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Abstract Data on source conditions for the 14 April 2010

paroxysmal phase of the Eyjafjallajökull eruption, Iceland,

have been used as inputs to a trajectory-based eruption

column model, bent. This model has in turn been adapted

to generate output suitable as input to the volcanic ash

transport and dispersal model, puff, which was used to

propagate the paroxysmal ash cloud toward and over

Europe over the following days. Some of the source param-

eters, specifically vent radius, vent source velocity, mean

grain size of ejecta, and standard deviation of ejecta grain

size have been assigned probability distributions based on

our lack of knowledge of exact conditions at the source.

These probability distributions for the input variables have

been sampled in a Monte Carlo fashion using a technique

that yields what we herein call the polynomial chaos quad-

rature weighted estimate (PCQWE) of output parameters

from the ash transport and dispersal model. The advantage

of PCQWE over Monte Carlo is that since it intelligently

samples the input parameter space, fewer model runs are

needed to yield estimates of moments and probabilities for

the output variables. At each of these sample points for the

input variables, a model run is performed. Output moments

and probabilities are then computed by properly summing

the weighted values of the output parameters of interest. Use
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of a computational eruption column model coupled with

known weather conditions as given by radiosonde data

gathered near the vent allows us to estimate that initial mass

eruption rate on 14 April 2010 may have been as high as 108

kg/s and was almost certainly above 107kg/s. This estimate

is consistent with the probabilistic envelope computed by

PCQWE for the downwind plume. The results furthermore

show that statistical moments and probabilities can be com-

puted in a reasonable time by using 9406,561 PCQWE

model runs as opposed to millions of model runs that might

be required by standard Monte Carlo techniques. The output

mean ash cloud height plus three standard deviations—

encompassing c. 99.7 % of the probability mass—compares

well with four-dimensional ash cloud position as retrieved

from Meteosat-9 SEVIRI data for 16 April 2010 as the ash

cloud drifted over north-central Europe. Finally, the ability

to compute statistical moments and probabilities may allow

for the better separation of science and decision-making, by

making it possible for scientists to better focus on error

reduction and decision makers to focus on “drawing the

line” for risk assessment.

Keywords Iceland . Eyjafjallajökull . Plume . Eruption

source parameter . Ash transport . Ash dispersal .

Uncertainty . Probabilistic hazard map . Aviation safety

Introduction

The 2010 eruption of Eyjafjallajökull, Iceland, caused havoc

for European aviation with ash emissions from 14 April

2010 into May, and one period of peak emissions during

14–18 April (Petersen 2010). To make predictions of the

likely position of the ash cloud and issue advisories to the

airline industry, the London Volcanic Ash Advisory Center

(VAAC) used the NAME computational model (Ryall and

Maryon 1998) to calculate long-range, atmospheric ash

advection and dispersion. Other VAACs use different but

similar computational models (Folch 2012). Such models

require input data on volcanic source conditions, particular-

ly eruption plume position, height and width as a function of

time, and the distribution of ash within this virtual volcanic

cloud. All such models allow ash to settle as single particles

(i.e., “dry deposition”), and are therefore able to track

(decreasing) ash content. A few models furthermore have

an algorithm for microphysics, which allows the estimation

of hydrometeor content, sometimes therefore taking into

account aggregation and the formation of accretionary lapilli

(i.e., “wet deposition”, implemented in FALL3D and

ATHAM (Folch 2012; Textor et al. 2006)). The inputs to

these models are rarely well-constrained, hence estimates of

the uncertainty in the inputs is valuable in making probabi-

listic predictions of ash cloud motion. The models also

depend on datasets such as the windfield, which have sto-

chastic variability that must be considered. Despite the

potential risk to property and life from ash clouds, models

that take into consideration the uncertainty and variability in

input parameters and datasets using rigorous stochastic

methods (Bonadonna et al. 2010; Folch 2012) to produce

forecasts with specified uncertainty do not exist. We begin

the process of rigorous uncertainty estimation by addressing

the problem of propagation of uncertainties in the volcanic

input parameters to produce a coherent probabilistic forecast

of ash cloud position.

Computational models of volcanic ash cloud transport

and dispersion (VATD models), such as NAME and the puff

model used here, require as input the mass of ash together

with the pyroclast grain size distribution as a function of

height and time. Windfield data are also needed. Visual or

radar observations of plume height are often used to esti-

mate a mass eruption rate (MER) based on a (poorly con-

strained) empirical relationship (Sparks et al. 1997).

Integrating the MER estimates over the duration of the

eruption yields an ash mass that is then propagated by the

VATD simulation within a numerical weather prediction

(NWP) windfield model. Grain size is more difficult to

estimate than is plume height, so a common method of

estimation of initial grain size distribution is to assume that

all eruptions of a certain type—as determined by plume

height or magma type—have somewhat similar grain-size

distributions, and therefore grain size measurements for

eruption deposits where data are available can be propagated

to other eruptions. The problem with using plume height to

estimate MER is that there is considerable scatter in the

basic empirical relationships (Mastin et al. 2009), and plume

height is also strongly dependent on windspeed and other

atmospheric conditions (Bursik 2001; Tupper et al. 2009).

Thus estimates of ash size and mass that must be used in the

VATD model for near real-time forecasting have unknown

accuracy and (probably large) error. A further drawback in

propagating grain size data from one eruption to another is

that the grain size distribution that is injected into the upper

plume is strongly dependent on vent characteristics and the

amount of water, and resulting ash aggregation, both within

the vent and in the atmosphere near the vent. On top of this,

small errors in estimates of mass and grain size can cause

significant error in subsequent ash motion.

In this contribution, we consider volcanic input uncer-

tainty estimation, by using a physical model of a volcanic

eruption column, bent, to generate an input space for the

puff VATD model. Using source quantities such as vent size

and vent exit velocity, bent provides eruption column out-

puts such as ash mass or loading, position of ash in the

plume, and grain size distribution. In turn these outputs are

used as inputs to puff. By using an eruption column model

based on fundamental physics rather than a simplified
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scaling relationship that excludes important variables or an

eruption-to-eruption comparison, a variety of inputs and

observations from the volcanic source region, together with

their variability, can be modeled and propagated through the

now coupled bent and puff models.

