance and consequently a different estimated τp then
what would be expected from literature values. This phenomenon will be shown in
the next section.

3.5.4 Parameter estimation

Time constant

As mentioned before, given the first order model eqn. (3.3) with b̃ ≈ −ã, only one
physical parameter pi can be recovered uniquely due to practical unidentifiability.
Table 3.4 shows the estimated pi from the estimated time-constant, τ̂p (shown in



38 • Chapter 3

Table 3.1), while leaving the other parameters p j , j 6= i unchanged at their nominal
value: p j = p◦

j
. From the available data and the first order approximate model, it is

possible to estimate three parameters subsequently. In the same table, an example
of this estimation is shown by the updated values in bold face type: here, first R,
then on the basis of R, Nβ and finally γp is estimated.

Table 3.4: Physical parameters individually calculated from estimated time constant. Bold
faced values are estimated subsequently. Nominal parameter values are shown between
parentheses.

Ve
nt

ila
to

r
ra

te
[%
]

τ̂
p
[m

in
.]

R
(0

.2
9)
[m
]

L
(1

.4
7)
[m
]

N
β

(2
34

)
[—
]

γ
p

(0
.0

31
)
[

m
3

m
3
]

v
(1

9.
3)

(2
7.

6)
(3

2.
5)
[

m m
in
]

59 178 .033 2.28 363 .44 12.4
85 133 .030 1.71 293 .59 16.5
99 117 .029 1.50 239 .68 18.9

From the sensitivity analysis we already have that for the first order effects,
the bulk properties (R, Nβ , L, γp, ρp, cp, Vcrate), flow velocity (v) and air properties
(ρair , cair) contribute almost equally to the first order dynamics of the system. Since
the densities ρp, ρair and heat coefficients cp and cair are widespread available in
literature, we are mainly interested in the estimation of γp, Nβ , R, L and v. The
height of the bulk L is included to compare the measured height with the estimated
one.

Table 3.4 shows that the air velocity inside the bulk, estimated from the time
constant, has increased by a factor 1.33 which is almost in agreement with the
measured ventilator setting increase of 1.44 from 59% to 85%. A similar agreement
is found for lower air velocities and ventilator settings.

Gain

In Section 3.4.2, it was argued that it is practically unfeasible to estimate two phys-
ical parameters from θ , since b̃ ≈ −ã. However, we may check if a unit gain is
(approximately) achieved or not, by obtaining the slope from the line θ̂ B versus
θ̂ F +1, see also eqn. (3.7). This gain, i.e. K :=− b̃/ã, is calculated for different ven-
tilator rates and shown in Table 3.5. Table 3.5 shows that unit gain is approximately
achieved, which indicate that there is no heat leakage through the foils.
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Table 3.5: Comparison K calculated from θ̂ F and θ̂ B for different ventilator rates.

Gain Ventilator rate
59 % 85 % 99 %

K(θ̂ ) 0.98 1.02 1.02

3.5.5 Discussion

From the identification and physical parameter estimations, we summarize some
points of discussion:

• generally, a higher order (OE) model is needed to achieve better Fp.e. and
to decrease the correlation between the innovations if inspecting the data at
one particular ventilator rate. In order to establish a link between physical
parameters and OE-model parameters in eqn. (3.3), a first order model Σ1,d
is selected a priori. From Table 3.2 we conclude that a first order model
provides small final prediction errors for different ventilator rates.

For reference, a second order Padé approximate model is proposed in Ap-
pendix C, Section C.1. However, the mapping between the OE-model param-
eters θ and p becomes increasingly complex with higher model order N , and,
moreover, this mapping also becomes non-unique.

• the time constant τp can be recovered quite accurately from a calibrated first
order model.

• Fp.e. for the first and optimal order model is considerably smaller than the
Fp.e. calculated with nominal parameter guesses. The differences between
calibration and the a priori estimates can be attributed to:

a. τ̂p > τp, can be caused by the higher heat resistance of the (agricultural)
produce.

b. τ̂p < τp, can be caused by the occurence of lower resistance, e.g. ‘re-
circulating flows’ that result in a smaller effective ‘active mixing volume’
due to turbulence.

c. K̂ < K , can be caused by heat leakage to the environment,

d. K̂ > K , can be caused by an unmodeled heat source or, more likely,
underestimated heat production.

Notice, from Table 3.1 that in our case study: τ̂p > τp and K̂ ≈ K .

• based on the estimated time constant, a sample time of approximately 10–20
minutes is sufficient to identify the model.
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It should be noted that the model derived and identified in this chapter is based
upon first experiments with agricultural produce within a storage room, while in
general, (optimal) experiment design and identification also amounts to a (re)itera-
tive process. For recent and more advanced experiment designs, the reader is re-
ferred to, e.g., [39, 95].

3.6 Conclusions

An identification approach with output–error modelling techniques showed that a
heat transfer process in a typical food storage setup can be suitably modelled by
first order models. Basically, the rate of heat exchange is an important property
for climate cooling of agricultural produce. We capture this heat transfer rate by
calibrating the dominant time constant τp in a first order OE-model under different
ventilator settings.

In addition, local parametric sensitivity analysis was carried out to inspect how
physical parameters affect this time constant. We conclude that important physical
parameters can be individually recovered from the calibrated OE–model parame-
ters. With the use of more experimental data sets under differing flow conditions
(e.g. air velocities), it is shown that more than one physical parameter can be re-
covered.
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Abstract

COMPARTMENTAL, OR DISTRIBUTED parameter systems
which are discretized, belong generally to the class

of linear structured systems. As a consequence, such a
system can be reparametrized into linear regressive form
which is suitable for parameter estimation and subsequent
prediction. An approach for such a transformation is shown.
Results are obtained for a priori determining parameter
sensitivity and identifiability on the basis of the linear
regressive form. Furthermore, explicit linear regressive
structures are obtained for the case that the system matrix
is characterized by a tridiagonal symmetric matrix, as is the
case with discrete CDR systems.
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4.1 Introduction

In Section 1.4, already some motivation is given for the use of linear regressive
estimation and prediction. In short, linear regression techniques avoid non-linear
parameter optimizations. This chapter addresses the parameter estimation and pre-
diction problem of CDR-systems.

Typically, after discretization with central finite differences of an original linear
partial differential equation (pde), one arrives at a state space system description
Σd(A(ϑ),B(ϑ),C(ϑ),D(ϑ))with mappings determined by physical parameters ϑ. An
important issue is how to rephrase the estimation and prediction problem into linear
regressive form. Or, in other words, how to obtain a linear regressive realization∗

ΣLR
d

from a state space system description Σd .
More specifically, we are seeking explicit results as a function of number of states

n, actuator position and sensor position. Because, if this can be done without know-
ing the actual observations, we will be able to:

• a priori determine the effects of number of compartments, i.e. the influence of
the number of states n in Σd if the original pde is defined with a scalar state
variable;

• a priori decide on optimal sensor/actuator placement with respect to excita-
tion of parametric regression output sensitivities;

• a priori determine the optimal number of states for prediction on the basis of
the linear regressive structure, while keeping numerical conditioning difficul-
ties to a minimum.

Given the structure of Σd after applying central difference techniques, it is not a
coincidence that the inverse of a symmetric, tridiagonal matrix receives much at-
tention in literature and explicit results exist, see for instance [47, 48, 67, 85] and
references therein.

The idea in this chapter is to lump ϑ into θ in such a way that unique parame-
ter estimates of θ from a physically interpretable single-input-single-output (SISO)
structure Σd are within reach. It is then possible to use these parameter estimates
for further (output) prediction with the aid of the linear regressive system realiza-
tion ΣLR

d
while preserving knowledge of the original parameters ϑ to a large extend.

As will be shown later, θ is defined as a vector of the polynomial variables ϑ. Note
furthermore that, we do not imply to directly estimate ϑ.

Another problem is whether the parameters ϑ are structurally identifiable, i.e.
whether the parameters can in principle be determined uniquely from the data [45,
60]. It turns out that the linear regressive form of Σd also allows a simple identifia-
bility test.

∗Notice, that we use the notion ‘realization’ here, since, analogously to a state space realization, the
linear regressive system representation will generally not be unique.
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Chapter outline

This chapter is organized as follows.

Section 4.2 Some definitions and notation are introduced for a linear regressive
system in the case where A is affine in ϑ.

Section 4.3 In this section, it is explained how a particular linear structured system
(which have often their origin in physical modeling) can be reparametrized
into a form suitable for linear regressive estimation and prediction. Also some
results on parametric sensitivity analysis and identifiability are obtained.

Section 4.4 Explicit expressions are given for two discrete-time diffusion systems.
In these expressions, a distinction is made between physically interpretable
parameters and ‘parameters’ related to the discretization scheme. It is also
remarked how these expressions may be used for discretized CDR-systems.

Section 4.5 Concluding remarks are given.

4.2 Definitions and problem formulation

In this section, formal definitions are presented and the realization problem is
posed.

4.2.1 Linear, structured systems in discrete time

Our starting point is a SISO physical system, it is natural to start from the following
state space description of a linear, structured system (see e.g. [45]) in discrete time
Σd (notice that the subscript of Σ is used to denote a discrete system):

Σd(A,B,C,D) :=

{
xk+1 = A(ϑ)xk + B(ϑ)uk, x(0) = x0(ϑ)

yk = C(ϑ)xk +D(ϑ)uk

(4.1)

and

A :Θ 7→ Rn×n, B :Θ 7→ Rn×m, C :Θ 7→ R1×n, D :Θ 7→ R.
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γ, γ′ response functions
φ, φ′ regressors

Zk−n···k ⊆ Z ∈ R2(n+1) i/o (input-output) data in Z during time
interval [k−n, k]

Z = Uadm ⊕ Y i/o space

Zk···k+n =

(
Uk···k+n

Yk···k+n

)
∈ Z input-output data set

Uk···k+n :=
(
uk uk+1 · · · uk+n

)⊤
input data set

Yk···k+n :=
(

yk yk+1 · · · yk+n

)⊤
output data set

Ξ ⊆ Rr space with known constants appearing in
φ, φ′, γ and γ′.

The following notation is used:

x ∈ X = Rn states in state space
y ∈ Y = Rm output in observation space

u ∈ Uadm ⊂ R input variable in the admissible input space
ϑ ∈Θ ⊂ Rp, p ≥ 1 parameters in parameter space

A system matrix
B input matrix
C observation matrix
D feedthrough matrix

4.2.2 Linear regressive systems

The main motivation for finding a system in linear regressive form lies in the well-
known optimal properties of linear regressions, i.e. unique solutions of parameter
estimates. The following definition for a linear regressive prediction system will be
used in the sequel.

DEFINITION 4.2.1. The following system ΣLR
d

is called a SISO, linear regressive system

in discrete time:

ΣLR
d

:=

{
θ⊤ ·φ(Zk−n···k) = γ(Zk−n···k)

yk = θ⊤ ·φ′(Zk−n···k−1)− γ′(Zk−n···k−1)
(4.2)

and

γ,γ′ : Ξ× Z 7→ R, φ,φ′ : Ξ× Z 7→ Rr .

As in eqn. (4.1), yk is again the observation of the external behaviour of Σd . In
what follows, we need some additional conditions on Σd for the realization of Σd
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as in eqn. (4.1) to ΣLR
d

:

A1: x0 ≡ 0;

A2: D= 0, B 6= 0 and C 6= 0;

A3: The matrices are affine in ϑ, i.e., they can be permuted as follows,

A(ϑ) = A+

p∑

i=1

Ãiϑi , B(ϑ) = B+

p∑

i=1

B̃iϑ (4.3)

C(ϑ) = C+

p∑

i=1

C̃ϑi . (4.4)

with A, B and C assumed to be known.

And to obtain explicit results, we need:

A4. system matrix A being tridiagonal and symmetric as in the following two
types:

Type I:

A :=




ϑ2 1 0 · · · 0

1 ϑ1 1
...

...

0
.. .

. . .
. . . 0

...
. . . 1 ϑ1 1

0 · · · 0 1 ϑ1




n×n

, with n ∈ N+ (4.5)

ϑ1 = ϑ2, ϑ1,ϑ2 ∈ R+; (4.6)

Type II: A as is defined in eqn. (4.5), but with:

ϑ1 6= ϑ2, ϑ1,ϑ2 ∈ R+. (4.7)

Note that, it is straightforward to extend the results for the case D 6= 0 if it is linear in
ϑ. The realization problem of transforming Σd into ΣLR

d
is sketched in the following

section.
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4.2.3 Problem formulation

Given the preliminaries discussed so far, the realization problem is formulated as
finding a method to obtain a linear regressive realization ΣLR

d
, given Σd in eqn. (4.1)

under Assumptions A1–A3 and input-output data. Observe from ΣLR
d

in eqn. (4.2),
that the model output ŷk is based upon input-output data Z, the estimates θ̂ and
the regressor φ′ and response function γ′. Furthermore, it is well-known how to
obtain the input-output transfer function G from the state space model Σd . Hence,
the realization problem can be phrased more specifically as:

How to obtain the relationship:

(i) between the input-output transfer function G of Σd as in eqn. (4.1)

and the regressor φ, φ′ and response functions γ, γ′ of ΣLR
d

under

Assumptions A1–A3;

(ii) between ϑ in Σd and θ in ΣLR
d

.

Furthermore, the explicit expressions found for tridiagonal matrices in e.g. [47, 48,
67, 85] suggests the realization problem under Assumptions A1–A4 can be tackled
in some more detail.

Hence, the third issue of our realization problem becomes:

(iii) How to write the linear regressive realization ΣLR
d

with φ, φ′, γ and

γ′ being explicit functions on the number of compartments, sensor

position and actuation position, in the case that A can be written in

the form of eqs. (4.5) and (4.6) or eqs. (4.5) and (4.7)?

In what follows, analysis of the proposed form of ΣLR
d

reveals an identifiability check
and, in the case that the regression scheme is in explicit form, sensitivities of the
response functions with respect to the parameters θ can be made explicit.

4.3 Realization to linear regressive form

In this section, a procedure is given for obtaining ΣLR
d

from Σd .

4.3.1 Realization method

Denote the transfer function G of Σd as CM−1B, with M(ϑ,q) := qI−A. Notice that
M is a function of ϑ and the forward-shift operator q1, q1 yk = yk+1 (see e.g. [3] or
a brief introduction in Appendix B, Section B.1.1). Hence, the key to the realization
problem is to determine M−1(ϑ,q), such that a linear regressive set of equations
in some parameter vector θ can be written. Or, in other words, obtain the linear
regressive form of Σd by means of suitably defining the parameter (vector) function
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ϕ : ϑ 7→ θ , θ ∈ Rr . Relations between the M−1 of Σd and the regressor φ, φ′ and
response functions γ, γ′ of ΣLR

d
will then follow.

We discern three steps for the realization Σd to Σe x t LRd , namely:

Transfer function decomposition. The transfer function G of Σd is written into a
parameter and time-shift operator part;

Transfer function reparametrization. The decomposition of G in the previous step
is followed by a reparametrization into a linear regression form and;

Definition of output predictor. The linear regression is rewritten to linear regres-
sive prediction by rearrangement of terms.

Transfer function decomposition

Recall that M = qI− A. Denote the rational transfer function G of Σd(A,B,C) as a
fraction with numerator gN and denominator gR, i.e.,

yk =
gN (ϑ,q)

gR(ϑ,q)︸ ︷︷ ︸
G(ϑ,q)

uk (4.8)

with gN and gR polynomials in ϑ and q.
For instance, Pintelon [82] and many others, split gN and gR in functions of the

polynomial variable q (or the Laplace variable s) and the parameter vector ϑ, such
that

g̃N (ϑ)n(q)︸ ︷︷ ︸
gN

uk = g̃R(ϑ)d(q)︸ ︷︷ ︸
gR

yk.

It is common to treat the entries of the vectors g̃N and g̃R as black-box parameters
for further estimation and prediction. In this thesis, it is tried to prevent the loss
of physically interpretable model structure by decomposition of the polynomials gN

and gR not only in a shift operator dependent, but also in a (physical) parame-
ter dependent part so to obtain polynomial coefficient matrices N and R. This is
done by defining the following vectors with polynomial variables partitioned in a
p-dimensional space as follows:

ϕ(ϑi) =




ϑr
i




ϕ1(ϑi)

ϑr−1
i
...
ϑi

1
}
ϕ2




, n≤ r ≤ n+ 1 (4.9a)
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with i ∈ {1, . . . , p}, and

ψ(q) =




1



ψ1(q)

q
...

qn−1

qn
}
ψ2(q)




(4.9b)

Hence, the transfer function can then be written as a rational function of ‘decom-
posed’ polynomials gN and gR (the superscript ⊤i denotes the ith direction of the
transpose of a vector),

G(ϑ,q) = CM−1B

=
gN (ϑ,q)

gR(ϑ,q)

=

ϕ⊤(ϑ1) · · ·
[
ϕ⊤i(ϑi) · · ·

[
ϕ⊤p−1(ϑp−1)

[
ϕ⊤p(ϑp) · Ñ

]]]
·ψ(q)

ϕ⊤(ϑ1) · · ·
[
ϕ⊤i(ϑi) · · ·

[
ϕ⊤p−1(ϑp−1)

[
ϕ⊤p(ϑp) · R̃

]]]
·ψ(q)

(4.10)

where

ϕ ∈ R(r+1),ψ ∈ R(n+1) and Ñ, R̃ ∈ R(r+1)p×(n+1). (4.11)

Note from eqn. (4.10), that the notation ϕ⊤, ϕ⊤2, ϕ⊤p is used for a horizontal
vector in 2D, 3D and p-dimensional space, respectively. Notice also that, Ñ and R̃

are coefficient matrices which map the polynomial variables q and ϑ to gN and gR,
respectively.

Transfer function reparametrization

A reparametrization of the parameters in G is needed to obtain a linear regression.
From eqn. (4.10), it can be observed that cross products of ϑi are formed, like ϑv

i
ϑw

j
,

i 6= j and with v, w ≤ n+ 1. For n large, it is a laborious task to find the minimal
number of lumped parameters, such that a set of linear regression equations is
formed. As an alternative, it is proposed here to estimate parameters ϑr

i
, r ≤ n+ 1

iteratively; i.e. start with initial estimates of {ϑ2, · · · ,ϑp} in order to estimate ϑ1.
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Hence for the following, we define the coefficient matrices:

N :=

[
ϕ⊤2(ϑ2) · · ·

[
ϕ⊤p−1(ϑp−1)

[
ϕ⊤p(ϑp) · Ñ

]]]
(4.12)

R :=

[
ϕ⊤2(ϑ2) · · ·

[
ϕ⊤p−1(ϑp−1)

[
ϕ⊤p(ϑp) · R̃

]]]
(4.13)

where

N, R ∈ Rr×n and {ϑ2, . . . ,ϑp} known.

Before we continue, a simple example is shown to illustrate the above.

EXAMPLE 4.3.1. Let a discrete-time, LTI state space system Σd(A,B,C) be defined with:

A=

(
ϑ2 1
1 ϑ1

)
, B=

(
1
0

)
and C=

(
1 0

)
.

Then the transfer function of this system reads G(ϑ,q) = (q− ϑ1)/(q
2 − (ϑ1 + ϑ2)q+

ϑ1ϑ2 − 1) with the cross term ϑ1ϑ2 as indicated above. After fixing ϑ2, we obtain the

coefficient matrices N and R:

N=




0 0 0
−1 0 0
0 1 0


 and R=




0 0 0
ϑ2 −1 0
−1 −ϑ2 1


 .

Eqn. (4.10) is now rewritten into the form θ⊤φ(·) = γ(·) as in eqn. (4.2). N and
R are partitioned as follows (the dimensions of the matrix entries are shown on top
and on the right side),

n 1

N=

(
N11 N12
N21 N22

)
r

1
=

(
N1
N2

)

(r+1)×(n+1)
(4.14a)

and

n 1

R=

(
R11 R12
R21 R22

)
r

1
=

(
R1
R2

)

(r+1)×(n+1)
(4.14b)
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Recognize that by Definition 4.2.1, we have

Uk···k+n =ψ(q)uk and Yk···k+n =ψ(q)yk. (4.15)

Define vector functions φ and γ,

φ(Zk···k+n) :=
(
N1 −R1

)
Zk···k+n (4.16a)

γ(Zk···k+n) =
(−N2 R2

)
Zk···k+n (4.16b)

For the remaining step, let the parameter vector be defined by ϕ1 in eqn. (4.9a):

θ = θ1 :=




ϑr
1

ϑr−1
...
ϑ1


= ϕ1(ϑ1). (4.17)

Then substitution of eqs. (4.16a), (4.16b) and (4.17) in G eqn. (4.10) with coeffi-
cient matrices as in eqs. (4.12) and (4.13) and ϕ(ϑ2), . . . , ϕ(ϑp) known, leads to,

0= ϕ⊤(ϑ) · (N −R
) · Zk···k+n

=
(
ϕ1(ϑi)

⊤ ϕ2

) ·
(

N1 −R1
N2 −R2

)
· Zk···k+n

=
(
θ⊤ 1

) ·
(
φ(Zk···k+n)

γ(Zk···k+n)

)

= θ⊤φ(Zk···k+n)− γ(Zk···k+n) (4.18)

Hence, in eqn. (4.18) we have arrived at the linear regression equation θ⊤φ = γ of
ΣLR

d
.

Definition of output prediction

In this subsection, we study the deduction of a linear regressive output predictor
ŷ(k|θ̂ ;Zk−n···k−1).

Eqn. (4.18), obtained in step (2), is in fact the linear regressive equation suitable
for parameter estimation in eqn. (4.2). By rearranging terms, this same equation
can be used for prediction as well. Therefore, γ is first written out as follows:

γ(Zk···k+n) =
(−N21 R21

)
Zk···k+n−1 +

(−N22 R22

)
Zk+n

=
(−N21 R21

)
Zk···k+n−1 +

(−N22 R22

)(uk+n

yk+n

)

=
(−N21 R21

)
Zk···k+n−1 −N22uk+n +R22 yk+n (4.19)
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Finally, assume R22 is invertible and define:

φ′ :=
(
R22

)−1
φ (4.20a)

γ′ :=
(
R22

)−1
((−N21 R21

)
Zk···k+n−1 −N22uk+n

)
(4.20b)

In what follows, it will become clear that N22 = 0. Consequently, by substituting
eqs. (4.20a) and (4.20b) in eqn. (4.18), eqn. (4.18) reads:

0= θ⊤φ′(Zk···k+n)− γ′(Zk···k+n−1)− yk+n−1 (4.21)

After multiplication of eqn. (4.21) by q−n (i.e. a backward time shift is applied) and
rearrangement of terms, the predictor equation in eqn. (4.2) is obtained.

Properties of linear regressive realization

Until now, we have obtained the linear regression equation and the output predictor
equation in ΣLR

d
from the state space description Σd . The existence and precise

formulation of a realization ΣLR
d

of Σd is given in the following proposition.

PROPOSITION 4.3.1. Given system Σd as in (4.1) and ϑ ∈ R. Then,

(i) exact expressions of gN (ϑ,q) and gR(ϑ,q) as in eqn. (4.8) as a function of n

exist, if the system matrix A can be written in the form of eqs. (4.5) and (4.6) or

eqs. (4.5) and (4.7).

(ii) Σd eqn. (4.1) can be written in the form of ΣLR
d

defined in eqn. (4.2) with θi =

ϕ(ϑi), a vector consisting of polynomials and:

φ′(Zk···k+n) = φ =
(
N1 −R1

)
Zk−n···k (4.22a)

γ(Zk···k+n) =
(−N21 R21

)
Zk···k+n−1 + yk (4.22b)

γ′(Zk···k+n) =
(−N21 R21

)
Zk−n−1···k−1 (4.22c)

Proof.

(i) Let M= qI−A and the determinant of M be denoted by M = det(M). Let Mi′j′

and Ai′j′ denote the submatrix of M and A respectively, both resulting from
the deletion of row i and j. By Laplace expansion, the determinant of M is
given by

M =

n∑

j=1

(−1)i+ jmi j Mi′j′

=

n∑

i=1

(−1)i+ jmi j Mi′j′
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∀i ≤ n, j ≤ n with Mi′j′ = det(Mi′j′) assumed to be known. For any choice
of row or column either expansion yields the determinant. The classical ad-
joint of M is defined by the transposed matrix of co-factors denoted by adjM,
with entries adjM=

∑n

i=1(−1)i+ jMi′j′. The inverse of M is M−1 = adjM/M ,
iff M non-singular. Because A is linear in ϑ (assumption A3, eqn. (4.3)),
Mi′j′ = qIi′ j′−Ai′ j′−

∑p

i=1 Ãi′j′ϑi . From induction it follows that the determi-
nant of M will be a polynomial in q and ϑ with maximal order n and adjM
a matrix filled with polynomials in q and ϑ with maximal order n− 1. Since
G=C(qI−A)−1B= CM−1B and both B and C linear in ϑ, G becomes a ratio-
nal function of polynomials in q and ϑ. It follows that gN (ϑ,q) and gD(ϑ,q)
can be decomposed as in eqn. (4.10).

(ii) Given G(ϑ,q) = gN (ϑ,q)/gR(ϑ,q), the transfer function of Σd . Therefore,
gR(ϑ,q)yk = gN (ϑ,q)uk. Reparametrization of the numerator and denom-
inator polynomials as in step (2) is possible under the condition that ϑ is
a scalar. From part (i) it follows that the polynomial in the numerator of
the transfer function G of Σd , i.e. gN (ϑ,q), has maximal order n − 1 in q.
Hence, the column vector N•2 = 0(r×1) in the coefficient matrix N is zero,
i.e. N22 = 0 also. With rearrangement of terms as outlined in step (2), one
readily obtains θ⊤φk = γk with θi = ϕ(ϑi). Since N22 = 0, γ and γ′ in
eqs. (4.16b) and (4.20b), respectively, change accordingly. Furthermore, it
is always possible to make gR(ϑ,q) monic, thus R22 ≡ 1. Consequently, φ
as in eqn. (4.16a) equals φ′. In step (3) of the reparametrization, R22 in
eqs. (4.20a) and (4.20b) is always a non-zero constant, since B 6= 0 and
C 6= 0. Notice that γk contains the output at the last time instant, yk+n, and
the equivalent form ΣLR

d
(4.2) of the state-space system Σd is obtained after

multiplication with q−n.

REMARK 1 [CONSEQUENCES OF PROPERTIES G OF Σd]. From the proof of Proposition

4.3.1(i) it follows that the polynomial degree of gN (ϑ,q) in q is determined by B or

C and adjM. Let the nonzero entry of B be bi and the nonzero entry of C be c j .

Define l = minl∈{1,...n}(i, j). Then, from part (i) of the proof of Proposition 4.3.1, the

maximum degree of polynomials in q is n− l, 1≤ l≤n. Hence, the last l columns N

are filled with zeros. The upper bound on l is not equal to n since G is always strictly

proper by strict causality of Σd .

Whenever the system matrix A is a tridiagonal matrix as in Assumption A4 (see
eqns. (4.5)–(4.7)), explicit expressions of n of the matrix entries in M exist [47, 48,
67, 85]. Consequently, Proposition 4.3.1 suggests that the entries of the polynomial
coefficient matrices N and R in eqn. (4.10) can be written by explicit relations on n.
We come to the following remark to accomplishΣLR

d
when starting from a discretized

(CDR) state space description Σd with A being of Type I or Type II.
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REMARK 2 [EXPLICIT FORM OF ΣLR
d
]. For (discrete-time) CDR–systems for A being of

Type I: that is, where ϑ1 = ϑ2 as in eqn. (4.6) one may write:

M= qI−A(ϑ1) =




ϑ̃ 1 0 · · · 0

1 ϑ̃ 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 ϑ̃ 1

0 · · · 0 1 ϑ̃




, where ϑ̃ := q− ϑ1 (4.23)

Explicit expressions for M−1, with M as in eqn. (4.23) are reported in [47].

With mathematical software tools like MAPLE or Mathematica, these expressions

can be easily written in the time-shift and parameter ‘decomposed’ form of the

transfer function eqn. (4.10).

Type II: that is, where ϑ1 6= ϑ2 in eqn. (4.5). By close examination of the determinant

in Type II (ϑ1 6= ϑ2), it appears that an iterative procedure —as suggested in

step (2) of the general case— for parameter estimation is not needed. Denote

Mn×n
I

for Type I and Mn×n
I I

for Type II, with A ∈ Rn×n. Furthermore, let the

corresponding determinants be M n
I

:= det(Mn×n
I
) and M n

I I
:= detMI I

n×n. The

determinant M n
I I

can be written in terms of the under-determinants M n−1
I

and

M n−2
I

, namely,

M n
I I
= ϑ2M n−1

I
− (1)2M n−2

I
= ϑ2M n−1

I
−M n−2

I
(4.24)

Hence, the numerator and denominator of GI I = CM−1
I I

B can be written in deter-

minants and adjoints of MI and a corresponding θ is straightforwardly found.

Remark 2 is further illustrated by two diffusion examples in Section 4.4. Usually,
the sub diagonals of A as in eqn. (4.5) are not equal to one, i.e. ai±1,i 6= 1. In
that case, the matrix A can be suitably scaled by ai±1,i . In cases where ai±1,i is
an unknown (physical) parameter ϑi , one is restricted to an iterative parameter
estimation procedure.

Before continuing, it is important to check whether the regression parameters
θ are identifiable, i.e. whether θ can be determined uniquely from the data. This
can be checked a priori by the concepts worked out in [45, 60]. Alternatively, the
linear regressive form of Σd allows a simple check of identifiability if θ is estimated
by least-squares techniques.

4.3.2 Parameter estimation by Least-Squares

It is straightforward to write the linear regression equations in ΣLR
d

as a convex
parameter estimation problem, i.e. the well-known least squares formulation (see
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also Appendix B.2). Define to this aim Z1 := Z1···n, Z2 = Z2···n+1, . . . , and:

B with bi∗ 6= 0, C with c j∗, i∗, j∗ ∈ {1, . . . , n} (4.25)

Let furthermore,

Φ =
[
φ(Z1) φ(Z2) · · · φ(ZN )

]
(4.26)

Γ =
[
γ(Z1) γ(Z2) · · · γ(ZN )

]
(4.27)

with γ and φ as in eqn. (4.22). Then, the least-squares (LS) estimate θ̂ of the
equality θ⊤Φ = Γ, with Φ as in eqn. (4.26) and Γ as in eqn. (4.27) is given by: θ̂ =
(ΦΦ⊤)−1ΦΓ⊤. For the existence of a LS estimate, it is necessary that ker (Φ⊤) = 0
and Γ 6= 01×N .

REMARK 3 [IDENTIFIABILITY FOR ϑ ∈ R]. Σd(A,B,C) under assumptions A1–A4 and

affine in a scalar ϑ and B, C as in eqn. (4.25), is identifiable if rank(R) = n. This

follows from the condition ker (Φ⊤) = 0.

4.3.3 Sensitivity Analysis

So far, we have derived (i) the model structure representation ΣLR
d
(θ ), with θ de-

pending on the physical ϑ, and, (ii) an identifiability test. Let us now, on the basis
of this, investigate its sensitivities. The sensitivities of the response function γ with
respect to the regression parameters θ and the inputs U allows a practical iden-
tifiability check. The result of this check could be, that for very small parameter
sensitivities, one may reconsider the relumping of the parameters, sensor place-
ment, number of compartments, or the input signal, since the LS estimation of θ
will in that case suffer from bad convergence.

We start by realizing that the regression model of Σd exhibits an input-output
mapping from Uk to the regression response γk. This becomes clear by substituting
the convolution sum, i.e. in matrix form: Yk−n···k=H ∗Uk−n···k, in eqn. (4.16b) with
H ∈ RnH×nH . The entries of the Hankel matrix H contain the Markov parameters and
can be directly found by an impulse response as a function of the real parameters as
θ0. Consequently, for nH=n (notice that nH should be large in order to satisfactorily
approximate the infinite impulse response, so that n will then be limiting):

φ · Zk−n···k =
(
N1 −R1

) ·
(

Uk−n···k
H ∗Uk−n···k

)
(4.28)

Further, denote the real (unknown) parameters θ0. We obtain the parametric sensi-
tivities of the response γ by substitution of eqn. (4.28) in eqn. (4.2) and differenti-
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ation, which gives

γθ :=
dγ

dθ
= φ =

(
N1 −R1

)( I

H

)
∗Uk−n···k (4.29)

γθU :=
dγθ
dU
=
(
N1 −R1

)( I

H

)
= N1 −R1H. (4.30)

An explicit solution for γθ and γθU is found for a compartmental diffusion system
in the next section.

4.4 Application to discretized diffusion systems

A discrete-time compartmental system with unknown (lumped) physical parameters
ϑ belongs to the model set Σd . First, we present explicit expressions for the coeffi-
cient matrices N and R involved in the transfer function G with A being of Type I
or II (see also Assumption A4). These results will then be used in a subsequent sec-
tion where a diffusion example for Type I is worked out in a parameter estimation
problem.

4.4.1 Diffusion example I and II

We use the same naming conventions (Example I and II) for diffusion systems char-
acterized by A of Type I and II, respectively. First, these examples are introduced.

Example I: boundary control system with Dirichlet conditions. Consider an in-
finite- dimensional system Σe

I
of parabolic type on [0,∞) × [0,∞), see e.g.

[21].

Σe
I

:





∂ z

∂ t
(ξ, t) = α2 ∂ 2z

∂ ξ2 (ξ, t), z(ξ, 0) = z0(ξ),

z(0, t) = u(t)

y(t) = z(ξ∗, t)

(4.31)

where z0(ξ) ∈ L2(0,∞), ξ∗ ∈ [0,∞) and U ∈ R.

The solution to this problem when applying a step input u(t) = 1[0,∞)(t) is
well-known and is given by the model output at ξ= ξ∗,

z(ξ∗, t) = erfc
(

ξ∗

2α
p

t

)
1[0,∞)(t) (4.32)

where α2 can be interpreted as the diffusion constant. With this system some
estimations of α are worked out in a subsequent section.



4.4. Application to discretized diffusion systems • 57

Example II: boundary control system with Neumann condition. This case is on-
ly to show how a Neumann condition affects the matrix MI I .

We can approximate the following distributed parameter system,

Σe
I I

:





∂

∂ t
z(ξ, t) = α2 ∂ 2

∂ξ2 z(ξ, t), z(ξ, 0) = z0(ξ),
∂

∂ξ
z(0, t) = 1

κ
(z(0, t)− u(t))

∂

∂ξ
z(∞, t) = 0

y(t) = z(ξ∗, t)

(4.33)

where z0(ξ) ∈ L2(0,∞), ξ∗ ∈ [0,∞) and U = R, by a discrete-time compart-
mental system. This is shown in what follows.

In addition to Example I, we have a second parameter κ, which may corre-
spond to a specific heat capacity divided by a thermal conductivity.

REMARK 4 [CDR SYSTEMS WITH POINT ACTUATION/OBSERVATION]. Although this exam-

ple is not further worked out, it is important to realize that CDR systems where con-
vection and reaction is included and with one point actuation and measurement can

be described by eqn. (4.1) with A as given in eqns. (4.5)–(4.7) via the use of centralized

finite differences.

4.4.2 Explicit structures

Here, we present explicit expressions for Example I and II.

Type I

Using centralized finite differences, we get for Example I (number of (physical)
parameters p = 1) the following system representation:

Σe
d,I :=

{
xk+1 = A(ϑ)xk + B(ϑ)uk, x0 = 0

yk = Cxk

(4.34)

where the discretized states are represented by x and the lumped parameter ϑ =
∆α2 consisting of the discretization parameter ∆ := ∆t/∆

2
ξ and a diffusion coeffi-

cient α2. The noise-free observation y(t) = z(ξ∗, t) is approximated by Cxk, with C
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a matrix mapping a ‘point’ observation at the j∗-th compartment (i.e. c j∗ = 1).

A(ϑ) =




1− 2ϑ ϑ 0 · · · 0

ϑ
. . .

. . .
. . .

...

0
.. .

. . .
. . . 0

...
. . . ϑ 1− 2ϑ ϑ

0 · · · 0 ϑ 1− 2ϑ




(4.35a)

B(ϑ) =
(
ϑ 0 · · · 0

)⊤
and C=

(
01× j−1 1 01×n− j

)
(4.35b)

and with j ∈ {1,2, . . . , n} and 01×0 an empty vector.

The resolvent of A is written as qI− A = MI . On the main diagonal of MI we
encounter mii =

(
(q− 1)/ϑ+ 2

)
ϑ. Notice that a grid with n points directly leads to

n states, because we have started with one state variable and one spatial direction
in the PDE model Σe

I
.

Hence, MI = qI − A can be written in the form of eqn. (4.23) with ϑ̃ = (q −
1)/ϑ+ 2. Notice furthermore that Σe

I
satisfies Assumptions A1–A5. With respect to

Assumption A3, it is briefly shown here that A and B are affine in ϑ:

A(ϑ) := A− Ãϑ, with A= I and Ã1 =−2I+

(
0 1 0 ··· 0
1 · · · ·
0 · · · 0
· · 1 0 1
0 ··· 0 1 0

)
and B :=

(
1
...
0

)
ϑ.

(4.36)

The vectors ϕI , ψI and ϑI for Type I is given as follows:

ϕI :=

(
θI

1

)
, with θI :=




ϑn

ϑn−1

...
ϑ


 and ψI :=




1
q
...

qn


 . (4.37)

Denote a shorthand notation to indicate the dimensions of square coefficient matri-
ces N and R by using the superscript, i.e. dimR(n+1) = (n+1)×(n+1). We can now
write the coefficient matrices N and R in eqn. (4.10) for this diffusion example as
follows.

PROPOSITION 4.4.1. Given the symmetric 3-banded Toeplitz matrix MI (ϑ,q) = qI− A

with A as in eqn. (4.35a), a newly defined parameter vector ϑI as in eqn. (4.37), then
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the entries for the coefficient matrices NI and RI of MI are given by,

R
(n+1)
I (i, j) =

{
(−1)i+ j−2

(
n+i

n−i+1

)(
i−1
j−1

)

0

if i ≥ j

elsewhere

N
(n+1)
I (i∗, j∗) =

min (ı, )−1∑

s=0

Q
[s,i∗, j∗]
I ,

where,

ı =

{
i∗

n− i∗ + 1
if i∗ ≤ n

2
elsewhere

,  =

{
j∗

n− j∗ + 1
if j∗ ≤ n

2
elsewhere

l[s,i∗, j∗] = l∗ + 2s+ 1, with l∗ =

{
|i∗ − j∗| if i∗ < n

2

| j∗ − i∗| elsewhere

Q
[s,i∗, j∗]
I =




0(1×k2) 0(1×(k1−k2))

R
k2
I 0(k2×(k1−k2))

0((k1−k2)×k2) 0((k1−k2)×(k1−k2))




with s a counter index and

k1 = (n− l[s,i∗, j∗]) ∈ {1, · · · , n+ 1}, k2 = l[s,i∗, j∗].

Proof. The structure of R follows from the proof of [47]. The relations for N follow
from the proof of Proposition 4.3.1 and straightforward algebraic calculations.

Type II

In Type II (number of (physical) parameters p = 2), the discretized system becomes:

Σe
d,I I

:=

{
xk+1 = A(ϑ)xk + B(ϑ)uk, x0 = 0

yk = Cxk

(4.38)

where

A=




1+ ϑ2 − 2ϑ1 ϑ1 0 · · · 0

ϑ1 1− 2ϑ1
. . .

. . .
...

0
.. .

. . .
. . . 0

...
. . . ϑ1 1− 2ϑ1 ϑ1

0 · · · 0 ϑ1 1− 2ϑ1




(4.39a)
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and

B=
(
ϑ 0 · · · 0

)⊤
and C=

(
01× j−1 1 01×n− j

)
. (4.39b)

Again, j ∈ {1, . . . , n} and 01×0 is defined as an empty vector, ϑ1 = ∆α
2 a lumped

parameter with discretization parameter ∆=∆t/∆
2
ξ, diffusion coefficient α2. ϑ2 =

(∆ξ/κ−1)∆ is another lumped parameter with the physical parameter κ. The input
mapping matrix B is similar as in [92]. Further, ϕ is compatibly defined, i.e. it is
similar as in 4.41 and scaled with 1/κ due to the definition of B.

On the main diagonal of MI I , with MI I = qI − A, we now encounter: m11 =(
(q− 1+ ϑ2)/ϑ1 + 2

)
ϑ1 and mii =

(
(q− 1)/ϑ1 + 2

)
ϑ1, where i > 1. The subdi-

agonals of MI read mi±1 = −ϑ1. Again, MI I can be written similar to the form of
eqn. (4.23) to obtain mi±1 = 1. Notice that Σe

I I
satisfies Assumptions A1–A4 again

(not shown).

In order to write the determinant of MI I as being a function of subdeterminants
of MI according to eqn. (4.24), we define a new lumped parameter:

ϑ′2 =−
1

ϑ1
+
ϑ2

ϑ2
1

+ 2 (4.40)

The vectors ϕI I , ψI I and ϑI I are then given as follows:

ϕI I :=

(
θI I

1

)
, θI I :=




ϑ′2
ϑ1
ϕI

θI


=




ϑ′2
ϑ1
θI

ϑ′2
ϑ1

θI




and ψI :=




1
q
...

qn




(4.41)

For the inverse of MI I , we propose the following (the proof goes analogously to the
proof of Proposition 4.4.1):

PROPOSITION 4.4.2. Given the symmetric 3-banded Toeplitz matrix MI I(ϑ,q) with A as

in eqn. (4.39a) and vectors ϕI I , ψI I and ϑI I as in eqn. (4.41), then the entries for the

coefficient matrices RI I and NI I are given by,

Rn+1
I I
=




0 01×(n−1)

−Rn
I

0n×1

(
0 01×n

0n×1 Rn
I

)
−
(

Rn−1
I

0(n−1)×2

02×(n−1) 02×2

)
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Nn+1
I I
(i∗, j∗) =





(
0

−Nn+1
I
(1,1)

)
if i∗=1∨ j∗=1




0 01×n

Nn
I
(1, j∗−1) 0n×1

0 01×n

0n×1 −Nn
I
(i∗−1, j∗−1)




if i∗=2∧ j∗≥2




0 01×n

Nn
I
(i∗−1, j∗−1) 0n×1

Qn+1
I I
(i∗, j∗)


 if i∗>2∨ j∗≥2

with

Qn+1
I I
(i∗, j∗) :=

(
0 01×n

0n×1 −Nn
I
(i∗−1, j∗−1)

)
+

(
02×(n−1) 02×2

Nn−1
I
(i∗−2, j∗−2) 02×(n−1)

)

where the coefficient matrices NI I and RI I are divided in blocks which correspond to

the blocks in ϕI I , see eqn. (4.41).

4.4.3 Estimation

We assume the value of ϑ1 in Example I to be unknown. In this study, we fix
i∗ = j∗ = 1 for B and C vectors, so that for n= r = 4, the coefficient matrices read:

N=




4 0 0 0 0
−10 10 0 0 0

6 −12 6 0 0
−1 3 −3 1 0
0 0 0 0 0




and R=




6 0 0 0 0
−35 35 0 0 0
56 −112 56 0 0
−36 108 −108 36 0
10 −40 60 −40 10




We estimate our original parameter α by simulating the system with α= 0.2.

(i) non-linear least squares estimation from the disturbed classical solution of Σe
I

after applying a step input (see the noise-free solution in eqn. (4.32)) and,

(ii) ordinary (linear) least squares estimation given the linear regression form of
Σe

d,I according to eqn. (4.2), with additive disturbances.

In the latter case, we approximate α as a weighted average α̂LR ≈ | 1n
∑n

i=1 ϑ̂i

1
2(n−i) |.

The system Σe
d,I as in eqn. (4.31) is in case (ii) approximated with 4 compartments

(n = r = 4). In case (i), the output data y(t) is generated by the solution of Σe
I

under excitation of a step input u(t) = 1(t), t > 0, and sampling the output, i.e.
y(tk) = z(ξ∗, tk)+ d + e(tk). Here, z(ξ∗, tk) is calculated from eqn. (4.32), the bias
has a range d ∈ [−0.2,0.2] and e is a simulated Gaussian noise sequence. In both
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cases, α = 0.2. The results of the parameter estimations (i) and (ii) are shown in
tables 4.1 and 4.2, respectively. It is shown in tables 4.1 and 4.2, that the estimates

Table 4.1: Non-linear LS estimates α̂NLS of the erfc-model eqn. (4.32) under different bias d

and noise variance σd after applying a step input.

α̂NLS
d=−0.2 d=−0.1 d=0 d=0.1 d=0.2

σd = 0: 0.13 0.16 0.20 0.26 0.34
σd = 0.01: 0.13 0.16 0.20 0.26 0.34

Table 4.2: Linear regressive LS estimates α̂LR of ΣLR
I

under different bias d and noise variance
σd after applying a step input.

α̂LR
d=−0.2 d=−0.1 d=0 d=0.1 d=0.2

σd = 0: 0.15 0.14 0.20 0.14 0.14
σd = 0.01: 0.62 0.63 0.64 0.68 0.64

of α in the linear regressive compartmental model are rather insensitive to bias, but
very sensitive to added Gaussian white noise, when the system is driven by a step
input. Interestingly, Table 4.3 illustrates that a pseudo random binary (PRBS) input
sequence improves our linear regression results for the noiseless case.

Table 4.3: Linear regressive LS estimates α̂LR of ΣLR
I

under different bias d and noise variance
σd after applying a PRBS signal e, with switching probability P = 0.5.

α̂LR
d=−0.2 d=−0.1 d=0 d=0.1 d=0.2

σe = 0: 0.20 0.20 0.20 0.20 0.20
σe = 0.01: 0.27 0.24 0.27 0.27 0.27

We observe the opposite when non-linear least squares procedure is used for
estimating α given eqn. (4.32), that is, it is sensitive to bias and weakly sensitive
to additive measurement errors. Iterative pre-filtering (see e.g. [93]) or more ad-
vanced least squares techniques may compensate the colored disturbances in the
linear regressive model structure.

4.4.4 Sensitivity results

Evaluation of the sensitivity matrix γθU gives us, for a given impulse response as a
function of the nominal parameter vector θ0, valuable information about sensitivi-
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ties, independent of θ or U. These sensitivities can be used for numerical identifi-
ablity tests (γθ ) or input design (γθU).

For the diffusion system Σe
I

with α= 0.2, n= nH = 8, γθU has been calculated
at different sensor positions c j∗ , j∗ ∈ {1, . . . , n} and the matrix values of γθU are
depicted in Figure 4.1. Strong peaks indicate high sensitivities. The column matrix
entries at the j-axis correspond to time shifting whereas the i-axis correspond to
polynomial variables to the power i, i.e. ϑn+1−i .
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Figure 4.1: Contour plots of sensitivity matrix γθU at different sensor positions j∗

Although seeming counter-intuitively, Figure 4.1 shows that it is recommended to
put the sensor at the first compartment which is closest to the boundary input, see
also [52]. In this compartment, all sensitivities are excited, whereas the magnitude
rapidly diminishes if the sensor is placed further away.

The eigenvalues in the right graph of Figure 4.2 confirm this finding. The left
graph of Figure 4.2 shows the parametric sensitivity γθ when applying a step input,
which is obtained by summation of the columns of γθU . Again, it seems favorable
to place a sensor in the first compartment.

4.5 Concluding remarks

Summarizing, the sketched methodology is attractive for estimation and prediction
as the parameters in the transformed regression space can be determined uniquely.
Furthermore, since we keep track of the physical parameters, physical knowledge
in the model structure is preserved throughout analysis and estimation.



64 • Chapter 4

−5

γ
θ

af
te

r
a

st
ep

in
pu

t

λ
(γ
θ

U
)

Parameter i i

0

0

0 22 44

5

66 88

10

-10

15

-15

20

-20

25

50

-50

100

150

200

250

300

350

Figure 4.2: Parametric sensitivities γθ for a step input and eigenvalues of the sensitivity
matrix γθU , the (×), (◦), (∗) and (Í)-marked lines correspond to a sensor at j∗=1, 3, 6 and
8 respectively.

Linear regressive realizations ΣLR have been derived for two discrete time diffu-
sion models with different boundary conditions. The linear regressive structures N

and R have been explicitly expressed in terms of number of compartments n, input
and sensor location. These structures are also applicable to (non-dimensionalized)
discretized CDR-systems.

A priori parametric sensitivity analysis can be made on the regression vector φ
which allows for numerical identifiability tests and input design. Also, a simple
identifiability test on the basis of a rank test of R is obtained.

In practice, however, there will be measurement noise deteriorating both the
inputs and outputs of the linear regressive system ΣLR. It is well known that appli-
cation of ordinary least squares to these types of errors-in-variables problems will
lead to bias. This unwanted effect is subject of further study, but can, in principle,
be tackled by existing techniques such as Total Least Squares.
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Abstract

THE OBSERVER SYNTHESIS OF a typical bilinear system with
point measurements and boundary control actions is

studied. Approximate observability and the existence of a
mild solution is proved for this system Σ in boundary con-
trol form. Furthermore, two observer design approaches are
worked out in the case that Σ contains a Sturm-Liouville op-
erator A. First, detectability and design results for a static
boundary observer is presented. Second, a numerical syn-
thesis procedure for a dynamic observer is proposed which
ensures robust performance under input and output distur-
bances. Both approaches are compared and evaluated using
the UV disinfection process as a case study.
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5.1 Introduction

In this chapter, observer synthesis of a typical bilinear system with point measure-
ments and boundary control actions is studied. The literature on observers with
point measurement has already been discussed in Chapter 1, Section 1.4.4.