In the subsequent sections we characterize and estimate

the several volcanic inputs to the computer models. Then,

we introduce a probabilistic computational methodology,

the polynomial chaos quadrature weighted estimate

(PCQWE), to forecast ash cloud movement. PCQWE treats

model input parameters as random variables, which are

approximated by a polynomial expansion designed to min-

imize moment errors (Xiu and Karniadakis 2002). This

approach provides a quantitative basis for forecasting, to-

gether with a robust estimate of the uncertainty in the

resulting measures.

Model inputs

Characteristics of the eruption column

The summit eruption of Eyjafjallajökull began on 14 April

2010 sometime between about midnight and sunrise, when

an eruption column was first noted (Thorkelsson 2012).

This strong or paroxysmal phase continued until 18 April.

Observations made over these first few days suggest that

variable discharge conditions and partial column collapse

were major eruption characteristics (Fig. 1). This resulted in

the dispersal of low-level, tropospheric ash far downwind.

Near-vent observations indicate that eruptive pulses were

often characterized by ejection of an initial gas-rich cap

from the volcanic vent, followed by a more densely laden

steady flow. There appeared to be no flow separation over

the volcano, hence ground-hugging clouds were generally

formed by partial column collapse. The result in the proxi-

mal region was a higher-level, bent-over column that was

often underlain by initially slow-moving, dense eddies coa-

lescing downwind into a lower-level gravity current (phoe-

nix cloud) with a virtual source south of the vent and a sharp

upwind edge. Thus, observations of plume rise are consis-

tent with rise height modulated by wind as well as column

collapse over the first 5 days of the eruption.

Model initialization

Ash loading, eruption column height, grain size, and wind-

field are thought to be the most important input variables for

volcanic ash transport and dispersion modeling (Mastin et

al. 2009). The current procedure is to derive mass loading

from the product of eruption duration and mass eruption rate

(equivalent to mass flux, Q). MER in turn is typically

calculated from an empirical relationship derived for strong

plumes (w≫v), e.g., HT01.67Q
0.259 (Morton et al. 1956;

Sparks et al. 1997), where w is characteristic plume speed

(meters per second), v is wind speed, HT is eruption plume

height (kilometers), and Q is mass eruption rate given as the

equivalent volume eruption rate (cubic meters per second)

assuming a magmatic density (3,000 kg/m3 for basalt in the

case of Eyjafjallajökull). This yields ash loading as a func-

tion of HT. Plume height, however, is a complex function of

source and environmental conditions especially windspeed

(Bursik 2001) and relative humidity (Woods 1993; Glaze et

al. 1997; Graf et al. 1999; Mastin 2007), so using plume

height alone to estimate mass loading can lead to severe

under- or overestimation of mass eruption rate. For weak

plumes in high winds, for example, it is not possible to

simply use column height to derive mass loading or MER,

as modeling suggests that the estimated MER can be to two

orders of magnitude too low (Bursik 2001; Bursik et al.

2009).

Rather than using a simplistic scaling relationship based

on one-dimensional steady plume theory in the absence of a

cross-flow or atmospheric water vapor, we use a numerical

eruption column model that allows for more complex phys-

ics. One way to use such a model would be to obtain a better

estimate of mass eruption rate from a measured eruption

column height, and wind and relative humidity profiles

(Fig. 2). Another way to use such a model is to estimate a

mass eruption rate from any available measured conditions

at the vent, such as vent radius, eruption speed or tempera-

ture, and the atmospheric profile. To explore the possibility

of obtaining estimates of mass eruption rate using a numer-

ical model that can take a variety of data inputs, we employ

the model bent (Bursik 2001), which has been modified to

incorporate volcano observations and then provide initial

Fig. 1 Photograph with view to SE of the summit region of Eyjafjal-

lajökull during the initial vigorous eruption phase of 14–18 April.

White eddies are water rich, gray are pyroclast rich. The ash blown at

low level from the vent produced a voluminous, ground-hugging ash

cloud to the south. Photo: M. Roberts, Icelandic Meteorological Office

(IMO)
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conditions for the ash transport model puff. Using boundary

conditions on eruption temperature and water vapor content,

as well as grain size, crater diameter, and speed of erupting

mixture (Table 1) coupled with atmospheric conditions as

given by radiosonde data, bent solves a cross-sectionally

averaged system of prognostic equations for continuity,

momentum, and energy balance. Variable parameters (such

as density, gas constant, entrainment constant, etc.) are

solved with a set of diagnostic equations. Bent takes a size

distribution of pyroclasts, then outputs the mass distribution

with height of the various sized clasts in the atmosphere.

Bent results suggest that increasing wind speed causes
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Fig. 2 Calculation and

comparison of eruption column

height and mass eruption rate

for the paroxysmal phase of the

April 2010 eruption. a Blue line

is observed plume height

(minimum observable about

2,500 m using IMO Doppler

radar at Keflavik airport); black

circles are calculated plume

height with (bent) using IMO

Keflavik radiosonde windspeed

data (vertical colored bars)

centered on nominal time of

measurement (every 12 h).

Windspeed color bar in meter

per second. b Black circles are

MER corresponding to bent

plume heights calculated in (a);

filled triangles MER from

Sparks et al. (1997); open tri-

angles MER from Mastin et al.

(2009). For reference, data-

points in part (b) are at the fol-

lowing coordinates: (10-04-14

12:00:00, 1.639E+06) (10-04-

15 00:00:00, 9.8304E+06) (10-

04-15 12:00:00, 7.03396E+06)

(10-04-16 12:00:00, 3.326E+

06) (10-04-17 00:00:00,

9.9434E+05) (10-04-17

12:00:00, 1.6067E+06) (10-04-

18 00:00:00, 8.308E+05) (10-

04-18 12:00:00, 5.244E+05).