The motivation here is, to treat the observer design of a CDR–system with infi-
nite dimensional system theory concepts. Since the observer correction will be for-
mulated at the boundary, the theoretical framework developed for boundary control
[33, 36] suffices and provides an elegant and mathematically simple approach for
observer design as well. As far as we know, there has been little attention to apply
this theory to convection–diffusion–reaction (CDR) type of problems where bound-
ary or point measurements are used for observations. Instead, for analysis of CDR
systems, one usually considers a control or observation on a small interval [0, w];
see e.g. [25, 112, 114].

With point measurements and boundary control in mind, we make the following
choice regarding the observer design: the output estimation error

(
y(t)− ŷ(t)

)
is

manipulated by the observer at the boundary of the error system. We will call such an
observer a boundary observer.

We focus on the boundary observer design problem with u(t) given. To clar-
ify the idea, we present the bilinear system and its observer in abstract boundary
control form as follows:

Σ :=





ż(t) = Az(t)− b1u1(t)z(t); z(0) = z0
Bz(t) = u2(t) + v1(t)

Cz(t) = y(t) + v2(t).
(5.1)

And, similar to eqn. (5.1), we define the observer system as:

Σobs :=





˙̂z(t) = Aẑ(t)− b1u1(t)ẑ(t); ẑ(η, 0) = ẑ0
Bẑ(t) = u2(t) + L(t) ∗ C (z(t)− ẑ(t))

Cẑ(t) = ŷ(t)

(5.2)

with z, ẑ in the Hilbert space Z , differential operator A with A : D(A) ⊂ Z 7→ Z and
D(·) denoting the domain of an operator. The ∗ denotes the convolution product.

Furthermore, we have the scalar control u1 ∈ R, and also the vector u2 ∈ U , with
U = Rm, m ≥ 1 since we have two boundaries. The vector Robin-type boundary
control operator B and observation operator C should be interpreted in the sense
of definition 3.3.2 in [21], where B : D(B) ⊂ Z 7→ U satisfies D(A) ⊂ D(B) and
C : D(A) ⊂ D(C) ⊂ Z 7→ Rq, q ≥ 1. To comply with the condition in their definition,
we further assume that A is given by:

Az = Az for z ∈ D(A) = D(A)∩ ker(B) (5.3)
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generates a C0-semigroup†. We specify L(t) in what follows.
This chapter is basically divided into two parts. In the first part, necessary con-

cepts for boundary control systems are introduced which will be used for the dy-
namical analysis of CDR-systems and for a static, boundary observer design. This
static boundary observer design will be referred to as Case I. In the second part a
numerical procedure is outlined for the synthesis of a dynamic boundary observer
which is robust to disturbances on input and output signals. This approach will be
referred to as Case II. A schematic overview for both model–observer design cases
is presented in Figure 5.1. The observer operator L ∈ L (Y, U), where L (Y, U)

+

−

Σ L Σobs

ẑ

ŷ

y

u1

u2

observer

Figure 5.1: Schematic overview of the process model Σ and its observer

denotes the space of bounded linear operators from Y to U , comprises of (m× q)

observer gains. Some differences between Case I and II should be noted:

Case I: L(t)≡ Lδ(t) and there are no disturbances, i.e. v1 = 0= v2. So the second
equation in eqn. (5.2) becomes Bẑ(t) = u2(t) + LC (z(t)− ẑ(t)). Further-
more, C will be specified as a boundary operator. The reason for the latter
will be clarified in what follows in Section 5.3.

Case II: L(t) will be found after solving a disturbance rejection problem by formu-
lating it as an H∞–problem. In addition, C will be specified as an operator
which specifies point observations.

We will further elucidate on eqn. (5.2) and design conditions on L in what follows.
Subsequently, an approach for synthesizing a dynamic observer is proposed and
numerical results are shown.

†See Appendix B, Definition B.1.4 for a definition
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Chapter outline

The complete outline of this chapter is as follows:

Section 5.2 Some preliminary characteristics with respect to a system Σ as defined
in eqn. (5.1) are specified and the concept of observability for a boundary con-
trol system is introduced. Also, the system operator A is further specified as a
Sturm-Liouville (S-L) type operator (typical for convection–diffusion–reaction
processes) and some characteristics are given for this class of systems.

Section 5.3 Detectability and design rules with respect to a boundary static ob-
server as in eqn. (5.2), with A being a S-L operator and L ∈ Rm×q, are eval-
uated. The results are illustrated by an observer design for a UV disinfection
process with boundary measurements and a boundary control action.

Section 5.4 A dynamic boundary observer with disturbances on the measurements
and on a boundary condition is synthesized. The same UV process example as
in Section 5.3 is worked out.

Sections 5.5 and 5.6 Observer performance results of both observer configurations
are shown for the UV-disinfection process. Some discussion about the merits
and pitfalls of formulating a boundary observer are discussed.

Section 5.7 Some final remarks and conclusions are given.

5.2 Preliminaries

In the following, we show that a bilinear system as in eqn. (5.1) with A given in
eqn. (5.3), permits a mild solution and we define approximate observability. Recall
that, B : D(B)⊂ Z 7→ U satisfies D(A)⊂ D(B) and C : D(A)⊂ D(C)⊂ Z 7→ Rq, q ≥
1. Furthermore, by assumption A is a densely defined linear differential operator on
the Hilbert space Z , which generates the C0-semigroup T (t). We now characterize
the solution of eqn. (5.1).

5.2.1 Mild solution

THEOREM 5.2.1. For eqn. (5.1), where A as in eqn. (5.3), there exists a mild solu-

tion, with mild solution operator U(t, s)z0 = T (t − s)e
R t

s b1u1(τ)dτz0, where T is the

C0-semigroup generated by (A, D(A)).

Proof. The proof originates from the work of Jean Bernoulli on ordinary differential
equations for the scalar case. First, letL (Z) be a short-hand notation for a bounded
linear operator from Z onto Z . Furthermore, w is a scalar valued function. Write
z = vw, then with v = T (t−s)v0 and with z subject to ż−Az = −b1u1z, we get vẇ =

−b1u1vw. It follows that w = w0 exp (−∫ t

s
b1u1(τ)dτ). Substituting z0 = v0w0
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gives the result. Further, according to Definition 3.2.4 [21], U(t, s) : Λ(τ)→L (Z)
is a mild solution operator with Λ(τ) = {(t, s); 0≤ s ≤ t ≤ τ}, since,

a. U(s, s) = I , s ∈ [0,τ] holds,

b. A is an infinitesimal generator of a C0-semigroup, hence:

U(t, r)U(r, s)z0 =T (t − r)e
R t

r b1u1(τ)dτT (r − s)e
R r

s b1u1(τ)dτz0

=T (t, s)e
R t

r b1u1(τ)dτ+
R t

s b1u1(τ)dτz0

which equals U(t, s), 0≤ s ≤ t ≤ τ,

c. It is standard to show that U(·, s) is strongly continuous on [s,τ] and that
U(t, ·) is strongly continuous on [0, t].

5.2.2 Approximate observability

In [21], controllability and observability results are only derived for bounded B and
C operators. In earlier work, stabilizability and detectability results are obtained for
parabolic distributed systems in the case of unbounded B and C operators using a
modal approach [19]. Stability and observability results, again in the case where B

and C are bounded operators, are deduced for the Sturm-Liouville class of systems
[25, 112].

In this section, a generalization with respect to the (approximate) observability
of Σ with A as in eqn. (5.3) and B and C as in eqn. (5.1) is presented. Instead of
depending heavily on (very) technical notions of admissibility and regularity [10,
11, 111], we present an approximate observability result which closely resembles
the results in [21]. In a subsequent section on the observer design, we deal with
the detectability of S-L systems, typically encountered in CDR processes. For the
observability result, we need the following concepts.

DEFINITION 5.2.1 [SEMIGROUP INVARIANCE]. Let V be a subspace of the Hilbert space Z

and let T (t) be a C0-semigroup on Z. We say that V is T (t)–invariant if for all t ≥ 0:

T (t)V ⊂ V .

DEFINITION 5.2.2 [ADMISSIBILITY]. Let C : D(A) 7→ Y . Then C is admissible if ∀z ∈
D(A),

t1∫

0

‖CT (t)z‖2dt ≤ m(t1)‖z‖2.

for some arbitrary constant m(t1).
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DEFINITION 5.2.3 [APPROXIMATE OBSERVABILITY]. Let a systemΣ(A,−,C) as in eqn. (5.1)

be defined with A as in eqn. (5.3) an infinitesimal generator of a C0-semigroup T (t),

b1 = 0 and C admissible. The observability map of Σ(A,−,C) on [0,τ], τ <∞, is the

bounded linear map C τ : Z → L2([0,τ], Y ) defined by:

C τz := CT (·)z.

The non-observable subspace of Σ(A,−,C) is the subspace of all initial states producing

a zero output for almost all t ≥ 0:

N := {z ∈ Z | CT (t)z = 0 for almost all t ≥ 0}=
⋂

τ>0

kerC τ.

Σ(A,−,C) is approximately observable if the only initial state producing the output

zero on [0,∞) is the zero state, i.e., if N = {0}.

We now characterize N with respect to our system Σ.

LEMMA 5.2.1 [PROPERTIES NON-OBSERVABLE SUBSPACE]. The non-observable subspace

N has the following characterization with respect to Σ(A,−,C) as in eqn. (5.1):

N of Σ(A,−,C) is the largest closed T (t)–invariant subspace contained in kerC(r I−
A)−1, with r > ω0 and ω0 the growth bound on T (t), i.e. ∀ω > ω0, ∃M such that

∀t ≥ 0, ‖T (t)‖ ≤ Meωt .

Proof. First, let ω0 < 0 so that the operator A is invertible. For z1 := A−1z, we have
CT (t)A−1z = CA−1T (t)z.

Let,

N0 = {z | CT (t)z = 0, almost everywhere}
N1 = {z | CA−1T (t)z = 0, ∀t}.

We now prove that N0 = N1 and we begin by showing that N1 ⊂ N0. Suppose
z1 ∈ N1, then A−1z1 ∈ N0, since z1 ∈ Z and A−1z1 ∈ D(A). Consequently, A−1z1 ∈
N0 ∩ D(A). Since N0 is T (t)-invariant, A

(N0 ∩ D(A)
) ⊂ N0; see Exercise 2.31 in

[21]. Hence, A(A−1)z1 ∈ N0, i.e. N1 ⊂N0.
Now take z ∈ N0 and consider CA−1T (t)z = CT (t)A−1z = CT (t)z1. Since z ∈

N0, A−1z ∈ N0 by Lemma 2.5.6 in [21]. In other words, N0 is closed and A−1–
invariant. We also have CT (t)A−1z = 0 and z ∈ N1. Consequently, N0 ⊂ N1. By
Definition 5.2.3, we also have N ⊆ N0. The result follows from Lemma 4.1.18 in
[21].

If the operator A is not invertible, then replace in the above A with A− r I where
r >ω0, with ω0 the growth bound on T (t).
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5.2.3 S-L system characteristics

Previously, we have shown that Σ as in eqn. (5.1) permits a mild solution and we
characterized the non-observable subspace with respect to this system. Here, we
specify A in Σ further as an S-L (Sturm-Liouville) operator and summarize some
properties of A. As a consequence, we will denote Σ(A,B,C) with A a S-L operator
as ΣS.L.(A,B,C).

The operator A

As also pointed out in [26], in many physical systems (e.g. vibration/diffusion prob-
lems or convection–dispersion in chemical reactor models) A or −A is a S-L opera-
tor. Hence, the UV disinfection process along with our modeling assumptions and
written as a CDR model in Chapter 2, is also a S-L–type system. As such, we are
motivated to inspect the properties of A being of Sturm-Liouville type.

Let us first define the differential operator in eqn. (5.1) as,

Az =
1

w

(
d

dη

(
p

dz

dη

)− qz

)
(5.4a)

with

p(η), w(η) ∈ R+, both C1-continuous functions (5.4b)

and

q(η) ∈ R on
[
η1,η2

]
. (5.4c)

Furthermore, the domain D(A) is given by,

D(A) =
{

z ∈ Z | z,
dz

dη
absolutely continuous,

d2

dη2 z ∈ Z
}

(5.4d)

and boundary (control) operator

Bz :=

(
β1z(η1) + γ1

dz

dη
(η1)

β2z(η2) + γ2
dz

dη
(η2)

)
= u2 (5.4e)

with βi , γ j real constants satisfying |β1| + |γ1| > 0 and |β2| + |γ2| > 0. In Sec-
tion 5.2.4, βi and γi are further specified for the UV disinfection process.
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We define observations at points η∗1 and η∗2 as

Cz :=




z(η∗1)
dz

dη
(η∗1)

z(η∗2)
dz

dη
(η∗2)


= y (5.5)

and the weighted inner product with w(η) as given in eqn. (5.4) as:

〈z1, z2〉w =
η2∫

η1

z1(η)z2(η)w(η)dη. (5.6)

Now, we turn to some characteristics of the S-L system. Recognize from eqn. (5.4)
that, −(A, D(A)) with Az = Az for z ∈ D(A)∩ ker(B) and A, B as in eqn. (5.4), is a
Sturm-Liouville operator, self-adjoint in a weighted inner product 〈·, ·〉w and closed
on Z , [see also 21, exercise 2.10].

We mention the following result from [26].

LEMMA 5.2.2 [DELATTRE, DOCHAIN, AND WINKIN]. Let A be the negative of a Sturm-

Liouville operator defined on its domain D(A) given by eqn. (5.3). Then,

(i) A is a Riesz spectral operator,

(ii) A is the infinitesimal generator of a C0-semigroup of bounded linear operators

on L2(η1,η2),

(iii) A has compact resolvent.

As a consequence of Lemma 5.2.2, ΣS.L.(A,B, ·), with A and B further specified as
in eqs. (5.3) and (5.4), ΣS.L has a mild solution. See Theorem 5.2.1 for details of
this solution.

In the observer design section, it will become clear that it is convenient to check
whether A in ΣS.L. is negative.

LEMMA 5.2.3 [POSITIVITY OF OPERATOR −A]. The Sturm-Liuoville operator −A, with A

as in eqn. (5.4) and with positive real-valued continuous functions p(η), w(η) and
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q(η), is positive as defined in Appendix A for z 6= 0:

if
β2

γ2
≥ 0,

β1

γ1
≤ 0 and |β1|+ |β2|> 0 for γ1, γ2 6= 0

if γ1 = 0 :
β2

γ2
≥ 0 and γ2 6= 0

if γ2 = 0 :
β1

γ1
≤ 0 and γ1 6= 0

if γ1 = 0= γ2.

Proof. It is sufficient to check the time derivative of the weighted norm of z, d
dt
‖z‖2

w
=

〈z,−Az〉w ≥ 0, using the inner product eqn. (5.6). It follows that,

d

dt
‖z(η, t)‖2

w
=

η2∫

η1

−
(

d

dη

(
p

dz

dη

)
+ qz

)
· zdη

=−p(η)
dz(η, ·)

dη
z(η, ·)

∣∣∣
η2

η1

+

η2∫

η1

p(η)

(
dz(η, ·)

dη

)2

+ q(η)z(η, ·)2dη

=−
[

p(η2)
dz

dη
(η2, ·)z(η2, ·)− p(η1)

dz

dη
(η1, ·)z(η1, ·)

]
+ . . .

η2∫

η1

p(η)
∣∣∣
dz(η, ·)

dη

∣∣∣
2
+ q(η)z(η, ·)2dη

=−
[

p(η2)

(
−β2

γ2
z(η2, ·)2

)
− p(η1)

(
−β1

γ1
z(η1, ·)2

)]
+ . . .

η2∫

η1

p(η)
∣∣∣
dz(η, ·)

dη

∣∣∣
2
+ q(η)z(η, ·)2dη

Hence, given p, w > 0 and q ≥ 0, the (sufficient) conditions directly follow.

Approximate observability for ΣS.L.

From Definition 5.2.3 and Lemma 5.2.1 it is straightforward to check whether Σ of
eqn. (5.1) is approximately observable when A is a Riesz-spectral operator. This is
shown in the following corollary.

COROLLARY 5.2.1. LetN be the unobservable subspace. Then, Σ(A,−,C) as in eqn. (5.1)

with A a Riesz-spectral operator on the Hilbert space Z and with the orthonormal

representation Az =
∑∞

n=1λn〈z,φn〉wφn is approximately observable if and only if
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N = {0}, i.e. iff Cφn 6= 0 for all n.

Proof. So far, it has been proved in Lemma 5.2.1 that N is a closed subspace and
T (t)–invariant. In [26], it is proven that A is a Riesz–spectral operator with the
Riesz basis of orthonormal eigenvectors {φn, n≥ 1} and associated semigroup T (t).
Consider,

J= {n ∈ N | CA−1φn = 0}

= {n ∈ N | Cφn

λn

= 0}
= {n ∈ N | Cφn = 0}.

Hence, by the above and Lemma 2.5.8. in [21], we have that N = span
n∈J
{φn}.

Hence, it follows from Lemma 5.2.2 and Lemma 5.2.3 that Corollary 5.2.1 is ap-
plicable to ΣS.L. := Σ(A,−,C), with A being an S-L-operator. We now turn to our
example.

5.2.4 UV disinfection process in boundary control form

In Section 2.2, it is explained under which assumptions a UV disinfection process
may be described as in eqn. (2.11). Here, these equations are written in a dimen-
sionless, boundary control form.

First, the UV disinfection model is transformed into a dimensionless form by
Buckinghams theorem [12], see for details Section D.1. The resulting dimensionless
variables ri together with their interpratation are shown in Table 5.1. With these
dimensionless variables and parameters, we can next derive the full equations of
the UV disinfection process in boundary control form. We have

Az =
1

w

(
d

dη

(
p

dz

dη

)− qz

)
(5.7)

where for the UV process, p, w and q are specified as,

p(η) = e−peη, w(η) = pee−peη and q = 0. (5.8)

With p, w, q as in eqn. (5.8) and boundary conditions specified with

β1 = 1, γ1 = −1/pe, β2 = 0 and γ2 = 1 (5.9)
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Table 5.1: Dimensionless variables and parameters with their interpreatation

ri — Interpretation
z(·, t) c(·, t)/c̄ state variable for the concentration of

living micro-organisms scaled with the
mean concentration at the inlet

t τv/L time, scaled with the time it takes for the
fluid to travel from the inlet to the outlet
of the reactor

η ξ/L spatial coordinate scaled with axial length
of reactor

pe v f · L/α ratio of convective transfer and diffusion
b1 κ fmax L/v scaled susceptibility of micro-organisms to

UV radiation
u1(t) f (t)/ fmax UV lamp intensity scaled with the

maximal intensity of the lamp
ũ2(t) cin(t)/c̄ inlet concentration scaled with mean

pathogenic micro-organisms
concentration

see also Appendix D.1, eqn. (D.1). This leads to the UV system description‡:

ΣI :





ż = Az − b1u1z

= 1
pe

d2

dη2 z − dz

dη
− b1u1z, z(0) = z0

Bz =

(
z(0)− 1

pe

dz

dη
(0)

dz

dη
(1)

) (5.10)

and observation y = Cz specified as in eqn. (5.5).

To distinguish this system from the dynamic observer design Case II, the sub-
script I in Σ is used. Notice also that ΣI inhibits one Robin and one Neumann
boundary and is therefore known to have Danckwerts boundary conditions [23].
Danckwerts conditions appear naturally in transport phenomena in reactors, such
as we have seen in the UV disinfection example.

The aim is to design an observer for the disinfection process eqn. (5.10) as
schematically depicted in Figure 5.1. We first derive some static gain design re-
sults for the general CDR1 class of systems and then apply these results to the UV
disinfection case.

‡Note that the superscript UV of Σ as in Chapter 2 has been dropped, since in this chapter we only
refer to the UV disinfection case.
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5.3 Case I: static, boundary observer

Now that the system characteristics of S-L boundary control systems and the UV
disinfection process in particular have been laid out, we can investigate the total
bilinear model–boundary observer setup as in eqs. (5.1) and (5.2). More specifically,
we focus on the decay of the estimation error ǫ(η, t) for a Sturm-Liouville type of
estimation problem and give conditions under which the design of L leads to a stable
error system. Therefore, the full error system is written out.

5.3.1 Error system

Let us first inspect the estimation error system Σǫ(A,−,C), with A as in eqn. (5.4)
and C as in eqn. (5.5) with v1 = 0 = v2. To comply with the Sturm-Liouville frame-
work, we describe the dynamics of the estimation error ǫ := z − ẑ by,

Σǫ :=





ǫ̇ = Aǫ− b1u1ǫ, ǫ(0) = ǫ0

Bǫ =

(
β1ǫ(η1) + γ1

dǫ
dη
(η1)

β2ǫ(η2) + γ2
dǫ
dη
(η2)

)
= LCǫ(η)

(5.11a)

with C as in eqn. (5.5) mapping the states to point observations at η∗1 and η∗2 and,

LCǫ =

(
L11ǫ(η

∗
1) + L12

dǫ
dη
(η∗1) + L13ǫ(η

∗
2) + L14

dǫ
dη
(η∗2)

L21ǫ(η
∗
2) + L22

dǫ
dη
(η∗2) + L23ǫ(η

∗
1) + L24

dǫ
dη
(η∗1)

)
(5.11b)

The above shows that it is not straightforward to arrive at design conditions for
L such that the closed loop configuration remains stable whenever the measurement
is not taken at the boundary, i.e., whenever z(η∗

i
, t) 6= z(ηi), i, j ∈ {1,2}. For this

reason, we only consider boundary measurements for the remainder of this section.

Hence, we write the following operator,

C
bz = Cz for η∗

i
= ηi , i ∈ {1,2}. (5.12)

For the UV process, we assume to only have the availability of boundary measure-
ments and furthermore we let Li3 = 0= Li4, i ∈ {1,2}. With misuse of notation, we
write

L :=

(
L11 L12
L21 L22

)

To check detectability of Σǫ in the next subsection, it is convenient to introduce
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the operator B
L:

B
Lǫ :=

(
B− LC

b
)
ǫ =

(
β L

1 ǫ(η1) + γ
L
1

dǫ
dη
(η1)

β L
2 ǫ(η2) + γ

L
2

dǫ
dη
(η2)

)
(5.13)

where,

β L :=

(
β1 − L11
β2 − L21

)
, and γL :=

(
γ1 − L12
γ2 − L22

)
. (5.14)

5.3.2 Observer design conditions

We now study under which conditions the design of a static, boundary observer
would lead to a detectable error system Σǫ(A,B,Cb). Detectability will be defined
as follows.

DEFINITION 5.3.1 [DETECTABILITY]. Whenever there exists an L ∈ L (Rq,Rm), such

that AL with ALǫ = Aǫ for ǫ ∈ D(A) ∩ ker(BL) generates an exponentially stable

C0-semigroup; then we say that Σǫ(AL) is detectable.

COROLLARY 5.3.1 [EXISTENCE BOUNDARY STATIC OBSERVER]. Suppose that AL with A as

in eqn. (5.3) and B
L as in eqn. (5.13), generates an exponentially stable C0-semigroup.

Then for some gain matrix L ∈ L (Rq,Rm), the system Σ(AL) is detectable.

Proof. Consider the estimation error ǫ = z − ẑ. From the proof of Lemma 5.2.3,
it follows that it is sufficient to check whether −AL is a positive Sturm-Liouville
operator, i.e. 〈ǫ,−ALǫ〉> 0. Since β Lǫ+ γL dǫ

dη
= 0, we can always choose a suitable

L such that |β L |+ |γL |> 0 and the boundary conditions in D(AL) are such that −AL

is positive. Since −AL is a Sturm-Liouville operator, it has compact resolvent and
therefore generates an exponentially stable semigroup [25].

The following corollary immediately follows.

COROLLARY 5.3.2 [STATIC OBSERVER DESIGN]. The system Σǫ(AL ,BL) is detectable:

if
β L

2

γL
2

≥ 0,
β L

1

γL
1

≤ 0 and |β L
1 |+ |β L

2 |> 0 for γL
1 , γL

2 6= 0

if γL
1 = 0 :

β L
2

γL
2

≥ 0 and γL
2 6= 0

if γL
2 = 0 :

β L
1

γL
1

≤ 0 and γL
1 6= 0

if γL
1 = 0= γL

2 .



5.3. Case I: static, boundary observer • 79

For many processes, it is not practical to implement an observer where γL 6= 0 6=
γ, since a calculation or measurement of the spatial derivative of z(ηi) is needed.
Hence, if possible, a boundary observer matrix L should be chosen so that derivative
terms of y in the error system are cancelled.

5.3.3 Application of a static, boundary observer

We illustrate the design of a boundary observer for the UV disinfection process and
also show its influence on the error dynamics. In the UV disinfection process, it
is desired to have a good estimate of the concentration at the outlet of the reac-
tor. Furthermore, in the previous section we have obtained conditions for a static
observer when we have measurements at the boundary, i.e. C

b = C for η∗ = ηi ,
i ∈ {1,2}. We now continue to investigate how to choose L.

Design of L for the UV process

In what follows in the eigenvalue analysis of the system ΣI , it is shown that the
calculation of eigenvalues of the system dynamics is less straightforward (and is
numerically more involved) whenever there are Danckwerts boundary conditions.
Hence, we choose to have a Dirichlet-type condition at η1 to simplify further analysis
and ease the eigenvalue calculations of the error system. To this aim, the first row
of L is set to L1• = (0 γ1) such that the derivative term in the boundary of the error
system cancels. Furthermore, from an engineering point of view we prefer to tune
our observer with just one scalar gain, so we let L11 = 0= L22.

These prerequisites lead to:

L=

(
0 γ1

L21 0

)
=

(
0 − 1

pe

L21 0

)
with L21 6= β2 to be chosen. (5.15)

With γ and β as in eqn. (5.10). Consequently,

β L =

(
1
−L21

)
and γL =

(
0
1

)
.

The error system Σǫ
I

for this example with L as in eqn. (5.15) then reads:

Σǫ
I

:=





ǫ̇ = Aǫ− b1u1ǫ

= 1
pe

d2

dη2 ǫ− dǫ
dη

, ǫ(0) = ǫ0

B
Lǫ =

(
ǫ(0)

−L21ǫ(1) +
dǫ
dη
(1)

) (5.16)

For observer design, L21 can be tuned by pole placement of the error system. By
Corollary 5.3.2 we also know that,
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REMARK 5 [CONDITION FOR L21 IN THE UV DISINFECTION PROCESS]. Σǫ
I

as in eqn. (5.16)

is detectable, whenever the sufficient condition
β L

2

γL
2
≥ 0 holds, i.e., whenever L21 ≤ 0.

Eigenvalue analysis of the UV process error dynamics

We would like to know how L21 influences the error dynamics. Therefore, we cal-
culate the eigenvalues λ of AL , where ALǫ = Aǫ for ǫ ∈ D(A)∩ ker(BL).

For Σǫ
I
(AL) we obtain the following Lemma.

LEMMA 5.3.1. Let Σǫ
I
(AL) be detectable with L21 ≤ 0. Then the spectrum of the operator

AL consists of isolated eigenvalues with finite multiplicities given by,

σ(AL) = σp(A
L) = {λL

k
: k ≥ 0} ⊂ (−∞, 0)

where σp(A
L) denotes the point spectrum of AL . The eigenvalues λL

k
, k ≥ 0 are simple,

real and given by,

λL
k
=− 1

pe

(
ςL

k

)2 − 1
4
pe (5.17)

where ςL
k
, k ≥ 0 is the set of all the solutions to the resolvent equation

tan(ςL
k
) = − ςL

k
1
2
pe − L21

and ςL
k
> 0 (5.18)

such that

0< ςL
k
< ςL

k+1, ∀k > 0. (5.19)

Hence, λL
k
< 1

4
pe < 0, λL

k
→ −∞ as k → ∞ and |λL

k+1 − λL
k
| → ∞ as k → ∞. The

associated eigenvectors φ L
k
∈ D(AL), k ≥ 0 are given for all η ∈ [0,1] and for all k ≥ 1

by

φk(η) = exp
(

1
2
peη
)

sin(ςL
k
η). (5.20)

Proof. The detectability condition follows from Corollary 5.3.2 and Remark 5. The
derivation of the spectral properties of Σǫ

I
are shown in Appendix D.2.

As a consequence of Lemma 5.3.1, ςL behaves like ±πk for k→∞, and for k finite,
we have to obtain ςL

k
numerically. To illustrate, Figure 5.2 shows some intersection

points ςL
k
, k = {1,2,3} and their corresponding eigenvalues λL

k
have been calculated

for pe = 0.5 and different values of L21.

REMARK 6 [CASE WHERE q := b1u1]. In the case that the control u1 is given and con-

stant, the operator AL changes. In that case, AL is specified with q := b1u1, q ≥ 0,
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λn, for pe ≡ 0.5, b ≡ 0

L
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0
1

(a) From left to right: λL
2 , λL

1 , λL
0 for varying L21

ω

y
i
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2
π π 3

2
π 2π 5

2
π

-10

-5

0

5

10

(b) tan(ςL) [ ], f (ςL , 1) [•], f (ςL ,−1)
[ ], f (ςL ,−3), [ •] with f (ςL , L21) :=
ςL/

`

L21 − 0.5
´

Figure 5.2: (a) λL
k

and (b) the intersection between f and the tangent function in eqn. (5.18)
for different values of L21.

and the eigenvalues change accordingly. Here, we only give the result, since the calcu-

lation goes similar as in Lemma 5.3.1. We impose detectability of Σǫ
I

with L21 ≤ 0.

Then, the spectrum of AL with q := b1u1 consists of isolated eigenvalues λ
q
k with finite

multiplicities given by,

σ(AL) = σp,q(A
L) = {λq

k : k ≥ 0} ⊂ (−∞, 0)

where σp,q(A
L) denotes the point spectrum of AL with q := b1u1. The eigenvalues λ

q
k,

k ≥ 0 are simple, real and given by,

λ
q
k =− 1

pe
(ςL

k
)2 − 1

4
pe − q < 1

4
pe − q < 0 (5.21)

where ςL
k
, k ≥ 0 are all the solutions to the resolvent equation

tanςL
k
=− ςL

k
1
2
pe − L21

, ς
q
k > 0 (5.22)

such that

0< ςL
k
< ςL

k+1, ∀k > 0. (5.23)

In the time-varying case we have that the evolution operator U(t, s) as in Theorem 5.2.1
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is bounded from above by:

‖U(t, s)‖ ≤ exp
(
(ω0 − qmin)(t − s)

)

with ω0 the growth bound§ on T (t) and q ≥ qmin ≥ 0 the lower bound on the lamp

strength.

Until now, we have obtained results for the eigenvalues λ of the error system Σǫ
I

for a particular L. Since the goal is to design a boundary observer with detectable
error dynamics, the calculation of λ of Σǫ

I
suffices and calculation of λ of the UV dis-

infection system ΣI is not needed. For reference, the eigenvalues λ and associated
eigenvectors φk of ΣI as calculated in Appendix D.3 are given here as well:

λk =− 1
4
pe −

1

pe
ς2

k
(5.24)

with ςk, k ≥ 0 the set of all solutions to the resolvent equation:

tan(ςk) =
2peςk

ς2
k
−
(

1
2
pe

)2 (5.25)

and orthonormal associated eigenvectors:

φk = C0 exp
(

1
2
peη
)[pe

ςk

sin(ςkη) + 2 cos(ςkη)

]
, C0 > 0 (5.26)

Note that the solution of this eigenvalue problem is numerically more involved due
to the presence of the Danckwerts conditions.

We will discuss how to design L21 with some margin on the growth bound of
T (t), i.e. λ0 := supk∈Nλk, in Section 5.5 (the results section). Some remarks on the
upper bounds of performance increase are given in the next section.

5.3.4 Remarks

We complete this section by some remarks on the eigenvalue analysis of Σǫ
I
, observ-

ability and the solution of the whole system.

Eigenvalue limits and performance

REMARK 7. From eqn. (5.18), it follows that

• for fixed k, limL→−∞ ςL
k
=±kπ, and therefore limL→∞λL

k
=− 1

4
k2π2/pe;

§The definition of a growth bound ω0 of a Riesz spectral operator A is given in Appendix A, Theo-
rem A.3.1.
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• for fixed L ∈ [−∞, 0], we get ςk ∈
[
(k− 1

2
)π, kπ

]
, and therefore the eigenvalues

λL
k
∈ − 1

pe

[
(k− 1

2
)2π2, k2π2

]
.

Indeed, Remark 7 reveals what would be suspected from Figure 5.2, i.e. the magni-
tude of the distance |ωk −ωk−1| if L21→−∞ or if k→∞.

Furthermore, it may be interesting to deduce the difference between the growth
bounds of T ǫ(t) with different L21, say,

∆λ := λ0 −λL
0 , with growth bound λ0 := sup

k∈N
λk. (5.27)

We will call ∆λ the performance increase of the error dynamics of the observer.
For the UV disinfection case, Remark 7 and the eigenvalues λL as in eqn. (5.17)
tells us that − 1

4
pe

2 − π2 < peλ
L
0 < − 1

4
pe

2 for all L21, hence there is a maximal
performance increase ∆max

λ = π2/pe. Similarly, if we only allow L21 ≤ 0, then
− 1

4
pe

2−π2 < peλ0 < − 1
4
pe

2− 1
4
π2 and the performance increase can maximally be

3
4
π2/pe.

Observability

Given system ΣI (A,−,C) as in eqs. (5.10) and (5.5), we can calculate when the UV
system is approximately observable. We propose the following.

PROPOSITION 5.3.1. Given system ΣI (A,−,C) as in eqs. (5.10) and (5.5), i.e. with

observations on the interval η∗ ∈ [0,1], then

(i) by considering y = z(η∗) as the only observation, ΣI is approximately observ-
able if,

ςk 6=− 1
2
peη
∗ tan(ςkη

∗), k ≥ 0 (5.28)

(ii) by considering y = dz

dη
(η∗) as the only observation, ΣI is approximately observ-

able if

tan(ςkη
∗) 6= − ς

pe
, k ≥ 0 and η∗ 6= 1. (5.29)

Proof. From Lemma 5.2.1, we should have that Cφk(η
∗) 6= 0, k ≥ 0 and C admissible

to obtain approximate observability. First admissibility is checked. Introduce the
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short-hand notation. Consider,

y(t) = CT (t)z0 = CeAt
∑

k

zkφk

= C

∞∑

k

zkeλk tφk =
∑

k

zkeλk t
Cφk︸︷︷︸

ck

.

By Cauchy-Schwarz and orthonormality of the eigenvectors of A (see Appendix D.3):

‖y(t)‖2 ≤
∑

k=1

∣∣ckeλk t
∣∣2∑

k

∣∣zk

∣∣2 =
∑

k

e2λk t |ck|2‖z0‖2.

By Definition 5.2.2,
∫∞

0 ‖y‖2dt ≤ m‖z0‖2 should hold. The above leads to

∫ ∞

0
‖y(t)‖2 =

∫ ∞

0

∣∣∣
∑

k

ckeλk t
∣∣∣
2
dt ≤

∫ ∞

0

∑

k

∣∣ckeλk t
∣∣2∑

k

∣∣zk

∣∣2dt

≤
(∫ ∞

0

∑

k

e2λk t |ck|2dt

)
‖z0‖2⇔

∑

k

∫ ∞

0

c2
k

−2λk

dt‖z0‖2 ≤ m‖z0‖2

with m an arbitrary positive constant. Now, consider

(i) y = z(η∗), thus Cφ = φ(η∗), η∗ ∈ [0,1] and the eigenvalues of A, i.e. λk in
eqn. (5.24) with their associated eigenvectors φk in eqn. (5.26). By the above
C is admissible, since for k → ∞, λk behaves like k2π2/(4pe) so that there
exists indeed a value of m which makes the inequality true.

(ii) y = ż(η∗), thus Cφ = φ̇(η∗) 6= 0, k ≥ 0. Hence, if η∗ = 1, φ̇k(1) = 0
so the system is not (approximately) observable. Again, the eigenvectors φk

read as eqn. (5.26), thus we obtain the condition that φ̇k(η) = pe sin(ςkη) +

ς cos(ςkη) 6= 0 for η∗ < 1. The admissibility check goes analogously to the
proof of (i).

As a consequence of Proposition 5.3.1, ΣI is always approximately observable for
Cz = C

bz := z(1), since we get the condition that ς 6= ±ı
p

3
2

pe which is always
true since ς ∈ R+. It is easy to see that for observations y = z(0), the system
is not observable. For a point observation in the interval (0,1) the approximate
observability has to be checked by eqn. (5.28).



5.4. Case II: boundary robust dynamic observer • 85

It has already been mentioned that only the estimate ŷ = ẑ(1) is desired. The
non-observability for ΣI (·, ·,Cb) when d

dη
z(1) or z(0) is involved, is not a problem if

only estimates of z(1) are needed due to the degrees of freedom in the choice of L.

Mild solution in Riesz bases

The mild solution of the system ΣI with −A an S-L operator and the error system
Σǫ as in eqn. (5.16), can be directly written in orthogonal Riesz bases. By Theo-
rem 5.2.1:

z(·, t) = U(t, 0)z0(·, t) =

∞∑

k=1

eλk tφk〈z0,φk〉e−
R t

0 b1u1(t)dτ

with λk given in eqn. (5.26) satisfying eqn. (5.25) and with associated eigenvectors
φk as in eqn. (5.26) for the UV disinfection model ΣI . Similarly, for the error system
Σǫ, λL

k
is given in eqn. (5.17) satisfying the equation eqn. (5.18), for all L21 ≤ 0,

and has associated eigenvectors φk in eqn. (5.20) for the error dynamics system Σǫ
I
.

5.4 Case II: boundary robust dynamic observer

In the previous section, design conditions for a static gain boundary observer are de-
rived for a CDR process described by ΣI (A,B,Cb), as in eqs. (5.1), (5.4) and (5.12).
These design results are illustrated with the observer design for a UV disinfection
process. Although this static gain observer has the attractive property of keeping
insight in the error dynamics of the closed loop observer system, it requires engi-
neering skills to optimally choose a static gain when there are e.g. disturbances on
the input and output signals. As an alternative, we present a boundary observer
which is robust to these signal perturbations. As a side effect, the design of such
a dynamic observer relies heavily on numerical procedures and consequently, in-
sight in dynamics is less transparent (explicit) then with the design of a static gain
boundary observer.

In Section 5.3, it is argued that for many processes, it is not practical to imple-
ment a boundary observer which is dependent on an observation dz

dη
(ηi) for some

ηi , i = {1,2}. For the application of the procedure here, we take the same UV dis-
infection process as a model case and take the same observer gain matrix L as in
eqn. (5.15), but now with dynamic L21

Furthermore, the assumption that we have only boundary measurements avail-
able is weakened, i.e. now z(η∗) is the undisturbed observation, where η1 ≤ η∗ ≤
η2. Hence,
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5.4.1 Problem formulation

The aim is to design a dynamic boundary observer which is robust to disturbances
on two signals entering the UV disinfection model–observer system, i.e. u2 (inlet
biomass fraction) and y:

Bz :=

(
z(0)

d
dη

z(1)

)
=

(
u2 + v1

0

)
and Cz := z(η∗) = y + v2. (5.30)

To be more specific, focus goes to an unbiased estimate of z(η∗) with a causal filter,
such that the disturbances v have a minimal effect on the estimation error at the
outlet of the reactor ǫ(1, t). Hence, we have to find L21(t) from

inf
L21 causal

sup
v

‖ǫ(1)‖2
‖v‖2

< γH , ǫ(η, 0) = 0 (5.31)

with ǫ = z − ẑ driven by the error system Σǫ as in eqn. (5.11), the structure of L as
in eqn. (5.15) and with ŷ = ẑ(η∗). Given disturbances on z(0) and z(η∗), the error
system becomes

Σǫ
I I

:=





ǫ̇ = 1
pe

d2

dη2 ǫ− b1u1ǫ, ǫ(·, 0) = ǫ0(
ǫ(0)
dǫ
dη
(1)

)
=

(
v1

L21 ∗ ǫ(η∗) + L21 ∗ v2

)
(5.32)

To solve problem eqn. (5.31), the following sequence of steps is proposed:

• Calculate the transfer function Gvǫ from v to ǫ(1) and obtain the poles of
Gvǫ(s).

• Put the problem in a Linear Fractional Transformation (LFT) framework,

• Apply approximation techniques to obtain a rational, finite dimensional sys-
tem and for implementation, reduce the modal approximated model by bal-
anced truncation,

• Synthesize the observer with robust control tools.

Each step in the design procedure will be explained shortly and illuminated with
the UV disinfection case.

5.4.2 Transfer function of error system

In this case, the error system for the UV process is defined with a boundary dynamic
observer. In other words, Σǫ

I I
is similar to Σǫ

I
eqn. (5.16), but now with γ1 = 0,

L time-varying and (z(0), z(η∗)) disturbed by (v1, v2) as in eqn. (5.30). In what
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follows, the subscript of L21 is dropped and no new notation is introduced for the
Laplace transforms of signals, since the meaning will be clear from the context.

By Laplace transformation of the equations and signals in ΣI I , the transmission
function Gvǫ(s) from v to ǫ(1) reads

Gvǫ(s) :=
(
G1(s) G2(s)

)
(5.33a)

with

G1(s) =
ς(s)exp( 1

2
pe) + exp( 1

2
peη
∗) sinh

(
ς(s)(1−η∗)) L(s)

ς(s) cosh (ς(s)) + 1
2
pe sinh (ς(s))− exp

(
1
2
pe(−1+η∗)

)
sinh(η∗ς(s))L(s)

=:
R0(s)

P(s)−Q(s)L(s)
+ R1(s)

L(s)

P(s)−Q(s)L(s)
(5.33b)

G2(s) =
sinh(ς(s))L(s)

ς(s) cosh (ς(s)) + 1
2
pe sinh (ς(s))− exp

(
1
2
pe(−1+η∗)

)
sinh

(
η∗ς(s)

)
L(s)

=:
R2(s)

ς(s)

L(s)

P(s)−Q(s)L(s)
(5.33c)

with,

ς(s) :=

√(
1
2
pe

)2
+ pes. (5.33d)

Note that we have used the following shorthand notation with respect to eqs. (5.33b)
and (5.33c)

R0(s) := ς(s)exp
(

1
2
pe

)
(5.34a)

R1(s) := exp
(

1
2
η∗pe

)
sinh

(
(1−η∗)ς(s)) (5.34b)

R2(s) := ς(s) sinh (ς(s)) (5.34c)

P(s) := ς(s) cosh (ς(s)) + 1
2
pe sinh (ς(s)) (5.34d)

Q(s) := exp
(

1
2
pe(−1+η∗)

)
sinh

(
η∗ς(s)

)
. (5.34e)

Gvǫ is also called a transfer function on the right half planeCω
+

:= {s ∈ C | Re(s)>ω},
where ω is the growth bound of the semi-group of AL , [see 118]. The gain L(s) has
to be found such that it fulfills the equivalent form of eqn. (5.31) in Laplace domain.

Notice, that for η∗ = 1, eqns. (5.34a)–(5.34e) simplify greatly.
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5.4.3 LFT of filtering problem

The estimation problem can be schematically represented as a filtering problem. In
this problem, an open-loop error transfer function M and a filter transfer function
F is formulated. More specifically, M is defined as mapping from the disturbances v

to the states z and an output yM , i.e. M : v 7→ (z, yM ). F is formulated as a filter of
yM to an estimate of the state ẑ, i.e. M : yM 7→ ẑ. A diagram of this filtering problem
is shown in Figure 5.3.

v

ǫ

z

−yM ẑ

M(s)
F(s)

Figure 5.3: Estimation problem presented as a filtering problem of v to ǫ. M is the open-loop
error system, F the to be synthesized filter, and z, ẑ and yM the state, to be estimated state
and open-loop system output signal, respectively.

In the closed–loop configuration from v to ǫ, Gvǫ can be related to M and F as in
Figure 5.3. This is also known as a Linear Fractional Transformation. In the sequel
we make use of Definition 8.3.11 and Lemma 8.3.12 in [21] for a lower LFT, where
ǫ(1) will be evaluated in the H∞–problem of the case study. A well-defined LFT is
defined as follows.

DEFINITION 5.4.1. A lower LFT between two complex-valued matrix functions F and

M =
(

M11 M12
M21 M22

)
, is defined by:

Fl(M , F) := M11 +M12F(I −M22F)−1M21 (5.35)

Furthermore, Fl(M , F) is said to be well-defined (or well-posed) if
(
I −M22(s)F(s)

)

is invertible.

The configuration of the lower LFT for the estimation problem as shown in Fig-
ure 5.3 is represented in Figure 5.4 and is frequently used in H∞–filtering prob-
lems, see e.g. section 17.5, p. 462 of [117] or the original paper of Nagpal and
Khargonekar [73].

In H∞–filtering, M is partitioned as follows,
(
ǫ

yM

)
=

(
M11 M12
M21 M22

)

︸ ︷︷ ︸
M

(
v

ẑ

)
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v

ẑ yM

ǫ

M(s)

F(s)

Figure 5.4: Lower fractional transformation for a model–robust-filter configuration as in
Figure 5.3, with v, ǫ, yF the disturbances, estimation error, input signal and output signal,
respectively

and in our case study, with two disturbances:

(
ǫ(1)
yM

)
=

(
M111 M112 M12
M211 M212 M22

)

︸ ︷︷ ︸
M




v1
v2
ẑ


 and with yM to be specified. (5.36)

It is always possible to write a configuration as in Figure 5.3 in an LFT frame-
work. Therefore, the loop from v 7→ ǫ is closed by Gvǫ(M , F) = M11 + M12F(I −
M22F)−1M21, whenever M and F are of compatible dimensions and det(I−M22F) 6=
0, see also Definition 5.4.1.

The H∞-filtering problem as formulated in [117], implies that M12 = −I and
M22 = 0. In that case,

Gvǫ(M , F) = M11 − F M21 (5.37)

We will now seek for an explicit expression of M and F . We could start by
looking for a state state representation of M . However, the problem of this route is
that the resulting filter F is not guaranteed to be proper. Another way is to directly
use the closed loop transfer function Gvǫ and try if to split it up in fractions such
that the fraction containing L, is proper. This latter route will be explored in the
following subsection.

In the sequel, the following generalization of the notions ‘proper’ and ‘strictly
proper’ are used.

DEFINITION 5.4.2. The transfer matrix H is said to be proper on C+ if for sufficiently

large ρ, β > 0, and Re(s)> β ,

sup
{s∈Cβ+||s|≥ρ}

|G(s)|<∞.
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The transfer matrix H is said to be strictly proper on C+ if for sufficiently large ρ,

lim
ρ→∞


 sup
{s∈Cβ+||s|≥ρ}

|G(s)|

= 0.

Fraction splitting

The closed-loop transfer function of our example system, eqs. (5.33) and (5.34a)–
(5.34e). G1 can be split into fractions, i.e.

G1(s) =
R0(s) + R1(s)L(s)

P(s)−Q(s)L(s)
=

R0(s)

P(s)
+

(
R1(s) +

Q(s)R0(s)

P(s)

)
L(s)

P(s)−Q(s)L(s)
(5.38)

G2(s) =
1

ς(s)

R2(s)L(s)

P(s)−Q(s)L(s)
(5.39)

First, we need the following lemma to show that our example system Σǫ
I I

can be
written as a well-defined H∞–filtering problem.

LEMMA 5.4.1. Let G := Fl(M , F) be a given LFT with M =
(

M11 M12
M21 M22

)
and F transfer

functions. Then G is proper if M and F are proper with det(I −M22F)(s) 6= 0.

Proof. Follows immediately from Definition 5.4.1.

We propose to define F and M as follows.

PROPOSITION 5.4.1. Σǫ
I I

with closed loop transfer function Gvǫ as in eqn. (5.33) can be

written in a well-defined lower LFT form, with

(
M111 M112 M12
M211 M212 M22

)

︸ ︷︷ ︸
M

=

(
R0P−1 0 −I

QR0(PR2)
−1 + R1R−1

2 ς−1 0

)
(5.40)

and,

F = −R2

L

P −QL
=−G2ς (5.41)

if and only if L is proper.

Proof. Clearly, M11 = R0/P(s) acts as a feedthrough of v1 to ǫ(1), see eqs. (5.38)
and (5.39). Hence, M11 reads:

M11 :=
(
M111 M112

)
=

(
R0

P(s)
0

)
(5.42)
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In the case of an H∞–filtering problem, I − M22F := I and is obviously invertible.
Furthermore, following the line of [117], we set ǫ(1) = M11v − ẑ which leads to
M12 = −I . According to eqn. (5.37), Gvǫ = M11− F

(
M211 M212

)
. As a consequence

of the above,

M =

(
R0P−1 0 −I

M211 M212 0

)

and by setting

F :=−R2 L/ (P −QL) ,

M212 reduces to ς−1 and M211 reduces to QR0(PR2)
−1 + R1R−1

2 . Hence, M equals
eqn. (5.40).