At 0Z 16 Apr 2010, the plume

was below the detection limit of

the Keflavik radar

Table 1 Uncertain eruption source parameters based on observations of the 2010 Eyjafjallajökull eruption and information from other eruptions of

the past of the same type

Parameter Value range PDF Comment

Vent radius, b0, m 65–150 Uniform, +definite Measured from IMO radar image of summit vents on 15 April 2010

Vent velocity, w0, m/s 45–124 Uniform, +definite Measured by infrasound 6–21 May, when MER similar to 14–18 April

Mean grain size

(Folk and Ward 1957),

Mdφ, φ units

2 boxcarsa:

1.5–2 and 3–5

Sum of two uniform, ∈ R (Woods and Bursik 1991), Table 1, vulcanian or phreatoplinian.

A. Hoskuldsson, Eyjafjallajökull Eruption Workshop, 09/2010,

presentation, quote:’vulcanian with unusual production of fine ash’.

Grain size

sorting, σφ, φ units

2.0±0.6 Uniform, ∈ R (Woods and Bursik 1991), Table 1, vulcanian or phreatoplinian

aBoxcar: function that is zero everywhere except over a short interval where it is constant
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enhanced entrainment of air and horizontal momentum,

plume bending, and a decrease in plume rise height at

constant eruption rate. Thus, it is able to model how wind

and atmospheric stratification affect the plume rise height

(Graf et al. 1999), and has been tested against plume rise

height data, and against dispersal data (Bursik et al. 2009).

Given our use of a numerical eruption column model, we

can take advantage of all potential data available for charac-

terizing the volcanic source, such as satellite observations of

eruption temperature and vent size, infrasound measurements

of eruption speed, visual observations of plume or eddy rise or

ballistic speed, visual observations of vent size, visual obser-

vations of column collapse, FLIR observations of eruption

speed and temperature, radar observations of grain size, etc. In

the present contribution, instead of using column height to get

MER and mass loading, we use estimates of source variables

(together with their uncertainties): initial (vent) exit speed and

vent radius, and grain size (Table 1). Other important bound-

ary conditions are those of temperature and water content

(because of computational restrictions explained more thor-

oughly further in this contribution, both are assumed to be

single-valued, and taken to have characteristic values of erup-

tion temperature, Teruption01,200 °C and source water vapor

content, n001.7 wt.%; (Keiding and Sigmarsson 2012)) (see

Supplement A for example bent input file).

For the start time and duration of the initial eruptive

pulse, no more data are available than observations that

the summit vent must have become active around midnight

in the morning of 14 April 2010, and that the eruption

continued at first light (Thorkelsson 2012). We therefore

estimate that the eruption started at midnight, and use an

ash transport and dispersal model default source eruption

duration of 3 h. We have used radar measurements from 15

April 2010 to estimate vent size, and infrasound from the

second strong eruptive phase in May 2010 to estimate vent

velocity, but both variables have been estimated during

other eruptions by a variety of methods. Most commonly,

both vent size and ejection speed have been measured from

ground-based observation or photography (Chouet et al.

1974; Sparks and Wilson 1982; Calder et al. 1997). From

the source variables, bent can be used to calculate model

MERs and plume heights. Below, we check these for con-

sistency with observed plume height.

In producing its eruption outputs, bent accounts for at-

mospheric (wind, temperature, humidity, etc.) conditions as

given by atmospheric sounding data. Thus plume rise height

is given as a function of volcanic source and environmental

conditions. To aid in the hindcast exercise herein, we make

use of the IMO Keflavik radiosonde from 14 April 00Z. The

radiosonde is the closest weather data both spatially and

temporally to the early period of the eruption between about

midnight and 07Z, and therefore best represents the near-

vent weather conditions.

The volcanic source variables estimated for our compu-

tations (Table 1) resulted in output eruption column model

heights varying between the top of the volcano at 1.7 km

ASL and 8 km (Figs. 2 and 3), and grain size distribution at

height of Mdφ ranging from 1.5<φ<5, and σφ from 0.4<φ

<4.8. (The φ size system is defined as φ0 log2(d/d0), where

d is grain size in millimeters, and d001 mm; moments are

calculated by mass, not by particle count.) The model col-

umn heights are consistent with the observations noted

above of column collapse accompanying sustained eruption

columns, as well as column heights measured from the

Keflavik radar data. The radiosondes for much of the initial

phase of the eruption (14–18 April) generally show a

marked peak in wind speed at altitudes between 5 and

10 km, with v, of 30–60 m/s; this finding is consistent with

the jetstream flowing almost directly over Eyjafjallajökull.

We found that, although the input parameter values used in

the plume model produced a plume that rose to 1.7–8 km,

for many input values the plume rise height would have

been much higher and is in this range owing to a shearing of

the plume by the jetstream (Fig. 2). The calculated MER

drops off exponentially with time in the first days of the

eruption. Given this exponential drop-off as well as the

heavy ash loading from the initial eruptive phase, we spec-

ulate that the initial MER was likely greater than 107kg/s.

Because of the interaction of the plume with the wind, there

is disparity in MER (hence loading) between the bent esti-

mate and the scaling relationships, of up to two orders of

magnitude.

The output from bent is put in a file that initializes a puff

run, which consists of information on ash loading and grain

size distribution as a function of height and other geometric

parameters dealing with plume shape (Supplement A).
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Given these initial conditions for ash transport produced

by bent, the puff Lagrangian VATD model was used to

propagate ash parcels in a wind field (Searcy et al. 1998).

Puff tracks a finite number of Lagrangian point particles of

different sizes, whose location R is propagated from time-

step k to timestep k+1 via an advection/diffusion equation

Ri tkþ1ð Þ ¼ Ri tkð Þ þW tkð ÞΔt þ Z tkð ÞΔt þ Si tkð ÞΔt ð1Þ

Here Ri(tk) is the position vector of the ith particle at time

kΔt, W(tk) is the local wind velocity at the location of the ith

particle, Z(tk) is a turbulent diffusion that is modeled as a

random walk, and Si(tk) is a term which models the fallout of

the ith particle due to gravity. Note therefore that puff takes

into account dry particle fallout (not wet fallout or aggrega-

tion, in common with most VATD models), as well as

dispersion and advection. For more detailed description

see Searcy et al. (1998); source code and documentation is

available at http://puff.images.alaska.edu/monitoring.shtml.