We now check if M and F are proper. Clearly M212 = (
1
4
pe

2 + pes)
−1/2 is strictly

proper. M111 = R0/P can be written as a[cosh(ς) + pe sinh(ς)/(2ς)]−1, with con-
stant a = exp(pe/2). M111 converges to 0, in the least favorable scenario that
s = ıω and ω → ∞. Thus M111(s) is strictly proper. In M211, the term R1R−1

2
is clearly strictly proper. The first term QR0(PR2)

−1 is also strictly proper since
sinh(η∗ς)/(ς sinh(ς) is strictly proper and is multiplied by the strictly proper func-
tion exp(− 1

2
(1−η∗))/P(s). Hence, we conclude that M is proper.

Finally, we check whether F is proper. Assume that L is proper. Now, divide the
numerator and denominator of F by R2. Consequently,

F =− L

coth(ς) + pe

2ς
−
(

exp
(
− 1

2
pe(1−η∗)

)
sinh(η∗ς)
ς sinh(ς)

)
L

Recognize that, in the denominator of F

coth(ς)

I︸ ︷︷ ︸
proper

+
pe

2ς︸︷︷︸
strictly proper

+exp
(
− 1

2
pe(1−η∗)

) sinh(η∗ς)
ς sinh(ς)︸ ︷︷ ︸

strictly proper

L

I︸︷︷︸
proper

.

Furthermore its limit equals 1 and so F is proper if and only if L is proper.

From eqn. (5.41), we find L = PF/
(−R2 +QF

)
.

With the above results, the H∞–problem formulation as given in eqn. (5.31) can
be straightforwardly translated into an equivalent formulation in frequency domain.

PROPOSITION 5.4.2 [H∞–FILTERING PROBLEM IN FREQUENCY DOMAIN]. Given Σǫ
I I

as in

eqn. (5.32), then the H∞–filtering problem as in eqn. (5.43) is equivalently described

by the H∞ optimization:

inf
F proper

‖F (M , F)‖∞ < γH (5.43)
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with Fl(M , F) an LFT between M(s) and F(s), with M(s) given in eqn. (5.40) and

F(s) related to L(s) as in eqn. (5.41).

The above used H∞-norm is given in the Appendices, Lemma A.4.1.
So, all that remains is to calculate Fopt(s) in the H∞–problem (see Proposi-

tion 5.4.2) to obtain Lopt(s). This calculation is only possible by solving the H∞-
problem by a numerical routine, in which M(s) is first approximated to a rational
transfer function. The approximation of M and analysis of the residual error con-
vergence is described in Appendix D.4. It follows that, in most cases, a modal
truncation up to N = 25, Padé-[1,2] approximation of M212 and subsequent bal-
anced truncation to around m = 2 Hankel singular values (except for small Péclet
numbers, i.e. pe≪ 1 where we choose m = 8), results in suitable observer filters F

and L of low order. These results are presented in Section 5.6. But first, we turn to
the results of Case I, i.e. the static observer design.

5.5 Numerical results of Case I

Now that we have formulated the system and its observer, it is possible to study
the influence of the observer gain L21 on the eigenvalues of the error system. With
slight abuse of notation, we omit the sub- and superscript of L in the figures.

5.5.1 Parametric influence on growth bound

Figure 5.5(a) and its equivalent contour plot Figure 5.5(b), show the behavior of
the growth bound λ0 for pe ∈ (0,10] and L ∈ [−3,0]. Indeed, the larger the pe-
numbers, the larger the growth bound and the lesser the effect of the observer gain.
Notice also that for smaller L, the growth bound tends to zero and the stability
margin becomes smaller.

5.5.2 Parametric influence on growth bound improvement

For (control) engineering applications, it may be more interesting to find out the
magnitude of L21 for a given performance increase ∆max

λ := λ0−λL
0 . In eqn. (5.27),

bounds on ∆λ are given with the aid of Remark 7. In addition, we now calculate
L⋆ := L21 for several Péclet-numbers at which a given ∆λ is obtained. The results
are depicted in Figure 5.6. We see that, for increasing pe, L⋆ increases rapidly for
some ∆λ. For reference, the line L = 0 is also shown in Figure 5.6(a). Note that the
performance gain ∆λ can only be achieved for a certain range of Péclet-numbers,
see Section 5.3.4 and Figure 5.2(b).
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(a) 2D plot of λ0
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(b) Contour lines of λ0

Figure 5.5: λ0 versus −3< L < 0 and 0< pe ≤ 10
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(a) L = 0 (dashed) and L⋆ for 0 < pe ≤ 4 and varying ∆λ,
i.e. from upper to lowest line∆λ = 0.25 to 2.25 (solid) with
steps of 0.25.
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(b) 2D plot of L⋆ versus pe and ∆λ. The values of pe for
which the performance gain ∆λ, is not feasible (i.e. no so-
lutions exist), is depicted by empty space.

Figure 5.6: L⋆ versus ∆λ and pe
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5.6 Numerical results of Case II

In this section, we investigate the influence of different parameter/variable values
on the γH–iteration value, Fopt and Gvǫ. We start with γH–sensitivities.

5.6.1 Parametric influence on observer optimality

γH–Sensitivies to different parameters

Notice from eqn. (5.43) that a constant γH for different parameter values means,
that the same disturbance rejection is achieved and, consequently, the optimization
of F is relatively insensitive to this parameter. A varying γH with different parameter
values, means it is sensitive to this parameter. Figure 5.7 depicts the γH–values
under different parameter cases. Simulations run with N = 25 and m= 17.

γ
H
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(a) γH under varying b1u1. (pe=0.5 and η∗=0.5).
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(b) γH under varying η∗. (pe=0.5 and b1u1=0).
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(c) γH under varying pe. (b1u1=0 and η∗=0.5).

Figure 5.7: γH–Iteration values under different b1u1, η∗ and pe values.
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Bode diagrams

Here, we show the influence of different values of b1u1, pe, and η∗ on the synthesis
of Lopt and Fopt in Figure 5.8. The bode amplitude graphs illustrate the low fre-
quency sensitivity of the filters F and L for the lamp strength and pe–number, which
is exactly what we would expect from the eigenvalue analysis in Section 5.3 (see
also Figure 5.6 for the influence of pe). Notice also that the amplitude of L remains
more or less at the same level across the frequency domain, irrespectable of the var-
ied parameter. It should be noted that for small pe-values, the truncation number
m had to be increased to m = 8 to have acceptable approximation errors. For the
other parameters, a truncation to m= 2 yielded an acceptable error trade-off.

By inspecting Figure 5.8(c)–(d) and (e), but also Figure 5.7(b), it can be seen
that the synthesized filter is hardly sensitive to a varying sensor position. The filter
synthesis seems to be more responsive to changes in the Péclet number, especially
in the lower frequency regions, see Figure 5.8.

This is also the case for the UV lamp strength. In the latter case, the eigenvalues
change linearly with b1u1, affecting the infemum γH of the optimization problem,
see also Figure 5.7(a).

5.6.2 Parametric influence on open-loop performance

In Figure 5.9, we only show the influence of the Péclet-number and the sensor
position on the open-loop performance of the plant M , since the influence of the
lamp strength is obvious.

With increasing Péclet number, the amplitude decreases for M111, M211 and
M212. The absolute magnitude of M111 is only affected in the higher frequency re-
gions, whereas the other open loop magnitude plots show amplitude changes over
the whole frequency range.

Whenever the sensor is getting closer to the outlet of the reactor, the magnitude
plot of M211, which is indeed a function of η∗, shows a decreasing amplitude in the
high frequency region. This can be contributed to the eigenvector characteristics
which in M211 are dependent on η∗.

5.6.3 Parametric influence on closed-loop performance

The closed loop response from v 7→ ǫ(1) is interesting, since it reflects the error
suppression originating from an inexact boundary estimate of the incoming concen-
tration of micro-organisms and the initial boundary effect (M111).

In Figure 5.10 both the closed loop responses from v1 and v2 to ǫ(1) have been
depicted. The closed loop responses under optimal filtering (i.e. with Fopt) and
under a naive filter F = I are compared. Notice that for almost every parameter
variation, the robust filter performs better, especially in the lower frequencies.



5.6. Numerical results of Case II • 97

|L|

ω

10−3 10−2 10−1 100 101 102

10−1

100

(a) Lopt for b1u1 ∈ {0, 2.5, 5}. Amplitude de-
creases with increasing b1u1.
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(b) Fopt for b1u1 ∈ {0, 2.5, 5}. Amplitude de-
creases with increasing b1u1 in high frequency
region.
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(c) Lopt for η∗ ∈ {0.25, 0.60, 1}. Amplitude de-
creases with increasing η∗.
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(d) Fopt for η∗ ∈ {0.25, 0.60, 1}. Amplitude in-
creases slightly with increasing η∗.
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(e) Lopt for pe ∈ {0.5, 1.25, 2}. Amplitude in-
creases and rotates slightly clockwise with in-
creasing pe.
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(f) Fopt for pe ∈ {0.50, 1.25, 2}. Amplitude
increases and rotates slightly counterclockwise
with increasing pe.

Figure 5.8: Optimal filter F(s) and Lopt for different b1u1, η∗ and pe values.
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(a) M111 with η∗∈{.25, .60, 1}. No difference in
changing η∗.
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(b) M111 with pe ∈ {0.50, 1.25, 2}. Lower line,
largest pe
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(c) M211 with η∗ ∈ {.25, .60, 1}. With same
linestyle, upper line: lowest η∗, lower line:
largest η∗.
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(d) M211 with pe ∈ {0.50, 1.25, 2}. Lower line,
largest pe.
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(e) M212 with η∗ ∈{.25, 0.60, 1}. No difference
in changing η∗.
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(f) M212 with pe ∈ {0.50, 1.25, 2}. Lower line,
largest pe.

Figure 5.9: M [ ] with truncated approximation M m [ ] and approximation error [· ·] for
different values of η∗ (left; m= 2) and pe (right; m= 17).
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(a) Gv1ǫ
for b1u1 ∈ {0, 2.5, 5}. Same linestyle,

from upper to lowest line: increasing b1u1.
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(b) Gv2ǫ
, b1u1∈{0, 2.5, 5}. Same linestyle, from

upper to lowest line: increasing b1u1.
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(c) Gv1ǫ
, η∗∈{.25, .60, 1}. Same linestyle, from

upper to lowest line: increasing η∗.
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(d) Gv2ǫ
, η∗∈{.25, .60, 1}. Same linestyle, from

upper to lowest line: increasing η∗.
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(e) Gv1ǫ
, pe∈{.5, 1.25, 2}. Same linestyle, from

upper to lowest line: increasing pe.
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(f) Gv1ǫ
, pe ∈{.5, 1.25, 2}. Same linestyle, from

upper to lowest line: increasing pe.

Figure 5.10: Amplitudes of Gv1ǫ
(left) and Gv2ǫ (right) for Fopt(s) [ ] and F = I [ ] with

different b1u1 (a) and (b) η∗ (c) and (d) and pe values (e) and (f).
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5.6.4 Performance comparison Case I and II

What might perhaps be more interesting, is how values of a constant gain matrix
L affects the norm on Gvǫ and how this compares to an calculated Fopt. Results
of these calculations are shown in Figure 5.11, including the γH–iteration value of
the H∞–problem. The following parameter values were used for the simulation:
pe = 0.50, number of modes N = 25 truncated to m= 8 Hankel modes, η∗ = 1 and
b1u1 = 0.
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(a) γH , given Fopt and varying L.
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(b) Fopt and Lopt and F based upon varying L.
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(c) Gv1ǫ
based upon Fopt and varying L.
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(d) Gv2ǫ
based upon Fopt and varying L.

Figure 5.11: Influence of optimal, dynamic Fopt [ ] and non-optimal static gain filter F [ ]

based upon L ∈ {−0.01,−0.35,−10,−100,−1000}. From upper (L=−1000) to lowest line
(L=−0.01), L decreases.
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5.7 Concluding remarks

We organize some concluding remarks per case and the comparison of the cases.

Case I (static): Inspired by CDR processes in food and water treatment industry,
we analyzed approximate observability and detectability in the case where
only boundary measurements are available. With the analysis, rules have
been derived for the design of a static, Luenberger boundary observer with
guaranteed detectability of the resulting estimation error system. These de-
sign rules have been implemented and tested in a numerical study of a UV
disinfection process case. In this example case, we come to the following
conclusions:

• From the eigenvalue analysis and numerical calculations, it follows that
for mild Péclet-numbers, (pe ≪ 1, hence a low convection–diffusion ra-
tio), there is more room to obtain a performance gain with a suitable
observer gain L21. For large Péclet numbers, fast process dynamics al-
ready push the estimation error to zero. In this case one may decide to
choose a small positive L21 >

1
2
pe as a smoothing filter.

• The growth bound of the error system is pushed to higher absolute mag-
nitudes whenever the lamp strength is stronger, i.e. for increasing b1u1.

Furthermore, analyzing the system in the infinite dimensional setting gives
a good impression how the error system will behave, independent of some
choice of discretization or approximation method.

Case II (dynamic): It has been shown, that it is possible to design an H∞–observer
on the basis of a estimation correction at the boundary of the estimation error
system. A sequence of steps is performed for the observer synthesis: Laplace
transformation of Σ(AL ,B,C) to obtain the closed-loop transfer function G,
formulate the H∞–problem in an LFT framework and calculate the optimal
H∞–filter after approximation of the open-loop model M and its balanced
truncation. From the closed-loop solution G and the appropriate choice of M ,
the relationship of F with L can be deduced. We show some results on the
robust boundary observer synthesis for the UV disinfection process under a
disturbance rejection H∞–criterion.

Comparison static L with dynamic Lopt: As expected, a dynamic robust observer
synthesis approach is needed if disturbance rejection is desired to achieve
the robust criterion. However, a static gain observer has the clear advantage
that the observer gain preserves system insight, while a dynamic observer
synthesis is based upon numerical routines. For the UV disinfection example,
we see that a static L21 → 0 pushes the maximal magnitude of the transfer
function Gv2ǫ to zero, but it does not minimize the maximal magnitude of
Gv1ǫ, optimally.





6
Conclusions and

Remarks
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IN THIS WORK, DIFFERENT procedures with respect to estimation and prediction of
systems characterized by convection, diffusion and reactions on the basis of point

measurement data, have been studied. In Chapter 1, the following research issues
with respect to these procedures have been postulated, namely:

1. Given a late reduction technique, is it possible to preserve physical knowledge

of the nominal CDR model in terms of the parameter estimate θ , when using a

typical identification output-error technique?

2. Given an early reduction technique, is it possible to rewrite the estimation and

prediction problem of a CDR system into a linear regression, and if so, how?

3. Without model order reduction, is it possible to obtain design conditions for a

static observer of a CDR system, under the condition that it is (approximately)

observable?

4. Given a late reduction technique, is it possible to obtain a dynamic observer

which is robust to disturbances at both the (boundary) input as well as the point

observation?

The above questions have been related to two applications which are introduced
in Chapter 2. The questions are answered case by case in the following section.

6.1 Concluding remarks

1. In Chapter 3, an identification approach based on linear time-invariant dis-
crete time OE models, showed that a heat transfer process in a typical food
storage setup can be suitably modelled by first order, approximate model. The
identification amounts to the calibration of the dominant time constant and
gain under different ventilator settings.

In addition, local parametric sensitivity analysis was carried out to inspect
how physical parameters affect this time constant. Furthermore, for all venti-
lator settings the gain of the bulk storage process was close to one, indicating
that there was no unexpected heat loss or gain. The conclusion is that impor-
tant physical parameters can be individually recovered from the calibrated OE
model parameters.

2. In general, CDR models are written in (Hilbert) state-space form. Via early
model reduction by finite differences techniques a CDR model can be dis-
cretized to a discrete-time, linear state space model belonging to the class
of discrete-time, linear structured systems Σd . This system Σd is the start-
ing point in Chapter 4 for obtaining a linear regressive realization ΣLR

d
which,

when it exists, largely facilitates parameter estimation and prediction.
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It is shown that under parameter-affine conditions, ΣLR
d

can be found via
reparametrizations of the transfer function of Σd . In this realization, a linear
regressive mapping from newly defined parameters to input-output data is
formulated and characterized by parameter independent coefficient matrices
N and R. These coefficient matrices have been explicitly expressed in terms of
number of compartments n, actuator and sensor location for two discretized
diffusion examples. Under specific boundary conditions, these explicit ex-
pressions are also applicable to dimensionless representations of discretized
CDR-systems.

Besides convexity of the resulting parameter estimation problem, another ad-
vantage is the ability to analyze a priori the parametric sensitivities on the
regression vector φ based on the explicit results. Furthermore, a simple iden-
tifiability test on the basis of a rank test of R has been obtained. When or-
dinary least squares is used to solve the linear regression rpoblem, a disad-
vantage turns up. As the regressors contain input and output data, they are
corrupted by measurements noise, thus deteriorating the estimation result.
Hence, more advanced least-squares techniques are needed for the estimation
of the parameters.

3. The UV disinfection process is used as an illustrating example for the design of
a static, Luenberger-type observer for a CDR process in Section 5.3 of Chapter
5. Such a process is typically described by a Sturm-Liouville operator. Conse-
quently, detectability and approximate observability results are obtained for
systems characterized by a Sturm-Liouville operator and boundary actuation
and/or sensing. The results are used in deducing pole placement design rules
for an observer of a UV disinfection model using boundary data. By numerical
simulation, the observer characteristics are further illustrated (Section 5.5).

This method has the advantage of obtaining results about observer (or state
estimator) properties as a function of the underlying dynamic system prop-
erties, independent of some approximation or model reduction technique.
However, in practice, a finite dimensional form of such an observer has to
be implemented and caution must be taken to generalize infinite-dimensional
observer results to the finite-dimensional case. Furthermore, it requires engi-
neering skills to choose an optimal observer gain under given (practical) cir-
cumstances. Last, the observer performance in the CDR application is highly
dependent on the CDR system dynamics.

4. In Section 5.4 of Chapter 5, it is shown that it is possible to design an H∞–
observer aiming at disturbance rejection on the basis of an estimation cor-
rection at the boundary of the error system. Hereto, a sequence of steps is
performed for the observer synthesis: (i) Laplace transformation of the es-
timation error system to obtain the closed-loop transfer function G, (ii) for-
mulation of the H∞–problem in a well-posed linear fractional transformation
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framework, (iii) approximation and subsequent balanced truncation of the
open-loop model M and (iv) the calculation of the optimal H∞–filter with the
aid of the approximation of M .

Numerical results on the robust filter, the H∞–synthesis performance and
closed loop transfer function of the estimation error in a UV disinfection model
under disturbance rejection are shown in Section 5.6. Also, a numerical com-
parison with the static observer obtained in the first part of the Chapter gives
a strong indication of the superiority of the H∞-observer with respect to dis-
turbance rejection.

Another advantage of the numerical procedure to obtain the dynamic ob-
server, is that it is generally applicable to linear, distributed parameter systems
where only point measurements and actuation is available. A disadvantage is
that a finite-dimensional approximation of the open-loop transfer function of
the estimation error system has to be made. In general, an approximation
leads to a loss in physical insight.

6.2 General comments and future work

While executing this research, several issues were encountered that may be equally
important and therefore deserve further study:

• The fundamental model characterization problem. In other words, whether
CDR equations satisfactorily describe the processes (like e.g. flow patterns)
encountered in the case studies. There are numerous model candidates avail-
able, varying from rational (finite-dimensional) input-output systems, rational
input-output systems with fractional representation or more complex infinite
dimensional systems which have to be identified with experimental data. In
this thesis, CDR models in the most simple form are used and several proce-
dures have been discussed. As an alternative, it would be interesting to start
with grey-box identification where one of the goals is to come up with a model
selection criterion where the (physical) model reduction error is weighted
against prediction errors and number of (lumped physical) parameters in
some norm.

• The model reduction problem. That is, whether a model reduction step should
be in an early stage or in a later stage. In most cases, a finite-dimensional
implementation of a state or parameter estimator has to be used in practice.
Optimal controller or observer order reduction projections have been reported
for the finite dimensional case and are also developed for the infinite dimen-
sional case. Adaptive (and possibly recursive) reduction methods depending
on (some statistical) measure of information content in input-output data may
be an attractive alternative.



6.3. Epilogue • 107

• The coupled model reduction–estimation problem applied to CDR processes.
To our knowledge, no coherent inventory has been made of estimation meth-
ods that are applicable to (model reduced) CDR systems under some specific
identification criterion. To this aim, several combinations of model order re-
duction methods and system identification techniques have to be investigated,
like in the work of Söderström and Bhikkaji for parameter estimation of dif-
fusion systems [92, 93].

• The application of recursive estimation techniques. The study of using the
estimation methods outlined in this thesis in a recursive fashion, is still open.
For example, it is straightforward to implement the linear regressive tech-
nique in Chapter 4 recursively. Given a recursive implementation, it may be
worthwile to implement the proposed methods, possibly in combination with
an optimal input calculation routine in tandem as in [95].

6.3 Epilogue

The less technical, but interested reader may still wonder what the added value is
when using one of the proposed estimation and/or prediction techniques in practice.
We try to briefly summarize in what we think is valuable.

First of all, the aim has been to work out techniques for dynamic models that
are at the basis of on-line process control. Hence, simple models are proposed or
taken from literature to allow fast simulation and avoid the numerical burden of
simulation of (complicated) distributed parameter models.

Secondly, mathematical concepts like identifiability (i.e., is it possible to recover

parameter values from data, given the used estimation method and model?), de-
tectability (does the evolution of the estimation error reside within bounds, or roughly

said: will it not ‘explode’?) and observability (when some measurements are avail-

able, is the answer about the underlying state like temperature or concentration, the

only one?) are important checks for engineers when using an estimation or predic-
tion method.

Thirdly, it seems irrational to ignore the widely available physical knowledge
reported in literature. Therefore the desire is to use (approximate) physical model-
based control and identify these models. All the proposed estimation and prediction
techniques in this thesis, preserve physical insight in some way, namely:

• via recovery of physical parameters using powerful black-box identification
techniques;

• by use of linear regression for estimation and prediction. This way, the phys-
ically interpretable structures appear also in the estimation problem and can
even be written as algebraic relations for CDR systems, so that e.g. suitable
input signals can be calculated beforehand;
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• via the design rules of the static boundary observer, the link to the observer
performance with respect to physical parameters is transparent. Physical
knowledge is preserved in a lesser extend in the case of the dynamic ob-
server, although the dynamic observer possesses the same characteristics as
the physical model.
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The results in this chapter are well known, but repeated here for the comfort of the
reader. Sources are the Appendices in [21, 26].

A.1 Normed linear spaces

DEFINITION A.1.1 [VECTOR SPACE]. Let X be a nonempty linear vector space and let K

be a set of scalars (i.e. K = R or C). Furthermore, let (x , y) 7→ x + y ∈ X (addition)

and (α, x) 7→ αx ∈ X (scalar multiplication) for all x , y ∈ X and α ∈ K. Then,

∀x , y, z ∈ X , the vector space X over K has the following properties:

a. x + y = y + x (commutative)

b. (x + y) + z = y + (x + z) (associative)

c. ∃0X , 0X + y = y (existence zero)

d. 1x = x, 1 ∈ K (one)

e. ∃x ∈ X , x + (−x) = 0 (existence inverse)

f. α,β ∈ K, α(βu) = (αβ)u

g. α,β ∈ K, α(x + y) = αx +αy and (α+ β)x = αx + β x (distributitive).

DEFINITION A.1.2 [NORMED SPACE]. Let X be a linear vector space. Then a norm is a

nonnegative set function on X , ‖·‖ : X 7→ R+ = [0,∞), such that

a. ‖x‖= 0 if and only if x = 0,

b. ‖αx‖= |α|‖x‖, ∀x ∈ X and ∀α ∈ K.

c. ‖x + y‖ ≤ ‖x‖+ ‖y‖
The linear vector space X induced under the norm ‖·‖ is called a normed vector space.

DEFINITION A.1.3 [DENSE SPACE]. A subset V of a normed linear space X is dense in X

if its closure is equal to X .

This property means that we may approximate every x ∈ X as closely as we like by
some v ∈ V , i.e., for any x ∈ X and ǫ > 0, ∃v ∈ V such that ‖v − x‖< ǫ.
DEFINITION A.1.4 [SEPERABLE SPACE]. A normed linear space (X ,‖·‖) is separable if it

contains a dense subset that is countable.