Puff can be run using one of several numerical weather

prediction windfields (NCEP 2009a; NCEP 2009b; USN-

FNMOC 2009; WRF 2009). These NWP models are avail-

able at differing levels of spatial and temporal resolution. In

the present case, puff uses global NCEP/NCAR reanalysis

windfields to track the propagation of ash from Iceland to

Europe, using 6-h, 2.5° data. Outputs from a deterministic

puff model run consist of ash parcel positions and smoothed

concentration fields. The outputs can be post-processed to

extract outcomes like maximum height of ash, which can be

compared to observations.

Methodology of uncertainty quantification

A comprehensive accounting for the many uncertainties in

model outputs can be represented in different ways, including:

(1) worst-case scenarios that attempt to provide bounds using

interval analysis (Ben-Haim and Elishakoff 1990; Natke and

Ben-Haim 1997); (2) methods based on fuzzy set theory,

linguistically often identified as being concerned with possi-

bility (Elishakoff 1999); (3) evidence theory, which tries to

create upper and lower bounds on the likelihood of events

(Shafer 1976); and (4) probabilistic or stochastic models,

which offer a mathematically rich structure (Adler 1981;

Augusti et al. 1984; Christakos 1992; Grigoriu 2002;

Papoulis 1984; Torquato 2002). As the existence of several

approaches suggests, there is no “best” approach to quantify-

ing uncertainty, even within a specific scientific problem.

To account for the parametric (input) uncertainties in a

model, one can use available data and expert knowledge to

formulate a probability distribution function (pdf) of the

inputs and then evaluate the model with sufficiently many

different inputs using a Monte Carlo sampling technique. In

the standard puff model with turbulence turned off used

herein, one tracks the position of representative particles as

they are transported by wind, and the position of each parcel

is a deterministic quantity. Each puff simulation consists of

the transport of millions of such parcels. The resultant set of

outputs and functionals of outputs (e.g., maximum height of

the ash cloud at a given location from each run of puff) can

be treated as a data set and analyzed to establish a pdf of the

desired output or compute appropriate statistics (means,

medians, and variances). Unfortunately, even for simple

choices of the input variables the computational cost of this

approach—requiring millions of model evaluations—is soon

unaffordable. To alleviate this cost yet produce a solution in

which the statistical moments of the outputs converge, we

create a small, “smart” combination of simulations consisting

of thousands of runs, as opposed to a Monte Carlo combina-

tion consisting of millions of runs. The outputs can be com-

bined to produce results comparable to those from a Monte

Carlo procedure but at a much smaller computational cost.

This procedure has origins dating back to the work of Wiener

(1938), and has been the subject of much recent study (see for

e.g., Xiu and Karniadakis (2002), LeMaitre et al. (2001), Xiu

and Hesthaven (2005), and Berveiller et al. (2006)). Such a

methodology for block and ash flows was presented in detail

in an earlier work (Dalbey et al. 2008), and is extended here

for the current application to ash transport.

Uncertainty characterization

Given the paucity of information about the intensity of the

eruption during its strongest, early morning initial phase, we

use available information to construct a constant source-

time function of steady output in mass eruption rate and

grain size for the puff default eruption duration of 3 h,

initializing the eruption at midnight, 14 April 2010. Each

instance of the source-time function is constructed from a

single sample of the space of uncertain bent input parame-

ters gleaned from the best available information for this and

other similar eruptions. The grain size, mass loading and ash

cloud height, width, and depth output from bent are then

taken as input to the VATD model puff. In addition to the

(uncertain) volcanic source inputs, a VATD model such as

puff requires NWP wind data that are subject to temporal

and spatial variation that is not captured by available data-

sets. With this proviso—that the wind is also an important

source of uncertainty that we are not in the present case

characterizing, we proceed to propagate the uncertainty

derived from our lack of complete understanding of the

volcanic source characteristics. Furthermore, we mention

explicitly that, although we have employed bent and puff

models in this paper, our analysis is not dependent on these

specific column and transport models. Other models for

either the volcanic eruption column or the VATD process

Bull Volcanol
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could be used instead, and, following the same methodolo-

gy, would produce a similar probabilistic forecast of ash

cloud location.

Polynomial chaos quadrature weighted estimate

Consider any output variable of interest (e.g., ash concen-

tration at a location). We assume this to be a random vari-

able, xk, whose time evolution is given by the bent-puff

coupled eruption column advection/diffusion solver, written

as a generic differential equation

x
�
¼ f t; x;Θ;Wð Þ ð2Þ

In Eq. 2, t is time, Θ0{θ1, θ2,…} represents uncertain

system parameters such as the vent radius, vent velocity, mean

grain size, and grain size variance, andW is a given windfield

from a NWP model. As noted above, W is indeed also

stochastic, and its uncertainty may be expressed using ensem-

bles of possible windfields (WRF 2009). We focus here on the

effect of the volcanic source parameter uncertainty, condition-

al to a given windfield forecast. We intend to incorporate the

effect of the wind uncertainty in upcoming contributions using

an extension of the present methodology.

Using the estimated values of physical variables of vent

speed and radius and grain size distribution, together with

estimates of their uncertainty, as inputs into the bent erup-

tion column model, we generate a sampling of the uncertain

input parameter space for a typical VATD model. From this

sample of puff runs, we then generate statistical moments

for any output variable of interest, such as concentration at a

point or in a region, or cloud size and position. In the present

case, the output variables that we will concentrate on are

related to ash cloud size and position, as measurements of

these parameters from satellite data are better—having a

longer history of development and testing—than are meas-

urements of concentration, and therefore more suitable for

model comparison and validation.

The starting point for our development of the PCQWE

method is to approximate the input and output variable

distributions by a truncated polynomial series, the poly-

nomial being associated with the distribution (so, e.g.,

the Hermite polynomials are associated with a Gaussian

distribution):

θi xð Þ ¼
X

N

k¼0

θikfk xð Þ ¼ ΘT
i 6 xð Þ ) Θ t; xð Þ ¼ Θpc 6 xð Þ ð3Þ

xi t;Θð Þ ¼
X

N

k¼0

xik ðtÞfk xð Þ ¼ xTi ðtÞ6 xð Þ ) x t; xð Þ ¼ XpcðtÞ6 xð Þ ð4Þ

where, Xpc and Θpc are matrices composed of coeffi-

cients of PC expansions for state x and parameter Θ

respectively and {ϕk} is the set of orthogonal polyno-

mials in the unit random variable ξ chosen for the

approximation. This approach was pioneered by Xiu

and Karniadakis (2002) and termed generalized polyno-

mial chaos (gPC). gPC is an extension of the homoge-

nous chaos idea of Wiener (1938) and involves a

separation of random variables from deterministic ones

in the solution algorithm for a stochastic differential

equation. Suitably chosen polynomials converge rapidly

to the assumed pdf for the input variables.