DEFINITION A.1.5 [CAUCHY SEQUENCE]. Let (X ,‖·‖X ) be a normed linear space. A se-

quence xn ⊆ X is a Cauchy sequence if

lim
m,n→∞‖xm − xn‖= 0
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Every Cauchy sequence in R is convergent. This does not hold for general normed
linear spaces. Spaces in which Cauchy sequences always have a limit are called
complete normed spaces.

DEFINITION A.1.6 [BANACH SPACE]. A normed space is complete, whenever every Cauchy

sequence has a limit in X . A Banach space is a complete, normed linear space.

For the definition of a Hilbert space, we need the following notion.

DEFINITION A.1.7 [INNER PRODUCT]. An inner product on a linear vector space X de-

fined over the scalar field K is a map 〈·, ·〉 : X × X 7→ K such that ∀x , y ∈ X and

∀α, β ∈ K it holds that

a. 〈αx + β y, z〉= α〈x , z〉+ β〈y, z〉;
b. 〈x , y〉= 〈y, x〉;
c. 〈x , x〉 ≥ 0 and 〈x , x〉= 0 if and only if x = 0.

DEFINITION A.1.8 [HILBERT SPACE]. A Hilbert space is an inner product space that is

complete as a normed linear space under the induced norm,

‖x‖=
√
〈x , x〉

DEFINITION A.1.9 [ORTHONORMAL BASIS OF HILBERT SPACES]. Let H be a separable

Hilbert space under the inner product 〈·, ·〉 and let φn be an orthonormal basis. Then

an orthogonal subset {φn}n≥1 of H is called an orthonormal basis if the following

conditions hold:

a. {φn}n≥1 is maximal, i.e., spann≥1φn = H.

b. for {φn}n≥1 /∈ ;, the inner product 〈φn,φm〉= δn,m :=

{
1 if n= m

0 if n 6= m

In other words, (φn)n≥1 are mutually orthogonal unit vectors. Note that in Rn,
any element can be expressed as a linear combination of any set of n mutually
orthogonal elements (i.e. a basis) as in condition a. of Definition A.1.9.

DEFINITION A.1.10 [FOURIER EXPANSION]. Let H be a separable Hilbert space under the

inner product 〈·, ·〉. Then for any x ∈ H, we have the Fourier expansion

∀x ∈ H, x =

∞∑

n=1

〈x ,φn〉φn

The terms 〈x ,φn〉 are called the Fourier coefficients of x with respect to φn. Further-

more, we have the important Parseval equality. Any two vectors x , y ∈ H satisfy:

〈x , y〉=
∞∑

n=1

〈x ,φn〉〈y,φn〉.
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In particular, for x = y we have ‖x‖2 =
∞∑

n=1
|〈x ,φn〉|2.

DEFINITION A.1.11 [Lp SPACES]. For any fixed real number p ∈ [1,∞), the Banach

space Lp[a, b] is the completion of the normed space which consists of all continuous

real-valued functions on [a, b], −∞≤ a < b ≤∞, and the norm

‖x‖=
(∫ b

a

|x(t)|pdt

) 1
p

with
∫ b

a
|x(t)|pdt finite.

A.2 Operators

In this section, transformations Q from one normed linear space X to another Y

are treated. Usually, X and Y will be either Banach or Hilbert spaces and Q will be
linear.

In the following theorem, the mapping Q does not have to be linear. Notice that
the operator U in Chapter 5 is a contraction.

THEOREM A.2.1 [CONTRACTION MAPPING THEOREM]. Let X be a Banach space, Q a map-

ping from X to X , m ∈ N and α < 1. Suppose that Q satisfies ‖Qm(x1)−Qm(x2)‖ ≤
α‖x1− x2‖ for all x1, x2 ∈ X Then, there exists a unique x∗ ∈ X such that Q(x∗) = x∗;
x∗ is the fixed point of Q. Furthermore, for any x0 ∈ X , the sequence {xn, n ≥ 1}
defined by xn :=Qn(x0) converges to x∗ as n→∞.

Proof. See [55, 152, theorem 5.4-3].

DEFINITION A.2.1 [BOUNDED LINEAR OPERATOR]. Let X and Y be normed linear spaces

and Q a linear operator from D(Q) ⊂ X 7→ Y . Q is a bounded linear operator or Q is

bounded, if ∃α > 0 such that for all x ∈ X ,

‖Qx‖Y ≤ α‖x‖X .

Continuity and boundedness are equivalent concepts for linear operators.

THEOREM A.2.2. Let X and Y be normed linear spaces. If Q : D(Q)⊂ X 7→ Y is a linear

operator, then:

a. Q is continuous if and only if Q is bounded;

b. if Q is continuous at a single point, it is continuous on D(Q).

Proof. See [55, theorem 2.7-9].
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DEFINITION A.2.2 [GRAPH]. Let X and Y be normed linear spaces and Q : D(Q)⊂ X →
Y a linear operator. The graph G is the set

G (Q) = {(x ,Qx) | x ∈ D(Q)}

in the product space X × Y .

DEFINITION A.2.3 [CLOSED OPERATOR]. An operator Q is said to be closed if its graph

G (Q) is a closed subspace of X × Y . Alternatively, Q is closed whenever

xn ∈ D(Q), n ∈ N and lim
n→∞ xn = x , lim

n→∞Qxn = y,

it follows that x ∈ D(Q) and Qx = y.

DEFINITION A.2.4 [COMPACT OPERATOR]. Let X and Y be normed linear spaces. An

operator Q ∈ L (X , Y ) is said to be a compact operator if Q maps bounded sets of X

onto relatively compact sets of Y . An equivalent definition is that Q is linear and for

any bounded sequence {xn} in X , {Qxn} has a convergent subsequence in Y .

DEFINITION A.2.5. A self-adjoint operator A on the Hilbert space Z is nonnegative if

〈Az, z〉 ≥ 0 for all z ∈ D(A);

A is positive if,

〈Az, z〉> 0 for all nonzero z ∈ D(A);

and A is coercive if ∃ǫ > 0 such that

〈Az, z〉 ≥ ǫ‖z‖2

A.3 Riesz spectral operators

Here, a convenient representation for large classes of linear partial differential sys-
tems of both parabolic and hyperbolic types is introduced. Riesz spectral operators
allow for non-self-adjoint operators whose eigenvectors may not be orthogonal, but
do form a Riesz basis.

DEFINITION A.3.1 [RIESZ BASIS]. A sequence of vectors {φn}n≥1 in a Hilbert space Z

forms a Riesz basis for Z if the following conditions hold:

a. span {φn}n≥1 = Z;

b. ∃m > 0, M > 0 such that for arbitrary N ∈ N and arbitrary scalars αn, n =
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1, . . . , N, such that,

m

N∑

n=1

|αn|2 ≤ ‖
N∑

n=1

αnφn‖2 ≤ M

N∑

n=1

|αn|2. (A.1)

DEFINITION A.3.2. Suppose that A is a linear, closed operator on a Hilbert space Z with

simple eigenvalues {λn}n≥1 and suppose that the corresponding eigenvectors {φn}n≥1
form a Riesz basis in Z. If the closure of {λn}n≥1 is totally disconnected, then we call A

a Riesz-spectral operator.

By totally disconnected, it is meant that no two points λ, µ ∈ span {λn}n≥1 can
be joined by a segment lying entirely in {λn}n≥1}. In other words, Definition A.3.2
covers the case where A has finitely many accumulation points.

The following characterization of a Riesz spectral operator is made in Theorem
2.3.5 in [21]:

THEOREM A.3.1 [RIESZ SPECTRAL OPERATOR]. Suppose that A is a Riesz-spectral opera-

tor with simple eigenvalues {λn, n ≥ 1} and corresponding eigenvectors {φn, n≥ 1}.
Let {ψn, n≥ 1} be the eigenvectors of A∗ such that 〈φn,ψm〉= δnm. Then A satisfies:

a. ρ(A) = {λ ∈ C | infn≥1|λ− λn| > 0}, σ(A) = {λn, n≥ 1}, and for λ ∈ ρ(A)
(λI − A)−1 is given by

(λI − A)−1 =

∞∑

n=1

1

λ−λn

〈·,ψn〉φn;

b. A has the representation

Az =

∞∑

n=1

λn〈z,ψn〉φn

for z ∈ D(A), and D(A) = {z ∈ Z |
∞∑

n=1
|λn|2|〈z,ψn〉|2 <∞};

c. A is the infinitesimal generator of a C0-semigroup iff supn≥1 Re(λn) < ∞ and

T (t) is given by

T (t) =

∞∑

n=1

eλn t〈·,ψn〉φn;

d. The growth bound of the semigroup is given by

T (t) = inf
t>0

(
1

t
log‖T‖

)
= sup

n≥1
Re(λn). (A.2)
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A.4 Frequency domain spaces

For the following, we need the following concepts of complex function theory.

DEFINITION A.4.1. Let Υ be a domain in C and let f be a function defined on Υ with

values in C. The function is holomorphic on Υ if d
ds

f (s0) exists for every s0 in Υ.

Furthermore, the function is said to be entire if it is holomorphic on C. The function

g is meromorphic on Υ if g can be expressed as g = f1/ f2, where f1 and f2 are

holomorphic on Υ.

Note that some texts use the term analytic, instead of holomorphic. Examples
of holomorphic functions are all polynomials and exponential powers. Rational
functions are meromorphic on C and holomorphic on every domain not containing
the zeros of the denominator.

DEFINITION A.4.2 [HARDY SPACES]. For a Banach space X and a separable Hilbert space

H, the following Hardy spaces are defined:

H∞(X ) :=

{
G : C0

+
7→ X | G is holomorphic and sup

Re(s)>0
‖G(s)‖<∞

}
;

H2(H) :=

{
G : C0

+
7→ H | G is holomorphic and

‖ f ‖22 = sup
ζ>0


 1

2π

∞∫

∞
‖ f (ζ+ ıω)‖2dω


<∞

}
.

LEMMA A.4.1 [H∞-NORM]. If X is a Banach space, then H∞(X ) from Definition A.4.2

is a Banach space under the H∞–norm:

‖G‖∞ := sup
Re(s)>0

‖G(s)‖X

Proof. See the proof of Lemma in A.6.16 [21].
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This chapter gives a short introduction to some dynamic system descriptions, some
system theoretical concepts and also a short introduction to linear regression.

B.1 System theoretical concepts

In this section, it is tried to give a short background on some basic system theoretical
concepts used throughout this thesis. The concepts introduced here are inspired by
the textbooks [21, 117].

Complementary to this section, some background in functional analysis is given
in Appendix A.

B.1.1 Finite dimensional linear systems

This section describes some basic system theoretical concepts regarding finite di-
mensional linear systems. In Section 4 a CDR process will be modeled by a state
space system in finite dimensional state space form after discretization of the origi-
nal partial differential evaluation. In chapters 3 and 5, finite dimensional continu-
ous linear systems are obtained after model reduction of the nominal, CDR model
formulated as an infinite dimensional system.

Continuous time systems

A linear time-invariant (LTI), finite-dimensional system Σ(A, B, C , D) on the state
space X can be described by the following linear differential equations:

Σ(A,B,C,D) :=

{
ẋ(t) = Ax(t) + Bu(t), t ≥ 0 x(t0) = x0
y(t) = Cx(t) +Du(t)

(B.1)

A : Rn 7→ Rn, B : Rm 7→ Rn, C : Rn 7→ Rl , D : Rm 7→ Rl . (B.2)

where

x(t) ∈ X = Rn, x0 system states and initial condition on the state space X , resp.
u(t) ∈ U = Rm system inputs
y(t) ∈ Y = Rl are system outputs

A linear system matrix (bounded)
B linear input matrix (bounded)
C observation matrix (bounded)
D feedthrough matrix (bounded)

Hence, we have that X , Y and U are finite-dimensional vector spaces and A, B,
C and D are bounded linear maps.
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A dynamical system with Single Input (m = 1) and Single Output (m = 1) is
called a SISO system, otherwise it is called a Multiple Input and Multiple Output
(MIMO) system.

Now, given an arbitrary initial condition x0 and the input u ∈ L2([0,τ]; U), then
the dynamical system response x ∈ C ([0,τ]; X ) (C denotes the class of continuous
functions for all t ∈ [0,τ] whose derivatives is again continuous on [0,τ]) and
y ∈ L2([0,τ]; Y ) are given by:





x(t) = eA(t−t0)x(t0) +
t∫

t0

eA(t−τ)Bu(τ)dτ

y(t) = Cx(t) +Du(t)

If we let x0 = 0 in eqn. (B.1), then by taking Laplace transforms we obtain the
corresponding frequency domain description ỹ as a function of ũ:

ỹ(s) = C(sI −A)−1B︸ ︷︷ ︸
G(s)

ũ(s) (B.3)

In time domain, the input-output relationship with zero initial state (i.e. x0 = 0)
can be described by the convolution equation:

y(t) = (g ∗ u)(t)

:=

∞∫

−∞
g(t −τ)u(τ)dτ=

t∫

−∞
g(t −τ)u(τ)dτ

with g(t) = CeAtB.

Observability, controllability, stability and detectability

DEFINITION B.1.1. Σ(A, B,−) is controllable if for some τ > 0 the controllability map
Bτ : L2([0,τ]; U) 7→ Z has Z in its range, where,

Bτu :=

τ∫

0

eA(τ−s)Bu(s)ds.

It follows that Σ(A, B,−) is controllable if and only if rank
[
B : AB : . . . : An−1B

]
=

dim(Z) = n.
Similarly, Σ(A, B,−) is observable if and only if rank

[
C∗ : A∗C∗ : . . . : (An−1)∗C∗

]
=

dim(Z) = n.
The following definition is given for stability.

DEFINITION B.1.2. A is exponentially stable if there exists positive constant M and α
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such that

‖eatz0‖Z ≤ Me−αt‖z0‖z , ∀t ≥ 0.

A is called antistable if −A is exponentially stable.
The following definition for stabilizability and detectability is adopted from

[21]. Notice that the detectability definition introduced in Chapter 5 for boundary
control systems more or less resembles the detectability definition for finite dimen-
sional systems given in the following definition.

DEFINITION B.1.3. Σ(A, B−) is exponentially stabilizable if there exists an F ∈ L (Z , U)

such that A+BF is exponentially stable. Σ(A,−C) is exponentially detectable if there

exists a L ∈ L (Y, Z) such that A+ LC is detectable.

Shift operator calculus in discrete time systems

In Chapter 3 and 4, discrete time system representations are used. A definition for
a discrete time (structured) linear system is given in the latter chapter, so we only
give a brief sketch of shift operator calculus.

Differential operator calculus is a a convenient tool for manipulating linear dif-
ferential equations with constant coefficients. The class of signals where the shift op-
erators act on is considered as doubly infinite sequences { f (k) : k = . . .− 1,0,1 . . .}
[3]. Assume the sampling period is chosen as the time unit. Then the forward shift
operator is denoted by q and has the property:

q f (k) = f (k+ 1)

For a norm of a signal ‖ f ‖ = supk| f (k)|, or, ‖ f ‖2 =∑∞
k=−∞ f 2(k), it follows that

the shift operator has unit norm. Hence, the calculus is then greatly simplified
and, since it is an doubly infinite sequence, we may take the inverse and define the
backward-shift operator or delay operator denoted by q−1, i.e.:

q−1 f (k) = f (k− 1).

The shift operator is used to simplify manipulation of higher order difference equa-
tions, as is done in Chapter 4.

B.1.2 Infinite–dimensional linear systems

In this section, a short overview of infinite-dimensional system descriptions is given.
For a general introduction of linear systems theory concepts in infinite dimensions,
the reader is referred to [21].

Let L (X ) be a shorthand notation for the bounded linear map from X to X

and L (X , Y ) a bounded linear map from X to Y . The following class of infinite-
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dimensional systems with input u and output y is considered:

Σ(A, B, C , D) :=

{
ż(t) = Az(t) + Bu(t)

y(t) = C x(t) + Du(t)
, (B.4)

where A ∈ L (Z) generates a C0-semigroup T (t), B ∈ L (C, Z), C ∈ L (C, Y ), D ∈
L (C, Y ) and furthermore: The notion A ∈ L (Z) generates a strongly continuous

z(t) ∈ Z , z0 system states and initial condition on Hilbert state space Z

u(t) ∈ U = Cm system inputs
y(t) ∈ Y = Cl are system outputs.

semigroup T (t) will be introduced shortly.
Furthermore, it may seem artificial to choose U = Y = C in a physical example,

but we choose to complexify it here for mathematical reasons. Notice also that
operators B and C can be approximately modeled as ‘point’ actuators and ‘point’
sensors with shaping functions around the control and sensing point, e.g.:

b(η) =
1

2ǫ
1[η1−ǫ,η1+ǫ]

(η), c(η) =
1

2ν
1[η2−ν ,η2+ν]

(η)

where 1[a,b](x) =

{
1 for α≤ η≤ β
0 elsewhere.

The main problem with shaping functions b(η) and c(η) is that, the lacking of a

priori information of the size and shape of the sensor and actuator used in practice.
If, for example, the spatial dimension of the application under study is given by L

and 2ǫ≪ L or 2ν ≪ L, it would be more natural to consider point mappings B and
C . A formulation which makes this possible is given in Section B.1.3.

First, the definition of a semi-group is introduced.

Semi-groups

The semigroup T (t) can be seen as the infinite-dimensional extension of a set of
(finite-dimensional) state transition matrices eAt

t≤0 under the condition that the state
x satisfies the Hadamard well-posedness conditions. More precisely:

DEFINITION B.1.4 [DEFINITION 2.1.2 IN [21]]. Let Z be a separable complex Hilbert

space under the induced norm ‖·‖. A strongly continuous semigroup is an operator-

valued function T (t) from R+ to L (Z) that satisfies the following properties:

(a) T (t + s) = T (t)T (s) for t, s ≥ 0;

(b) T(0) = I ;

(c) ‖T (t)z − z‖ → 0 as t → 0+ for all z ∈ Z.
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T (t)z is related to the solution of an abstract differential equation as in eqn. (B.4),
in the following definition.

DEFINITION B.1.5 [DEFINITION 2.1.8 IN [21]]. The infinite-dimensional generator of a

C0-semigroup on a Hilbert space Z is defined by

Az = lim
t→0+

1

t
(T (t)− I) z

on its domain

D(A) = {z ∈ Z | lim
t→0+

T (t)z − z

t
exists}

In the next theorem, some usefull properties of a C0-semigroup generated by an
infinitesimal generator A are introduced. The proof can be found in [21].

THEOREM B.1.1 [ADOPTED FROM THEOREM 2.1.10 IN [21]]. T (t)t≥0 is a C0-semigroup

on Z with infinitesimal generator A if it has the following properties:

(a) For z ∈ D(A), ∀t ≥ 0, T (t)z ∈ D(A) and
dT (t)z

dt
= AT (t)z = T (t)Az.

(b) For z ∈ D(A), ∀t ≥ 0, T (t)z − z =
∫ t

0 T (s)Azds.

(c) A is a closed operator and furthermore, D(A) is dense in Z.

B.1.3 Abstract Cauchy problem

In theorem 2.1.10 of [21], it is shown that if A is an infinitesimal generator of the
C0-semigroup T (t), the solution of the abstract homogeneous Cauchy initial value
problem

ż(t) = Az(t) + f (t), t ≥ 0, z(0) = z0 ∈ D(A)

is given by

z(t) = T (t)z0 +

t∫

0

T (t − s) f (s)ds (B.5)

assumed that f ∈ C([0,τ]; Z). Eqn. (B.5) is also called an abstract evolution
equation or abstract differential equation. We define the classical solution, with
C1([0,τ]; Z) denoting the class of continuous functions on[0,τ] whose derivative
is again continuous on [0,τ].
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DEFINITION B.1.6 [CLASSICAL SOLUTION ([21])]. Consider eqn. (B.5) on the Hilbert

space Z. We call z(t) a classical solution of eqn. (B.5) on [0,τ] if z(t) ∈ C1([0,τ]; Z),

z(t) ∈ D(A) ∀t ∈ [0,τ] and z(t) satisfies eqn. (B.5) ∀t ∈ [0,τ].
The function is a classical solution on [0,∞) if z(t) is a classical solution on [0,τ]

for every τ≥ 0.

The conditions for a classical solution are in general too strong for control prob-
lems, due to the C1-continuity assumption of f (t). In the application of Chapter 5,
a weaker concept of a solution of eqn. (B.5) is considered.

First consider the following abstract differential equation with perturbed system
operator A+ D(·):

ż(t) = (Az(t) + D(t)) z(t) + f (t), z(0) = z0. (B.6)

The solution for this equation is defined as follows.

DEFINITION B.1.7 [SOLUTIONS FOR EQN. (B.6)]. Consider eqn. (B.6) with A the infinites-

imal generator of a C0-semigroup on the Hilbert space Z, z0 ∈ Z, D ∈ P∞([0,τ];L (Z)
and f ∈ Lp([0,τ]; Z), p ≥ 1. The function is a classical solution of eqn. (B.6) on

[0,τ if z(·) ∈ C1([0,τ]; Z), z(t) ∈ D(A) ∀t ∈ [0,τ] and z(t) satisfies eqn. (B.5) ∀t ∈
[0,τ].

If f ∈ Lp([0,τ]; Z), p ≥ 1 and z0 ∈ Z, then the mild solution of eqn. (B.6) is

defined as

z(t) = U(t, 0)z0 +

t∫

0

U(t, s) f (s)ds. (B.7)

with mild evolution operator U(t, s) generated by A+ D(·).

Boundary control formulation

In this subsection, we consider the following class of abstract boundary control prob-

lems:

ż(t) = Az(t), z(0) = z0 (B.8)

Bz(t) = u(t) (B.9)

where D(A)⊂ Z 7→ Z , u(t) ∈ U , a separable Hilbert space and the boundary control

operator B : D(B)⊂ Z 7→ U satisfies D(A)⊂ D(B).
It is possible to reformulate eqn. (B.8) into an abstract form eqn. (B.5) with the

following conditions.

DEFINITION B.1.8 [BOUNDARY CONTROL SYSTEM]. The control system eqn. (B.8) is a

boundary control system if the following hold:
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a. The operator A : D(A) 7→ Z with D(A) = D(A)∩ ker(B) and

Az = Az for z ∈ D(A)

is the infinitesimal generator of a C0-semigroup on Z;

b. There ∃ B ∈ L (U , Z) such that ∀u ∈ U, Bu ∈ D(A) the operator AB ∈ L (U , Z)

and

BB = u, u ∈ U . (B.10)

Assuming that eqn. (B.8) is a boundary control problem for u ∈ C2([0,τ]; U),
the following abstract differential equation on Z is well-posed:

v̇(t) = Av(t)− Bu̇(t) +ABu(t), v(0) = v0 (B.11)

The following theorem relates the classical solutions of eqn. (B.8) and the abstract
Cauchy equation eqn. (B.6) (Theorem 3.3.3 in [21]).

THEOREM B.1.2. Given the boundary control system eqn. (B.8) and the abstract Cauchy

eqn. (B.11) and let u ∈ C2([0,τ]; U) ∀τ > 0. Then, if v0 = z0 − Bu(0) ∈ D(A), the

classical solution of eqn. (B.8) and eqn. (B.11) are related by

v(t) = z(t)− Bu(t).

Furthermore, the classical solution of eqn. (B.8) is unique.

The abstract equation eqn. (B.11) also have well defined mild solutions for u̇ ∈
Lp([0,τ]; U) for some p ≥ 1, v0 ∈ Z and ze

0 ∈ Z e, with Z e := U ⊕ Z an extended
space (not shown here); respectively. Under these weaker assumptions, z(t)

z(t) =
(
B I

)
ze(t)

= Bu(t)− T (t)Bu(0) + T (t)z0 −
t∫

0

T (t − s)Bu̇(s)ds

+

t∫

0

T t − s)ABu(s)ds

with

ze(t) =

(
(ze(t))1
(ze(t))2

)
=

(
u(t)

v(t)

)
, (ze

0)1 = u(0) and (ze
0)2 = v(0)

is called a mild solution of the boundary control equation (see chapter 3 in [21] for
details. eqn. (B.8).
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Observability and detectability

In this thesis, only infinite dimensional systems in boundary form are discussed.
Furthermore, the starting point is the use of point observations and boundary inputs.
Hence, the concept for observability is tailored to these boundary form systems in
Section 5.2. In the same section, a definition of detectability for CDR systems is
given.

B.2 Linear regression

Suppose, the matrix equation Ax = b, A ∈ Rn×m is to be solved. We would like to
know if there’s a solution, and if so, how many solutions are possible. A well-known
theorem is the Fredholm alternative theorem, found in many textbooks on applied
mathematics, e.g. [50]:

THEOREM B.2.1 [FREDHOLM ALTERNATIVE THEOREM]. The equation Ax = b has a solu-

tion iff 〈b,v〉 = 0 for every vector v satisfying A∗v = 0. Furthermore, a solution of

Ax= b, if it exists, is unique iff x= 0 is the only solution of Ax= 0.

Typical engineering examples are overdetermined systems from curve fitting of
collected data. These examples generally contain measurement data corrupted with
noise. Consequently, the Fredholm alternative shows that these examples do not
have an exact solution of Ax = b. Hence, the goal is to find an x that minimizes
‖Ax − b‖ under some norm ‖·‖. A widely used norm is the Euclidean norm ‖·‖2
which leads us to the least squares problem:

DEFINITION B.2.1 [LEAST SQUARES PROBLEM]. For a matrix A ∈ Rm×n and a vector b,

the least squares problem is:

min
x∈Cn
‖Ax− b‖2

where ‖·‖2 denotes the Euclidean norm.
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C.1 Padé approximants of bulk storage model

Second order approximation

Similarly, if G(s) as in eqn. (2.8) is approximated by a Padé–[1,2] approximation
G̃[1,2](s), the following relationship is obtained:

G̃[1,2](s) :=
b0 + b1s

a2s2 + a1s+ 1
(C.1)

from which we can recover (lumped) physical parameters, i.e. a1, a2, b0 and b1.
We now give the results to calculate A and BM5 from the estimates. The esti-

mates of a1, a2, b0 and b1 can be obtained by the use of continuous time identifac-
tion methods, see e.g. [86]:

Â=
2b̂0

(
b̂1 − â1

â0

)

2(−â2
1 b̂0 + â2 b̂0 + â1 b̂1) + b̂0

(
b̂1 − â1

â0

)2

B̂M5 =Â2 b̂1 − â1 b̂0

b̂0

C.2 Estimation of time constant

In figure C.1, linear regressions of lnθ F versus ∆t are depicted for a ventilator
setting of 85% of its capacity. Similar results were obtained with other ventilator
settings. From the slope of these regressions, τp is reconstructed.
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Figure C.1: Estimated θ F with different sample times [◦] and tangent line [ ] at ∆t → 0+.
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C.3 Physical bulk storage model parameters

Table C.1: Variables and their units

Ta K air temperature in bulk

Tp K product temperature

Φ m3

s
air flow through shaft

vp
m

s
A f γpΦ, air velocity inside bulk

Table C.2: Physical parameters p and their units

αth
m2

s
thermal diffusivity of air (1.87 10−5)

γp
m3

m3 porosity air over bulk

λa
W

m K
conduction of air (2.43 · 10−2)

λp
W

m K
conduction of product

ν m2

s
kinematic viscosity of air (1.35 · 10−5

ρa
kg

m3 air density (1.27)

ρp
kg

m3 produce density

A f m2 floor area of the bulk

Nβ – βNp amount of spherical products exposed to air per crate

Vcr m3 crate volume

Vp m3 product volume

R m product radius

L m bulk height

ap
W

kg K
product heat production

ca
J

kg K
heat capacity of air

cp
J

kg K
heat capacity of produce

hv
W

m2 K
heat transfer coefficient
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Table C.3: Lumped physical parameters

Ap
m2

m3 NβVp/Vcr produce surface per bulk volume

bi — Biot number 2hvR

λa

L2 m Rγp(1− γp), characteristic length

M0
J

K
ρacaVa, lumped parameter

M1
m2

s

λp

ρpcp

M2
1
s

a

cp

M3 —
√

M2/M1R

M4
1
s

hvAp

γpρaca

M5 — M4 L

v

nu — Nusselt number 2hvR

λa

pr — Prandtl number ν

αth

re — Reynolds number
vp L2

ν

A 1
s

inverse of time-constant − 2M3 cot(M3)−2+bi
R2

M1
cot2(M3)+

R2

M1
−M3

M2
cot(M3)

B 1
s

bi
R2

M1
cot2(M3)+

R2

M1
−M3

M2
cot(M3)
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D.1 Dimensional analysis

The following is a central theorem in dimensional analysis and adopted from [68].
In this theorem only scalar variables and parameters are treated.

THEOREM D.1.1 [BUCKINGHAM]. Consider a system with (scalar) variables x1, . . . , xk

and scalar parameters p1,. . . , pl . The associated dimensions are denoted by d1,. . . ,

dm. Each relation

f (x1, . . . , xk, . . . , p1, . . . , pl) = 0

can be rewritten in the equivalent, dimensionless form,

f (r1, . . . , rn) = 0

with r1,. . . , rn dimensionless products of (powers of) the x’s and p’s. The number is

given by

n= k+ l −m

Proof. See [12].

The homogeneous part of the UV disinfection equations eqn. (2.11) reveals that
there are,

• 3 parameters, i.e.: v, α and c̄.

• 3 variables, i.e. where τ and ξ are independent, c is a dependent variable.

• 2 dimensions, i.e. the dimension of time t is denoted by t ≡ [T], ξ≡ [L] and
c ≡ [mol/L].

Now Buckingham’s theorem tells us that there are 3+ 3− 2 = 4 dimensionless
variables. It is natural to scale the concentration c with the mean value of the
inlet concentration c̄ :=

∫ τ f

0 cin(τ)dτ/τ f , with τ f large, i.e. this turns to z := c/c̄.
Another obvious choice is to scale the spatial coordinate with the length of the
reactor, i.e. η := ξ/L. Hence 4 variables and parameters are left over. To find the
other two dimensionless variables, we form the products

r = τs1αs2 vs3

The ‘dimension’ condition [r]≡ 0 leads to:

s1 − s2 − s3 = 0

2s2 + s3 = 0

We may choose one r freely. A natural choice is (s1, s2, s3) = (−1,1,−2) since then
r = r1r2r3r4 ≡ α/(v2 · t). Notice that in this case, r3 ≡ v · τ/L is a scaled time
variable and r4 ≡ α/(v · L) is the inverse of the familiar pe-number.
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For the inhomogenous term we let u1 := f / fmax and b1 := κ fmax L/v. Notice
that b1 corresponds to the Damköhler number [22], that is, a dimensionless number
indicating the magnitude of the chemical reaction relative to the convective mass
transfer. Furthermore, with proper scaling of the boundary conditions and ũ2 :=
cin/c̄; the dimensionless form of eqn. (2.11) reads:

∂ z

∂ t
(η, t) = 1

pe

∂ 2

∂η2 z(η, t)− ∂ z

∂η
(η, t)− b1u1(t)z(η, t)

z(η, 0) =: z0(η)

z(0, t)− 1
pe

∂ z

∂η
(0, t) =: ũ2(t)

∂ z

∂ η

∣∣∣
(1,t)

= 0.

(D.1)

with input and output observations,

u2 =

(
ũ2
0

)
, and, y = z(η∗, ·) (D.2)

As also mentioned by [68], in most systems, the choice of r is not unique. For
the UV disinfection model, (s1, s2, s3) = (1,−1,2) is also possible, leading to another
dimensionless form. Furthermore, sometimes more insight is gained when r con-
tains more than one variable. In that case, the corresponding transformation is then
sometimes called a similarity transformation [5].

D.2 Spectral analysis of error system Σǫ
I

Eigenvalues

Proof ofLemma 5.3.1

AL
(I)

is an S-L operator and therefore it has a spectrum with isolated eigenvalues
with finite multiplicities, see Lemma 5.2.2. Furthermore it is self-adjoint in the
inner product 〈·, ·〉w—see Section 5.2.3— and negative for L21 ≤ 0 —see Remark 5.
Consequently, λL < 0.

For this Sturm-Liouville type problem, we write

φ L = C L
1φ

L
1 + C L

2φ
L
2 (D.3)

Furthermore, φ L should satisfy the boundary conditions

B
L
1φ

L := φ L(0) = 0 (D.4)

B
L
2φ

L := φ̇ L(1)− L21φ
L(1) = 0 (D.5)

The eigenvalues λL can be found from AL
(I)
φ L = λLφ. To this aim, consider the
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following three cases where in

Case 1a: Let λL > 1
4
pe, i.e. φ L

1 = eµ1(λ
L)η and φ L

2 = eµ1(λ
L)η with:

µ1(λ
L) =

pe

2
− ςL

a
, µ2(λ

L) =
pe

2
+ ςL

a
and ςL

a
=

√(
pe

2

)2

+ peλ
L (D.6)

Case 1b: Let λ < 1
4
pe, i.e. φ L

1 = eµ
λL
1 η and φ L

2 = eµ1(λ
L)η with:

µ1(λ
L) =

pe

2
− ςL

b
, µ2(λ

L) =
pe

2
+ ςL

b
and ςL

b
= ıςL =

√(
pe

2

)2

+ peλ
L

(D.7)

Case 2: λL = ( 1
2
pe)

2, i.e. let φ L
1 = e

1
2

peη and φ L
2 = ηe

1
2

peη.

The eigenvalues λL of AL exist if and only if the determinant∆(λL) of the system
of boundary equations eqn. (D.5) is zero, see Exercise 2.10b in [21], i.e.,

∆(λL) := det

(
B

L
1φ

L
1 B

L
1φ

L
2

B
L
2φ

L
1 B

L
2φ

L
2

)
= 0

Hence, case by case we get:

Case 1a:

δ(λL) = det

(
1 1(

µ1(λ
L)− L21

)
eµ1(λ

L)
(
µ2(λ

L)− L21

)
eµ2(λ

L)

)

Hence, ∆(λL) = 1 ·(µ2(λ
L)− L21

)
eµ2(λ

L)−1 ·(µ1(λ
L)− L21

)
eµ1(λ

L). Since for
all L21 and for pe > 0, ςa

L
> 0, this leads to:

eς
a
L > e−ς

L
a > 0 and

(
1
2
pe + ς

L
a
− L21

)
>
(

1
2
pe − ςL

a
− L21

)
> 0.

Consequently, ∆(λ)> 0 and no solution for the eigenvalues λL can be found.

Case 1b: Analogous to Case 1a, we get:

∆(λL) = 1 · (µ2(λ
L)− L21

)
eµ2(λ

L) − 1 · (µ1(λ
L)− L21

)
eµ1(λ

L).



D.3. Spectral analysis of system ΣI • 137

However, for λL < 0 this reduces to:

∆(λ) = e
pe
2

[(
1
2
pe + ıςL − L21

)
eıςL −

(
1
2
pe − ıςL − L21

)
e−ıςL

]

= e
pe
2

[
2ıςL cos(ςL) + 2ı

(
1
2
pe − L21

)
sin(ςL)

]

Hence for ∆(λL) = 0, ςL
k
, k ≥ 0 is the set of all solutions to the resolvent

equation:

tan(ςL
k
) =− ςL

k
1
2
pe − L21

. (D.8)

Case 2:

∆(λL) = det




1 0(
1
2
pe − L21

)
e

1
2

pe

(
1
2
pe + 1− L21

)
e

1
2

pe




Hence, ∆(λL) = 0 if L21 =
1
2
pe + 1, since pe > 0.

The eigenvalues λL follow from eqn. (D.7), Case 1b or the rather exceptional Case
2. For a detectable system Σǫ

I
with L21 ≤ 0, Case 2 does not occur. Furthermore,

recognize that λL
k
→−∞ as k→∞ and |λL

k+1 −λL
k
| →∞ as k→∞.

Eigenvectors

From B1φ, i.e. the Dirichlet condition at η1 = 0 and λL as in eqn. (D.7), we obtain
for the eigenvectors φ as in eqn. (D.3):

µ1(λ
L)C L

1 +µ2(λ
L)C L

2 = 0, C L
1 6= 0 6= C L

1

Hence, the associated eigenvectors of AL , i.e. φ L
k
∈ D(AL), k ≥ 0 are given for all

η ∈ [0,1] and for all k ≥ 1 by

φ L
k
= C0

[(
1
2
pe − ıςL

k

)
exp

(
1
2
pe − ıςL

k

)
−
(

1
2
pe − ıςL

)
exp

(
1
2
pe + ıςL

k

)]
⇔

φ L
k
(·) = C0 exp

(
1
2
peη
)

sin(ςL
k
η) with C L

0 := C L
1 =−C L

2

D.3 Spectral analysis of system ΣI

Eigenvalues

The eigenvalues of the system can be calculated similar to the proof of Lemma 5.3.1.
In the proof of Proposition 2.4 of [24, pp. 58–61], the eigenvalues and associated
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eigenvectors of exactly the same system are calculated. We include these results
here (with slightly different notation).

Let A be given as in eqs. (5.7) and (5.8), i.e.

Az :=
1

pe

d2

dη2 z − dz

dη

We have that A is an S-L operator and therefore it has a spectrum with isolated
eigenvalues with finite multiplicities, see Lemma 5.2.2.

More specifically, the spectrum of A is given by

σ(A) = σp(A) = {λk : k ≥ 0} ⊂ (−∞, 0).

where σp(A) denotes the point spectrum of A. The eigenvalues λk, k ≥ 0 are calcu-
lated as shown in what follows.
−A is an S-L-operator, hence it is a Riesz operator [26], and we can write,

Aφ −λφ = 1

pe

d2

dη2φ −
dφ

dη
−λφ.

Furthermore, φ should satisfy the boundary conditions

B1φ :=
1

pe
φ̇(0)−φ(0) = 0 (D.9)

B2φ := φ̇(1) = 0 (D.10)

The eigenvalues λ can be found from AIφ = λφ. To this aim, consider the following
three cases where in

Case 1a: Let λ > 1
4
pe, i.e. φ1 = eµ1(λ)η and φ2 = eµ1(λ)η with:

µ1(λ) =
pe

2
− ςa, µ2(λ) =

pe

2
+ ςa and ςa =

√(
pe

2

)2

+ peλ (D.11)

Case 1b: Let λ < 1
4
pe, i.e. φ1 = eµ1(λ)η and φ2 = eµ1(λ)η with:

µ1(λ) =
pe

2
− ςb, µ2(λ) =

pe

2
+ ςb and ςb = ıς=

√(
pe

2

)2

+ peλ

(D.12)

Case 2: λ= ( 1
2
pe)

2, i.e. let φ1 = e
1
2

peη and φ2 = ηe
1
2

peη.

The eigenvalues λ of A exist if and only if the determinant ∆(λ) of the system of
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boundary equations eqn. (D.5) is zero, see Exercise 2.10b in [21], i.e.,

∆(λ) := det

(
B1φ1 B1φ2
B2φ1 B2φ2

)
= 0

Case by case we get:

Case 1a:

∆(λ) = det

(
1
pe
µ1(λ)− 1 1

pe
µ2(λ)− 1

µ1(λ)e
µ1(λ) µ2(λ)e

µ2(λ)

)

Hence,

∆(λ) =

(
1

pe
µ1(λ)− 1

)
µ2(λ)e

µ2(λ) −
(

1

pe
µ2(λ)− 1

)
µ2(λ)e

µ1(λ)

= e
pe
2

[
1

pe

(
1
2
pe − ςa − pe

)
·
(

1
2
pe + ςa

)
eςa − 1

pe

(
1
2
pe + ςa − pe

)

·
(

1
2
pe − ςa

)
e−ςa

]

=
e

pe
2

pe

[
−
(

1
2
pe + ςa

)2
eςa +

(
1
2
pe − ςa

)2
e−ςa

]

Take ςa > 0, then expςa > exp−ςa > 0 and furthermore,
( 1

2
pe + ςa

)2
>( 1

2
pe − ς′a

)2
> 0 since pe > 0. Consequently, ∆(λ) < 0 and no solution λ can

be found.

Case 1b: Analogous to Case 1a, we get:

∆(λ) = e
pe
2

[
1

pe

(
1
2
pe − ςb − pe

)
·
(

1
2
pe + ςb

)
eςb . . .

− 1

pe

(
1
2
pe + ςb − pe

)
·
(

1
2
pe − ςb

)
e−ςb

]
.
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However, for λL < 0 this reduces to:

∆(λ) = e
pe
2 · . . .

[
1

pe

(
1
2
pe − ıς− pe

)
·
(

1
2
pe + ıς

)
eıς . . .

− 1

pe

(
1
2
pe + ıς− pe

)
·
(

1
2
pe − ıς

)
e−ıς

]

=
e

pe
2

pe

[
−
(

1
2
pe + ıς

)2
eıς +

(
1
2
pe − ıς

)2
e−ıς

]

=
e

pe
2

pe

[(
−
(

1
2
pe

)2
− ıpeς+ ς

2

)
eıς +

((
1
2
pe

)2
− ıpeς− ς2

)
e−ıςλ

]

=
2ıe

pe
2

pe

[(
ς2 −

(
1
2
pe

)2
)

sin(ς)− peς cos(ς)
]

Hence, for ∆(λ) = 0, ςk, k ≥ 0 is the set of all solutions to the resolvent
equation:

tan(ς) =
2peς

ς2 −
(

1
2
pe

)2 (D.13)

Case 2:

∆(λ) = det




1
2
e

1
2

pe − 1 1
pe

1
2
pee

1
2

pe

(
1
2
pe + 1

)
e

1
2

pe




Consequently, ∆(λ) = 0 only if 3
4
epe − 1

2
(pe + 1)2e

1
2

pe/pe = 0 which does not
hold for all pe > 0.

The eigenvalues λ follow from eqn. (D.12), Case 1b:

λk =− 1
4
pe −

1

pe
ς2

k
with ςk the solutions of eqn. (D.13) (D.14)

Furthermore, recognize that λk→−∞ as k→∞ and |λk+1 −λk| →∞ as k→∞.
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Eigenvectors

The associated eigenvectors φk ∈ D(A), k ≥ 0 are calculated for all η ∈ [0,1] and
for all k ≥ 1 as follows. From B1φ, we obtain:

(
1

pe
µ1(λ)− 1

)
C1 +

(
1

pe
µ2(λ)− 1

)
C2 = 0⇔

(
µ1(λ)− pe

)
C1 +

(
µ2(λ)− pe

)
C2 = 0⇔

(
− 1

2
pe − ςb

)
C1 +

(
− 1

2
pe + ςb

)
C2 = 0.

Now choose

C1 = −
C0

ςb

(
− 1

2
pe + ςb

)
and C2 = −

C0

ςb

(
1
2
pe + ςb

)

then

φk(·) =−
C0

ςb

[(
− 1

2
pe + ςb

)
e
(

1
2

pe−ςb)η +
(

1
2
pe + ςb

)
e
(

1
2

pe+ςb)η

]

=−C0

ıς
e

1
2

pe

[(
− 1

2
pe + ıς

)
e−ıςη +

(
1
2
pe + ıς

)
eıςη
]

= C0 exp
(

1
2
peη
)[pe

ς
sin(ςη) + 2 cos(ςη)

]
(D.15)

D.4 Approximation analysis of M

Here, whenever possible, we choose a modal approximation of M111 and M211. In
what follows, it is clarified that a modal approximation of M212 is not suitable. For
this particular transfer function we use a Padé–[1,2] approximation.

The entries of the transfer function matrix M which are described by trigonio-
metric functions, are approximated by using the residue theorem. Denote the ratio-
nal transfer function g(s) = a(s)/p(s) with p(s) having roots in sn. Then,

gN =

N∑

n=1

a(sn)

p′(sn)
(
s− sn

) with p′(sn) =
dp

ds
(sn), (D.16)

is an approximation of g(s).
Note that, for N ≥ 1, the approximation to M111, M211 (and M212) is bounded

with L∞–error (see also Exercise 8.21 from [21]),

‖M −M N‖ ≤
∞∑

n=N+1

|an|
|Re(sn)|

=

∞∑

n=N+1

|an|
|sn|
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with an the numerator of M evaluated at sn. Therefore, a modal approximation of
M212 = 1/R2 = 1/ς would lead to:

M N
212 =

N∑

n=1

1

s− sn

2ς(sn)

pe
(D.17)

Now, recall that sn = − 1
4
pe+ς

2(sn)/pe for n≥ 0, see eqn. (5.33d). Assume we have

real-valued poles of M : sn < − 1
4
pe. Consequently, ς(sn) ∈ ıR. In that case we get

for large enough n that ς→±ı(n− 1
2
)π. Even in the case that the start assumption

is sn ∈ C, there is only one other pole solution, namely, sn = − 1
4
pe. We now check

the upper bounds of the approximation error in the case that sn < − 1
4
pe, leading to

ς→±ı(n− 1
2
)π.

With the aid of eqn. (D.17), the L∞–error analysis of M212 shows

‖M212 −M N
212‖ ≤

2

pe

∞∑

n=N+1

|ı(n− 1
2

)
π|

∣∣(n2 − 1
4
)π2 − ( 1

2
pe

)2∣∣ .

Hence, from the above summation it appears that M N
212 does not converge to zero

with increasing N . As an alternative, we estimate the function R2 = 1/ς by Padé
approximation.

The calculations of the derivatives of M212 = 1/R2 with respect to the Laplace
variable s and the unknowns of the Padé function lead to:

M
[1,2]
212 (s) =

√
1+ 4q/pes+ 2q

√
1+ 4q/pe +

√
1+ 4q/pe

1
2
s2 +

(
4q+ pe

)
s+ 4q2 + 2peq+

1
4
pe

2
(D.18)

with q := b1u1 in the case that u1 is measured and constant. Recall that M211 also
contains R2 = ς in its denominator (see Chapter 5, eqn. (5.40). Hence, we choose
to combine the Padé approximation as in eqn. (D.18) with the modal truncation of
the trigoniometric part of M212, i.e. QR0/P, for the whole approximation of M211.

The modal approximation of M211 = R0/P (see eqs. (5.34a) and (5.34d)) and
of the trigoniometric part of M212 = QR0/P (see eqs. (5.34e), (5.34a) and (5.34d))
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combined with the Padé approximation lead to:

M N
111 =

N∑

n=1

1

s− sn

2ς2(sn)exp
(

1
2
pe

)

(
1+ 1

2
pe

)
cosh

(
ς(sn)

)
+ ς(sn) sinh

(
ς(sn)

) (D.19a)

M N
211 =




N∑

n=1

1

s− sn

e
1
2
η∗pe

[
ς(sn) cosh

(
(η∗ − 1)ς(sn)

)− 1
2
pe sinh

(
(η∗ − 1)ς(sn)

)]

(
1+ 1

2
pe

)
cosh

(
ς(sn)

)
+ ς(sn) sinh

(
ς(sn)

)


 ·

√
1+ 4q/pes+ 2q

√
1+ 4q/pe +

√
1+ 4q/pe

1
2
s2 +

(
4q+ pe

)
s+ 4q2 + 2peq+

1
4
pe

2
(D.19b)

With short-hand notation η̃ := 1− η∗, and ñ = n− 1
2

and assuming the Padé

approximation M
[1,2]
212 is bounded with a positive error m < ∞, we continue the

modal truncation error analysis with N ≫ 1:

‖M111 −M N
111‖ ≤ pe exp

(
1
2
pe

) ∞∑

ñ=N+1/2

∣∣(−1)ñ+1/2ñπ
∣∣

∣∣ñ2π2 − 1
2
pe

∣∣

‖M211 −M N
211‖ ≤ 2m exp

(
1
2
pe(η̃+ 1)

)
·

∞∑

ñ=N+1/2

∣∣∣∣∣
ı(−1)ñ+1/2ñπ

[
ñπ cos ñπη̃

)− pe sin ñπη̃
)]

ñ2π2 − 1
2
pe

∣∣∣∣∣

∣∣∣∣∣
1

ñπ2 − ( 1
2
pe

)2

∣∣∣∣∣

so that the total approximation error in M N
211 behaves like

‖M211 −M N
211‖ ≤ m for η∗ = 0

and

‖M211 −M N
211‖ ≤ me

1
2

pe

∞∑

n=N+1

∣∣∣
ı(−1)ñ+1/2ñπ

pe

∣∣∣
∣∣∣

1

ñ2π2 − 1
2
pe

∣∣∣ for η∗ = 1.

Thanks to the alternating sign, the error in M N
211 converges (slowly) to zero, de-

pending on the sensor position. The same is true for the truncation error of M N
111.