Galerkin projection (multiplication by ϕk and integration

over dp(ω), where p is probability and ω is a dummy

variable that spans the random space) is used to generate a

system of deterministic differential equations for the expan-

sion coefficients. The Galerkin projection step fails when

applied to problems with non-polynomial nonlinearities,

and can produce unphysical solutions when applied to

systems modeled by hyperbolic partial differential equa-

tions. Furthermore, Galerkin projection requires that a

“new” set of unphysical partial differential equations be

solved—a difficult option since the primary models bent

and puff cannot be easily altered. Non-intrusive spectral

projection (NISP) or stochastic collocation methods can

overcome these difficulties (LeMaitre et al. 2001; Xiu

and Hesthaven 2005; Berveiller et al. 2006). Dalbey et

al. (2008) have proposed polynomial chaos quadrature

(PCQ) as a variation of the NISP method (see LeMaitre

et al. (2001), Xiu and Hesthaven (2005), and Berveiller

et al. (2006)). Key to this methodology is the recognition that

the projection desired to estimate the coefficients of the poly-

nomial expansion or to estimate moments (mean, variance,

etc.) will require numerical integration with quadrature of the

state variable x, using the numerical integration of the expres-

sion for the time derivative of x from Eq. 2. PCQ approx-

imates the Nth moment of x as:

xðtÞN
D E

¼

Z

W

Z

t

0

x
�
dt

0

@

1

A

N

dp wð Þ ¼

Z

W

Z

t

0

f t; x;Θ;Wð Þdt

0

@

1

A

N

dp wð Þ

ð5Þ

¼
X

q

wq f t; x;Θq;W
� �� �N

ð6Þ

For a fixed value of parameter Θ ¼ Θq, the evaluation of

x is done using a run of bent and puff. This method can be

viewed as a Monte Carlo-like evaluation of system equa-

tions, but with sample points ξq and corresponding weights

wq selected by quadrature rules. In other words, the output

moments are approximated as a weighted sum of the

Bull Volcanol



output of simulations run at carefully selected values of

the uncertain input parameters (namely the quadrature

points). The formula above for moments can be used to

estimate the means and variances. Similarly the ith

polynomial coefficient for the kth random variable, xik,

can be obtained as,

xik ¼

P

q

wq f t; x;Θq;W
� �

fi xq
� �

P

q

wq fi xq
� �� �2

ð7Þ

With the coefficients in hand, the truncated polyno-

mial series can be used to estimate probabilities. The

Gaussian quadrature points optimize the degree of the

polynomial function that integrates exactly an Hermite

polynomial representation of the uncertainty. The classic

method of Gaussian quadrature exactly integrates poly-

nomials up to degree 2N+1 with N+1 quadrature points

to obtain the Nth moment. The tensor product of one-

dimensional quadrature points is used to generate quad-

rature points in general n-dimensional parameter space.

As a consequence, the number of quadrature points

increases as (N+1) to integrate exactly an n-variate

polynomial of degree 2N+1 as the number of uncertain

input parameters, n, increases. Thus, in the analysis

below, when we use 9406,561 quadrature points (model

runs), it means that there are four uncertain input

parameters (vent radius, vent velocity, initial mean grain

size, and initial standard deviation of the grain size) for

which we are integrating the polynomials up to degree

17 (02×8+1) and are able to calculate moments up to

order 4. It is important to point out here the extremely

sensitive dependence of the number of quadrature points

on the number of uncertain parameters, i.e., the number

of points goes up in proportion to the power of the

number of parameters. This effectively limits the number of

uncertain input parameters that can be propagated. For exam-

ple, although four variable input parameters necessitate about

104 model runs in the present case, eight variable input

parameters necessitate 106−107 runs. Thus, one needs to be

judicious and parsimonious in the choice of only the most

critical input parameters that are to have variability. Although

the present contribution cannot include a sensitivity study of

the relative importance of various uncertain input parameters,

we have tried to wisely choose those four that should have the

most profound impact on the output mass and geometry. The

input source variables deemed to have the most direct impact

on cloud geometry and loading are vent radius, source vent

velocity, initial grain size mean, and initial grain size standard

deviation. Vent radius and source vent velocity directly con-

trol mass eruption rate, hence column height and spreading.

Initial grain size mean and standard deviation are the source

conditions that most directly control the fallout rate of the

particles, hence the mass loading at the height of the eruption

cloud.

Analysis and PCQWE results

The first step in the analysis is to produce the sampling

values and their weights, for the uncertain bent inputs, viz.

vent radius, vent velocity, mean grain size, and grain size

variance. The inputs are sampled at selected points, in the

present case, Gauss-Legendre quadrature points, since the

underlying distribution has been taken to be uniform for

each of our uncertain inputs. We have used uniform distri-

butions as given data consist only of ranges. We cannot

assign to any one point within each range a higher likeli-

hood than surrounding points. Outputs are summed with

appropriate weights, producing the polynomial chaos quad-

rature weighted estimate of downwind ash position and

loading. For the range of values of vent radius and velocity

that were sampled, we noted two different regimes of plume

rise (Fig. 3); the lower regime is associated with those inputs

that result in eruption column collapse. As noted previously,

at least partial column collapse seemed to be a major feature

of this eruption.