Graphs of approximation error

Here, it is shown what the Bode graphs of the approximation error M( ω)−M N ( ω)

is. Parameter values are: pe = 1, m= 8, η∗ = 0.5 and b1u1 = 0.
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Figure D.1: Bode diagrams of M [ ], M N with varying N [ ], balanced truncation M8 [ ]

and balanced truncation error [··]. Left: amplitude diagrams, right: phase diagrams.
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Notation

α Diffusion constant, p. 15

∗ h ∗ g, Convolution product of h and g, p. 55

β Multiplicative constant on z(a), with a a boundary of the spatial domain
(only this chapter), p. 76

β Weight of weighted residuals method (only this chapter), p. 5

βc Efficiency constant of cooling device, p. 18

δ(t) Delta operator, p. 68

∆t Time discretization constant, p. 32

∆ξ Spatial discretization parameter, p. 58

ż Derivative of z w.r.t. time or space (depending on the context), p. 5

η Spatial coordinate, p. 5

Γ Vector of response function values, p. 55

γ Multiplicative constant on z(a), with a a boundary of the spatial domain
(only this chapter), p. 76

γ Response function containing input and output data (only this chapter),
p. 45

γ′ Response function in predictor of linear regression system, p. 45

γH Infemum of H∞–optimization, p. 86

x̂ Estimate of x , p. 7

ı Imaginary number, p. 84

ı Index limit (only this chapter), p. 59

〈·, ·〉 〈u, v〉, Inner product of u and v., p. 73

 Index limit (only this chapter), p. 59

κ Susceptibility constant of micro-organisms w.r.t. UV irrandiance, p. 22
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ker T Kernel of T , p. 55

λ Eigenvalue, p. 75

λp Conduction of product, p. 18

Cω
+

All complex numbers with real part larger than ω, p. 87

J Index set, p. 75

N+ Set of positive integers, p. 46

R Set of real numbers, p. 15

R+ Set of positive (i.e. larger than zero) real numbers, p. 46

A System matrix, p. 46

B Input matrix, p. 46

C Observation matrix, p. 46

D Feedthrough matrix, p. 46

H Hankel matrix, p. 55

L Observer gain matrix, p. 68

M Inverse of the resolvent of system matrix A, p. 53

N Coefficient matrix in numerator of transfer function, p. 49

Q (Auxiliary) coefficient matrix, p. 59

R Coefficient matrix in denominator of transfer function, p. 49

Uk−n···k Input data set in a time interval [k− n, k], p. 45

v Velocity vector, p. 15

x State vector, p. 44

y Observation/system output vector, p. 44

Yk−n···k Output data set in a time interval [k− n, k], p. 45

Zk−n···k Input-output data set in a time interval [k− n, k], p. 45

C τ Observability map on [0,τ], p. 71

FL(P,Q) Lower linear fractional transformation, p. 92
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L (X , Y ) Bounded linear operator(s) from X to Y , p. 68

M Collection of prediction models, p. 33

N Non-observable subspace, p. 71

S Notion of real world system, p. 7

A Differential operator, p. 67

B Boundary (control) operator, p. 67

C Observation operator, p. 67

C
b boundary observation operator, p. 77

‖·‖ ‖z‖, Norm of z, p. 70

ω0 Growth bound of semigroup, p. 71

∂ Partial derivative operator, p. 37

Φ Matrix of regressors, p. 55

φ Orthonormal eigenvector, p. 75

φ Regressor vector containing input and output data, p. 45

φ′ Regressor in predictor of linear regression system, p. 45

ψ Stacked shift operator vector, p. 49

ψ non-dimensionless state variable, p. 15

ρ Density, p. 15

Σ System representation, p. 3

σ(A) spectrum of A, p. 80

Σ(A, B, C , D) State (bi)linear (infinite-dimensional) system, p. 12

Σ(G′) Input-output linear system with approximated transfer function, p. 12

Σ(G) Input-output (infinite-dimensional) linear system, p. 12

Σobs(·) Observer system, p. 12

Σroom Climate room model, p. 18

Σe
· Example model, p. 56
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Σ
opt
N Identified model with respect to a particular model selection criterion., p. 35

Σd Discrete (time) model, p. 28

σd Noise variance, p. 62

ΣN (·) Finite-dimensional system, p. 12

ΣN ,d N -th order discrete time model, p. 28

τp Dominant time constant of process, p. 34

θ (To be estimated) parameter, p. 7

θB Parameter vector associated to B-polynomial of output-error model, p. 33

θF Parameter vector associated to F -polynomial of output-error model, p. 33

θp Local sensitivity of θ w.r.t. the physical parameter p, p. 37

ã, b̃ Parameters related to first order model, p. 31

⊤ Transpose of vector or matrix, p. 45

ǫ Residual or error, p. 5

ϕ Basis function, p. 5

ϕ Stacked parameter vector, p. 49

ς Constant closely related to eigenvalue, p. 80

ϑ Physical parameter, p. 44

̂ Laplace transform of signal, p. 19

Ñ Coefficient matrix in numerator of G, with three or more dimensions, p. 49

R̃ Coefficient matrix in denominator polynomial of G with three or more di-
mensions, p. 49

ξ Non-dimensionless spatial coordinate, p. 15

LR Linear regressive, p. 12

A Differential operator, p. 68

B(θ ,q) Polynomial in output-error model, related to the system inputs, p. 33

c Concentration of living/pathogenic micro-organisms, p. 20

cp heat capacity of produce, p. 18
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cin Concentration of (pathogenic) micro-organisms at inlet of reactor, p. 20

cǫu Cross correlation coefficient between residuals and inputs, p. 35

D(·) Domain of operator, p. 67

E Monochromatic absorbance of medium, p. 22

f Irradiation function, p. 22

F(θ ,q) Polynomial in output-error model, related to the system outputs, p. 33

Fp.e. Final prediction error functional, p. 34

G Transfer function, p. 12

gN Numerator of transfer function, p. 48

gR Denominator of transfer function, p. 48

h Heat transfer coefficient, p. 18

H∞ Hardy space of bounded holomorphic functions on C0
+

with values in C,
p. 68

I Identity matrix, p. 53

K Gain constant of output error model, p. 39

L Length of object, p. 16

Lp(a, b) Class of Lebesque measurable functions with
∫ b

a
| f (t)|pdt <∞, p. 56

ls Index limit of counters, p. 59

M· Lumped parameter in climate room model, with index from 1 to 5, p. 18

N Model order or degree of denominator polynomial of transfer function, p. 7

Nk Number of data points, p. 8

p Physical parameter, p. 31

q−1 One time step backward shift operator, p. 33

R Radius of UV disinfection reactor, p. 22

r Radius of agricultural produce, p. 18

r0 Outer radius of UV lamp tube, p. 22

S Source term, p. 15
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T (t, s) C0-semigroup (strongly continuous semi-group for t, s ≥ 0), p. 70

Ta Air temperature, p. 16

Tc Temperature of cooling device, p. 16

tk k-th time instant, p. 32

Tp Product temperature, p. 18

Ts Temperature of the shaft in the climate storage room, p. 16

U Input or (admissible) control space, p. 28

u System input, p. 7

V Identification cost function or loss function, p. 8

v Disturbance, p. 7

Va Air volume, p. 18

v f Velocity of fluid, p. 22

vp Velocity of air in bulk, p. 18

vs Velocity of air in shaft, p. 18

Y Observation space, p. 28

y System output, p. 7

z State variable, p. 5

g, g̃ Transfer function and its approximation, p. 6



Summary

IN THIS THESIS, VARIOUS procedures with respect to estimation and prediction of
systems characterized by convection, diffusion and reactions on the basis of

point measurement data have been worked out. These systems are called infinite-
dimensional, since the state variables (like temperature or concentration) are de-
scribed by partial differential equations or delay difference equations in an infinite-
dimensional manifold (or state space).

Two applications of these convection-diffusion-reaction (CDR) systems have been
used as a show case of the proposed estimation and prediction methods. One is a
climate room for bulk storage of agricultural producea and the other is a UV disinfec-
tion process used in water treatment, food industry and greenhouse technologiesb.

Besides the occurence of flow, dispersion and source terms (reactions/heat pro-
duction), other similarities in these applications are as follows:

(a) processes take place in an enclosure with fixed boundaries;

(b) only boundary and/or point measurements are available; and

(c) the modeling aim in both applications is process control.

In Chapter 2, the applications under study are introduced. In Case A, the dynamic,
climate room storage model proposed in [72] is used as a starting point for the
modeling of heat transfer over agricultural produce. In Case B, the UV disinfection
process is modeled as a convection–diffusion process with first-order biomass de-
activation kinetics in the main flow direction. The models obtained are called the
nominal models.

The body of this thesis is basically divided into four parts, in which a param-
eter estimation, prediction and two state estimation methods for CDR systems are
worked out. An essential step in the implementation of estimation and prediction
is model reduction. Model reduction in the context of this thesis means the approx-
imation of infinite-dimensional to finite dimensional systems. A distinction is made
between early and late model reduction. In early model reduction, the approxi-
mation is performed before estimation and prediction is worked out. Late model
reduction encompasses approximation of an infinite-dimensional system after an
estimator (observer) or predictor is synthesized.

The estimation and prediction methods are described here consecutively.

Parameter estimation. Chapter 3 deals with the following research question:

a(Case A)
b(Case B)
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‘Given an early reduction technique, is it possible to preserve physi-

cal knowledge of the nominal CDR model in terms of the parameter

estimate θ̂ , when a typical identification (output-error) technique is

used?’

A procedure is proposed to recover physical (possibly lumped) parameters of
the approximate physical model from the identified model and discrete mea-
surement data. The nominal, physical model of heat transfer in a storage
room is approximated via Padé approximation and calibrated via output-error
identification. One of the identified parameters, in this case the dominant
time constant, is then used to calculate the values of the original physical pa-
rameters in the approximate model after selecting a parameter subset through
local parametric sensitivity analysis.

It is found that for all ventilator settings the gain of the bulk storage process
was close to one, indicating that there was no unexpected heat loss or gain.
In addition to this, important physical parameters (like porosity of the bulk,
surface of the bulk exposed to air, height of the bulk, . . . ) can be individually
recovered from the calibrated output-error model parameters.

Parameter estimation and output prediction. In Chapter 4, the estimation and
prediction problem is approached from another perspective:

‘Given an early reduction technique, is it possible to rewrite the esti-

mation and prediction problem of a CDR system into a linear regres-

sion, and if so, how?’

Inspired by the work of Doeswijk and Keesman in [30] for reparametrizations
of non-linear systems, a reparametrized linear regressive system formulation
is worked out for a discretized distributed parameter system in state-space
form. The discretization is achieved via early model reduction by finite central
differences techniques of the CDR model. The discretized form is referred to
as Σd , and belongs to the class of discrete-time, linear structured systems.

It is shown that under parameter-affine conditions, a linear regressive formu-
lation ΣLR

d
of the state space model Σd can be found via reparametrizations

of the transfer function of Σd . In this realization, a linear regressive mapping
from newly defined parameters to input-output data is formulated and char-
acterized by parameter independent coefficient matrices. These coefficient
matrices have been explicitly expressed in terms of number of compartments
n, actuator and sensor location for two discretized diffusion examples under
specific boundary conditions. The explicit results can also be applied to di-
mensionless discretized representations of CDR systems.

The formulation of a linear regressive estimation and prediction method al-
lows (i) a transparent link to the original physical model, (ii) unique parame-
ter estimates by least-squares techniques and (iii) a simple identifiability rank



161

test on the basis of a coefficient matrix. Furthermore, we show explicit results
of the parametric sensitivities on the response vector for diffusion cases and
specific CDR cases.

A disadvantage shows up in the practical implementation of linear regressive
parameter estimation with ordinary least squares techniques. Since the re-
gressors contain input and output data, they are corrupted by measurements
noise, thus deteriorating the estimation result.

Static observer design for state estimation. In the first part of Chapter 5, the fol-
lowing question is addressed:

‘Without model order reduction, is it possible to obtain design condi-

tions for a static, boundary-type observer of a CDR system, under the

condition that it is (approximately) observable?’

Infinite-dimensional systems like the CDR system with point sensing and/or
point actuation, typically have ‘unbounded’ control and/or observation op-
erators [see for instance 21, Chapter 1] and introduce mathematical techni-
calities. It is hypothesized that (simple) concepts for observability and de-
tectability for these particular CDR systems can be obtained by using abstract
boundary system formulations and that these concepts can be worked out for
static observer design.

To this aim, the UV disinfection process is used as an illustrating example
for the design of a static, Luenberger-type observer. Since a CDR process is
typically described by a Sturm-Liouville operator, detectability and approxi-
mate observability results were looked for and indeed obtained for boundary
system formulations characterized by a Sturm-Liouville operator.

The results are used in deducing pole placement design rules for an observer
of a UV disinfection model using only boundary data. By numerical simu-
lation, the observer characteristics are further illustrated at the end of the
chapter.

Although engineering skills are needed for choosing the observer gain, it is
concluded that the proposed observer design procedure preserves physical
insight and is independent of some approximation of the original infinite-
dimensional system.

Dynamic observer design for state estimation. In the second part of Chapter 5,
the following question is addressed:

‘Given a late reduction technique, is it possible to obtain a dynamic

observer which is robust to disturbances at both the (boundary) input

as well as the point observation, and if so, how?’
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To this aim, a robust observer synthesis approach has been worked out on the
basis of a reformulation of the estimation error system. Hereto, the following
sequence of steps for observer synthesis is proposed:

(a) Laplace transformation of the estimation error system to obtain the closed-
loop transfer function G;

(b) formulation of the H∞–problem in a well-posed linear fractional trans-
formation framework;

(c) modal and Padé approximation and subsequent balanced truncation of
the open-loop model M , and

(d) calculation of the optimal H∞–filter with the aid of the approximation of
M .

The proposed procedure is applied to the UV disinfection process. Numerical
results are illustrated by Bode diagrams of the transfer functions of the robust
filter, the closed loop estimation errors and graphs of the H∞–synthesis per-
formance. A numerical comparison with the static observer obtained in the
first part of Chapter 5 shows the superiority of the H∞–observer with respect
to disturbance rejection.

Although the necessary model approximation leads to a loss of physical in-
sight, the proposed dynamic observer synthesis procedure is generally appli-
cable to linear, infinite-dimensional systems with point actuation and/or point
sensing.

Finally, conclusions and future perspectives are drawn in the last chapter.



Samenvatting

IN DIT PROEFSCHRIFT zijn diverse procedures uitgewerkt die betrekking hebben op
schattingen en voorspellingen van systemen die door convectie, dispersie en

reacties worden gekenmerkt. De procedures werken op basis van modellen en
puntmetingen. Deze systemen worden oneindig-dimensionaal genoemd, omdat de
toestandsvariabelen (bijvoorbeeld temperatuur of concentratie) worden beschreven
door partiële differentiaalvergelijkingen of dode-tijd differentievergelijkingen in een
oneindig-dimensionale ‘manifold’ (of ook wel toestandsruimte).

Twee toepassingen van deze convectie-diffusie-reactie (CDR) systemen zijn ge-
bruikt als testvoorbeelden van de voorgestelde schatting- en voorspellingsmethodie-
ken. Een daarvan is een klimaatruimte voor bulkopslag van landbouwproducten. De
andere toepassing is een UV-desinfectieproces voor utilisatie in waterbehandeling,
de levensmiddelenindustrie of in kasteelt.

Naast de aanwezigheid van stromingen, diffusie en brontermen als reacties of
warmteproductie, zijn andere gelijkenissen tussen deze toepassingen:

(a) processen binnen afgesloten ruimtes met vastliggende geometrie;

(b) alleen rand- en/of puntmetingen zijn beschikbaar;

(c) de modelleerdoelstelling is procesbesturing.

De toepassingen zijn geïntroduceerd in hoofdstuk 2. Voor toepassing A wordt
het klimaatruimtemodel zoals is voorgesteld in [72], gebruikt als startpunt voor
het modelleren van warmtetransport over agrarische producten. Voor toepassing B
wordt het UV-desinfectie proces gemodelleerd als een convectie-diffusie proces met
eerste-orde biomassadeactivatie kinetiek in de richting van de hoofdstroming. De
verkregen modellen worden aangeduid als nominale modellen.

De kern van dit proefschrift is onderverdeeld in vier delen. Parameterschat-
ting, predictie en twee toestandschattingsmethoden voor CDR-systemen worden
uitgewerkt. Bij de implementatie van schatting en predictie∗, is modelreductie
een essentiële stap. In dit proefschrift betekent modelreductie de benadering van
een oneindig-dimensionaal systeem naar een eindig-dimensionaal systeem. Hier-
bij wordt onderscheid gemaakt tussen vroege en late modelreductie. Bij vroege
modelreductie wordt de benadering gemaakt alvorens schattings- en predictieme-
thoden uit te werken. Late modelreductie behelst de benadering van een oneindig-
dimensionaal systeem nadat een schatter (waarnemer) of voorspeller is gesyntheti-
seerd.

De schattings- en predictiemethoden worden hier opeenvolgend beschreven.
∗Onder predictie wordt de wiskundige methodiek bedoeld, waarmee voorspellingen worden gegene-

reerd.
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Parameterschatting. Hoofdstuk 3 behandelt de volgende onderzoeksvraag:

‘Is het, gegeven een vroege reductietechniek, mogelijk om fysische ken-

nis van het nominale CDR-model te behouden in de parameterschat-

ting θ̂ , indien een ‘output-error’-identificatietechniek wordt gebruikt?’

Een procedure is voorgesteld om fysische (mogelijk samengestelde) parame-
ters van een benaderd fysisch model te achterhalen uit een geïdentificeerd
model en discrete meetdata. Het nominale, fysische warmtetransportmodel
voor een bewaarplaats is benaderd met behulp van Padé-approximatie en ge-
calibreerd via output-error–identificatie. Verder is uit de verzameling van fy-
sische parameters een deelverzameling geselecteerd door analyse van lokale
gevoeligheden van de tijdconstante van het benaderde model met betrekking
tot de fysische parameters. Eén van de geïdentificeerde parameters, in dit ge-
val de tijdconstante, is daarna gebruikt voor het berekenen van de originele
fysische parameterwaarden uit de geselecteerde deelverzameling.

Voor elke ventilatorstand is een versterkingsfactor van ongeveer één gevon-
den, wat aangeeft dat er nauwelijks onverwachte warmteverliezen of warm-
teproductie optreedt. Verder is aangetoond dat belangrijke fysische parame-
ters (porositeit van de bulk, bulkproductoppervlak dat blootstaat aan de lucht,
bulkhoogte, . . . ) individueel kunnen worden achterhaald uit de gecalibreerde
output-error–modellen.

Parameter schatting en predictie van de systeemuitgang. In hoofdstuk 4 is het
schattings- en predictieprobleem benaderd vanuit een ander perspectief:

‘Is het, gegeven een vroege reductietechniek, mogelijk om het schattings-

en predictieprobleem van een CDR-systeem te herschrijven naar een

lineaire regressie, en zo ja, hoe?’

Geïnspireerd door het werk van Doeswijk en Keesman in [30] over niet-
lineaire systeemreparametrisaties, is een gereparametriseerd, lineair regressie
systeembeschrijving uitgewerkt voor gediscretiseerde, oneindig-dimensionale
systemen in toestandsvorm. De discretisatie is tot stand gekomen via vroege
modelreductie door eindige (centrale) differentietechnieken uitgeoefend op
het CDR-model. De discrete vorm wordt aangeduid als Σd en behoort tot de
klasse van discrete-tijd lineair gestructureerde systemen.

Er wordt aangetoond dat, onder parameter-affiene condities, een lineair re-
gressieve formulering ΣLR

d
van het toestandsmodel Σd kan worden gevonden

via reparametrisaties van de overdrachtsfunctie van Σd . In deze realisatie is
een lineair regressieve afbeelding van nieuw gedefinieerde parameters naar
systeemingangs-uitgangsdata beschreven en gekarakteriseerd door parame-
teronafhankelijke coëfficiëntmatrices. Deze coëfficiëntmatrices zijn expliciet
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uitgedrukt als functie van het aantal compartimenten n, actuator- en sensor-
positie voor twee gediscretiseerde diffusie voorbeelden met specifieke rand-
voorwaarden. De expliciete resultaten kunnen ook worden toegepast op di-
mensieloze representaties van CDR-systemen.

De formulering van een lineair regressieve schattings- en predictiemethode
maakt het volgende mogelijk: (i) een transparante link tussen het origine-
le fysische model, (ii) unieke parameterschattingen door kleinste-kwadraten-
technieken en (iii) een eenvoudige identificeerbaarheidstest op basis van een
coëfficiëntmatrix. Verder laten we expliciete resultaten zien met betrekking
tot parametergevoeligheden op de responsievector voor diffusie- en specifie-
ke CDR-gevallen.

Een nadeel wordt duidelijk bij de praktische implementatie van lineair regres-
sieve parameterschatting met gewone kleinste-kwadratentechnieken. Omdat
de regressoren ingangs- en uitgangsdata bevatten, zijn deze beïnvloed door
meetruis. Dit heeft op zijn beurt als gevolg dat de schattingsresultaten ver-
slechteren.

Ontwerp van een statische waarnemer voor toestandschatting. In het eerste
deel van hoofdstuk 5, is de volgende vraag gesteld:

‘Is het, zonder modelreductie toe te passen, mogelijk om ontwerpcon-

dities voor een statische randwaarnemer van een CDR-systeem te ont-

werpen, onder de voorwaarde dat het systeem (bij benadering) obser-

veerbaar is?’

Oneindig-dimensionale systemen–als het CDR-systeem met puntsensoriek en
(of) puntactuatie–worden getypeerd door ‘onbegrensde’ waarnemingsopera-
toren en (of) besturingsoperatoren, zie bijvoorbeeld [21, hoofdstuk 1], en
veroorzaken wiskundige moeilijkheden. Er wordt verondersteld dat eenvou-
dige concepten voor observeerbaarheid en detecteerbaarheid van deze spe-
cifieke CDR systemen afgeleid kunnen worden door abstracte randsysteem-
beschrijvingen† te gebruiken. Deze abstracte concepten kunnen dan worden
uitgewerkt tot een ontwerp van een statische waarnemer.

Hiertoe wordt een UV-desinfectieproces gebruikt als een illustratief voorbeeld
voor het ontwerp van een statische, Luenberger-type waarnemer. Doorgaans
worden CDR-processen getypeerd door een Sturm-Liouville systeemoperator.
Vanwege deze reden worden resultaten verkregen betreffende detecteerbaar-
heid en observeerbaarheid (bij benadering) voor randsystemen die gekarak-
teriseerd worden door een Sturm-Liouville operator.

De verkregen resultaten zijn gebruikt in het afleiden van waarnemerontwerp-
regels voor poolplaatsing bij een UV-desinfectiemodel waarbij alleen data van

†Met randsysteem wordt een systeem bedoeld waar de sensoriek en sturing/verstoring op de rand
van het systeem is beschreven.
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de systeemranden beschikbaar is. Door numerieke simulatie worden de waar-
nemerkarakteristieken verder geïllustreerd aan het eind van het hoofdstuk.

Ook al zijn ingenieursvaardigheden benodigd om een geschikte versterkings-
factor van de waarnemer te kiezen, de voorgestelde waarnemerontwerpregels
behouden het fysisch inzicht en zijn onafhankelijk van een willekeurige bena-
dering van het originele oneindig-dimensionale systeem.

Ontwerp van een dynamische waarnemer voor toestandschatting. In het twee-
de deel van hoofdstuk 5, wordt de volgende vraag behandeld:

‘Is het, gegeven een late reductietechniek, mogelijk om een dynamische

waarnemer te verkrijgen die robuust is ten opzichte van verstoringen

op zowel de randconditie als ook de puntwaarneming, en zo ja, hoe?’

Met bovenstaande als doel, wordt een methodiek voor robuuste waarnemer-
synthese uitgewerkt op basis van een herformulering van het (schattings)fou-
tensysteem. Hiervoor worden de volgende stappen in het waarnemerontwerp-
proces voorgesteld:

(a) Laplace transformatie van het foutensysteem om de gesloten-lus over-
drachtsfunctie G te verkrijgen;

(b) formulering van het H∞–probleem in een goedgesteld, lineaire fractio-
nele transformatie raamwerk;

(c) modale en Padé-benadering en opeenvolgend een gebalanceerde trunca-
tie op het open-lus model M , en

(d) berekening van het optimale H∞–filter door middel van de benadering
van M .

De voorgestelde procedure is toegepast op het UV-desinfectieproces. Nume-
rieke resultaten worden geïllustreerd door Bode-diagrammen van de over-
drachtsfuncties van het robuuste filter, de gesloten-lus schattingsfouten en
grafieken van de H∞–synthese prestaties. Een numerieke vergelijking met
de statische waarnemer verkregen in het eerste deel van hoofdstuk 5 laat de
superioriteit door de H∞–waarnemer zien met betrekking tot verstoringson-
derdrukking.

Alhoewel de benodigde modelbenaderingen leiden tot een verlies van fysisch
inzicht, is de voorgestelde procedure voor ontwerp van een dynamische rand-
waarnemer algemeen toepasbaar op lineaire, oneindig-dimensionale syste-
men met puntsturing/verstoring en/of puntsensoriek.

In het laatste hoofdstuk worden conclusies getrokken en onderzoeksmogelijkheden
voor de toekomst aangedragen.
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