Since PCQ is a numerical method of integration (
R

Ω

f ðxÞdx �
PNq

i¼1 wi f xið Þ where Nq is the number of quadra-

ture points and wi,ξi are quadrature point and weight combi-

nations), using an insufficient number of quadrature point-

driven samples will result in integration error. This neces-

sitates an adaptive or nested quadrature scheme that allows

us to successively refine the accuracy by increasing the

number of sample points, i.e., simply running the model at

additional quadrature points rather than having to resample

the input distributions. In a nested quadrature scheme, one

can compare the solution computed at a given order with

that of a quadrature rule of lower order, which evaluates the

integrand at a subset of the original N points, to minimize

the integrand evaluations. Gaussian quadrature rules are not

naturally nested. Hence, we employ Clenshaw–Curtis quad-

rature (Cheney and Kincaid 1999; Clenshaw and Curtis

1960) for numerical integration. The Clenshaw–Curtis

scheme is based on an expansion of the integrand in terms

of Chebyshev polynomials and naturally leads to nested

quadrature rules. Another advantage of Clenshaw–Curtis

quadrature is that the quadrature weights can be evaluated

in order NlogN time by fast Fourier transform algorithms as

compared to order N2 for the Gaussian quadrature weights.

Following runs of bent at the quadrature points, each

output is then propagated through puff, which was then

run for a real-time period of 5 days. The weighted outputs

from puff were then combined to produce a probabilistic
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estimate of ash cloud position by applying the appropriate

weight to each deterministic bent–puff run.

Numerical methodology of the type used here must

always be tested for independence from discretization

parameters and number of model runs. As we seek to

develop a numerical method that could be implemented

in a finite (usually short) computing time, we need to

minimize the number of puff particles used and the total

number of runs, while at the same time maintaining

model accuracy. The number of model runs is given

by the number of quadrature points. Convergence of

moments in PCQ as a function of the number of quad-

rature points is discussed in detail in (Dalbey et al.

2008). For the present set of simulations, we compared

the outputs for 9406,561 model runs against those for

134028,561 model runs (quadrature points). The results

indicate that 94 runs is substantially the same as 134

runs in terms of the values of selected outputs (Fig. 4).

In examining the output ash cloud top height for 16

April 2010 12Z, for 6,047 computational grid points,

the maximum deviation between 94 and 134 quadrature

points is 2.76 %, and the mean difference is 0.02 %.

For this analysis, percent differences were calculated by

normalizing the cloud top height difference between 94

and 134 quadrature points against the maximum cloud

height at the given time. Most grid points contain no

ash in both model runs, thus the difference between the

mean and maximum deviations. These results suggest

that 94 runs is sufficient for propagation of the uncer-

tainty in the inputs. In terms of sensitivity to discretiza-

tion parameters, the most important discretization in

puff is the use of Lagrangian “particles” that are prop-

agated in the windfield. Once the particles have been

moved sufficiently far, they need to be counted in some

way to obtain smooth concentration gradients as one

sees in nature. If too few particles are used, then the

smoothing process can yield poor estimates of concen-

tration as a function of position. In terms of the effect

of discretization parameters, the comparison of outputs

using 105 to 107 particles in the puff simulation indi-

cated that the choice of 4×106 particles was adequate

for our purposes (Table 2), and is consistent with the

findings of others (Scollo et al. 2011).

We focus on four-dimensional ash cloud-top position in

presenting typical output from this process, as this will be our

validation dataset as well. Results for 94 Clenshaw–Curtis

quadrature points and 4×106 puff particles for 16 April 2010

are shown in Fig. 5. Although maximum mean ash cloud-top

height hovers between 1 and 2 km, the standard deviation in

the estimate is higher, and the region of non-zero deviation is

much larger than that of the mean. Thus, the standard practice

of capturing most of the probability density or mass by taking

the mean plus three standard deviations of an output variable

(encompassing approximately 99.7 % of the probability mass,

assuming a Gaussian distribution of the output variable) will

result in a maximum predicted cloud-top height of approxi-

mately 8 km at these times. One can conclude from this that

the input source parameter uncertainty resulted in a sufficient-

ly large uncertainty in downwind ash cloud position. Clearly,

this result shows that it is critical to do everything possible to

“beat down” the input source parameter uncertainty if we are

to obtain tightly constrained estimates of the position of the

downwind ash cloud, but that even what might be a poorly

constrained estimate is helpful.

Discussion and conclusions

For model evaluation and validation, both individual deter-

ministic puff runs and PCQWE output were compared with
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Fig. 4 Comparison of output on mean cloud-top height from runs of

94 and 134 quadrature points, taken as transects along latitudes 50 and

51° North. Each curve is labeled according to the number of runs and

the latitude. Comparison is between the runs having different numbers

of quadrature points along the same parallel

Table 2 Comparison of concentration at 52° N, 13.5° E and 0–

2,000 m elevation using different numbers of initial puff particles

n puff particles

(initial)

Abs. concentration

(mg/m3)

Rel. concentration

(puff particles in cell)

1×105 1.15×10−3 28

5×105 1.82×10−3 221

1×106 1.66×10−3 405

2×106 1.74×10−3 844

4×106 1.70×10−3 1,655

8×106 1.79×10−3 3,471

1×107 1.71×10−3 4,151

The absolute concentration is calculated from the relative concentration

assuming a cloud thickness of 1 km based on CALIOP data (e.g.,

Fig. 6)
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ash position as determined by analysis of Meteosat-9

SEVIRI data. The main metric used in the present work is

ash cloud-top height as a function of map position and time.

Four-dimensional ash cloud top position on 16 April 2010

has been chosen for validation as it is thought to be well-

characterized by the test dataset from Meteosat-9 SEVIRI.

The plume generated in the initial, paroxysmal phase of the

eruption in the early morning of 14 April 2010 drifted over

northern Europe on 16 April 2010, hence this is the region

and time we focus on. Meteosat processing by the algo-

rithms used in this contribution is the most robust method-

ology for ash detection and assessment. Volcanic ash was

identified in the satellite data using the methodology de-

scribed in Pavolonis et al. (2006) and Pavolonis (2010). The

ash loading (mass per unit area) and ash cloud height were

retrieved using an optimal estimation approach (Heidinger

and Pavolonis 2009; Heidinger et al. 2010). Ash loading

was not used for validation however as the SEVIRI data

product consists of an estimate for an unknown depth within

the upper part of the ash cloud. All microphysical assump-

tions used in the retrieval are described in (Wen and Rose

1994). In model and data, plume edge was defined by

detectability of ash in a computational cell or pixel, respec-

tively. Comparison with CALIOP limb sounder data sug-

gests that Meteosat generally characterizes cloud top height

well, but there are exceptions (Fig. 6). Volcanic ash cannot

be detected if ash is obscured (from the top) by liquid water

or ice clouds. This is true for all satellite-based infrared ash

retrieval schemes. Based on careful manual analysis of

satellite imagery, volcanic ash was generally the highest

Fig. 5 Model outputs for the

ash cloud over north-central

Europe on 16 April 2010 using

94 Clenshaw-Curtis quadrature

points and 4×106 puff particles.

Ash cloud heights in meters;

contour interval 600 m for

mean and 400 m for standard

deviation. a Mean cloud height

at 00Z, b standard deviation of

cloud height at 00Z, c mean

cloud height at 06Z, d standard

deviation of cloud height at

06Z, e mean cloud height at

12Z, f standard deviation of

cloud height at 12Z, g mean

cloud height at 18Z, and h stan-

dard deviation of cloud height

at 18Z
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cloud layer over Europe on 16 April 2010. However, higher

level ice clouds did interfere with satellite detection of

volcanic ash in areas northeast of Poland on 16 April 2010.

Qualitative comparison

In a qualitative analysis, PCQWE ash location matches ash

location in the data (Fig. 7). The Meteosat-9 SEVIRI cloud

top height outputs were compared with model mean ash

parcel height plus three standard deviations (statistics calcu-

lated from outputs of computational runs), as an estimated

upper bound on predicted plume top height. 94 PCQ

Clenshaw–Curtis runs were sampled in the input space,

and 4×106 ash particles were used. For a Gaussian, univar-

iate distribution, mean ±3σ incorporates 99.7 % of the

model probability mass. Since in the present case pdfs are

non-Gaussian, this value is somewhat lower. If we can

assume that the largest values of vent radius and eruption

speed resulted in the runs in which ash was transported at

the highest modeled levels, this result suggests that the

initial eruption was at the higher end of the intensities used

in individual model runs. This would imply that the MER

during the initial phase of the eruption was on the order of

108kg/s.

None of a random sample of seven of the 6,561 model

runs that went into the PCQE composite yielded ash parcels

over northern Germany as seen in the SEVIRI test dataset.

Thus, there is a non-zero probability mass of model runs that

is encompassed by the space of reasonable estimated volca-

nic input source parameters, which contribute nothing to the

Fig. 5 (continued)
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presence of ash in the forecast region. This suggests that

individual runs of VATD models can yield results far from

truth, even for rational choices of input parameters, and that

stochastic combination is critical when volcanic input

parameters are poorly constrained.

Continuing with our qualitative analysis, in planview,

PCQWE predictions of location encompass a much larger

area than does the data, but include most of the cells in which

SEVIRI recorded ash. In both model and data, ash cloud top

height varies from <1 km to c. 8 km. There is a variation in

height along the axis of the ash cloud in the satellite data that

in magnitude, and often in detailed location, corresponds with

the variation seen in the PCQWE output (Fig. 7c–d), although

the height variation does not correlate in detail at all times

(Fig. 7a–b). (We note that comparison of SEVIRI ash

retrievals with CALIOP limb sounder data shows that these

height variations are real.) Depending on the time, the position

of the higher parts of the ash cloud in the satellite data shifts

between its eastern and western ends. Locally, Meteosat can

misinterpret meteorological clouds as ash clouds, and can

have a larger variance in the vertical dimension than limb

sounder data. These, as well as a poorly constrained vertical

dispersion in the ash motion used in the model may contribute

to this difference in height between model and data.

Nevertheless, the point here is that since we do not know a

priori the characteristics of the paroxysmal eruption column,

the fact that the highest model ash parcels are close to the data

suggests not only that the model parameter space encom-

passes the true, but that the paroxysmal initial pulse was as

large as allowed by the parameter space.

Fig. 5 (continued)
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An important difference between model and data is the

existence of ash clouds in the model to the northeast that are

not present in the data. Detailed investigation of individual

model runs shows that these ash bodies are derived in

virtually all model runs at high elevation at a location west

of Norway where the ash cloud bifurcates. The low-level

ash cloud that corresponds to that seen in the Meteosat data

propagates to the south from this point, while the high-level

model cloud propagates eastward, eventually doubling

back over Russia and northern Europe. Although there

is no indication of such a cloud in the Meteosat data, as

stated previously our detailed analysis of the satellite

data suggests that higher level ice clouds did interfere

with satellite detection of volcanic ash in areas northeast

of Poland on 16 April 2010.

Quantitative comparison

Quantitative comparison of the probabilistic forecast of

four-dimensional location calculated with PCQWE and

Meteosat-9 was undertaken using data and output for 12Z

16 April 2010 for the ash cloud over north-central Europe

(Table 3; Fig. 8). In Table 3, the Figure of Merit in Space

and other statistics are calculated for each time for the

correspondence in three dimensions between the PCQWE

output mean ash cloud-top height plus three standard devia-

tions (thus encompassing about 99.7 % of the probability

mass) and the ash cloud-top height as given by the

Meteosat-9 SEVIRI retrieval. The most general statement

that can be made is that PCQWE output includes the entire

Meteosat-9 ash cloud area at the 5 % level (i.e., in the figure,

Fig. 5 (continued)
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95 % of the model probability mass is inside the appropri-

ately colored region that completely encompasses the data),

and that model and data correspond quite well even at the

70 % level (i.e., 30 % of the probability mass encompass

most of the data). Table 3 shows that when using the

standard measure of mean plus three standard deviations in

ash cloud location, at best PCQWE predicts location with

around 83 % probability (“PCQWE given Sat” row in the

table). This result is sensitive to the lower elevation cutoff

used in PCQWE. In the two cases studied, when the

Fig. 6 CALIOP space-borne

lidar detection of the Eyjafjal-

lajökull ash cloud over northern

Europe on 16 April. White line

is elevation of tropopause; red

line is elevation of ground sur-

face. The discontinuity at

8.5 km altitude is due to a

change in the vertical and hori-

zontal resolution of CALIOP,

which changes the noise char-

acteristics of the data. The blue

oval outlines the ash layer. Near

this location and time, the

highest ash was detected by

Meteosat at c. 3 km, with con-

siderable altitudinal variation

down to c. 100 m

 

a b

c d

Height, m

Fig. 7 Meteosat-9 SEVIRI cloud top height data product compared

with model mean ash parcel height plus three standard deviations.

Colored regions are SEVIRI cloud top estimate; contours of cloud

height are model. Outermost contour is 2,000 m height and contour

interval is 2,000 m. There is a ±1 km quantization error in the model

height output. a 16 April 2010 00Z, b 16 April 2010 06Z, c 16 April

2010 12Z, d 16 April 2010 18Z
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Table 3 Comparison of forecast for April 16 at 12Z and satellite data using 4×106 puff particles and 94 and 134 points of Clenshaw–Curtis

quadrature rule-based PCQWE

Metric of

footprint

PCQW min ht

124 m* 94 points

PCQWE min ht

124 m 134 points

PCQWE min ht

380 m* 94 points

PCQWE min ht

380 m 134 points

FMS 0.0544 0.0553 0.0690 0.0715

PCQWE given Sat 0.8238 0.8268 0.6889 0.6879

Sat given PCQWE 0.0551 0.0559 0.0712 0.0739

Mean +3 standard deviations used for forecast; 380 m is default lowest quantization of heights in Meteosat data in software used in calculation;

124 m is minimum height in Meteosat ash top height data on 16APR at 12Z

FMS figure of merit in space 0 (area of intersection of PCQWE forecast and satellite image)/(area of union), PCQWE given Sat 0 (area of

intersection PCQWE forecast and satellite image)/(area of satellite), Sat given PCQWE 0 (area of intersection PCQWE forecast and satellite image)/

(area of PCQWE forecast)

Fig. 8 Meteosat-9 SEVIRI

cloud outline (filled black

region) compared with model

generated probabilities of ash

presence based on source

parameter uncertainty

propagation. Color scale bar in

fractional probability. Outer

edge of blue area is at 20 %

probability. a 16 April 2010

00Z, b 16 April 2010 06Z, c 16

April 2010 12Z, d 16 April

2010 18Z
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PCQWE elevation cutoff is the same as the lowest ash

parcels imaged by Meteosat (124 m), the results are consid-

erably better than those obtained using a higher cutoff

(380 m—the lowest software quantization height). The

number of “false positives” for the model hovers between

93 and 95 % (“Sat given PCQWE”), because the PCQWE

output is nearly a superset of the Meteosat data that encom-

passes about 20 times the map area encompassed by the

satellite data (“FMS” compared to “Sat given PCQWE”).

Thus, not only can results be output in the form of statistical

moments (Figs. 5 and 7), but we have also generated outputs

in the form of the probabilities directly (Fig. 8). The probabil-

ity plot used herein shows the probability that ash can be

found at a given location at any altitude at the displayed time.

A three-dimensional plot for a given time could also be

produced, so the current two-dimensional planview is used

to provide a simple demonstration of the concept. Although

the current results suggest that contouring an ash cloud at

about the 70 % percentile would yield a good estimate of

ash position based on the comparisonwith the SEVIRI data, in

practice, it would probably be justly conservative to choose a

lower value, to reduce the possibility of encounter.

Nevertheless, one important point of a probabilistic plot is

that agencies and other decision-making groups can choose a

statistical cut-off that they deem servicable in a given situa-

tion. The critical decision of “where to draw the line” does not

Fig. 8 (continued)
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need to fall upon scientists who should primarily focus on

making the best measurements and calculations possible.

A practical consideration in contemplating these results is

whether they are feasible from the standpoint of computa-

tion time—can the computation be finished by the time a

decision needs to be made. One run of bent takes seconds of

CPU time to execute, whereas a run of puff finishes in

minutes of CPU time. A sample 9406,561 quadrature point

run with 4×106 puff particles was executed on 24 CPUs,

each using a little less than 2 h of wall time. Given a

relatively modest parallel computing capacity, therefore,

the methodology executes relatively quickly.

The main conclusions from this study are the following:

1. It is possible to use other source parameters besides

eruption column rise height to obtain reasonable esti-

mates of boundary conditions important to the calcula-

tion of the loading and transport height of tephra.

2. When possible therefore, volcanologists should make

and take advantage of as many measurements of source

parameters as is possible.

3. Although any measurements of source parameters can be

used in a model such as outlined herein, source parameter

uncertainty should be addressed as vigorously as possible to

minimize errors in downwind plume position and loading.

4. With respect to the source parameters for the initial,

paroxysmal phase of the April 2010 Eyjafjallajökull

eruption, numerical modeling with bent coupled with

radiosonde data for 14 April 2010, as well as the obser-

vation that the highest model ash particles are needed to

encompass the downwind ash cloud as retrieved from

SEVIRI data, suggest that perhaps the initial phase of

the eruption was at the high end of the parameter space

explored herein, meaning that maximum MER could

have been as high as 108kg/s, and was almost certainly

higher than 107kg/s.

5. Eyjafjallajökull eruption column height was severely

affected by the high winds.

6. It is critical to obtain as good as possible a picture of the

weather conditions at the source, especially as given by

radiosonde measurements taken close the volcano and

eruption time.

7. Given the success in generating a probabilistic envelope

of ash position that encompasses Meteosat-9 data

(Fig. 8; Table 3), the results suggest that variations in

source parameters of the type investigated here play a

role in accurately estimating distal ash position.

8. PCQWE can be used to generate a probabilistic forecast

of ash position for a relatively small sample size of order

[94] computational runs.

9. The ability to generate a probabilistic forecast of ash

cloud position, together with statistical moments may

allow for a better separation of scientific and decision-

making tasks in eruption crises, as this frees scientists to

address errors in measurement and analysis in a system-

atic fashion and allows decision-makers to be responsi-

ble for “drawing the line” on a region of risk.

We are currently exploring the application of PCQWE to

the additional variability arising from our incomplete

knowledge of the windfield. The question arises however,

whether even PCQWE can provide probabilistic estimates

useful in Volcanic Ash Advisories in a reasonable time. This

question clearly needs to be investigated further.
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